WO2010058527A1 - グルタミン酸高含有酵母の製造方法 - Google Patents

グルタミン酸高含有酵母の製造方法 Download PDF

Info

Publication number
WO2010058527A1
WO2010058527A1 PCT/JP2009/005802 JP2009005802W WO2010058527A1 WO 2010058527 A1 WO2010058527 A1 WO 2010058527A1 JP 2009005802 W JP2009005802 W JP 2009005802W WO 2010058527 A1 WO2010058527 A1 WO 2010058527A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
glutamic acid
content
weight
culture
Prior art date
Application number
PCT/JP2009/005802
Other languages
English (en)
French (fr)
Inventor
澁谷一郎
岡野宏章
金岡禧友
竹末信親
Original Assignee
アサヒビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2009/059206 external-priority patent/WO2010058616A1/ja
Application filed by アサヒビール株式会社 filed Critical アサヒビール株式会社
Priority to JP2009554805A priority Critical patent/JP4757944B2/ja
Priority to BRPI0922088-7A priority patent/BRPI0922088B1/pt
Priority to RS20180864A priority patent/RS57450B1/sr
Priority to US13/128,677 priority patent/US9005683B2/en
Priority to EP18161627.7A priority patent/EP3385369B1/en
Priority to EP09827308.9A priority patent/EP2402428B1/en
Priority to CN2009801454827A priority patent/CN102216442A/zh
Priority to AU2009318734A priority patent/AU2009318734B2/en
Priority to PL18161627T priority patent/PL3385369T3/pl
Publication of WO2010058527A1 publication Critical patent/WO2010058527A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/56Flavouring or bittering agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • A23L27/22Synthetic spices, flavouring agents or condiments containing amino acids containing glutamic acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/14Yeasts or derivatives thereof
    • A23L33/145Extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor

Definitions

  • the present invention relates to a method for producing a yeast having a high glutamic acid content, a yeast having a high glutamic acid content, a yeast extract having a high glutamic acid content, and a food / beverage product containing a yeast having a high glutamic acid content.
  • Patent Literature 1 describes a sweet taste improving agent containing a yeast extract as an active ingredient, and the yeast extract contains 5′-sodium inosinate and / or 5′-sodium adenylate and 5′-guanylic acid. Contains 1-15% sodium, 5'-sodium uridylate and 5'-sodium cytidylate, and 1-20% sodium glutamate, respectively.
  • Patent Document 2 includes a step of digesting yeast containing 15 mg or more of free glutamine per gram of dry cells, and containing at least 3% glutamic acid derived from intracellular free glutamine with respect to the solid extract content. A method for producing the extract is described.
  • Patent Document 3 discloses a yeast extract obtained by digesting or degrading yeast.
  • the yeast extract is permeated through a filtration membrane having a diameter of 1 micrometer, and the permeation portion is subjected to gel filtration.
  • a yeast extract characterized in that in peptides detected by absorptiometry at 220 nm, the ratio of those having a molecular weight of 10,000 or more is 10% or more with respect to the total amount of peptides detected.
  • Patent Document 4 describes a yeast extract with a high glutamic acid content, which contains 13% by weight or more of L-glutamic acid (as Na salt).
  • Patent Document 5 describes a yeast extract characterized in that the content of free amino acids is 25% by weight or more and the total content of nucleic acid-based taste-imparting components is 2% by weight or more.
  • Patent Document 7 describes a yeast that is resistant to a glutamate antagonistic growth inhibitor and accumulates glutamate in the cells.
  • Patent Document 8 is characterized by using Yarrowia lipolytica yeast that is resistant to the drug nystatin, which impairs the structure and function of cell membranes, and has the ability to accumulate L-glutamic acid in an amount of 530 mg / l or more. A method for producing a yeast extract is described.
  • Patent Document 1 describes a yeast extract containing 1 to 20% sodium glutamate, but what is actually used is a commercial product containing 5.0% sodium glutamate, and more Nothing is mentioned about things.
  • Patent Document 2 is performed by genetic recombination, is complicated in operation, and is inferior in safety, palatability and the like as a food.
  • Patent Document 3 describes that sodium glutamate (soda) is contained in an amount of 10% or more per solid content, but there is no mention of any examples.
  • operation such as carrying out an enzyme process, is complicated.
  • patent document 5 in addition to complicated operation, such as using an enzyme, glutamic acid per dry powder is about 13%.
  • Patent Document 6 is merely an external addition of glutamic acid.
  • patent document 7 glutamic acid content per dry cell weight is low.
  • operation is complicated, such as giving drug tolerance provision to a parent strain.
  • the present invention has been made in view of the above circumstances, and a method for producing a glutamic acid-rich yeast containing glutamic acid, particularly free glutamic acid at a higher concentration than before, a glutamic acid-rich yeast, a glutamic acid-rich yeast extract, and glutamic acid It aims at providing contained food and drink.
  • the present inventors have found that the culture solution is raised to a specific pH (shifted to an alkaline region) during the cultivation of yeast in the stationary phase of growth. It has been found that the glutamic acid content, particularly the free glutamic acid content, increases. And it discovered that a yeast extract with high glutamic acid content could be manufactured by manufacturing a yeast extract using this yeast, and completed this invention. That is, the present invention adopts the following configuration.
  • a method for culturing yeast comprising a step of subjecting a yeast in a stationary phase of liquid growth to a liquid culture under conditions where the pH of the liquid medium is 7.5 or more and less than 11.
  • the liquid culturing step includes Adjusting the pH of the liquid medium to 7.5 or more and less than 11 after yeast growth enters a stationary phase; and further culturing the yeast within the pH range;
  • the yeast culture method according to (1) comprising: (3) adjusting the pH of the liquid medium to 7.5 or more and less than 11,
  • the culture method according to (2) which is a step of adding an alkaline substance to the liquid medium.
  • the culture method according to (1) wherein in the liquid culturing step, a part of the cultured yeast is collected and the measurement of the free glutamic acid content in the yeast is intermittently performed.
  • a method for producing yeast comprising a step of recovering yeast cultured by the culture method according to any one of (1) to (5).
  • the yeast according to (7), wherein the content of free glutamic acid is 2.3 to 10.0% by weight per dry yeast cell.
  • (10) A yeast extract extracted from the yeast according to (7).
  • (11) The yeast extract according to (10) above, wherein the content of free glutamic acid in the yeast extract is 7 to 35% by weight per dry weight.
  • (12) The yeast extract according to (11), wherein the content of free glutamic acid in the yeast extract is 20 to 35% by weight per dry weight.
  • (15) A seasoning composition comprising the yeast extract according to any one of (10) to (13).
  • (16) The yeast according to any one of (7) to (9) or (14), the yeast extract according to any one of (10) to (13), or
  • the glutamic acid content particularly, the free glutamic acid content is significantly increased by simply shifting the pH of the yeast liquid medium in the stationary phase of the yeast to alkali. High content yeast can be produced.
  • a glutamic acid-rich yeast extract containing glutamic acid, particularly free glutamic acid at a high concentration can be obtained.
  • FIG. 1 shows an increase curve of the number of bacteria with respect to culture time in Example 2.
  • FIG. 2 shows an increase curve of dry yeast cell weight with respect to culture time in Example 2.
  • FIG. 3 shows the change in pH of the liquid medium with respect to the culture time in Example 2.
  • the yeast culture method of the present invention includes a step of subjecting a yeast in a stationary phase of growth to a liquid culture under conditions where the pH of the liquid medium is 7.5 or more and less than 11. By performing this culture method, it becomes possible to obtain a yeast with a high glutamic acid content.
  • a yeast culture method of the present invention includes a step of subjecting a yeast in a stationary phase of growth to a liquid culture under conditions where the pH of the liquid medium is 7.5 or more and less than 11.
  • the yeast may be a unicellular fungus, and specifically, Saccharomyces spp., Shizosaccharomyces spp., Pichia spp., Candida spp., Kluyveromyces spp., Williopsis spp., Debaryomyces spp., Galactomyces spp., Torulaspora spp. And bacteria belonging to the genus Zygosaccharomyces.
  • Candida tropicalis, Candida lipolytica, Candida utilis, Candida sake, and Saccharomyces cerevisiae are edible. (Saccharomyces cerevisiae) and the like are preferable, and Saccharomyces cerevisiae and Candida utilis that are widely used are more preferable.
  • the pH of the yeast liquid medium in the stationary stationary phase is 7.5 or more. What is necessary is just to carry out liquid culture on the conditions which are less than 11.
  • the culture medium composition of these strains is not particularly limited, and those used in conventional methods can be used. For example, one or two or more selected from the group consisting of glucose, sucrose, acetic acid, ethanol, molasses, sulfite pulp waste liquid and the like used for culturing ordinary microorganisms are used as the carbon source, and the nitrogen source is urea.
  • inorganic salts such as ammonia, ammonium sulfate, ammonium chloride or ammonium phosphate, and nitrogen-containing organic substances such as corn steep liquor (CSL), casein, yeast extract or peptone used.
  • CSL corn steep liquor
  • a phosphoric acid component, a potassium component, and a magnesium component may be added to the medium, and these include ordinary industrial products such as lime superphosphate, ammonium phosphate, potassium chloride, potassium hydroxide, magnesium sulfate, and magnesium hydrochloride.
  • the raw material can be used.
  • inorganic salts such as zinc, copper, manganese, and iron ions may be used.
  • vitamins and nucleic acid-related substances may be added.
  • the culture format may be batch culture, fed-batch culture or continuous culture, but industrially fed-batch culture or continuous culture is employed.
  • Culture conditions in the logarithmic growth phase or culture conditions before pH adjustment may be in accordance with general yeast culture conditions.
  • the temperature is 20 to 40 ° C., preferably 25 to 35 ° C., and the pH is 3.5 to 7.5, especially 4.0 to 6.0 is desirable.
  • it is preferable that it is aerobic conditions.
  • it is preferable to culture while aeration and stirring.
  • the amount of aeration and the conditions for stirring can be appropriately determined in consideration of the culture volume and time, and the initial concentration of bacteria.
  • the ventilation is 0.2-2V. V. M.M. (Volume per volume per minute) and stirring can be performed at about 50 to 800 rpm.
  • the method for liquid culture of yeast in the stationary phase of growth under conditions where the pH of the liquid medium is 7.5 or more and less than 11 is not particularly limited.
  • methods for adjusting the pH include adjusting the pH of the liquid medium to 7.5 or more and less than 11 when the cultured yeast enters the stationary phase, and adjusting the pH by adding an alkaline substance to the liquid medium.
  • the amount of the alkaline substance added to the medium is not limited as long as the pH falls within the above range, but from the viewpoint of not diluting the medium excessively and adversely affecting glutamate production in the subsequent culture. 5% or less is desirable.
  • the amount in the case of urea is not particularly limited, but is preferably about 0.5 to 5% with respect to the medium, although it depends on the cell concentration of the yeast to be cultured.
  • the method of adjusting the pH of the liquid medium to 7.5 or more and less than 11 when the cultured yeast enters the stationary phase is not particularly limited.
  • an alkaline substance is appropriately added to adjust the pH of the liquid medium. It may be adjusted to 7.5 or more and less than 11, preferably 7.5 or more and 10 or less.
  • the pH adjustment may be performed at any time during the stationary phase, but is preferably performed immediately after entering the stationary phase. This is because it is possible to sufficiently increase the concentration of free glutamic acid in the yeast and to shorten the time required until the end of the entire process.
  • the pH of the liquid medium of the yeast in the logarithmic growth phase is 7.5 or more and less than 11, it is not preferable because the growth of the yeast is suppressed and the content of free glutamic acid in the yeast does not increase.
  • the yeast in culture shifts from the logarithmic growth phase to the stationary phase, it gradually shifts from the logarithmic growth state to the steady state and then completely enters the steady state. The time to gradually reach a complete steady state is also included in the stationary phase of the present invention.
  • the alkaline substance is not particularly limited, and examples thereof include the following components.
  • NH 4 OH ammonia water
  • ammonia gas inorganic alkali such as sodium hydroxide, potassium hydroxide, calcium hydroxide and magnesium hydroxide
  • alkaline base such as sodium carbonate and potassium carbonate
  • organic alkali such as urea and the like.
  • ammonia water, ammonia gas, and urea are preferred.
  • the temperature and other conditions for culturing yeast in a stationary phase in a liquid medium having a pH of 7.5 or more and less than 11 may be in accordance with general yeast culture conditions.
  • the temperature is preferably 25 to 35 ° C.
  • the incubation time is preferably from 24 hours immediately after pH adjustment, more preferably from 1 to 15 hours, further preferably from 3 to 12 hours, particularly preferably from 3 to 6 hours.
  • the free glutamic acid content in the yeast after the pH is shifted to 7.5 or more and less than 11 tends to increase with the passage of the culture time and decrease after reaching the peak. This also depends on conditions such as the cell concentration, pH and temperature of the yeast to be cultured. This is presumably because the influence of alkali on the yeast becomes too great if the culture is carried out for an excessively long time under alkaline conditions. Therefore, in the present invention, it is possible to appropriately select an optimal culture time for each culture condition, particularly for each pH after alkali shift, but after the pH shift, a part of the cultured yeast is recovered and free glutamic acid in the yeast is recovered. The content is measured intermittently, preferably at regular intervals.
  • yeast having a very high free glutamic acid content of 2.3% to 10.0% by weight per dry yeast cell weight can be obtained. It has been confirmed that it can be obtained.
  • yeast containing free glutamic acid can be obtained in the range of 4.0% by weight to 10.0% by weight per dry yeast cell weight.
  • a yeast extract having a high glutamic acid content which is as high as ever before, has a free glutamic acid content of 20% to 35% by weight per dry weight. It has been confirmed that it can.
  • a yeast having a high free glutamic acid content can be cultured, and a yeast having a very high free glutamic acid content can be produced by appropriately recovering the yeast. Accordingly, a yeast extract having a high free glutamic acid content can be prepared from the obtained yeast. In addition, it cannot be overemphasized that the yeast of this invention, yeast extract, etc. have high total glutamic acid content not only in free glutamic acid.
  • Patent Document 1 and the like describe a yeast extract of 20% by weight in terms of sodium glutamate (molecular weight of about 169), which is about 17% by weight as glutamic acid (molecular weight of about 147) content. Not too much. Also from this point, it is clear that the yeast obtained by the production method of the present invention is a yeast having a high glutamic acid content.
  • the “free glutamic acid content per dry yeast cell” means the ratio (% by weight) of free glutamic acid contained in the solid content obtained by drying the yeast cell. Further, the “content of free glutamic acid per dry weight of yeast extract” means the ratio (% by weight) of free glutamic acid contained in the solid content obtained by drying the yeast extract.
  • a BF-5 biosensor manufactured by Oji Scientific Instruments As a method for measuring the content of free glutamic acid in yeast cells or yeast extract, for example, a BF-5 biosensor manufactured by Oji Scientific Instruments may be used.
  • This apparatus is an apparatus for quantifying glutamic acid in a solution using an enzyme electrode that specifically reacts with glutamic acid, and this enzyme electrode does not react with glutamic acid in proteins and peptides. Therefore, it is possible to selectively quantify only free glutamic acid by using such an apparatus.
  • the content of free glutamic acid can be measured using an automatic amino acid analyzer JLC-500 / V manufactured by JEOL Ltd., an Acquity UPLC device manufactured by Waters (USA), etc., but is particularly limited. It is not a thing.
  • a yeast containing abundant glutamic acid, particularly free glutamic acid in the microbial cells can be produced.
  • the free glutamic acid is 2.3% by weight or more, preferably 2.3 to 9.1% by weight, more preferably 4. 0 to 9.1% by weight can be included.
  • a yeast containing 2.3 to 7.4% by weight, more preferably 4.0 to 7.4% by weight of free glutamic acid in a dry yeast cell can be obtained.
  • a yeast extract rich in free glutamic acid which is a good taste component, can be easily obtained by extracting and producing a yeast extract from the yeast.
  • the glutamic acid-rich yeast produced by the method of the present invention has a high free amino acid content and a high free glutamic acid content.
  • free glutamic acid derived from yeast cells is 7 wt% or more, preferably 7 to 35 wt%, more preferably 12 wt% per dry weight in the yeast extract.
  • a yeast extract containing ⁇ 35% by weight, more preferably 20-35% by weight can be obtained.
  • a yeast extract containing 7 to 30% by weight of free glutamic acid, more preferably 12 to 30% by weight, still more preferably 20 to 30% by weight can be obtained.
  • a yeast extract containing free glutamic acid in an amount of more than 30% by weight and not more than 35% by weight can also be obtained.
  • the yeast extract obtained by this invention has very high taste property, and when it uses for food-drinks etc., it has a deep taste and can manufacture rich food-drinks.
  • the present invention can produce a yeast having a high glutamic acid content by a simple process using only an alkali shift of a liquid medium. Further, as described above, it is not necessary to use a special medium as the medium, and it can be manufactured from inexpensive raw materials such as ammonia.
  • the free glutamic acid content of yeast has been increased mainly by modifying genes to make recombinant or mutant strains (see Patent Documents 2, 7, or 8, etc.).
  • the free glutamate content in the yeast can be increased without culturing the gene by culturing the stationary phase yeast under alkaline conditions. That is, the present invention is a method that can increase the content of free glutamate in yeast without genetically modifying the glutamate metabolism / accumulation pathway originally possessed by yeast. Therefore, by using the method of the present invention, the content of free glutamic acid in natural yeast existing in nature is significantly reduced without performing genetic modification treatment that may reduce the palatability as a food or drink. Can be increased.
  • the yeast used in the method of the present invention may be a natural yeast (a yeast in which a gene has not been artificially modified) or a mutant.
  • a glutamic acid-rich yeast containing a high concentration of glutamic acid in the yeast can be obtained, but a fraction containing glutamic acid may be obtained from the glutamic acid-rich yeast.
  • a method for fractionating a fraction containing glutamic acid from a yeast having a high glutamic acid content any method may be used as long as it is a commonly used method.
  • a glutamic acid-rich yeast extract can be produced from the glutamic acid-rich yeast cultured by the above method.
  • a method for producing a yeast extract having a high glutamic acid content any method may be used as long as it is a conventional method.
  • an autolysis method, an enzymatic decomposition method, an acid decomposition method, an alkali extraction method, hot water, Extraction methods are adopted.
  • glutamic acid in a yeast extract obtained only by a hot water extraction method is considered to be almost entirely free glutamic acid, unlike a yeast extract obtained by an enzymatic reaction method such as an autolysis method.
  • the yeast with a high glutamic acid content of the present invention has a large amount of free glutamic acid. Therefore, even if the yeast extract is extracted only by hot water treatment, a yeast extract with good taste can be obtained.
  • a hydrolysis treatment using an acid, an alkali or the like is generally performed using a vegetable or animal protein.
  • the hydrolyzed product of protein contains MCP (chloropropanols) suspected to be carcinogenic.
  • the high glutamic acid-containing yeast produced by the method of the present invention since the high glutamic acid-containing yeast produced by the method of the present invention has a high free glutamic acid content in the first place, after the yeast is extracted by a hot water extraction method or the like, it is decomposed by an acid or an alkali or an enzyme.
  • a yeast extract having a sufficiently high content of free glutamic acid can be prepared without any treatment. That is, by using the high glutamic acid-containing yeast of the present invention, a yeast extract excellent in both taste and safety can be easily produced.
  • a yeast extract powder containing a glutamic acid-rich yeast extract can be obtained by powdering the glutamic acid-rich yeast extract of the present invention, and a yeast extract powder containing 7 to 35% by weight of free glutamic acid can be obtained by appropriately selecting the yeast. can get.
  • dry yeast cells may be prepared from yeast having a high glutamic acid content cultured by the above method.
  • any method can be used as long as it is a usual method, but industrially, freeze-drying method, spray-drying method, drum-drying method and the like are adopted.
  • the glutamic acid-rich yeast of the present invention may be used as a seasoning composition.
  • the seasoning composition may be composed only of the yeast extract of the present invention and contains other components such as a stabilizer and a preservative in addition to the yeast extract of the present invention. May be.
  • the seasoning composition can be appropriately used for various foods and drinks as in the case of other seasoning compositions.
  • the present invention relates to a glutamic acid-rich yeast obtained by the above method and a food or drink containing the glutamic acid-rich yeast extract extracted from the glutamic acid-rich yeast.
  • a food or drink containing glutamic acid at a high concentration can be efficiently produced.
  • These foods and drinks may be any foods and drinks that can normally be added with dry yeast, yeast extract, and seasoning compositions containing these, for example, alcoholic beverages, soft drinks, fermented foods, seasonings, soups. , Breads and confectionery.
  • a preparation obtained from the above glutamic acid-rich yeast or a fraction of glutamic acid-rich yeast may be added in the production process of the food or drink.
  • a glutamic acid-rich yeast may be used as it is as a raw material.
  • Yeast Sacharomyces cerevisiae AB9846 strain was cultured by the methods described in ⁇ 1> to ⁇ 8> below, and extract extraction and glutamic acid analysis were performed from the yeast culture solution.
  • pH shift an alkaline region
  • pH shift NH 4 OH water (10%)
  • the content (% by weight) of free glutamic acid in dry yeast cells increases at pH 7.5 to less than 11.0 before pH shift and 6 hours after pH shift. Was confirmed.
  • the set pH of 9.0 it increased from 2.2% by weight to 5.3% by weight due to the pH shift more than twice, and a remarkable effect of increasing the free glutamic acid content was confirmed.
  • the set pH (pH after pH shift) is 8.00 to 9.00, as shown in Table 2, as the set pH is higher, the content of free glutamic acid in the dry yeast cells due to pH shift ( (% By weight) was confirmed to be large.
  • the yeast extract prepared using a pH-shifted yeast having a set pH of 7.5 or more and less than 11.0 is compared with the yeast extract prepared using the yeast before the pH shift.
  • the glutamic acid content (% by weight) per dry weight is increased, and a yeast extract having a high glutamic acid content can be obtained by preparing a yeast extract using the yeast produced by the production method of the present invention. It was confirmed that For example, in the yeast having a set pH of 9.00 described in Table 1, in the yeast extract prepared from the yeast before the pH shift, the glutamic acid content per dry weight is prepared from the yeast cultured for 6 hours after the pH shift. In the obtained yeast extract, it was 22.4% by weight.
  • the glutamic acid content per dry weight is 19.4% by weight in a yeast extract prepared from yeast cultured for 3 hours after the pH shift.
  • the yeast extract prepared from yeast cultured for 6 hours after the shift was 25.5% by weight.
  • the glutamic acid content per dry weight was 21.3% by weight in the yeast extract prepared from yeast cultured for 6 hours after the pH shift.
  • Pre-culture was performed in the same manner as in ⁇ 1> of Example 1, and then main culture was performed under the following conditions. Rather than shifting the pH after the stationary phase, urea was added to the main culture medium in advance to obtain a glutamic acid-rich yeast under conditions where the pH naturally shifted.
  • a culture medium having the following composition was prepared in a volume of 2000 mL (set at 3 L at the end of feeding).
  • (Medium composition) Ammonium chloride 0.18% (3L conversion at the end of feeding) 5.3g (NH 4 ) 2 HPO 4 0.04% (diammonium hydrogen phosphate, converted to end of fed-batch) 1.2 g 1% urea (3L conversion at the end of fed-batch) 30g
  • FIG. 1 shows an increasing curve of the number of bacteria with respect to culture time.
  • FIG. 2 shows an increase curve of dry yeast cell weight with respect to culture time.
  • FIG. 3 shows the change in pH of the culture solution with respect to the culture time.
  • the increase in the number of bacteria ⁇ 10 6 cells / ml
  • the dry yeast cell weight g / L
  • the pH of the culture solution was measured, as shown in FIG. 3, after entering the stationary phase of growth, the pH shifted to alkali (7.5 or more and less than 11). The results are shown in Table 4.
  • the glutamic acid content per dry yeast cell weight was 7.4% by weight at the time of pH increase, compared with 2.6% by weight before the pH increase, and 2.8%. Doubled.
  • Extract extraction and glutamic acid analysis were performed from the yeast culture solution in the same manner as in Example 1 except that the conditions of preculture and main culture were as follows.
  • Pre-culture solution 150ml The supernatant was removed from the preculture solution obtained in the same manner as the preculture in Example 1, and the yeast concentration was concentrated to 15 to 20% and used as the preculture solution. 2000ml water H 2 SO 4 (97%) 1.33 ml Molasses (sugar content 36%) 6.7ml (NH 4 ) 2 HPO 4 0.06%
  • Extract extraction and glutamate analysis were performed from the yeast culture solution in the same manner as in Example 3, except that the fed-batch medium used in the main culture was subjected to the following conditions and the culture time after the pH shift was 3 hours. The results obtained are shown in Table 6.
  • Feeding medium Molasses (sugar content 36%) 760-870 ml NH 4 OH (10%) 100-200 ml Phosphoric acid (85%) 5-20 (g)
  • Example 4-1 the content of free glutamic acid in the dry yeast cells was 8.44 wt% (Example 4-1) and 8.06 wt% (Example 4-2), respectively. And 8.45% by weight (Example 4-3) and 9.13% by weight (Example 4-4).
  • the content of free glutamic acid in the yeast extract prepared using these yeasts was 33.2% by weight (Example 4-1), 33.3% by weight (Example 4-2), 28.2, respectively. % By weight (Example 4-3) and 27.1% by weight (Example 4-4).
  • yeast (Candita utilis JCM1624 strain) was used as a strain and cultured in the same manner as in Example 1, and extract extraction and glutamic acid analysis were performed from the yeast culture solution. The results are shown in Table 7.
  • the content of free glutamic acid increased from about 6.9% to 26% by weight about 3.7 times before and after the pH shift.
  • the total free amino acid content increased from 11.4 wt% to 43 wt%.
  • yeast extract produced from the yeast (pH 9.0) prepared in the same manner as in Example 1 and the commercially available yeast extract (Comparative Examples 1 to 8), the content of free glutamic acid and the total free per dry weight of the extract The amino acid content was measured and compared. The measurement of free amino acids such as free glutamic acid was performed in the same manner as in Example 6.
  • Table 9 shows the free glutamic acid content (% by weight) and the total free amino acid content (% by weight) per dry weight of each yeast extract obtained as a result of the measurement.
  • “glutamic acid content” means the free glutamic acid content per dry weight of yeast extract
  • total amino acid content means the total content of free amino acids per dry weight of yeast extract. means.
  • the free glutamic acid content of the yeast extract of the present invention was very high at 29.1% by weight.
  • the yeast extract of the present invention is suitable as a seasoning.
  • yeast extract powder (derived from Saccharomyces cerevisiae AB9846 strain, glutamic acid content 23% by weight) obtained by pulverizing yeast extract produced from yeast (pH 9.0) prepared in the same manner as in Example 1, miso soup and consomme Soup was made.
  • the compounding quantity of the yeast extract with respect to miso soup and consomme soup is 0.2%.
  • miso soup and consomme soup were prepared in the same manner using Mist Powder N (manufactured by Asahi Food and Health Co., Ltd.) (glutamic acid content 4% by weight), and sensory evaluation was performed by the following method.
  • yeast In order to show that the glutamic acid content in yeast can be increased by performing pH shift after the stationary phase in yeasts other than Saccharomyces cerevisiae AB9846 and Candita utilis JCM1624, 10 strains of the genus Saccharomyces and Candida 4 strains of bacteria and 2 strains of genus Kriveromyces were also cultured in the same manner as in Example 1, and the amount of glutamic acid was measured.
  • yeast 5 yeast
  • Saccharomyces cerevisiae strain (Bacer yeast) ) AB5 strain, Saccharomyces cerevisiae (Bread yeast) AB6 strain, Saccharomyces sp. AB10 strain, Candida utilis (IAM0626) AB11 strain, Candida utilis (IFO0639) AB12 strain, Candida utilis (JCM2287 is parent strain) AB13 strain, Candida utilis (JCM2287 is parent strain) AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain, AB14 strain The test was performed on the AB16 strain. As a control, Saccharomyces cerevisiae AB9846 strain was also used.
  • each yeast strain pre-cultured in a molasses medium (molasses 8%, urea 0.6%, ammonium sulfate 0.16%, diammonium hydrogen phosphate 0.08%) was cultured in a medium (ammonium chloride 0.18). %, Diammonium hydrogenphosphate 0.04%), and main culture was carried out using molasses (sugar content 36%) and a volume of 800 mL (final 8% in a 1 L medium bottle) as a feeding medium.
  • Conditions such as culture temperature and aeration / stirring were the same as in Example 1.
  • a pH shift was performed with NH 4 OH water (10%) (set pH 7 to 11), and the yeast was further cultured.
  • the glutamic acid content increasing effect by the method of the present invention is not exhibited only in specific strains, but is exhibited in a wide variety of yeasts, at least in the genus Saccharomyces and Candida. It is clear that this is achieved.
  • the yeast having a high concentration of glutamic acid in the cells can be obtained by the method for producing a yeast having a high glutamic acid content of the present invention, it can be used in the food field such as the production of yeast extract.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Nutrition Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、グルタミン酸を高濃度に含有する酵母の製造方法を提供する。本発明の酵母の培養方法においては、増殖の定常期にある酵母を、液体培地のpHが7.5以上11未満である条件下で液体培養する。増殖の定常期にある酵母の液体培地のpHを7.5以上11未満に調整後、さらに培養することにより、グルタミン酸高含有の酵母を製造することができる。本発明においては、前記酵母がサッカロマイセス・セレビシエ、キャンディダ・ユティリスとすることができるので、本発明の方法により得られるグルタミン酸高含有酵母、及びこれから抽出されたエキスを用いることで、グルタミン酸高含有の調味料組成物、及び飲食品を提供することができる。

Description

グルタミン酸高含有酵母の製造方法
 本発明は、グルタミン酸高含有酵母の製造方法、グルタミン酸高含有酵母、グルタミン酸高含有酵母エキス、及びグルタミン酸高含有酵母エキス含有飲食品に関する。
 本願は、2008年11月18日に日本国に出願された特願2008-294642号、及び2009年5月19日に出願されたPCT/JP2009/059206号に基づき優先権を主張し、それらの内容をここに援用する。
 現在、日本をはじめ欧米などの先進国を筆頭に、世界中で添加物を使用しない自然かつ健康志向の天然調味料が望まれている。そのような中、酵母エキス業界では核酸などの「旨味」を増強した高付加価値エキスの開発が行なわれているが、核酸と並び「旨味」の代表であるグルタミン酸などのアミノ酸についても開発が進んでいる。
 グルタミン酸は、従来からグルタミン酸ナトリウムが化学調味料などとして普及しているが、近年は、グルタミン酸を天然に含有する酵母を培養して得られた培養物やエキスなどを飲食品に用いることが好まれている。
 例えば、特許文献1には、酵母抽出物を有効成分とする甘味改善剤が記載され、該酵母抽出物が、5’-イノシン酸ナトリウム及び/または5’-アデニル酸ナトリウム、5’-グアニル酸ナトリウム、5’-ウリジル酸ナトリウム及び5’-シチジル酸ナトリウムを各々1~15%、及びグルタミン酸ナトリウムを1~20%含有している。
 また、特許文献2には、乾燥菌体1g当たり15mg以上の遊離グルタミンを含有する酵母を消化する工程を含んでなる、細胞内遊離グルタミン由来のグルタミン酸をエキス固形分に対して少なくとも3%含む酵母エキスの製造方法が記載されている。
 また、特許文献3には、酵母を消化、或いは分解した酵母エキスであり、1マイクロメーターの口径を有する濾過膜を透過させ、その透過部をゲル濾過に供し、分画された流出液中の220nmにおける吸光光度法で検出されたペプタイド類において、分子量10000以上となるものの比率が、全検出されたペプタイド類の総量に対し、10%以上となる事を特徴とする酵母エキスが記載されている。
 また、特許文献4には、L-グルタミン酸(Na塩として)を13重量%以上含有することを特徴とするグルタミン酸高含有酵母エキスが記載されている。
 また、特許文献5には、遊離アミノ酸の含有量が25重量%以上であり、かつ核酸系呈味性成分の合計含有量が2重量%以上であることを特徴とする酵母エキスが記載されている。
 また、特許文献6には、核酸系呈味物質、グルタミン酸類、カリウム及び乳酸、乳酸ナトリウム又は乳酸カリウムを含有し、モル比が核酸系呈味物質:グルタミン酸類=1:2~40でありかつ(核酸系呈味物質+グルタミン酸類):カリウム:(乳酸、乳酸ナトリウム又は乳酸カリウム)=1:5~80:10~80であることを特徴とする調味料組成物が記載されている。
 また、特許文献7には、グルタミン酸拮抗生育阻害剤に耐性を有し、菌体内にグルタミン酸を蓄積する酵母が記載されている。
 また、特許文献8には、細胞膜の構造・機能を障害する薬剤ナイスタチンに耐性を有し、菌体内にL-グルタミン酸を530mg/l以上蓄積する能力を有するヤロウィア・リポリティカ酵母を用いることを特徴とする酵母エキスの製造方法が記載されている。
特許第3088709号公報 特開2002-171961号公報 特開2005-102549号公報 特開2006-129835号公報 特開2007-49989号公報 特開平5-227911号公報 特開平9-294581号公報 特許第3896606号公報
 しかしながら、従来の方法では、酸加水分解(HVP)処理など分解処理を行なう必要がある等、操作が煩雑になる場合が多かった。また、現在市販されている酵母エキスの遊離グルタミン酸含有量は10%前後のものが多く、よりグルタミン酸を高濃度に含有する酵母エキスの製造方法が望まれている。
 特許文献1については、グルタミン酸ナトリウムを1~20%含有した酵母抽出物と記載されているが、実際に使用しているものはグルタミン酸ナトリウム5.0%含有した市販品であって、それ以上のものについては何も言及されていない。
 また、特許文献2については、遺伝子組み換えで行なっており、操作が煩雑であり、かつ食品としての安全性、嗜好性等に劣る。
 また、特許文献3については、グルタミン酸ナトリウム(ソーダ)を固形分当たり10%以上含有と記載してあるが、実施例については何らそれへの言及がない。
 また、特許文献4については、酵素処理をするなど操作が煩雑である。
 また、特許文献5については、酵素を使用するなど操作が煩雑であるのに加え、乾燥粉末当たりのグルタミン酸は13%程度である。
 また、特許文献6については、グルタミン酸を外添したものにすぎない。
 また、特許文献7については、乾燥菌体重量当たりのグルタミン酸含有量は低い。
 また、特許文献8については、親株に薬剤耐性付与を行なうなど、操作が煩雑である。
 本発明は、上記事情に鑑みてなされたものであり、グルタミン酸、特に遊離グルタミン酸を従来よりも高濃度に含有するグルタミン酸高含有酵母の製造方法、グルタミン酸高含有酵母、グルタミン酸高含有酵母エキス、およびグルタミン酸含有飲食品を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意研究を行った結果、増殖の定常期にある酵母の培養中に培養液を特定のpHに上昇(アルカリ性域にシフト)させることにより酵母中のグルタミン酸含有量、特に遊離グルタミン酸含有量が増加することを見出した。そして、この酵母を用いて酵母エキスを製造することにより、グルタミン酸含有量の高い酵母エキスを製造することができることを見出し、本発明を完成させた。すなわち、本発明は以下の構成を採用する。
(1) 増殖の定常期にある酵母を、液体培地のpHが7.5以上11未満である条件下で液体培養する工程を含む、酵母の培養方法。
(2) 前記の液体培養する工程が、
 酵母の増殖が定常期に入った後に液体培地のpHを7.5以上11未満に調整する工程;及び
 当該酵母を当該pHの範囲内において更に培養する工程;
を含む、前記(1)に記載の酵母の培養方法。
(3) 前記の液体培地のpHを7.5以上11未満に調整する工程が、
 前記液体培地にアルカリ物質を添加する工程である、前記(2)に記載の培養方法。
(4) 前記の液体培養する工程において、培養酵母の一部を回収し、当該酵母内の遊離グルタミン酸含有量の測定を断続的に行う、前記(1)に記載の培養方法。
(5) 前記酵母がサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、又はキャンディダ・ユティリス(Candida utilis)である前記(1)~(4)の何れか一つに記載の、酵母の培養方法。
(6) 前記(1)~(5)の何れか一つに記載の培養方法で培養した酵母を回収する工程を含む、酵母の製造方法。
(7) 前記(1)~(5)の何れか一つに記載の酵母の培養方法によって得られた、又は前記(6)に記載の製造方法によって得られた酵母。
(8) 遊離グルタミン酸含有量が、乾燥酵母菌体当たり2.3~10.0重量%である、前記(7)に記載の酵母。
(9) 前記遊離グルタミン酸含有量が、乾燥酵母菌体当たり、4.0~10.0重量%である、前記(8)に記載の酵母。
(10) 前記(7)に記載の酵母から抽出された酵母エキス。
(11) 前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり7~35重量%である、前記(10)に記載の酵母エキス。
(12) 前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、前記(11)に記載の酵母エキス。
(13) 遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、酵母エキス。
(14) 遊離グルタミン酸含有量が、乾燥酵母菌体当たり4.0~10.0重量%である、酵母。
(15) 前記(10)~(13)の何れか一つに記載の酵母エキスを含有する、調味料組成物。
(16) 前記(7)~(9)、若しくは(14)の何れか一つに記載の酵母、前記(10)~(13)の何れか一つに記載の酵母エキス、又は前記(15)に記載の調味料組成物を含有する、飲食品。
 本発明のグルタミン酸高含有酵母の製造方法によれば、増殖の定常期にある酵母の液体培地のpHをアルカリにシフトするだけで簡便にグルタミン酸含有量、特に遊離グルタミン酸含有量が顕著に増加したグルタミン酸高含有酵母を製造することができる。
 本発明のグルタミン酸高含有酵母から抽出作業を行なうことにより、グルタミン酸、特に遊離グルタミン酸を高濃度で含むグルタミン酸高含有酵母エキスが得られる。
図1は、実施例2において、培養時間に対する菌数の増加曲線を示す。 図2は、実施例2において、培養時間に対する乾燥酵母菌体重量の増加曲線を示す。 図3は、実施例2において、培養時間に対する液体培地のpHの変化を示す。
 本発明の酵母の培養方法は、増殖の定常期にある酵母を、液体培地のpHが7.5以上11未満である条件下で、液体培養する工程を含むことを特徴とする。この培養方法を行うことで、グルタミン酸高含有酵母を得ることが可能になる。
 以下に、本発明の実施形態について詳細に説明する。
 酵母としては、単細胞性の真菌類であればよく、具体的には、サッカロマイセス(Saccharomyces)属菌、シゾサッカロマイセス(Shizosaccharomyces)属菌、ピキア(Pichia)属菌、キャンディダ(Candida)属菌、クリベロマイセス(Kluyveromyces)属菌、ウィリオプシス(Williopsis)属菌、デバリオマイセス(Debaryomyces)属菌、ガラクトマイセス(Galactomyces)属菌、トルラスポラ(Torulaspora)属菌、ロドトルラ(Rhodotorula)属菌、ヤロウィア(Yarrowia)属菌、ジゴサッカロマイセス(Zygosaccharomyces)属菌などが挙げられる。
 これらの中でも、可食性であることから、キャンディダ・トロピカリス(Candidatropicalis)、キャンディダ・リポリティカ(Candida lypolitica)、キャンディダ・ユティリス(Candida utilis)、キャンディダ・サケ(Candida sake)、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)などが好ましく、より好ましくは汎用されているサッカロマイセス・セレビシエ、キャンディダ・ユティリスである。
 本発明を実施するには、上記の酵母を炭素源、窒素源及び無機塩等を含む液体培地で定常期まで培養した後、増殖の定常期にある酵母の液体培地のpHが7.5以上11未満である条件下で、液体培養すればよい。
 これら菌株の培地組成としては、特に限定されるものではなく、定法において利用されるものを用いることができる。例えば、炭素源として通常の微生物の培養に利用されるグルコース、蔗糖、酢酸、エタノール、糖蜜および亜硫酸パルプ廃液等からなる群より選ばれる1種または2種以上が用いられ、窒素源としては、尿素、アンモニア、硫酸アンモニウム、塩化アンモニウムもしくはリン酸アンモニウム等の無機塩、およびコーンスティプリカー(CSL)、カゼイン、酵母エキスもしくはペプトン等の含窒素有機物等からなる群より選ばれる1種または2種以上が使用される。更に、リン酸成分、カリウム成分、マグネシウム成分を培地に添加してもよく、これらとしては、過リン酸石灰、リン安、塩化カリウム、水酸化カリウム、硫酸マグネシウム、塩酸マグネシウム等の通常の工業用原料でよい。その他、亜鉛、銅、マンガン、鉄イオン等の無機塩を使用してもよい。その他、ビタミン、核酸関連物質等を添加しても良い。
 培養形式としては、回分培養、流加培養または連続培養のいずれでもよいが、工業的には流加培養または連続培養が採用される。
 対数増殖期の培養条件又はpH調整前の培養条件は、一般的な酵母の培養条件に従えばよく、例えば温度は20~40℃、好ましくは25~35℃がよく、pHは3.5~7.5、特に4.0~6.0が望ましい。また、好気的条件であることが好ましい。
 また、通気・攪拌を行いながら培養することが好ましい。通気の量と攪拌の条件は、培養の容量と時間、菌の初発濃度を考慮して、適宜決定することができる。例えば、通気は0.2~2V.V.M.(Volume per volume per minuts)程度、攪拌は50~800rpm程度で行なうことができる。
 増殖の定常期にある酵母を液体培地のpHが7.5以上11未満である条件下で、液体培養する方法は、特に限定されるものではない。pHを調整する方法の例としては、培養した酵母が定常期に入ったときに、液体培地のpHを7.5以上11未満に調整する方法、液体培地にアルカリ物質を添加してpHを調整する方法、及び、培地中に予め尿素などを加えておいて、培養時間を経るに連れて自然にpHが7.5以上11未満になるようにして、液体培地をアルカリシフトする方法を挙げることができる。
 培地に添加するアルカリ物質の量は、pHが上記範囲になる限り限定されるものではないが、培地を希釈しすぎず、その後の培養におけるグルタミン酸産生に悪影響を与えない観点から、培地に対して5%以下とすることが望ましい。例えば尿素の場合の量としては、特に限定されるものではなく、培養する酵母の菌体濃度にもよるが、培地に対して0.5~5%程度が好ましい。
 培養した酵母が定常期に入ったときに、液体培地のpHを7.5以上11未満に調整する方法は、特に限定されるものではなく、例えばアルカリ物質を適宜添加し、液体培地のpHを7.5以上11未満、好ましくは7.5以上10以下に調整すればよい。
 pH調整は、定常期であればいつ行なってもよいが、定常期に入った直後に行なうことが好ましい。酵母内の遊離グルタミン酸濃度を十分に高めることが可能である上に、全工程終了時までに要する時間を短縮することができるためである。対数増殖期にある酵母の液体培地のpHを7.5以上11未満にすると、酵母の増殖が抑制され、酵母の遊離グルタミン酸含有量が増加しないため好ましくない。
 また、培養中の酵母が対数増殖期から定常期に移行する際、対数増殖の状態から徐々に定常状態に移行し、その後、完全に定常状態に入るが、対数増殖期から完全に定常状態に至る間の徐々に完全な定常状態に向かう時期も本発明の定常期に含まれる。
 アルカリ物質としては、特に限定されるものではなく、例えば以下の成分が挙げられる。
 NHOH(アンモニア水)、アンモニアガス、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の無機アルカリ、炭酸ナトリウム、炭酸カリウム等のアルカリ性塩基、尿素等の有機アルカリ等。
 上記のうち、アンモニア水、アンモニアガス、尿素が好ましい。
 定常期にある酵母を、pHが7.5以上11未満の液体培地において培養する場合における温度、その他の条件は、一般的な酵母の培養条件に従えばよく、例えば温度は20~40℃、好ましくは25~35℃である。培養時間は、pH調整後直後~24時間が好ましく、1~15時間がより好ましく、3~12時間がさらに好ましく、3~6時間が特に好ましい。
 なお、pHが7.5以上11未満にシフトした後の酵母内の遊離グルタミン酸含有量は、培養時間の経過とともに増大し、ピークに達した後、減少する傾向がある。また、これは培養する酵母の菌体濃度やpH、温度等の条件に依存する。これは、アルカリ条件下で過度に長時間培養すると、酵母へのアルカリの影響が大きくなりすぎるためと推察される。よって、本発明においては、培養条件ごと、特にアルカリシフト後のpHごとに最適な培養時間を適宜選択することができるが、pHシフト後に、培養酵母の一部を回収し、酵母内の遊離グルタミン酸含有量の測定を断続的に、好ましくは、一定時間毎に行う。
 つまり、ピーク時に培養を終了し酵母を回収することにより、遊離グルタミン酸含有量が、乾燥酵母菌体重量当たり2.3重量%~10.0重量%という、遊離グルタミン酸含有量が非常に高い酵母を得ることができることが確認されている。より好ましい条件下で培養、製造した場合には、乾燥酵母菌体重量当たり、4.0重量%~10.0重量%の範囲で、遊離グルタミン酸を含有する酵母を得ることができる。また、ピーク時の酵母を用いて酵母エキスを調製することにより、遊離グルタミン酸含有量が乾燥重量当たり20重量%~35重量%と、従来にはない程、非常に高いグルタミン酸高含有酵母エキスを得ることができることが確認されている。
 このように、本発明の製造方法により、遊離グルタミン酸含有量の高い酵母を培養することができ、適宜、これを回収することで、遊離グルタミン酸含有量の非常に高い酵母を製造することができる。従って、得られた酵母から遊離グルタミン酸含有量の高い酵母エキスを調製することができる。なお、本発明の酵母及び酵母エキス等が、遊離グルタミン酸のみならず、総グルタミン酸含有量も高いことは言うまでもない。
 例えば、特許文献1等には、グルタミン酸ナトリウム(分子量約169)換算で20重量%の酵母エキスが記載されているが、これは、グルタミン酸(分子量約147)含有量としては、17重量%程度に過ぎない。この点からも、本発明の製造方法により得られる酵母が、従来になくグルタミン酸含有量の高い酵母であることが明らかである。
 本発明において、「乾燥酵母菌体当たりの遊離グルタミン酸含有量」とは、酵母菌体を乾燥させて得られる固形分中に含まれる遊離グルタミン酸の割合(重量%)を意味する。また、「酵母エキスの乾燥重量当たりの遊離グルタミン酸含有量」とは、酵母エキスを乾燥させて得られる固形分中に含まれる遊離グルタミン酸の割合(重量%)を意味する。
 酵母菌体中、又は酵母エキス中の遊離グルタミン酸含有量の測定方法は、例えば、王子計測機器社製BF―5のバイオセンサーを用いればよい。この装置は、グルタミン酸に特異的に反応する酵素電極を用いて溶液中のグルタミン酸を定量する装置であって、本酵素電極はタンパク質やペプチド中のグルタミン酸とは反応しない。よって、このような装置を用いることにより、遊離のグルタミン酸のみを選択的に定量することが可能である。
 なお、遊離グルタミン酸含有量は、日本電子社製アミノ酸自動分析装置JLC―500/V型や、(米国)ウォーターズ社製Acquity UPLC装置などを用いて測定することも可能であるが、特に限定されるものではない。
 本発明の方法により、グルタミン酸、特に遊離グルタミン酸を菌体内に豊富に含有する酵母を製造することができる。このようにして得られた本発明のグルタミン酸高含有酵母は、遊離グルタミン酸を、乾燥酵母菌体中に2.3重量%以上、好ましくは2.3~9.1重量%、より好ましくは4.0~9.1重量%含むことができる。例えば、遊離グルタミン酸を乾燥酵母菌体中に、2.3~7.4重量%、より好ましくは4.0~7.4重量%含む酵母を得ることもできる。
 このため、該酵母から酵母エキスを抽出し製造することにより、良好な呈味成分である遊離グルタミン酸を豊富に含む酵母エキスを簡便に得ることができる。
 本発明の方法により製造されたグルタミン酸高含有酵母は、遊離アミノ酸含有量が高く、かつ、遊離グルタミン酸含有量が高い。例えば、本発明のグルタミン酸高含有酵母を用いて調製することにより、酵母菌体由来の遊離グルタミン酸を、酵母エキス中に乾燥重量当たり7重量%以上、好ましくは7~35重量%、より好ましくは12~35重量%、更に好ましくは20~35重量%含む酵母エキスを得ることができる。例えば、遊離グルタミン酸を7~30重量%、より好ましくは12~30重量%、更に好ましくは20~30重量%含む酵母エキスを得ることもできる。さらに、遊離グルタミン酸を30重量%超35重量%以下含む酵母エキスを得ることもできる。
 このため、本発明によって得られる酵母エキスは非常に呈味性が高く、飲食品等に用いることで、味に深みがあり、コクのある飲食品が製造できる。
 また、本発明は液体培地のアルカリシフトのみの簡単な工程でグルタミン酸高含有酵母を製造することが可能である。また、前述したように、培地は特に特殊なものを使用する必要はなく、アンモニア等、安価な原材料で製造することが可能である。
 従来は、主に遺伝子を改変して組み換え体又は変異株とすることにより、酵母の遊離グルタミン酸含有量を増大させていた(特許文献2、7、又は8等参照。)。これに対して本発明の方法では、定常期の酵母をアルカリ性条件下で培養することにより、遺伝子を改変処理することなく、酵母中の遊離グルタミン酸含有量を増大させることができる。つまり、本発明は、酵母が元々有しているグルタミン酸代謝・蓄積経路を遺伝的に改変することなく、酵母中の遊離グルタミン酸含有量を増大させることができる方法である。よって、本発明の方法を用いることにより、飲食品としての嗜好性を低下させるおそれのある遺伝子改変処理を行うことなく、自然界に存在している天然の酵母中の遊離グルタミン酸含有量を、顕著に増大させることができる。なお、本発明の方法に供される酵母としては、天然型の酵母(遺伝子を人為的に改変処理されていない酵母)であってもよく、変異株であってもよいことは、言うまでもない。
 本発明の方法により、高濃度のグルタミン酸を酵母菌体内に含有するグルタミン酸高含有酵母が得られるが、グルタミン酸高含有酵母からグルタミン酸を含有する分画物を得てもよい。
 グルタミン酸高含有酵母からグルタミン酸を含有する分画物を分画する方法としては、通常行われている方法であればいずれの方法でもよい。
 また、上記方法により培養したグルタミン酸高含有酵母からグルタミン酸高含有酵母エキスを製造することができる。グルタミン酸高含有酵母エキスを製造する方法としては、通常行われている方法であればいずれの方法であってもよく、例えば、自己消化法、酵素分解法、酸分解法、アルカリ抽出法、熱水抽出法などが採用される。なお、一般的に、熱水抽出法のみによって得られる酵母エキス中のグルタミン酸は、自己消化法等の酵素反応法によって得られる酵母エキスとは異なり、ほぼ全量が遊離グルタミン酸であると考えられる。
 本発明のグルタミン酸高含有酵母は遊離グルタミン酸が多く、このため、単に熱水処理によってのみから酵母エキスを抽出しても、呈味が良好な酵母エキスができる。
 従来、遊離グルタミン酸等の呈味性アミノ酸の含有量を高めるために、植物性又は動物性のタンパク質を用いて、酸やアルカリ等を用いた加水分解処理が行われることが一般的であった。しかしながら、タンパク質の加水分解処理物は、発ガン性の疑いのあるMCP(クロロプロパノール類)を含む、という問題がある。
 これに対して、本発明の方法により製造された高グルタミン酸含有酵母は、そもそも遊離グルタミン酸含有量が高いため、該酵母を熱水抽出方法等により抽出した後、酸やアルカリ等による分解処理や酵素処理を行わずとも、遊離グルタミン酸含有量が十分に高い酵母エキスを調製することができる。すなわち、本発明の高グルタミン酸含有酵母を用いることにより、呈味性と安全性の両方に優れた酵母エキスを、簡便に製造することができる。
 更に、本発明のグルタミン酸高含有酵母エキスを粉末状にすることで、グルタミン酸高含有酵母エキス粉末が得られ、酵母菌を適宜選択することにより、遊離グルタミン酸を7~35重量%含む酵母エキス粉末が得られる。
 また、上記方法により培養したグルタミン酸高含有酵母から乾燥酵母菌体を調製してもよい。乾燥酵母菌体を調製する方法としては、通常行われている方法であればいずれの方法であってもよいが、工業的には、凍結乾燥法、スプレードライ法、ドラムドライ法などが採用される。
 また、本発明のグルタミン酸高含有酵母、該酵母の乾燥酵母菌体、該酵母から調製される酵母エキス、及び該酵母エキス粉末は、調味料組成物としてもよい。なお、該調味料組成物は、本発明の酵母エキス等のみからなるものであってもよく、本発明の酵母エキス等の他に、安定化剤、保存剤等の他の成分を含有していてもよい。該調味料組成物は、他の調味料組成物と同様に、様々な飲食品に適宜用いることができる。
 さらに本発明は、上記の方法により得られたグルタミン酸高含有酵母、該グルタミン酸高含有酵母から抽出されたグルタミン酸高含有酵母エキスを含有する飲食品に関するものである。本発明のグルタミン酸高含有酵母等を含有させることにより、グルタミン酸を高濃度に含む飲食品を効率的に製造することができる。
 これらの飲食品としては、通常乾燥酵母、酵母エキス、及びこれらを含む調味料組成物を添加しうる飲食品であれば何れでもよいが、例えばアルコール飲料、清涼飲料、発酵食品、調味料、スープ類、パン類、菓子類等を挙げることができる。
 本発明の飲食品を製造するには、飲食品の製造工程において、上記グルタミン酸高含有酵母から得られる調製物、グルタミン酸高含有酵母の分画物を添加してもよい。その他、原料としてグルタミン酸高含有酵母をそのまま用いてもよい。
 次に、実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 以下の<1>~<8>に示す方法により、酵母(Saccharomyces cerevisiae AB9846株)を培養し、酵母培養液からエキス抽出およびグルタミン酸分析を行なった。
<1> 前培養
 以下の組成からなる培地を、容量350mL(2Lバッフル付き三角フラスコ)で2本作製した。
(培地組成) 
糖蜜           8%
尿素         0.6%
(NHSO  0.16%(硫酸アンモニウム)
(NHHPO 0.08%(リン酸水素2アンモニウム)
(作製方法)
(1)糖蜜(糖度36%)167mlをミリQ水にて750mlにメスアップ後、2Lバッフル付き三角フラスコに350mlずつ分注した。
(2)オートクレーブ処理(121℃、15min)を行なった。
(3)使用時に糖蜜のみの培地に無菌的に窒素成分混液(×100)を1/50量添加(各7mL)した。
(培養条件)
培養温度   30℃
振とう    160rpm(ロータリー)
培養時間   24h
(植菌量   300mL)
<2> 本培養
 以下の組成からなる培地を、容量2000mL(流加終了時3Lの設定)作製した。
(培地組成)
塩化アンモニウム  0.18%(流加終了時3L換算)5.3g
(NHHPO 0.04%(リン酸水素2アンモニウム、流加終了換算)1.2g
 続いて、以下の条件で培養を行なった。
(培養条件)
培養温度     30℃
通気     3L/min
撹拌     600rpm
pH制御   下限制御pH5.0(10%アンモニア水にて)、上限制御なし
消泡剤    アデカネート原液
流加培地   糖蜜(糖度36%)、容量800mL(1Lメジウム瓶にて、最終8%)
<3> pHシフト
 次に、培養した酵母が定常期に入った直後に、NHOH水(10%)にて培養液のpHをアルカリ性域にシフト(以下、pHシフトという。)させて(設定pH7~11)、更に酵母を培養した。本培養開始後48時間で終了した。
<4> 集菌方法
(1)酵母を本培養した培養液を50mlプラスチック遠心チューブ(ファルコン2070)へ移し、遠心分離(3,000g、20℃、5min、HP―26)を行なった。
(2)上清を捨て、ペレットをミリQ水20mlに懸濁し、遠心分離(3,000g、20℃、5min、HP―26)を行なった。これを2回繰り返した。
(3)上清を捨て、ペレットをミリQ水20mlに懸濁した。
<5> 酵母乾燥菌体重量の測定
 あらかじめ秤量しておいたアルミ皿(直径5cm)に、酵母懸濁液2mlとり、105℃にて4時間乾燥させた。
 乾燥後の重量(酵母乾燥後重量)を測定し、以下の式(1)により固形分の重量(乾燥酵母菌体重量、単位g/L)を算出した。
 酵母乾燥後重量 - アルミ皿重量 = 乾燥酵母菌体重量 ・・・(1)
<6> 熱水抽出法によるエキス溶液の調製
(1)残りの酵母懸濁液(約18ml)を遠心分離(3,000g、20℃、5min、HP―26)した。
(2)残りの懸濁液1.5mlをエッペンドルフチューブに移して、チューブをブロックヒーターに移し、80℃にて30分加熱した(エキス化)。または、温浴中100℃にて10分間過熱してもよい(エキス化)。
(3)その後、遠心分離(6,000g、4℃、5min)にて上清液(エキス溶液)を分離した。
<7> 遊離グルタミン酸含有量の測定方法
 エキス溶液300μl中の遊離グルタミン酸を、バイオセンサーを用いて定量した。バイオセンサーを用いた測定方法により、エキス溶液中の遊離のグルタミン酸のみを選択的に定量することができる。具体的には、測定は、該エキス溶液の希釈液(5倍希釈が適当)に対して王子計測機器BF―5を用いて行ない、検量線には1mMおよび5mM標準溶液を用いた。
 pH7.00、7.50、8.00、9.00、11.00にシフトさせた結果を表1に示す。また、pH8.00~9.00において、pHを0.25ずつ変化させた結果を表2に、pH9.00~10.00において、pHを0.25ずつ変化させた結果を表3に示す。表2に示した菌数データ及び乾燥酵母菌体重量データからも明らかであるように、増殖が定常期に入った後にpHシフトした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
表1に示したように、乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)は、pHシフト前とpHシフト後6時間後では、設定がpH7.5以上11.0未満において増加することが確認された。特に、設定pH9.0では、pHシフトにより2.2重量%から5.3重量%と2倍以上に増加し、顕著な遊離グルタミン酸含有量増加効果が確認された。
 特に、設定pH(pHシフト後のpH)が8.00~9.00においては、表2に示したように、設定pHが高いほど、pHシフトによる乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)の増加量が大きいことが確認された。
 一方、表3に示したように、設定pH9.00~10.00においては、pHシフトによる乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)の増加は、設定pHが低いほど、顕著であることが確認された。特に、設定pH9.00では、pHシフトによりグルタミン酸含有量が2.3重量%から5.7重量%に増加した。また、表には示していないが、設定pH9.00において、pHシフト後3時間後では、乾燥酵母菌体中の遊離グルタミン酸含有量が4.6重量%であった。
 また、これらの酵母のうち、設定pHが7.5以上11.0未満のpHシフト後の酵母を用いて調製された酵母エキスでは、pHシフト前の酵母を用いて調製された酵母エキスと比較して、乾燥重量当たりのグルタミン酸含有量(重量%)が増大しており、本発明の製造方法により製造された酵母を用いて酵母エキスを調製することにより、グルタミン酸含有量が高い酵母エキスが得られることが確認された。例えば、表1に記載の設定pHが9.00の酵母においては、pHシフト前の酵母から調製された酵母エキスでは、乾燥重量当たりのグルタミン酸含有量が、pHシフト後6時間培養した酵母から調製された酵母エキスでは22.4重量%であった。また、同じく設定pHが9.00の酵母(表3参照)においては、乾燥重量当たりのグルタミン酸含有量が、pHシフト後3時間培養した酵母から調製された酵母エキスでは19.4重量%、pHシフト後6時間培養した酵母から調製された酵母エキスでは25.5重量%であった。さらに、設定pHが9.25の酵母(表3参照)においても、乾燥重量当たりのグルタミン酸含有量が、pHシフト後6時間培養した酵母から調製された酵母エキスでは21.3重量%であった。
 以上の結果から、定常期後に7.5以上11未満にpH調整してさらに培養を行なうことによって、酵母中のグルタミン酸が増加することが示された。特に、pH調整後3~6時間におけるグルタミン酸含有量が高かった。
 実施例1の<1>と同様に前培養を行い、その後、以下の条件で本培養を行なった。
 定常期後にpHシフトするのではなく、予め本培養の培地に尿素を加えておき、自然にpHがシフトする条件で、グルタミン酸高含有酵母を得た。
 まず、以下の組成からなる培地を、容量2000mL(流加終了時3Lの設定)作製した。
(培地組成)
塩化アンモニウム  0.18%(流加終了時3L換算)5.3g
(NHHPO 0.04%(リン酸水素2アンモニウム、流加終了換算)1.2g
尿素1%(流加終了時3L換算)30g
 その他の条件は実施例1と同様に行なった。図1は、培養時間に対する菌数の増加曲線を示す。図2は、培養時間に対する乾燥酵母菌体重量の増加曲線を示す。図3は、培養時間に対する培養液のpHの変化を示す。
 図1に示すように、菌数(×10cells/ml)の増加は、培養18時間後には定常状態に達し、増殖の定常期に入ったことが確認された。また、乾燥酵母菌体重量(g/L)も培養後24時間後にはほぼ定常状態になっており、増殖の定常期であることが確認された。培養液のpHを測定したところ、図3に示すように、増殖の定常期に入った後に、pHがアルカリ(7.5以上11未満)にシフトした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
表4に示すように、乾燥酵母菌体重量当たりのグルタミン酸含有量は、pH上昇前は2.6重量%であったのに比べ、pH上昇時は7.4重量%になり、2.8倍に増加した。
 前培養、本培養の条件を下記の条件とした他は実施例1と同様にして酵母培養液からエキス抽出およびグルタミン酸分析を行った。
(培地組成)
前培養液           150ml
 実施例1の前培養と同様の方法で得られた前培養液から上澄みを取り除き、酵母濃度を15~20%に濃縮したものを前培養液として用いた。
水                   2000ml
SO(97%) 1.33ml
糖蜜(糖度36%)   6.7ml
(NHHPO 0.06%
(培養条件)
培養温度  32℃
pH    0~15.5時間:無調整
攪拌    600rpm
 続いて、以下の条件で培養を行った。
15.5時間以降:アンモニア水でpHシフト
攪拌    600rpm
流加培地    糖蜜(糖度36%)  870 ml
    NHOH(10%)   100~200ml
    リン酸(85%)        5~20(g)
 酵母を培養して15.5時間後にNHOH水にてpHシフトを行い、更に培養を続けた。得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示したように、乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)は、pHシフト前とpHシフト後6時間後では、設定がpH9.0の場合において増加することが確認された。グルタミン酸含有量9.0重量%は酵母エキス中のグルタミン酸含有量に換算すると約25%となる。
 実施例1と比較すると培地の組成が異なっており、いずれの培地組成であっても、pH依存的にグルタミン酸の含有量を増加させることが可能になることが確認された。
 本培養時に用いる流加培地を下記の条件とし、かつ、pHシフト後の培養時間を3時間とした他は実施例3と同様にして、酵母培養液からエキス抽出およびグルタミン酸分析を行った。得られた結果を表6に示す。
流加培地    糖蜜(糖度36%)  760~870 ml
    NHOH(10%)   100~200ml
    リン酸(85%)        5~20(g)
Figure JPOXMLDOC01-appb-T000006
 表6に示したように、乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)は、それぞれ8.44重量%(実施例4-1)、8.06重量%(実施例4-2)、8.45重量%(実施例4-3)、9.13重量%(実施例4-4)であった。一方、これらの酵母を用いて調製した酵母エキス中の遊離グルタミン酸含有量は、それぞれ33.2重量%(実施例4-1)、33.3重量%(実施例4-2)、28.2重量%(実施例4-3)、27.1重量%(実施例4-4)となった。
 これらの結果から、定常期の酵母に対してpHシフトを行うことにより、乾燥酵母菌体中の含有量が8重量%以上という、非常に遊離グルタミン酸含有量の高い酵母を得ることが可能であること、また、遊離グルタミン酸含有量が30重量%以上という、遊離グルタミン酸を従来になく豊富に含む酵母エキスを調製し得ることが明らかである。
 続いて、菌株に酵母(Candita utilis JCM1624株)を用い、実施例1と同様の方法で培養し、酵母培養液からエキス抽出およびグルタミン酸分析を行なった。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
以上の結果から、酵母(Candita utilis JCM1624株)においても、定常期後にpHシフトを行なうことによって、酵母中のグルタミン酸含有量が有意に増加することが示された。
 次に、pHシフト後の培養時間を3時間とした以外は実施例1と同様にして調製した酵母(設定pH9.0)から調製された酵母エキスの、乾燥重量当たりの遊離グルタミン酸含有量および総遊離アミノ酸含有量を測定した。なお、遊離グルタミン酸等の遊離アミノ酸の測定は、ウォーターズ社製Acquity UPLC分析装置を用いて、アキュタグウルトラ(AccQ-Tag Ultra)ラベル化法により行った。測定結果を表8に示す。なお、表8中、「グルタミン酸含有量」は、酵母エキスの乾燥重量当たりの遊離グルタミン酸含有量を意味し、「総アミノ酸含有量」は、酵母エキスの乾燥重量当たりの遊離アミノ酸の総含有量を意味する。
Figure JPOXMLDOC01-appb-T000008
表8に示すように、pHシフトの前後で遊離グルタミン酸含有量は6.9重量%から26重量%と約3.7倍に増大していた。一方、総遊離アミノ酸含有量は11.4重量%から43重量%に増大していた。
 続いて、実施例1と同様にして調製した酵母(pH9.0)から製造した酵母エキスと、市販の酵母エキス(比較例1~8)について、エキス乾燥重量当たりの遊離グルタミン酸含有量及び総遊離アミノ酸含有量を測定し、比較した。なお、遊離グルタミン酸等の遊離アミノ酸の測定は、実施例6と同様にして行った。測定の結果得られた、各酵母エキスの乾燥重量当たりの遊離グルタミン酸含有量(重量%)及び総遊離アミノ酸含有量(重量%)を表9に示す。なお、表9中、「グルタミン酸含有量」は、酵母エキスの乾燥重量当たりの遊離グルタミン酸含有量を意味し、「総アミノ酸含有量」は、酵母エキスの乾燥重量当たりの遊離アミノ酸の総含有量を意味する。
Figure JPOXMLDOC01-appb-T000009
以上の結果から、本発明の酵母エキスの遊離グルタミン酸含有量は29.1重量%と非常に高いことが示された。このように、遊離グルタミン酸を約30重量%と非常に高濃度で含有している酵母エキスは、従来にはないものである。この結果から、本発明の酵母エキスが調味料として好適であることが示唆された。
 更に、実施例1と同様にして調整した酵母(pH9.0)から製造した酵母エキスを粉末状にした酵母エキス粉末(Saccharomyces cerevisiae AB9846株由来、グルタミン酸含有量 23重量%)を用い、みそ汁とコンソメスープを作製した。みそ汁、コンソメスープに対する酵母エキスの配合量は0.2%である。
 比較例として、ミーストパウダーN(アサヒフードアンドヘルス株式会社製)(グルタミン酸含有量 4重量%)を用い、同様にみそ汁とコンソメスープを作製し、以下の方法で官能評価を行なった。
(評価方法)
 専門パネラー10名によるブラインド2点比較により、比較官能検査を実施した。2対比較テストとして、t-検定を行なった。
(評価基準)
 塩味(減塩効果)、旨味、コクの3項目について、基準のみそ汁または基準となるコンソメスープを0とし、以下のように5段階で評価した。
「強い」=+2、
「やや強い」=+1、
「どちらでもない」=0、
「やや弱い」=-1、
「弱い」=-2。
 みそ汁の結果を表10に示し、コンソメスープの結果を表11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
表10の結果から、みそ汁では、塩味と旨味の平均値で差があり、コクで有意差があった。表11の結果から、コンソメスープでは、塩味とコクの平均値で差があり、旨味で有意差があった。これは、本発明の酵母エキスが、従来よりもグルタミン酸含有量が有意に高いためと考えられる。
 Saccharomyces cerevisiae AB9846株、及びCandita utilis JCM1624株以外の酵母においても、定常期後にpHシフトを行なうことによって、酵母中のグルタミン酸含有量を増加させ得ることを示すため、サッカロマイセス属菌10株、キャンディダ属菌4株、クリベロマイセス属菌2株についても、実施例1と同様の方法で培養を行い、グルタミン酸量を測定した。具体的には、Saccharomyces cerevisiae (ビール酵母) AB1株、Saccharomyces cerevisiae (協会ワイン4号) AB2株、Saccharomyces cerevisiae (協会5号酵母) AB3株、Saccharomyces属 (ワイン酵母) AB4株、Saccharomyces cerevisiae(パン酵母) AB5株、Saccharomyces cerevisiae(パン酵母) AB6株、Saccharomyces属(ウイスキー酵母) AB7株、Saccharomyces cerevisiae AB8株、Saccharomyces sake(協会6号酵母)AB9株、Saccharomyces bayanus AB10株、Candida utilis(IAM0626) AB11株、Candida utilis(IFO0639) AB12株、Candida utilis(JCM2287が親株) AB13株、Candida utilis(JCM2287が親株) AB14株、Kluyveromyces lactis(IFO1090) AB15株、及びKluyveromyces lactis AB16株に対して行った。なお、対照として、Saccharomyces cerevisiae AB9846株についても行った。
 具体的には、糖蜜培地(糖蜜8%、尿素0.6%、硫酸アンモニウム0.16%、リン酸水素2アンモニウム0.08%)で前培養した各酵母菌株を、培地(塩化アンモニウム0.18%、リン酸水素2アンモニウム0.04%)にて、流加培地として糖蜜(糖度36%)、容量800mL(1Lメジウム瓶にて、最終8%)を用いて本培養した。培養温度や通気・攪拌等の条件は、実施例1と同様にした。
 培養した酵母が定常期に入った直後に、NHOH水(10%)にてpHシフトを行い(設定pH7~11)、更に酵母を培養した。本培養開始後48時間で終了した。集菌した酵母から、実施例1と同様にして乾燥酵母菌体と酵母エキスを調製し、それぞれに含まれる遊離グルタミン酸量を測定した。
 乾燥酵母菌体中の遊離グルタミン酸含有量(重量%)の測定結果を表12に、酵母エキス中の遊離グルタミン酸含有量(重量%)の測定結果を表13に、それぞれ示す。なお、試験No.6~10については、pH上昇前のグルタミン酸含有量は未測定である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表12及び表13に示すとおり、いずれの菌株においても、遊離グルタミン酸含有量は、pH上昇前と比較してpH上昇後は大幅に増加していることが確認された。また、試験No.6~10についてはpH上昇前のグルタミン酸含有量は未測定であるが、いずれの菌株も乾燥酵母菌体中あたりの遊離グルタミン酸含有量が4.5重量%を超えており、かつ、酵母エキス中の遊離グルタミン酸含有量が20重量%を大幅に超えていることから、定常期後にpHシフトを行うことにより、遊離グルタミン酸の含有量が著しく上昇したと推察される。これらの結果から、本発明の方法によるグルタミン酸含有量増大効果は、特定の株においてのみ発揮されるものではなく、多種多様な酵母において発揮されること、少なくともサッカロマイセス属菌及びキャンディダ属菌であれば発揮されることが、明らかである。
 本発明のグルタミン酸高含有酵母の製造方法により、菌体内にグルタミン酸を高濃度に保持させた酵母を得ることができるため、酵母エキスの製造等の食品分野において利用が可能である。

Claims (16)

  1.  増殖の定常期にある酵母を、液体培地のpHが7.5以上11未満である条件下で液体培養する工程を含む、酵母の培養方法。
  2.  前記の液体培養する工程が、
     酵母の増殖が定常期に入った後に液体培地のpHを7.5以上11未満に調整する工程;及び
     当該酵母を当該pHの範囲内において更に培養する工程;
    を含む、請求項1に記載の酵母の培養方法。
  3.  前記の液体培地のpHを7.5以上11未満に調整する工程が、
     前記液体培地にアルカリ物質を添加する工程である、請求項2に記載の培養方法。
  4.  前記の液体培養する工程において、培養酵母の一部を回収し、当該酵母内の遊離グルタミン酸含有量の測定を断続的に行う、請求項1に記載の培養方法。
  5.  前記酵母がサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、又はキャンディダ・ユティリス(Candida utilis)である請求項1~4の何れか一項に記載の、酵母の培養方法。
  6.  前記請求項1~5の何れか一項に記載の培養方法で培養した酵母を回収する工程を含む、酵母の製造方法。
  7.  請求項1~5の何れか一項に記載の酵母の培養方法によって得られた、又は請求項6に記載の製造方法によって得られた酵母。
  8.  遊離グルタミン酸含有量が、乾燥酵母菌体当たり2.3~10.0重量%である、請求項7に記載の酵母。
  9.  前記遊離グルタミン酸含有量が、乾燥酵母菌体当たり、4.0~10.0重量%である、請求項8に記載の酵母。
  10.  請求項7~9の何れか一項に記載の酵母から抽出された酵母エキス。
  11.  前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり7~35重量%である、請求項10に記載の酵母エキス。
  12.  前記酵母エキス中の遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、請求項11に記載の酵母エキス。
  13.  遊離グルタミン酸含有量が、乾燥重量当たり20~35重量%である、酵母エキス。
  14.  遊離グルタミン酸含有量が、乾燥酵母菌体当たり4.0~10.0重量%である、酵母。
  15.  請求項10~13の何れか一項に記載の酵母エキスを含有する、調味料組成物。
  16.  請求項7~9、若しくは14の何れか一項に記載の酵母、請求項10~13の何れか一項に記載の酵母エキス、又は請求項15に記載の調味料組成物を含有する、飲食品。
PCT/JP2009/005802 2008-11-18 2009-10-30 グルタミン酸高含有酵母の製造方法 WO2010058527A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2009554805A JP4757944B2 (ja) 2008-11-18 2009-10-30 酵母エキス
BRPI0922088-7A BRPI0922088B1 (pt) 2008-11-18 2009-10-30 Métodos para cultivar uma levedura, e para produzir uma levedura,levedura, extrato de levedura, composição de tempero, e, alimento ou bebida
RS20180864A RS57450B1 (sr) 2008-11-18 2009-10-30 Postupak za proizvodnju kvasca sa visokim sadržajem glutaminske kiseline
US13/128,677 US9005683B2 (en) 2008-11-18 2009-10-30 Method for producing yeast with high glutamic acid content
EP18161627.7A EP3385369B1 (en) 2008-11-18 2009-10-30 Method for producing yeast with high glutamic acid content
EP09827308.9A EP2402428B1 (en) 2008-11-18 2009-10-30 Method for producing yeast with high glutamic acid content
CN2009801454827A CN102216442A (zh) 2008-11-18 2009-10-30 富含谷氨酸的酵母的生产方法
AU2009318734A AU2009318734B2 (en) 2008-11-18 2009-10-30 Method for producing yeast with high glutamic acid content
PL18161627T PL3385369T3 (pl) 2008-11-18 2009-10-30 Sposób wytwarzania drożdży o wysokiej zawartości kwasu glutaminowego

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008294642 2008-11-18
JP2008-294642 2008-11-18
PCT/JP2009/059206 WO2010058616A1 (ja) 2008-11-18 2009-05-19 グルタミン酸高含有酵母の製造方法
JPPCT/JP2009/059206 2009-05-19

Publications (1)

Publication Number Publication Date
WO2010058527A1 true WO2010058527A1 (ja) 2010-05-27

Family

ID=42197970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005802 WO2010058527A1 (ja) 2008-11-18 2009-10-30 グルタミン酸高含有酵母の製造方法

Country Status (1)

Country Link
WO (1) WO2010058527A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227911A (ja) 1992-02-18 1993-09-07 Ajinomoto Co Inc 調味料組成物
JPH0947295A (ja) * 1995-08-08 1997-02-18 Green Cross Corp:The 蛋白質の製造方法
JPH09276843A (ja) * 1996-04-12 1997-10-28 Canon Inc 微生物の分解活性の増大方法及びこれを用いた土壌浄化方法
JPH09294581A (ja) 1996-05-02 1997-11-18 Ajinomoto Co Inc 酵母及びそれを含んでなる飲食品
JPH09313169A (ja) * 1996-05-31 1997-12-09 Ajinomoto Co Inc 酵母エキスの製造法
WO1998035049A1 (fr) * 1997-02-07 1998-08-13 Oriental Yeast Co., Ltd. Disulfure-isomerase de proteine de levure recombinee et son procede de preparation
JP3088709B2 (ja) 1998-05-18 2000-09-18 株式会社興人 甘味改善剤
JP2002171961A (ja) 2000-12-11 2002-06-18 Japan Tobacco Inc 新規酵母及び酵母エキス
JP2005102549A (ja) 2003-09-29 2005-04-21 Japan Tobacco Inc だしの呈味を強化する酵母エキス
JP2006129835A (ja) 2004-11-09 2006-05-25 Takeda-Kirin Foods Corp グルタミン酸高含有酵母エキスおよびその製造方法
JP2007049989A (ja) 2005-07-20 2007-03-01 Nippon Paper Chemicals Co Ltd 酵母エキス及びその製造方法
JP2008294642A (ja) 2007-05-23 2008-12-04 Olympus Imaging Corp 測光装置及びカメラ
JP2009059206A (ja) 2007-08-31 2009-03-19 Kddi Corp 調査装置及びコンピュータプログラム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227911A (ja) 1992-02-18 1993-09-07 Ajinomoto Co Inc 調味料組成物
JPH0947295A (ja) * 1995-08-08 1997-02-18 Green Cross Corp:The 蛋白質の製造方法
JPH09276843A (ja) * 1996-04-12 1997-10-28 Canon Inc 微生物の分解活性の増大方法及びこれを用いた土壌浄化方法
JPH09294581A (ja) 1996-05-02 1997-11-18 Ajinomoto Co Inc 酵母及びそれを含んでなる飲食品
JP3896606B2 (ja) 1996-05-31 2007-03-22 味の素株式会社 酵母エキスの製造法
JPH09313169A (ja) * 1996-05-31 1997-12-09 Ajinomoto Co Inc 酵母エキスの製造法
WO1998035049A1 (fr) * 1997-02-07 1998-08-13 Oriental Yeast Co., Ltd. Disulfure-isomerase de proteine de levure recombinee et son procede de preparation
JP3088709B2 (ja) 1998-05-18 2000-09-18 株式会社興人 甘味改善剤
JP2002171961A (ja) 2000-12-11 2002-06-18 Japan Tobacco Inc 新規酵母及び酵母エキス
JP2005102549A (ja) 2003-09-29 2005-04-21 Japan Tobacco Inc だしの呈味を強化する酵母エキス
JP2006129835A (ja) 2004-11-09 2006-05-25 Takeda-Kirin Foods Corp グルタミン酸高含有酵母エキスおよびその製造方法
JP2007049989A (ja) 2005-07-20 2007-03-01 Nippon Paper Chemicals Co Ltd 酵母エキス及びその製造方法
JP2008294642A (ja) 2007-05-23 2008-12-04 Olympus Imaging Corp 測光装置及びカメラ
JP2009059206A (ja) 2007-08-31 2009-03-19 Kddi Corp 調査装置及びコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402428A4 *

Similar Documents

Publication Publication Date Title
JP5717478B2 (ja) 酵母
TWI520686B (zh) 天然中性調味劑之備製方法
JP2021006068A (ja) 酵母エキスの製造方法、それにより得られる酵母エキス、調味料組成物および食品
JP5730579B2 (ja) アミノ酸高含有酵母の製造方法
WO2009110507A1 (ja) サッカロマイセス・セレビシエ変異株、及び該変異株を用いたrna高含有酵母の製造方法
JP5693231B2 (ja) アラニン高含有酵母の製造方法
JP6008505B2 (ja) Gaba高含有酵母の製造方法
JP6095078B2 (ja) コク味を増強する調味料の製造方法
WO2010058527A1 (ja) グルタミン酸高含有酵母の製造方法
WO2012067106A1 (ja) 酵母エキスの製造方法
WO2015141531A1 (ja) 酵母エキスの製造方法
WO2011145525A1 (ja) アラニン高含有調味料組成物
JP2019201597A (ja) うま味成分が増加した酵母エキスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145482.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009554805

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009827308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009318734

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13128677

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009318734

Country of ref document: AU

Date of ref document: 20091030

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0922088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110513