WO2010058527A1 - グルタミン酸高含有酵母の製造方法 - Google Patents
グルタミン酸高含有酵母の製造方法 Download PDFInfo
- Publication number
- WO2010058527A1 WO2010058527A1 PCT/JP2009/005802 JP2009005802W WO2010058527A1 WO 2010058527 A1 WO2010058527 A1 WO 2010058527A1 JP 2009005802 W JP2009005802 W JP 2009005802W WO 2010058527 A1 WO2010058527 A1 WO 2010058527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yeast
- glutamic acid
- content
- weight
- culture
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
- A23L2/56—Flavouring or bittering agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/20—Synthetic spices, flavouring agents or condiments
- A23L27/21—Synthetic spices, flavouring agents or condiments containing amino acids
- A23L27/22—Synthetic spices, flavouring agents or condiments containing amino acids containing glutamic acids
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/14—Yeasts or derivatives thereof
- A23L33/145—Extracts
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/175—Amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
Definitions
- the present invention relates to a method for producing a yeast having a high glutamic acid content, a yeast having a high glutamic acid content, a yeast extract having a high glutamic acid content, and a food / beverage product containing a yeast having a high glutamic acid content.
- Patent Literature 1 describes a sweet taste improving agent containing a yeast extract as an active ingredient, and the yeast extract contains 5′-sodium inosinate and / or 5′-sodium adenylate and 5′-guanylic acid. Contains 1-15% sodium, 5'-sodium uridylate and 5'-sodium cytidylate, and 1-20% sodium glutamate, respectively.
- Patent Document 2 includes a step of digesting yeast containing 15 mg or more of free glutamine per gram of dry cells, and containing at least 3% glutamic acid derived from intracellular free glutamine with respect to the solid extract content. A method for producing the extract is described.
- Patent Document 3 discloses a yeast extract obtained by digesting or degrading yeast.
- the yeast extract is permeated through a filtration membrane having a diameter of 1 micrometer, and the permeation portion is subjected to gel filtration.
- a yeast extract characterized in that in peptides detected by absorptiometry at 220 nm, the ratio of those having a molecular weight of 10,000 or more is 10% or more with respect to the total amount of peptides detected.
- Patent Document 4 describes a yeast extract with a high glutamic acid content, which contains 13% by weight or more of L-glutamic acid (as Na salt).
- Patent Document 5 describes a yeast extract characterized in that the content of free amino acids is 25% by weight or more and the total content of nucleic acid-based taste-imparting components is 2% by weight or more.
- Patent Document 7 describes a yeast that is resistant to a glutamate antagonistic growth inhibitor and accumulates glutamate in the cells.
- Patent Document 8 is characterized by using Yarrowia lipolytica yeast that is resistant to the drug nystatin, which impairs the structure and function of cell membranes, and has the ability to accumulate L-glutamic acid in an amount of 530 mg / l or more. A method for producing a yeast extract is described.
- Patent Document 1 describes a yeast extract containing 1 to 20% sodium glutamate, but what is actually used is a commercial product containing 5.0% sodium glutamate, and more Nothing is mentioned about things.
- Patent Document 2 is performed by genetic recombination, is complicated in operation, and is inferior in safety, palatability and the like as a food.
- Patent Document 3 describes that sodium glutamate (soda) is contained in an amount of 10% or more per solid content, but there is no mention of any examples.
- operation such as carrying out an enzyme process, is complicated.
- patent document 5 in addition to complicated operation, such as using an enzyme, glutamic acid per dry powder is about 13%.
- Patent Document 6 is merely an external addition of glutamic acid.
- patent document 7 glutamic acid content per dry cell weight is low.
- operation is complicated, such as giving drug tolerance provision to a parent strain.
- the present invention has been made in view of the above circumstances, and a method for producing a glutamic acid-rich yeast containing glutamic acid, particularly free glutamic acid at a higher concentration than before, a glutamic acid-rich yeast, a glutamic acid-rich yeast extract, and glutamic acid It aims at providing contained food and drink.
- the present inventors have found that the culture solution is raised to a specific pH (shifted to an alkaline region) during the cultivation of yeast in the stationary phase of growth. It has been found that the glutamic acid content, particularly the free glutamic acid content, increases. And it discovered that a yeast extract with high glutamic acid content could be manufactured by manufacturing a yeast extract using this yeast, and completed this invention. That is, the present invention adopts the following configuration.
- a method for culturing yeast comprising a step of subjecting a yeast in a stationary phase of liquid growth to a liquid culture under conditions where the pH of the liquid medium is 7.5 or more and less than 11.
- the liquid culturing step includes Adjusting the pH of the liquid medium to 7.5 or more and less than 11 after yeast growth enters a stationary phase; and further culturing the yeast within the pH range;
- the yeast culture method according to (1) comprising: (3) adjusting the pH of the liquid medium to 7.5 or more and less than 11,
- the culture method according to (2) which is a step of adding an alkaline substance to the liquid medium.
- the culture method according to (1) wherein in the liquid culturing step, a part of the cultured yeast is collected and the measurement of the free glutamic acid content in the yeast is intermittently performed.
- a method for producing yeast comprising a step of recovering yeast cultured by the culture method according to any one of (1) to (5).
- the yeast according to (7), wherein the content of free glutamic acid is 2.3 to 10.0% by weight per dry yeast cell.
- (10) A yeast extract extracted from the yeast according to (7).
- (11) The yeast extract according to (10) above, wherein the content of free glutamic acid in the yeast extract is 7 to 35% by weight per dry weight.
- (12) The yeast extract according to (11), wherein the content of free glutamic acid in the yeast extract is 20 to 35% by weight per dry weight.
- (15) A seasoning composition comprising the yeast extract according to any one of (10) to (13).
- (16) The yeast according to any one of (7) to (9) or (14), the yeast extract according to any one of (10) to (13), or
- the glutamic acid content particularly, the free glutamic acid content is significantly increased by simply shifting the pH of the yeast liquid medium in the stationary phase of the yeast to alkali. High content yeast can be produced.
- a glutamic acid-rich yeast extract containing glutamic acid, particularly free glutamic acid at a high concentration can be obtained.
- FIG. 1 shows an increase curve of the number of bacteria with respect to culture time in Example 2.
- FIG. 2 shows an increase curve of dry yeast cell weight with respect to culture time in Example 2.
- FIG. 3 shows the change in pH of the liquid medium with respect to the culture time in Example 2.
- the yeast culture method of the present invention includes a step of subjecting a yeast in a stationary phase of growth to a liquid culture under conditions where the pH of the liquid medium is 7.5 or more and less than 11. By performing this culture method, it becomes possible to obtain a yeast with a high glutamic acid content.
- a yeast culture method of the present invention includes a step of subjecting a yeast in a stationary phase of growth to a liquid culture under conditions where the pH of the liquid medium is 7.5 or more and less than 11.
- the yeast may be a unicellular fungus, and specifically, Saccharomyces spp., Shizosaccharomyces spp., Pichia spp., Candida spp., Kluyveromyces spp., Williopsis spp., Debaryomyces spp., Galactomyces spp., Torulaspora spp. And bacteria belonging to the genus Zygosaccharomyces.
- Candida tropicalis, Candida lipolytica, Candida utilis, Candida sake, and Saccharomyces cerevisiae are edible. (Saccharomyces cerevisiae) and the like are preferable, and Saccharomyces cerevisiae and Candida utilis that are widely used are more preferable.
- the pH of the yeast liquid medium in the stationary stationary phase is 7.5 or more. What is necessary is just to carry out liquid culture on the conditions which are less than 11.
- the culture medium composition of these strains is not particularly limited, and those used in conventional methods can be used. For example, one or two or more selected from the group consisting of glucose, sucrose, acetic acid, ethanol, molasses, sulfite pulp waste liquid and the like used for culturing ordinary microorganisms are used as the carbon source, and the nitrogen source is urea.
- inorganic salts such as ammonia, ammonium sulfate, ammonium chloride or ammonium phosphate, and nitrogen-containing organic substances such as corn steep liquor (CSL), casein, yeast extract or peptone used.
- CSL corn steep liquor
- a phosphoric acid component, a potassium component, and a magnesium component may be added to the medium, and these include ordinary industrial products such as lime superphosphate, ammonium phosphate, potassium chloride, potassium hydroxide, magnesium sulfate, and magnesium hydrochloride.
- the raw material can be used.
- inorganic salts such as zinc, copper, manganese, and iron ions may be used.
- vitamins and nucleic acid-related substances may be added.
- the culture format may be batch culture, fed-batch culture or continuous culture, but industrially fed-batch culture or continuous culture is employed.
- Culture conditions in the logarithmic growth phase or culture conditions before pH adjustment may be in accordance with general yeast culture conditions.
- the temperature is 20 to 40 ° C., preferably 25 to 35 ° C., and the pH is 3.5 to 7.5, especially 4.0 to 6.0 is desirable.
- it is preferable that it is aerobic conditions.
- it is preferable to culture while aeration and stirring.
- the amount of aeration and the conditions for stirring can be appropriately determined in consideration of the culture volume and time, and the initial concentration of bacteria.
- the ventilation is 0.2-2V. V. M.M. (Volume per volume per minute) and stirring can be performed at about 50 to 800 rpm.
- the method for liquid culture of yeast in the stationary phase of growth under conditions where the pH of the liquid medium is 7.5 or more and less than 11 is not particularly limited.
- methods for adjusting the pH include adjusting the pH of the liquid medium to 7.5 or more and less than 11 when the cultured yeast enters the stationary phase, and adjusting the pH by adding an alkaline substance to the liquid medium.
- the amount of the alkaline substance added to the medium is not limited as long as the pH falls within the above range, but from the viewpoint of not diluting the medium excessively and adversely affecting glutamate production in the subsequent culture. 5% or less is desirable.
- the amount in the case of urea is not particularly limited, but is preferably about 0.5 to 5% with respect to the medium, although it depends on the cell concentration of the yeast to be cultured.
- the method of adjusting the pH of the liquid medium to 7.5 or more and less than 11 when the cultured yeast enters the stationary phase is not particularly limited.
- an alkaline substance is appropriately added to adjust the pH of the liquid medium. It may be adjusted to 7.5 or more and less than 11, preferably 7.5 or more and 10 or less.
- the pH adjustment may be performed at any time during the stationary phase, but is preferably performed immediately after entering the stationary phase. This is because it is possible to sufficiently increase the concentration of free glutamic acid in the yeast and to shorten the time required until the end of the entire process.
- the pH of the liquid medium of the yeast in the logarithmic growth phase is 7.5 or more and less than 11, it is not preferable because the growth of the yeast is suppressed and the content of free glutamic acid in the yeast does not increase.
- the yeast in culture shifts from the logarithmic growth phase to the stationary phase, it gradually shifts from the logarithmic growth state to the steady state and then completely enters the steady state. The time to gradually reach a complete steady state is also included in the stationary phase of the present invention.
- the alkaline substance is not particularly limited, and examples thereof include the following components.
- NH 4 OH ammonia water
- ammonia gas inorganic alkali such as sodium hydroxide, potassium hydroxide, calcium hydroxide and magnesium hydroxide
- alkaline base such as sodium carbonate and potassium carbonate
- organic alkali such as urea and the like.
- ammonia water, ammonia gas, and urea are preferred.
- the temperature and other conditions for culturing yeast in a stationary phase in a liquid medium having a pH of 7.5 or more and less than 11 may be in accordance with general yeast culture conditions.
- the temperature is preferably 25 to 35 ° C.
- the incubation time is preferably from 24 hours immediately after pH adjustment, more preferably from 1 to 15 hours, further preferably from 3 to 12 hours, particularly preferably from 3 to 6 hours.
- the free glutamic acid content in the yeast after the pH is shifted to 7.5 or more and less than 11 tends to increase with the passage of the culture time and decrease after reaching the peak. This also depends on conditions such as the cell concentration, pH and temperature of the yeast to be cultured. This is presumably because the influence of alkali on the yeast becomes too great if the culture is carried out for an excessively long time under alkaline conditions. Therefore, in the present invention, it is possible to appropriately select an optimal culture time for each culture condition, particularly for each pH after alkali shift, but after the pH shift, a part of the cultured yeast is recovered and free glutamic acid in the yeast is recovered. The content is measured intermittently, preferably at regular intervals.
- yeast having a very high free glutamic acid content of 2.3% to 10.0% by weight per dry yeast cell weight can be obtained. It has been confirmed that it can be obtained.
- yeast containing free glutamic acid can be obtained in the range of 4.0% by weight to 10.0% by weight per dry yeast cell weight.
- a yeast extract having a high glutamic acid content which is as high as ever before, has a free glutamic acid content of 20% to 35% by weight per dry weight. It has been confirmed that it can.
- a yeast having a high free glutamic acid content can be cultured, and a yeast having a very high free glutamic acid content can be produced by appropriately recovering the yeast. Accordingly, a yeast extract having a high free glutamic acid content can be prepared from the obtained yeast. In addition, it cannot be overemphasized that the yeast of this invention, yeast extract, etc. have high total glutamic acid content not only in free glutamic acid.
- Patent Document 1 and the like describe a yeast extract of 20% by weight in terms of sodium glutamate (molecular weight of about 169), which is about 17% by weight as glutamic acid (molecular weight of about 147) content. Not too much. Also from this point, it is clear that the yeast obtained by the production method of the present invention is a yeast having a high glutamic acid content.
- the “free glutamic acid content per dry yeast cell” means the ratio (% by weight) of free glutamic acid contained in the solid content obtained by drying the yeast cell. Further, the “content of free glutamic acid per dry weight of yeast extract” means the ratio (% by weight) of free glutamic acid contained in the solid content obtained by drying the yeast extract.
- a BF-5 biosensor manufactured by Oji Scientific Instruments As a method for measuring the content of free glutamic acid in yeast cells or yeast extract, for example, a BF-5 biosensor manufactured by Oji Scientific Instruments may be used.
- This apparatus is an apparatus for quantifying glutamic acid in a solution using an enzyme electrode that specifically reacts with glutamic acid, and this enzyme electrode does not react with glutamic acid in proteins and peptides. Therefore, it is possible to selectively quantify only free glutamic acid by using such an apparatus.
- the content of free glutamic acid can be measured using an automatic amino acid analyzer JLC-500 / V manufactured by JEOL Ltd., an Acquity UPLC device manufactured by Waters (USA), etc., but is particularly limited. It is not a thing.
- a yeast containing abundant glutamic acid, particularly free glutamic acid in the microbial cells can be produced.
- the free glutamic acid is 2.3% by weight or more, preferably 2.3 to 9.1% by weight, more preferably 4. 0 to 9.1% by weight can be included.
- a yeast containing 2.3 to 7.4% by weight, more preferably 4.0 to 7.4% by weight of free glutamic acid in a dry yeast cell can be obtained.
- a yeast extract rich in free glutamic acid which is a good taste component, can be easily obtained by extracting and producing a yeast extract from the yeast.
- the glutamic acid-rich yeast produced by the method of the present invention has a high free amino acid content and a high free glutamic acid content.
- free glutamic acid derived from yeast cells is 7 wt% or more, preferably 7 to 35 wt%, more preferably 12 wt% per dry weight in the yeast extract.
- a yeast extract containing ⁇ 35% by weight, more preferably 20-35% by weight can be obtained.
- a yeast extract containing 7 to 30% by weight of free glutamic acid, more preferably 12 to 30% by weight, still more preferably 20 to 30% by weight can be obtained.
- a yeast extract containing free glutamic acid in an amount of more than 30% by weight and not more than 35% by weight can also be obtained.
- the yeast extract obtained by this invention has very high taste property, and when it uses for food-drinks etc., it has a deep taste and can manufacture rich food-drinks.
- the present invention can produce a yeast having a high glutamic acid content by a simple process using only an alkali shift of a liquid medium. Further, as described above, it is not necessary to use a special medium as the medium, and it can be manufactured from inexpensive raw materials such as ammonia.
- the free glutamic acid content of yeast has been increased mainly by modifying genes to make recombinant or mutant strains (see Patent Documents 2, 7, or 8, etc.).
- the free glutamate content in the yeast can be increased without culturing the gene by culturing the stationary phase yeast under alkaline conditions. That is, the present invention is a method that can increase the content of free glutamate in yeast without genetically modifying the glutamate metabolism / accumulation pathway originally possessed by yeast. Therefore, by using the method of the present invention, the content of free glutamic acid in natural yeast existing in nature is significantly reduced without performing genetic modification treatment that may reduce the palatability as a food or drink. Can be increased.
- the yeast used in the method of the present invention may be a natural yeast (a yeast in which a gene has not been artificially modified) or a mutant.
- a glutamic acid-rich yeast containing a high concentration of glutamic acid in the yeast can be obtained, but a fraction containing glutamic acid may be obtained from the glutamic acid-rich yeast.
- a method for fractionating a fraction containing glutamic acid from a yeast having a high glutamic acid content any method may be used as long as it is a commonly used method.
- a glutamic acid-rich yeast extract can be produced from the glutamic acid-rich yeast cultured by the above method.
- a method for producing a yeast extract having a high glutamic acid content any method may be used as long as it is a conventional method.
- an autolysis method, an enzymatic decomposition method, an acid decomposition method, an alkali extraction method, hot water, Extraction methods are adopted.
- glutamic acid in a yeast extract obtained only by a hot water extraction method is considered to be almost entirely free glutamic acid, unlike a yeast extract obtained by an enzymatic reaction method such as an autolysis method.
- the yeast with a high glutamic acid content of the present invention has a large amount of free glutamic acid. Therefore, even if the yeast extract is extracted only by hot water treatment, a yeast extract with good taste can be obtained.
- a hydrolysis treatment using an acid, an alkali or the like is generally performed using a vegetable or animal protein.
- the hydrolyzed product of protein contains MCP (chloropropanols) suspected to be carcinogenic.
- the high glutamic acid-containing yeast produced by the method of the present invention since the high glutamic acid-containing yeast produced by the method of the present invention has a high free glutamic acid content in the first place, after the yeast is extracted by a hot water extraction method or the like, it is decomposed by an acid or an alkali or an enzyme.
- a yeast extract having a sufficiently high content of free glutamic acid can be prepared without any treatment. That is, by using the high glutamic acid-containing yeast of the present invention, a yeast extract excellent in both taste and safety can be easily produced.
- a yeast extract powder containing a glutamic acid-rich yeast extract can be obtained by powdering the glutamic acid-rich yeast extract of the present invention, and a yeast extract powder containing 7 to 35% by weight of free glutamic acid can be obtained by appropriately selecting the yeast. can get.
- dry yeast cells may be prepared from yeast having a high glutamic acid content cultured by the above method.
- any method can be used as long as it is a usual method, but industrially, freeze-drying method, spray-drying method, drum-drying method and the like are adopted.
- the glutamic acid-rich yeast of the present invention may be used as a seasoning composition.
- the seasoning composition may be composed only of the yeast extract of the present invention and contains other components such as a stabilizer and a preservative in addition to the yeast extract of the present invention. May be.
- the seasoning composition can be appropriately used for various foods and drinks as in the case of other seasoning compositions.
- the present invention relates to a glutamic acid-rich yeast obtained by the above method and a food or drink containing the glutamic acid-rich yeast extract extracted from the glutamic acid-rich yeast.
- a food or drink containing glutamic acid at a high concentration can be efficiently produced.
- These foods and drinks may be any foods and drinks that can normally be added with dry yeast, yeast extract, and seasoning compositions containing these, for example, alcoholic beverages, soft drinks, fermented foods, seasonings, soups. , Breads and confectionery.
- a preparation obtained from the above glutamic acid-rich yeast or a fraction of glutamic acid-rich yeast may be added in the production process of the food or drink.
- a glutamic acid-rich yeast may be used as it is as a raw material.
- Yeast Sacharomyces cerevisiae AB9846 strain was cultured by the methods described in ⁇ 1> to ⁇ 8> below, and extract extraction and glutamic acid analysis were performed from the yeast culture solution.
- pH shift an alkaline region
- pH shift NH 4 OH water (10%)
- the content (% by weight) of free glutamic acid in dry yeast cells increases at pH 7.5 to less than 11.0 before pH shift and 6 hours after pH shift. Was confirmed.
- the set pH of 9.0 it increased from 2.2% by weight to 5.3% by weight due to the pH shift more than twice, and a remarkable effect of increasing the free glutamic acid content was confirmed.
- the set pH (pH after pH shift) is 8.00 to 9.00, as shown in Table 2, as the set pH is higher, the content of free glutamic acid in the dry yeast cells due to pH shift ( (% By weight) was confirmed to be large.
- the yeast extract prepared using a pH-shifted yeast having a set pH of 7.5 or more and less than 11.0 is compared with the yeast extract prepared using the yeast before the pH shift.
- the glutamic acid content (% by weight) per dry weight is increased, and a yeast extract having a high glutamic acid content can be obtained by preparing a yeast extract using the yeast produced by the production method of the present invention. It was confirmed that For example, in the yeast having a set pH of 9.00 described in Table 1, in the yeast extract prepared from the yeast before the pH shift, the glutamic acid content per dry weight is prepared from the yeast cultured for 6 hours after the pH shift. In the obtained yeast extract, it was 22.4% by weight.
- the glutamic acid content per dry weight is 19.4% by weight in a yeast extract prepared from yeast cultured for 3 hours after the pH shift.
- the yeast extract prepared from yeast cultured for 6 hours after the shift was 25.5% by weight.
- the glutamic acid content per dry weight was 21.3% by weight in the yeast extract prepared from yeast cultured for 6 hours after the pH shift.
- Pre-culture was performed in the same manner as in ⁇ 1> of Example 1, and then main culture was performed under the following conditions. Rather than shifting the pH after the stationary phase, urea was added to the main culture medium in advance to obtain a glutamic acid-rich yeast under conditions where the pH naturally shifted.
- a culture medium having the following composition was prepared in a volume of 2000 mL (set at 3 L at the end of feeding).
- (Medium composition) Ammonium chloride 0.18% (3L conversion at the end of feeding) 5.3g (NH 4 ) 2 HPO 4 0.04% (diammonium hydrogen phosphate, converted to end of fed-batch) 1.2 g 1% urea (3L conversion at the end of fed-batch) 30g
- FIG. 1 shows an increasing curve of the number of bacteria with respect to culture time.
- FIG. 2 shows an increase curve of dry yeast cell weight with respect to culture time.
- FIG. 3 shows the change in pH of the culture solution with respect to the culture time.
- the increase in the number of bacteria ⁇ 10 6 cells / ml
- the dry yeast cell weight g / L
- the pH of the culture solution was measured, as shown in FIG. 3, after entering the stationary phase of growth, the pH shifted to alkali (7.5 or more and less than 11). The results are shown in Table 4.
- the glutamic acid content per dry yeast cell weight was 7.4% by weight at the time of pH increase, compared with 2.6% by weight before the pH increase, and 2.8%. Doubled.
- Extract extraction and glutamic acid analysis were performed from the yeast culture solution in the same manner as in Example 1 except that the conditions of preculture and main culture were as follows.
- Pre-culture solution 150ml The supernatant was removed from the preculture solution obtained in the same manner as the preculture in Example 1, and the yeast concentration was concentrated to 15 to 20% and used as the preculture solution. 2000ml water H 2 SO 4 (97%) 1.33 ml Molasses (sugar content 36%) 6.7ml (NH 4 ) 2 HPO 4 0.06%
- Extract extraction and glutamate analysis were performed from the yeast culture solution in the same manner as in Example 3, except that the fed-batch medium used in the main culture was subjected to the following conditions and the culture time after the pH shift was 3 hours. The results obtained are shown in Table 6.
- Feeding medium Molasses (sugar content 36%) 760-870 ml NH 4 OH (10%) 100-200 ml Phosphoric acid (85%) 5-20 (g)
- Example 4-1 the content of free glutamic acid in the dry yeast cells was 8.44 wt% (Example 4-1) and 8.06 wt% (Example 4-2), respectively. And 8.45% by weight (Example 4-3) and 9.13% by weight (Example 4-4).
- the content of free glutamic acid in the yeast extract prepared using these yeasts was 33.2% by weight (Example 4-1), 33.3% by weight (Example 4-2), 28.2, respectively. % By weight (Example 4-3) and 27.1% by weight (Example 4-4).
- yeast (Candita utilis JCM1624 strain) was used as a strain and cultured in the same manner as in Example 1, and extract extraction and glutamic acid analysis were performed from the yeast culture solution. The results are shown in Table 7.
- the content of free glutamic acid increased from about 6.9% to 26% by weight about 3.7 times before and after the pH shift.
- the total free amino acid content increased from 11.4 wt% to 43 wt%.
- yeast extract produced from the yeast (pH 9.0) prepared in the same manner as in Example 1 and the commercially available yeast extract (Comparative Examples 1 to 8), the content of free glutamic acid and the total free per dry weight of the extract The amino acid content was measured and compared. The measurement of free amino acids such as free glutamic acid was performed in the same manner as in Example 6.
- Table 9 shows the free glutamic acid content (% by weight) and the total free amino acid content (% by weight) per dry weight of each yeast extract obtained as a result of the measurement.
- “glutamic acid content” means the free glutamic acid content per dry weight of yeast extract
- total amino acid content means the total content of free amino acids per dry weight of yeast extract. means.
- the free glutamic acid content of the yeast extract of the present invention was very high at 29.1% by weight.
- the yeast extract of the present invention is suitable as a seasoning.
- yeast extract powder (derived from Saccharomyces cerevisiae AB9846 strain, glutamic acid content 23% by weight) obtained by pulverizing yeast extract produced from yeast (pH 9.0) prepared in the same manner as in Example 1, miso soup and consomme Soup was made.
- the compounding quantity of the yeast extract with respect to miso soup and consomme soup is 0.2%.
- miso soup and consomme soup were prepared in the same manner using Mist Powder N (manufactured by Asahi Food and Health Co., Ltd.) (glutamic acid content 4% by weight), and sensory evaluation was performed by the following method.
- yeast In order to show that the glutamic acid content in yeast can be increased by performing pH shift after the stationary phase in yeasts other than Saccharomyces cerevisiae AB9846 and Candita utilis JCM1624, 10 strains of the genus Saccharomyces and Candida 4 strains of bacteria and 2 strains of genus Kriveromyces were also cultured in the same manner as in Example 1, and the amount of glutamic acid was measured.
- yeast 5 yeast
- Saccharomyces cerevisiae strain (Bacer yeast) ) AB5 strain, Saccharomyces cerevisiae (Bread yeast) AB6 strain, Saccharomyces sp. AB10 strain, Candida utilis (IAM0626) AB11 strain, Candida utilis (IFO0639) AB12 strain, Candida utilis (JCM2287 is parent strain) AB13 strain, Candida utilis (JCM2287 is parent strain) AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain The test was performed on the AB16 strain. As a control, Saccharomyces cerevisiae AB9846 strain was also used.
- each yeast strain pre-cultured in a molasses medium (molasses 8%, urea 0.6%, ammonium sulfate 0.16%, diammonium hydrogen phosphate 0.08%) was cultured in a medium (ammonium chloride 0.18). %, Diammonium hydrogenphosphate 0.04%), and main culture was carried out using molasses (sugar content 36%) and a volume of 800 mL (final 8% in a 1 L medium bottle) as a feeding medium.
- Conditions such as culture temperature and aeration / stirring were the same as in Example 1.
- a pH shift was performed with NH 4 OH water (10%) (set pH 7 to 11), and the yeast was further cultured.
- the glutamic acid content increasing effect by the method of the present invention is not exhibited only in specific strains, but is exhibited in a wide variety of yeasts, at least in the genus Saccharomyces and Candida. It is clear that this is achieved.
- the yeast having a high concentration of glutamic acid in the cells can be obtained by the method for producing a yeast having a high glutamic acid content of the present invention, it can be used in the food field such as the production of yeast extract.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mycology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Nutrition Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Botany (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本願は、2008年11月18日に日本国に出願された特願2008-294642号、及び2009年5月19日に出願されたPCT/JP2009/059206号に基づき優先権を主張し、それらの内容をここに援用する。
グルタミン酸は、従来からグルタミン酸ナトリウムが化学調味料などとして普及しているが、近年は、グルタミン酸を天然に含有する酵母を培養して得られた培養物やエキスなどを飲食品に用いることが好まれている。
また、特許文献2には、乾燥菌体1g当たり15mg以上の遊離グルタミンを含有する酵母を消化する工程を含んでなる、細胞内遊離グルタミン由来のグルタミン酸をエキス固形分に対して少なくとも3%含む酵母エキスの製造方法が記載されている。
また、特許文献3には、酵母を消化、或いは分解した酵母エキスであり、1マイクロメーターの口径を有する濾過膜を透過させ、その透過部をゲル濾過に供し、分画された流出液中の220nmにおける吸光光度法で検出されたペプタイド類において、分子量10000以上となるものの比率が、全検出されたペプタイド類の総量に対し、10%以上となる事を特徴とする酵母エキスが記載されている。
また、特許文献4には、L-グルタミン酸(Na塩として)を13重量%以上含有することを特徴とするグルタミン酸高含有酵母エキスが記載されている。
また、特許文献5には、遊離アミノ酸の含有量が25重量%以上であり、かつ核酸系呈味性成分の合計含有量が2重量%以上であることを特徴とする酵母エキスが記載されている。
また、特許文献6には、核酸系呈味物質、グルタミン酸類、カリウム及び乳酸、乳酸ナトリウム又は乳酸カリウムを含有し、モル比が核酸系呈味物質:グルタミン酸類=1:2~40でありかつ(核酸系呈味物質+グルタミン酸類):カリウム:(乳酸、乳酸ナトリウム又は乳酸カリウム)=1:5~80:10~80であることを特徴とする調味料組成物が記載されている。
また、特許文献7には、グルタミン酸拮抗生育阻害剤に耐性を有し、菌体内にグルタミン酸を蓄積する酵母が記載されている。
また、特許文献8には、細胞膜の構造・機能を障害する薬剤ナイスタチンに耐性を有し、菌体内にL-グルタミン酸を530mg/l以上蓄積する能力を有するヤロウィア・リポリティカ酵母を用いることを特徴とする酵母エキスの製造方法が記載されている。
特許文献1については、グルタミン酸ナトリウムを1~20%含有した酵母抽出物と記載されているが、実際に使用しているものはグルタミン酸ナトリウム5.0%含有した市販品であって、それ以上のものについては何も言及されていない。
また、特許文献2については、遺伝子組み換えで行なっており、操作が煩雑であり、かつ食品としての安全性、嗜好性等に劣る。
また、特許文献3については、グルタミン酸ナトリウム(ソーダ)を固形分当たり10%以上含有と記載してあるが、実施例については何らそれへの言及がない。
また、特許文献4については、酵素処理をするなど操作が煩雑である。
また、特許文献5については、酵素を使用するなど操作が煩雑であるのに加え、乾燥粉末当たりのグルタミン酸は13%程度である。
また、特許文献6については、グルタミン酸を外添したものにすぎない。
また、特許文献7については、乾燥菌体重量当たりのグルタミン酸含有量は低い。
また、特許文献8については、親株に薬剤耐性付与を行なうなど、操作が煩雑である。
(2) 前記の液体培養する工程が、
酵母の増殖が定常期に入った後に液体培地のpHを7.5以上11未満に調整する工程;及び
当該酵母を当該pHの範囲内において更に培養する工程;
を含む、前記(1)に記載の酵母の培養方法。
(3) 前記の液体培地のpHを7.5以上11未満に調整する工程が、
前記液体培地にアルカリ物質を添加する工程である、前記(2)に記載の培養方法。
(4) 前記の液体培養する工程において、培養酵母の一部を回収し、当該酵母内の遊離グルタミン酸含有量の測定を断続的に行う、前記(1)に記載の培養方法。
(5) 前記酵母がサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、又はキャンディダ・ユティリス(Candida utilis)である前記(1)~(4)の何れか一つに記載の、酵母の培養方法。
(6) 前記(1)~(5)の何れか一つに記載の培養方法で培養した酵母を回収する工程を含む、酵母の製造方法。
(7) 前記(1)~(5)の何れか一つに記載の酵母の培養方法によって得られた、又は前記(6)に記載の製造方法によって得られた酵母。
(8) 遊離グルタミン酸含有量が、乾燥酵母菌体当たり2.3~10.0重量%である、前記(7)に記載の酵母。
(9) 前記遊離グルタミン酸含有量が、乾燥酵母菌体当たり、4.0~10.0重量%である、前記(8)に記載の酵母。
(10) 前記(7)に記載の酵母から抽出された酵母エキス。
(11) 前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり7~35重量%である、前記(10)に記載の酵母エキス。
(12) 前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、前記(11)に記載の酵母エキス。
(13) 遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、酵母エキス。
(14) 遊離グルタミン酸含有量が、乾燥酵母菌体当たり4.0~10.0重量%である、酵母。
(15) 前記(10)~(13)の何れか一つに記載の酵母エキスを含有する、調味料組成物。
(16) 前記(7)~(9)、若しくは(14)の何れか一つに記載の酵母、前記(10)~(13)の何れか一つに記載の酵母エキス、又は前記(15)に記載の調味料組成物を含有する、飲食品。
以下に、本発明の実施形態について詳細に説明する。
これらの中でも、可食性であることから、キャンディダ・トロピカリス(Candidatropicalis)、キャンディダ・リポリティカ(Candida lypolitica)、キャンディダ・ユティリス(Candida utilis)、キャンディダ・サケ(Candida sake)、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)などが好ましく、より好ましくは汎用されているサッカロマイセス・セレビシエ、キャンディダ・ユティリスである。
これら菌株の培地組成としては、特に限定されるものではなく、定法において利用されるものを用いることができる。例えば、炭素源として通常の微生物の培養に利用されるグルコース、蔗糖、酢酸、エタノール、糖蜜および亜硫酸パルプ廃液等からなる群より選ばれる1種または2種以上が用いられ、窒素源としては、尿素、アンモニア、硫酸アンモニウム、塩化アンモニウムもしくはリン酸アンモニウム等の無機塩、およびコーンスティプリカー(CSL)、カゼイン、酵母エキスもしくはペプトン等の含窒素有機物等からなる群より選ばれる1種または2種以上が使用される。更に、リン酸成分、カリウム成分、マグネシウム成分を培地に添加してもよく、これらとしては、過リン酸石灰、リン安、塩化カリウム、水酸化カリウム、硫酸マグネシウム、塩酸マグネシウム等の通常の工業用原料でよい。その他、亜鉛、銅、マンガン、鉄イオン等の無機塩を使用してもよい。その他、ビタミン、核酸関連物質等を添加しても良い。
また、通気・攪拌を行いながら培養することが好ましい。通気の量と攪拌の条件は、培養の容量と時間、菌の初発濃度を考慮して、適宜決定することができる。例えば、通気は0.2~2V.V.M.(Volume per volume per minuts)程度、攪拌は50~800rpm程度で行なうことができる。
培地に添加するアルカリ物質の量は、pHが上記範囲になる限り限定されるものではないが、培地を希釈しすぎず、その後の培養におけるグルタミン酸産生に悪影響を与えない観点から、培地に対して5%以下とすることが望ましい。例えば尿素の場合の量としては、特に限定されるものではなく、培養する酵母の菌体濃度にもよるが、培地に対して0.5~5%程度が好ましい。
pH調整は、定常期であればいつ行なってもよいが、定常期に入った直後に行なうことが好ましい。酵母内の遊離グルタミン酸濃度を十分に高めることが可能である上に、全工程終了時までに要する時間を短縮することができるためである。対数増殖期にある酵母の液体培地のpHを7.5以上11未満にすると、酵母の増殖が抑制され、酵母の遊離グルタミン酸含有量が増加しないため好ましくない。
また、培養中の酵母が対数増殖期から定常期に移行する際、対数増殖の状態から徐々に定常状態に移行し、その後、完全に定常状態に入るが、対数増殖期から完全に定常状態に至る間の徐々に完全な定常状態に向かう時期も本発明の定常期に含まれる。
NH4OH(アンモニア水)、アンモニアガス、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の無機アルカリ、炭酸ナトリウム、炭酸カリウム等のアルカリ性塩基、尿素等の有機アルカリ等。
上記のうち、アンモニア水、アンモニアガス、尿素が好ましい。
なお、遊離グルタミン酸含有量は、日本電子社製アミノ酸自動分析装置JLC―500/V型や、(米国)ウォーターズ社製Acquity UPLC装置などを用いて測定することも可能であるが、特に限定されるものではない。
このため、該酵母から酵母エキスを抽出し製造することにより、良好な呈味成分である遊離グルタミン酸を豊富に含む酵母エキスを簡便に得ることができる。
このため、本発明によって得られる酵母エキスは非常に呈味性が高く、飲食品等に用いることで、味に深みがあり、コクのある飲食品が製造できる。
グルタミン酸高含有酵母からグルタミン酸を含有する分画物を分画する方法としては、通常行われている方法であればいずれの方法でもよい。
従来、遊離グルタミン酸等の呈味性アミノ酸の含有量を高めるために、植物性又は動物性のタンパク質を用いて、酸やアルカリ等を用いた加水分解処理が行われることが一般的であった。しかしながら、タンパク質の加水分解処理物は、発ガン性の疑いのあるMCP(クロロプロパノール類)を含む、という問題がある。
これに対して、本発明の方法により製造された高グルタミン酸含有酵母は、そもそも遊離グルタミン酸含有量が高いため、該酵母を熱水抽出方法等により抽出した後、酸やアルカリ等による分解処理や酵素処理を行わずとも、遊離グルタミン酸含有量が十分に高い酵母エキスを調製することができる。すなわち、本発明の高グルタミン酸含有酵母を用いることにより、呈味性と安全性の両方に優れた酵母エキスを、簡便に製造することができる。
以下の組成からなる培地を、容量350mL(2Lバッフル付き三角フラスコ)で2本作製した。
(培地組成)
糖蜜 8%
尿素 0.6%
(NH4)2SO4 0.16%(硫酸アンモニウム)
(NH4)2HPO4 0.08%(リン酸水素2アンモニウム)
(1)糖蜜(糖度36%)167mlをミリQ水にて750mlにメスアップ後、2Lバッフル付き三角フラスコに350mlずつ分注した。
(2)オートクレーブ処理(121℃、15min)を行なった。
(3)使用時に糖蜜のみの培地に無菌的に窒素成分混液(×100)を1/50量添加(各7mL)した。
培養温度 30℃
振とう 160rpm(ロータリー)
培養時間 24h
(植菌量 300mL)
以下の組成からなる培地を、容量2000mL(流加終了時3Lの設定)作製した。
(培地組成)
塩化アンモニウム 0.18%(流加終了時3L換算)5.3g
(NH4)2HPO4 0.04%(リン酸水素2アンモニウム、流加終了換算)1.2g
(培養条件)
培養温度 30℃
通気 3L/min
撹拌 600rpm
pH制御 下限制御pH5.0(10%アンモニア水にて)、上限制御なし
消泡剤 アデカネート原液
流加培地 糖蜜(糖度36%)、容量800mL(1Lメジウム瓶にて、最終8%)
次に、培養した酵母が定常期に入った直後に、NH4OH水(10%)にて培養液のpHをアルカリ性域にシフト(以下、pHシフトという。)させて(設定pH7~11)、更に酵母を培養した。本培養開始後48時間で終了した。
(1)酵母を本培養した培養液を50mlプラスチック遠心チューブ(ファルコン2070)へ移し、遠心分離(3,000g、20℃、5min、HP―26)を行なった。
(2)上清を捨て、ペレットをミリQ水20mlに懸濁し、遠心分離(3,000g、20℃、5min、HP―26)を行なった。これを2回繰り返した。
(3)上清を捨て、ペレットをミリQ水20mlに懸濁した。
あらかじめ秤量しておいたアルミ皿(直径5cm)に、酵母懸濁液2mlとり、105℃にて4時間乾燥させた。
乾燥後の重量(酵母乾燥後重量)を測定し、以下の式(1)により固形分の重量(乾燥酵母菌体重量、単位g/L)を算出した。
酵母乾燥後重量 - アルミ皿重量 = 乾燥酵母菌体重量 ・・・(1)
(1)残りの酵母懸濁液(約18ml)を遠心分離(3,000g、20℃、5min、HP―26)した。
(2)残りの懸濁液1.5mlをエッペンドルフチューブに移して、チューブをブロックヒーターに移し、80℃にて30分加熱した(エキス化)。または、温浴中100℃にて10分間過熱してもよい(エキス化)。
(3)その後、遠心分離(6,000g、4℃、5min)にて上清液(エキス溶液)を分離した。
エキス溶液300μl中の遊離グルタミン酸を、バイオセンサーを用いて定量した。バイオセンサーを用いた測定方法により、エキス溶液中の遊離のグルタミン酸のみを選択的に定量することができる。具体的には、測定は、該エキス溶液の希釈液(5倍希釈が適当)に対して王子計測機器BF―5を用いて行ない、検量線には1mMおよび5mM標準溶液を用いた。
pH7.00、7.50、8.00、9.00、11.00にシフトさせた結果を表1に示す。また、pH8.00~9.00において、pHを0.25ずつ変化させた結果を表2に、pH9.00~10.00において、pHを0.25ずつ変化させた結果を表3に示す。表2に示した菌数データ及び乾燥酵母菌体重量データからも明らかであるように、増殖が定常期に入った後にpHシフトした。
特に、設定pH(pHシフト後のpH)が8.00~9.00においては、表2に示したように、設定pHが高いほど、pHシフトによる乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)の増加量が大きいことが確認された。
一方、表3に示したように、設定pH9.00~10.00においては、pHシフトによる乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)の増加は、設定pHが低いほど、顕著であることが確認された。特に、設定pH9.00では、pHシフトによりグルタミン酸含有量が2.3重量%から5.7重量%に増加した。また、表には示していないが、設定pH9.00において、pHシフト後3時間後では、乾燥酵母菌体中の遊離グルタミン酸含有量が4.6重量%であった。
以上の結果から、定常期後に7.5以上11未満にpH調整してさらに培養を行なうことによって、酵母中のグルタミン酸が増加することが示された。特に、pH調整後3~6時間におけるグルタミン酸含有量が高かった。
定常期後にpHシフトするのではなく、予め本培養の培地に尿素を加えておき、自然にpHがシフトする条件で、グルタミン酸高含有酵母を得た。
(培地組成)
塩化アンモニウム 0.18%(流加終了時3L換算)5.3g
(NH4)2HPO4 0.04%(リン酸水素2アンモニウム、流加終了換算)1.2g
尿素1%(流加終了時3L換算)30g
図1に示すように、菌数(×106cells/ml)の増加は、培養18時間後には定常状態に達し、増殖の定常期に入ったことが確認された。また、乾燥酵母菌体重量(g/L)も培養後24時間後にはほぼ定常状態になっており、増殖の定常期であることが確認された。培養液のpHを測定したところ、図3に示すように、増殖の定常期に入った後に、pHがアルカリ(7.5以上11未満)にシフトした。結果を表4に示す。
前培養液 150ml
実施例1の前培養と同様の方法で得られた前培養液から上澄みを取り除き、酵母濃度を15~20%に濃縮したものを前培養液として用いた。
水 2000ml
H2SO4(97%) 1.33ml
糖蜜(糖度36%) 6.7ml
(NH4)2HPO4 0.06%
培養温度 32℃
pH 0~15.5時間:無調整
攪拌 600rpm
続いて、以下の条件で培養を行った。
15.5時間以降:アンモニア水でpHシフト
攪拌 600rpm
流加培地 糖蜜(糖度36%) 870 ml
NH4OH(10%) 100~200ml
リン酸(85%) 5~20(g)
酵母を培養して15.5時間後にNH4OH水にてpHシフトを行い、更に培養を続けた。得られた結果を表5に示す。
実施例1と比較すると培地の組成が異なっており、いずれの培地組成であっても、pH依存的にグルタミン酸の含有量を増加させることが可能になることが確認された。
NH4OH(10%) 100~200ml
リン酸(85%) 5~20(g)
これらの結果から、定常期の酵母に対してpHシフトを行うことにより、乾燥酵母菌体中の含有量が8重量%以上という、非常に遊離グルタミン酸含有量の高い酵母を得ることが可能であること、また、遊離グルタミン酸含有量が30重量%以上という、遊離グルタミン酸を従来になく豊富に含む酵母エキスを調製し得ることが明らかである。
比較例として、ミーストパウダーN(アサヒフードアンドヘルス株式会社製)(グルタミン酸含有量 4重量%)を用い、同様にみそ汁とコンソメスープを作製し、以下の方法で官能評価を行なった。
専門パネラー10名によるブラインド2点比較により、比較官能検査を実施した。2対比較テストとして、t-検定を行なった。
塩味(減塩効果)、旨味、コクの3項目について、基準のみそ汁または基準となるコンソメスープを0とし、以下のように5段階で評価した。
「強い」=+2、
「やや強い」=+1、
「どちらでもない」=0、
「やや弱い」=-1、
「弱い」=-2。
みそ汁の結果を表10に示し、コンソメスープの結果を表11に示す。
培養した酵母が定常期に入った直後に、NH4OH水(10%)にてpHシフトを行い(設定pH7~11)、更に酵母を培養した。本培養開始後48時間で終了した。集菌した酵母から、実施例1と同様にして乾燥酵母菌体と酵母エキスを調製し、それぞれに含まれる遊離グルタミン酸量を測定した。
乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)の測定結果を表12に、酵母エキス中の遊離グルタミン酸含有量(重量%)の測定結果を表13に、それぞれ示す。なお、試験No.6~10については、pH上昇前のグルタミン酸含有量は未測定である。
Claims (16)
- 増殖の定常期にある酵母を、液体培地のpHが7.5以上11未満である条件下で液体培養する工程を含む、酵母の培養方法。
- 前記の液体培養する工程が、
酵母の増殖が定常期に入った後に液体培地のpHを7.5以上11未満に調整する工程;及び
当該酵母を当該pHの範囲内において更に培養する工程;
を含む、請求項1に記載の酵母の培養方法。 - 前記の液体培地のpHを7.5以上11未満に調整する工程が、
前記液体培地にアルカリ物質を添加する工程である、請求項2に記載の培養方法。 - 前記の液体培養する工程において、培養酵母の一部を回収し、当該酵母内の遊離グルタミン酸含有量の測定を断続的に行う、請求項1に記載の培養方法。
- 前記酵母がサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、又はキャンディダ・ユティリス(Candida utilis)である請求項1~4の何れか一項に記載の、酵母の培養方法。
- 前記請求項1~5の何れか一項に記載の培養方法で培養した酵母を回収する工程を含む、酵母の製造方法。
- 請求項1~5の何れか一項に記載の酵母の培養方法によって得られた、又は請求項6に記載の製造方法によって得られた酵母。
- 遊離グルタミン酸含有量が、乾燥酵母菌体当たり2.3~10.0重量%である、請求項7に記載の酵母。
- 前記遊離グルタミン酸含有量が、乾燥酵母菌体当たり、4.0~10.0重量%である、請求項8に記載の酵母。
- 請求項7~9の何れか一項に記載の酵母から抽出された酵母エキス。
- 前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり7~35重量%である、請求項10に記載の酵母エキス。
- 前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、請求項11に記載の酵母エキス。
- 遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、酵母エキス。
- 遊離グルタミン酸含有量が、乾燥酵母菌体当たり4.0~10.0重量%である、酵母。
- 請求項10~13の何れか一項に記載の酵母エキスを含有する、調味料組成物。
- 請求項7~9、若しくは14の何れか一項に記載の酵母、請求項10~13の何れか一項に記載の酵母エキス、又は請求項15に記載の調味料組成物を含有する、飲食品。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009554805A JP4757944B2 (ja) | 2008-11-18 | 2009-10-30 | 酵母エキス |
BRPI0922088-7A BRPI0922088B1 (pt) | 2008-11-18 | 2009-10-30 | Métodos para cultivar uma levedura, e para produzir uma levedura,levedura, extrato de levedura, composição de tempero, e, alimento ou bebida |
RS20180864A RS57450B1 (sr) | 2008-11-18 | 2009-10-30 | Postupak za proizvodnju kvasca sa visokim sadržajem glutaminske kiseline |
US13/128,677 US9005683B2 (en) | 2008-11-18 | 2009-10-30 | Method for producing yeast with high glutamic acid content |
EP18161627.7A EP3385369B1 (en) | 2008-11-18 | 2009-10-30 | Method for producing yeast with high glutamic acid content |
EP09827308.9A EP2402428B1 (en) | 2008-11-18 | 2009-10-30 | Method for producing yeast with high glutamic acid content |
CN2009801454827A CN102216442A (zh) | 2008-11-18 | 2009-10-30 | 富含谷氨酸的酵母的生产方法 |
AU2009318734A AU2009318734B2 (en) | 2008-11-18 | 2009-10-30 | Method for producing yeast with high glutamic acid content |
PL18161627T PL3385369T3 (pl) | 2008-11-18 | 2009-10-30 | Sposób wytwarzania drożdży o wysokiej zawartości kwasu glutaminowego |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008294642 | 2008-11-18 | ||
JP2008-294642 | 2008-11-18 | ||
PCT/JP2009/059206 WO2010058616A1 (ja) | 2008-11-18 | 2009-05-19 | グルタミン酸高含有酵母の製造方法 |
JPPCT/JP2009/059206 | 2009-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010058527A1 true WO2010058527A1 (ja) | 2010-05-27 |
Family
ID=42197970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005802 WO2010058527A1 (ja) | 2008-11-18 | 2009-10-30 | グルタミン酸高含有酵母の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010058527A1 (ja) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05227911A (ja) | 1992-02-18 | 1993-09-07 | Ajinomoto Co Inc | 調味料組成物 |
JPH0947295A (ja) * | 1995-08-08 | 1997-02-18 | Green Cross Corp:The | 蛋白質の製造方法 |
JPH09276843A (ja) * | 1996-04-12 | 1997-10-28 | Canon Inc | 微生物の分解活性の増大方法及びこれを用いた土壌浄化方法 |
JPH09294581A (ja) | 1996-05-02 | 1997-11-18 | Ajinomoto Co Inc | 酵母及びそれを含んでなる飲食品 |
JPH09313169A (ja) * | 1996-05-31 | 1997-12-09 | Ajinomoto Co Inc | 酵母エキスの製造法 |
WO1998035049A1 (fr) * | 1997-02-07 | 1998-08-13 | Oriental Yeast Co., Ltd. | Disulfure-isomerase de proteine de levure recombinee et son procede de preparation |
JP3088709B2 (ja) | 1998-05-18 | 2000-09-18 | 株式会社興人 | 甘味改善剤 |
JP2002171961A (ja) | 2000-12-11 | 2002-06-18 | Japan Tobacco Inc | 新規酵母及び酵母エキス |
JP2005102549A (ja) | 2003-09-29 | 2005-04-21 | Japan Tobacco Inc | だしの呈味を強化する酵母エキス |
JP2006129835A (ja) | 2004-11-09 | 2006-05-25 | Takeda-Kirin Foods Corp | グルタミン酸高含有酵母エキスおよびその製造方法 |
JP2007049989A (ja) | 2005-07-20 | 2007-03-01 | Nippon Paper Chemicals Co Ltd | 酵母エキス及びその製造方法 |
JP2008294642A (ja) | 2007-05-23 | 2008-12-04 | Olympus Imaging Corp | 測光装置及びカメラ |
JP2009059206A (ja) | 2007-08-31 | 2009-03-19 | Kddi Corp | 調査装置及びコンピュータプログラム |
-
2009
- 2009-10-30 WO PCT/JP2009/005802 patent/WO2010058527A1/ja active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05227911A (ja) | 1992-02-18 | 1993-09-07 | Ajinomoto Co Inc | 調味料組成物 |
JPH0947295A (ja) * | 1995-08-08 | 1997-02-18 | Green Cross Corp:The | 蛋白質の製造方法 |
JPH09276843A (ja) * | 1996-04-12 | 1997-10-28 | Canon Inc | 微生物の分解活性の増大方法及びこれを用いた土壌浄化方法 |
JPH09294581A (ja) | 1996-05-02 | 1997-11-18 | Ajinomoto Co Inc | 酵母及びそれを含んでなる飲食品 |
JP3896606B2 (ja) | 1996-05-31 | 2007-03-22 | 味の素株式会社 | 酵母エキスの製造法 |
JPH09313169A (ja) * | 1996-05-31 | 1997-12-09 | Ajinomoto Co Inc | 酵母エキスの製造法 |
WO1998035049A1 (fr) * | 1997-02-07 | 1998-08-13 | Oriental Yeast Co., Ltd. | Disulfure-isomerase de proteine de levure recombinee et son procede de preparation |
JP3088709B2 (ja) | 1998-05-18 | 2000-09-18 | 株式会社興人 | 甘味改善剤 |
JP2002171961A (ja) | 2000-12-11 | 2002-06-18 | Japan Tobacco Inc | 新規酵母及び酵母エキス |
JP2005102549A (ja) | 2003-09-29 | 2005-04-21 | Japan Tobacco Inc | だしの呈味を強化する酵母エキス |
JP2006129835A (ja) | 2004-11-09 | 2006-05-25 | Takeda-Kirin Foods Corp | グルタミン酸高含有酵母エキスおよびその製造方法 |
JP2007049989A (ja) | 2005-07-20 | 2007-03-01 | Nippon Paper Chemicals Co Ltd | 酵母エキス及びその製造方法 |
JP2008294642A (ja) | 2007-05-23 | 2008-12-04 | Olympus Imaging Corp | 測光装置及びカメラ |
JP2009059206A (ja) | 2007-08-31 | 2009-03-19 | Kddi Corp | 調査装置及びコンピュータプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2402428A4 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5717478B2 (ja) | 酵母 | |
TWI520686B (zh) | 天然中性調味劑之備製方法 | |
JP2021006068A (ja) | 酵母エキスの製造方法、それにより得られる酵母エキス、調味料組成物および食品 | |
JP5730579B2 (ja) | アミノ酸高含有酵母の製造方法 | |
WO2009110507A1 (ja) | サッカロマイセス・セレビシエ変異株、及び該変異株を用いたrna高含有酵母の製造方法 | |
JP5693231B2 (ja) | アラニン高含有酵母の製造方法 | |
JP6008505B2 (ja) | Gaba高含有酵母の製造方法 | |
JP6095078B2 (ja) | コク味を増強する調味料の製造方法 | |
WO2010058527A1 (ja) | グルタミン酸高含有酵母の製造方法 | |
WO2012067106A1 (ja) | 酵母エキスの製造方法 | |
WO2015141531A1 (ja) | 酵母エキスの製造方法 | |
WO2011145525A1 (ja) | アラニン高含有調味料組成物 | |
JP2019201597A (ja) | うま味成分が増加した酵母エキスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980145482.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009554805 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09827308 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009827308 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009318734 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13128677 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009318734 Country of ref document: AU Date of ref document: 20091030 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0922088 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110513 |