WO2010058459A1 - 出力電力制御装置 - Google Patents

出力電力制御装置 Download PDF

Info

Publication number
WO2010058459A1
WO2010058459A1 PCT/JP2008/071039 JP2008071039W WO2010058459A1 WO 2010058459 A1 WO2010058459 A1 WO 2010058459A1 JP 2008071039 W JP2008071039 W JP 2008071039W WO 2010058459 A1 WO2010058459 A1 WO 2010058459A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
command
secondary battery
output
output power
Prior art date
Application number
PCT/JP2008/071039
Other languages
English (en)
French (fr)
Inventor
好典 坂中
松夫 坂東
玉越 富夫
Original Assignee
東芝三菱電機産業システム株式会社
日本風力開発株式会社
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2744176A priority Critical patent/CA2744176C/en
Priority to KR1020117011420A priority patent/KR101490547B1/ko
Priority to EP08878256.0A priority patent/EP2352214B1/en
Priority to ES08878256.0T priority patent/ES2671896T3/es
Priority to JP2010539070A priority patent/JP5501247B2/ja
Priority to HUE08878256A priority patent/HUE038150T2/hu
Application filed by 東芝三菱電機産業システム株式会社, 日本風力開発株式会社, 日本碍子株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to AU2008364376A priority patent/AU2008364376B2/en
Priority to CN2008801320724A priority patent/CN102204058B/zh
Priority to PCT/JP2008/071039 priority patent/WO2010058459A1/ja
Priority to MYPI2011002229A priority patent/MY161536A/en
Publication of WO2010058459A1 publication Critical patent/WO2010058459A1/ja
Priority to US13/110,346 priority patent/US8401707B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage

Definitions

  • the present invention relates to an output power control device in a power system using a secondary battery.
  • a secondary battery system that supplies power using a secondary battery is known.
  • a secondary battery system is used for power storage at night (for example, “Monthly Energy January”, Nihon Kogyo Shimbun, December 28, 2004, p. 82-84). reference).
  • An object of the present invention is to provide an output power control apparatus capable of controlling power output from a power system in which a secondary battery system and a generator are connected in parallel.
  • An output power control device is provided in a power system in which a secondary battery provided with a power converter for controlling charge / discharge and a generator are connected in parallel, and the generator An output power control device that controls a total output power that is a total of the respective output powers with the secondary battery, the total output power that outputs a total output power command that is a command for controlling the total output power Command output means, generator output power detection means for detecting the output power of the generator, the total output power command output by the total output power command output means and the generator output power detection means detected by Secondary battery charge / discharge power command calculation means for calculating a secondary battery charge / discharge power command which is a command for controlling the power for charging or discharging the secondary battery based on the output power of the generator. , Based on the charge and discharge power command the secondary battery calculated by the secondary battery charging and discharging power command computing unit, a configuration in which a secondary battery control means for controlling said power converter.
  • FIG. 1 is a configuration diagram showing the configuration of the power system according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing the configuration of the power system according to the second embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a configuration of a power system according to the third embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing the configuration of the power system according to the fourth embodiment of the present invention.
  • FIG. 5 is a configuration diagram showing the configuration of the power system according to the fifth embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing the configuration of the power system according to the sixth embodiment of the present invention.
  • FIG. 7 is a configuration diagram showing the configuration of the power system according to the seventh embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing the configuration of the power system according to the first embodiment of the present invention.
  • symbol is attached
  • the power system includes an output power control device 1, a secondary battery system 2, a generator 3, and a transformer 4.
  • a converter Cg is provided on the output side of the generator 3.
  • This power grid system is a power grid system as a power plant.
  • the secondary battery system 2 a plurality of secondary batteries BT are connected in parallel.
  • the secondary battery BT is, for example, a sodium-sulfur battery (NAS battery).
  • the secondary battery system 2 is provided with a power converter for charging and discharging the secondary battery BT.
  • the output power is controlled by controlling the power converter by the output power control device 1.
  • the generator 3 is configured by connecting a plurality of generators GF in parallel via respective transformers TF.
  • the generator GF is a generator that makes it difficult to keep the amount of generated power constant.
  • the generator GF is a wind power generator such as a windmill generator.
  • the transformer 4 transforms the total output power Ptotal of the power Pb output from the secondary battery system 2 and the power Pg output from the generator 3 and outputs the power to an external power system.
  • the converter Cg transmits the power amount Pg output from the generator 3 to the output power control apparatus 1 as a signal.
  • the location where the converter Cg is provided serves as a measurement point for the electric energy Pg.
  • the output power control device 1 includes a power detector 11, a subtracter 12, and a limiter 13.
  • the power detector 11 calculates the amount of power Pg output from the generator 3 based on the signal received from the converter Cg.
  • the power detector 11 outputs the calculated power amount Pg as a signal Spg to the subtracter 12.
  • the subtracter 12 receives a constant output command value for outputting power from the power system at a constant level.
  • the signal Spg is input from the power detector 11 to the subtractor 12.
  • the subtracter 12 subtracts the signal Spg from the constant output command value.
  • the value obtained by the subtracter 12 becomes a basic value of the command value for the power Pb output from the secondary battery system 2.
  • the subtracter 12 outputs the obtained value to the limiter 13 as a signal.
  • the limiter 13 transmits the command value Sb for the power Pb output from the secondary battery system 2 to the secondary battery system 2. If the signal input from the subtractor 12 is abnormal, the limiter 13 limits the command value Sb and transmits it to the secondary battery system 2.
  • the output power of the secondary battery system 2 is controlled based on the command value Sb input from the limiter 13.
  • the electric power output from the electric power system can be controlled so as to coincide with the constant output command value.
  • FIG. 2 is a configuration diagram showing the configuration of the power system according to the second embodiment of the present invention.
  • the present power system is configured to supply power to a load (in-house load) in an electric station by replacing the output power control device 1 with the output power control device 1 ⁇ / b> A.
  • a converter Cl is provided.
  • Other points are the same as those of the power system according to the first embodiment.
  • the converter Cl transmits the amount of power Pl supplied to the on-site load as a signal to the output power control device 1.
  • a location where the converter Cl is provided serves as a measurement point of the electric energy Pl.
  • the output power control device 1A has a configuration in which a power detector 14 and a subtractor 15 are added to the output power control device 1 shown in FIG.
  • the power detector 14 calculates the amount of power Pl supplied to the on-site load based on the signal received from the converter Cl.
  • the power detector 14 outputs the calculated power amount Pl to the subtracter 15 as a signal Sp1.
  • the signal Spg is input from the power detector 11 to the subtractor 15.
  • a signal Spl is input from the power detector 14 to the subtractor 15.
  • the subtracter 15 subtracts the signal Spl from the signal Spg.
  • the subtracter 15 outputs the obtained value to the subtracter 12A.
  • the subtractor 12A receives a constant output command value for outputting power from the power system at a constant level.
  • a signal is input from the subtracter 15 to the subtractor 12A.
  • the subtractor 12A subtracts the signal input from the subtracter 15 from the constant output command value.
  • the value obtained by the subtractor 12A becomes a basic value of the command value for the power Pb output from the secondary battery system 2.
  • the subtractor 12A outputs the obtained value to the limiter 13 as a signal.
  • the limiter 13 transmits the command value Sb for the power Pb output from the secondary battery system 2 to the secondary battery system 2. If the signal input from the subtractor 12A is abnormal, the limiter 13 limits the command value Sb and transmits it to the secondary battery system 2.
  • the fluctuation of the in-house load is compensated, and the power output from the power system matches the constant output command value. Can be controlled.
  • FIG. 3 is a configuration diagram showing a configuration of a power system according to the third embodiment of the present invention.
  • This power system includes a converter Ct provided on the output side of the transformer 4 in place of the output power control device 1B in the power system according to the first embodiment shown in FIG. Yes. Other points are the same as those of the power system according to the first embodiment.
  • the converter Ct transmits the power amount Pt output from the transformer 4 to the output power control device 1 as a signal.
  • the location where the converter Ct is provided serves as a measurement point for the electric energy Pt output from the transformer 4.
  • the output power control device 1B has a configuration in which a power detector 16, a subtracter 17, a correction control unit 18, and an adder 19 are added to the output power control device 1 shown in FIG.
  • the power detector 16 calculates the amount of power Pt output from the transformer 4 based on the signal received from the converter Ct.
  • the power detector 16 outputs the calculated power amount Pt as a signal Spt to the subtracter 17.
  • the signal Spt is input from the power detector 16 to the subtractor 17.
  • the subtracter 17 receives a constant output command value for constantly outputting power from the power system.
  • the subtracter 17 subtracts the signal Spt from the constant output command value.
  • the subtractor 17 outputs the obtained value to the correction control unit 18 as a signal.
  • the correction control unit 18 calculates a correction value for the constant output command value for matching the output power with the constant output command value based on the signal input from the subtractor 17.
  • the correction control unit 18 outputs the calculated correction value as a signal to the adder 19.
  • the adder 19 is provided on the output side of the limiter 13. A signal from the limiter 13 is input to the adder 19. The correction value is input as a signal from the correction control unit 18 to the adder 19. The adder 19 adds the signal from the limiter 13 and the signal from the correction control unit 18. The value obtained by the adder 19 is transmitted to the secondary battery system 2 as a command value Sb for the power Pb output from the secondary battery system 2.
  • the loss of the transformer 4 and the fluctuation of the in-house load are compensated, and the power output from this power system is Control can be performed so as to match the constant output command value.
  • FIG. 4 is a configuration diagram showing the configuration of the power system according to the fourth embodiment of the present invention.
  • This power system includes a converter Ct on the output side of the transformer 4 in place of the output power control device 1C instead of the output power control device 1C in the power system according to the second embodiment shown in FIG. Yes.
  • Other points are the same as the configuration of the power system according to the second embodiment.
  • the converter Ct transmits the power amount Pt output from the transformer 4 to the output power control device 1 as a signal.
  • the location where the converter Ct is provided serves as a measurement point for the electric energy Pt output from the transformer 4.
  • the output power control device 1C has a configuration in which a power detector 16, a subtractor 17, a correction control unit 18, and an adder 19 are added to the output power control device 1A shown in FIG.
  • the power detector 16 calculates the amount of power Pt output from the transformer 4 based on the signal received from the converter Ct.
  • the power detector 16 outputs the calculated power amount Pt as a signal Spt to the subtracter 17.
  • the signal Spt is input from the power detector 16 to the subtractor 17.
  • the subtracter 17 receives a constant output command value for outputting power from the power system at a constant level.
  • the subtracter 17 subtracts the signal Spt from the constant output command value.
  • the subtractor 17 outputs the obtained value to the correction control unit 18 as a signal.
  • the correction control unit 18 calculates a correction value for the constant output command value for matching the output power with the constant output command value based on the signal input from the subtractor 17.
  • the correction control unit 18 outputs the calculated correction value as a signal to the adder 19.
  • the adder 19 is provided on the output side of the limiter 13. A signal from the limiter 13 is input to the adder 19. The correction value is input as a signal from the correction control unit 18 to the adder 19. The adder 19 adds the signal from the limiter 13 and the signal from the correction control unit 18. The value obtained by the adder 19 is transmitted to the secondary battery system 2 as a command value Sb for the power Pb output from the secondary battery system 2.
  • the loss of the transformer 4 and the fluctuation of the in-house load are compensated, and the power output from this power system is Control can be performed so as to match the constant output command value.
  • the circuit for compensating for the fluctuation of the in-house load is configured separately from the circuit for compensating for the loss of the transformer 4. Therefore, the third embodiment is provided for compensating for the fluctuation of the in-house load. More accurate control can be performed.
  • FIG. 5 is a configuration diagram showing the configuration of the power system according to the fifth embodiment of the present invention.
  • this power system replaces the output power control device 1B with the output power control device 1D.
  • Other points are the same as the configuration of the power system according to the third embodiment.
  • the output power control device 1D has a configuration in which an adder 21D and a comparator 22D are added to the output power control device 1B shown in FIG. 3 in place of the subtracter 17 instead of the subtracter 17D.
  • the value obtained by the adder 19 is transmitted to the secondary battery system 2 as a command value Sb1 for the active power of the power Pb output from the secondary battery system 2.
  • the adder 21D receives a constant output command value and storage battery chargeable power.
  • the storage battery chargeable power is the amount of power that the secondary battery system 2 can charge.
  • the adder 21D adds the constant output command value and the storage battery chargeable power.
  • the adder 21D outputs the obtained value as a signal to the comparator 22D.
  • the signal from the adder 21D is input to the comparator 22D.
  • the generator rated output power is input to the comparator 22D.
  • the generator rated output power is the rated output power of the generator 3.
  • the comparator 22D compares the value obtained by the adder 21D with the generator rated output power and obtains the smaller one.
  • the comparator 22D transmits the obtained value to the generator 3 as a command value Sf for the upper limit value of the output power of the generator 3.
  • the output power control device 1D can suppress excessive power generation by the generator 3 by suppressing the output power of the generator 3 in consideration of the rechargeable battery chargeable power. Thereby, it is possible to prevent excessive power generation by the generator 3 and to control the power output from the power system to be equal to the constant output command value.
  • FIG. 6 is a configuration diagram showing the configuration of the power system according to the sixth embodiment of the present invention.
  • This power system is the same as the power system according to the third embodiment shown in FIG. 3, except that the output power control device 1B is replaced with the output power control device 1E. Other points are the same as the configuration of the power system according to the third embodiment.
  • the output power control device 1E has a configuration in which, in the output power control device 1B shown in FIG. 3, the power detector 16 is replaced with the power detector 16E, and a subtractor 25E and a voltage control unit 26E are added.
  • the power detector 16E calculates the amount of power Pt output from the transformer 4 based on the signal received from the converter Ct.
  • the power detector 16E outputs the calculated power amount Pt to the subtractor 17 as a signal Spt.
  • the power detector 16E outputs a reactive power component of the power amount Pt output from the transformer 4 to the subtractor 25E as a signal.
  • the reactive power command value is input to the subtracter 25E.
  • the reactive power command value is a command value for controlling the reactive power component in the electric energy Pt output from the transformer 4.
  • a value corresponding to the reactive power of the power amount Pt is input from the power detector 16E as a signal to the subtractor 25E.
  • the subtractor 25E subtracts the reactive power amount of the electric energy Pt from the reactive power command value.
  • the subtractor 25E outputs the obtained value as a signal to the voltage control unit 26E.
  • the voltage control unit 26E transmits to the secondary battery system 2 as a command value Sb2 for the reactive power of the power Pb output from the secondary battery system 2 based on the signal input from the subtractor 25E. That is, the voltage control unit 26E controls the output voltage of the secondary battery system 2 so that the reactive power component of the power Pb output from the secondary battery system 2 matches the reactive power command value.
  • the output power control device 1E can control the active power of the output power of the power system to be constant and can also control the reactive power to be constant. This is a control utilizing the fact that the storage battery power converter provided in the secondary battery system 2 can independently control the active power and the reactive power.
  • the output power control apparatus 1E can also compensate for the reactive power in the electric station with a power factor of 1.0 by setting the reactive power command value to zero.
  • FIG. 7 is a configuration diagram showing the configuration of the power system according to the seventh embodiment of the present invention.
  • This power system system is the power system system according to the sixth embodiment shown in FIG. 6 except that the output power control device 1E is replaced with the output power control device 1F. Other points are the same as the configuration of the power system according to the sixth embodiment.
  • the output power control device 1F has a configuration in which, in the output power control device 1E shown in FIG. 6, the power detector 16E is replaced with the power detector 16, the subtractor 25E is replaced with the subtractor 25F, and a voltage detector 27F is added. .
  • the voltage detector 27F calculates the amount of voltage output from the transformer 4 based on the signal received from the converter Ct. The voltage detector 27F outputs the calculated voltage amount as a signal to the subtractor 25F.
  • the voltage command value is input to the subtracter 25F.
  • the voltage command value is a command value for controlling the voltage output from the transformer 4.
  • the subtracter 25F receives the voltage value from the voltage detector 27F as a signal.
  • the subtractor 25F subtracts the voltage amount input from the voltage detector 27F from the voltage command value.
  • the subtractor 25F outputs the obtained value as a signal to the voltage control unit 26E.
  • the voltage control unit 26E transmits to the secondary battery system 2 as a command value Sb2 for reactive power of the power Pb output from the secondary battery system 2 based on the signal input from the subtractor 25F. That is, the voltage control unit 26E controls the output voltage of the secondary battery system 2 so that the reactive power component of the power Pb output from the secondary battery system 2 matches the reactive power command value.
  • the present embodiment it is possible to obtain the same operational effects as in the sixth embodiment. Moreover, since the structure which detects the output voltage of the transformer 4 is provided independently, the precision of reactive power control can be made higher than in the sixth embodiment.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • an output power control device capable of controlling the electric power output from the electric power system can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 二次電池システム(2)と発電機(3)とが並列に接続された電力系統に設けられ、この電力系統の出力電力を制御する出力電力制御装置であって、発電機(3)の出力電力を検出し、出力電力を制御するための出力電力指令から検出した発電機(3)の出力電力を減算した値に基づいて、二次電池システム(2)の出力電圧を制御する出力電力制御装置。

Description

出力電力制御装置
 本発明は、二次電池を用いた電力系統における出力電力制御装置に関する。
 従来、二次電池を利用して、電力を供給する二次電池システムが知られている。例えば、このような二次電池システムは、夜間の電力貯蔵用として用いられている(例えば、“月刊エネルギー 1月号”,日本工業新聞社,2004年12月28日発売,p.82-84参照)。
 しかしながら、二次電池システムを発電機と並列に接続して、電力を供給する電力系統において、出力電力を制御することについては知られていない。
 従って、発電電力量を一定にすることが困難な発電機と二次電池システムとを並列に接続して、電力系統を構成した場合、電力系統から出力される電力を制御することが困難である。
 本発明の目的は、二次電池システムと発電機とを並列に接続した電力系統において、この電力系統から出力される電力を制御することのできる出力電力制御装置を提供することにある。
 本発明の観点に従った出力電力制御装置は、充放電を制御するための電力変換器が設けられた二次電池と発電機とが並列に接続された電力系統に設けられ、前記発電機と前記二次電池とのそれぞれの出力電力の合計である合計出力電力を制御する出力電力制御装置であって、前記合計出力電力を制御するための指令である合計出力電力指令を出力する合計出力電力指令出力手段と、前記発電機の出力電力を検出する発電機出力電力検出手段と、前記合計出力電力指令出力手段により出力された前記合計出力電力指令及び前記発電機出力電力検出手段により検出された前記発電機の出力電力に基づいて、前記二次電池の充電又は放電をする電力を制御するための指令である二次電池充放電電力指令を演算する二次電池充放電電力指令演算手段と、前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令に基づいて、前記電力変換器を制御する二次電池制御手段とを備えた構成である。
図1は、本発明の第1の実施形態に係る電力系統システムの構成を示す構成図である。 図2は、本発明の第2の実施形態に係る電力系統システムの構成を示す構成図である。 図3は、本発明の第3の実施形態に係る電力系統システムの構成を示す構成図である。 図4は、本発明の第4の実施形態に係る電力系統システムの構成を示す構成図である。 図5は、本発明の第5の実施形態に係る電力系統システムの構成を示す構成図である。 図6は、本発明の第6の実施形態に係る電力系統システムの構成を示す構成図である。 図7は、本発明の第7の実施形態に係る電力系統システムの構成を示す構成図である。
 以下、図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る電力系統システムの構成を示す構成図である。なお、以降の図における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複した説明を省略する。
 本電力系統システムは、出力電力制御装置1と、二次電池システム2と、発電機3と、変圧器4とを備えている。発電機3の出力側には、変換器Cgが設けられている。本電力系統システムは、発電所としての電力系統システムである。
 二次電池システム2は、複数の二次電池BTが並列に接続されている。二次電池BTは、例えば、ナトリウム-硫黄電池(NAS電池)である。二次電池システム2は、二次電池BTの充放電をするための電力変換器が設けられている。二次電池システム2は、出力電力制御装置1により、電力変換器が制御されることで、出力電力が制御される。
 発電機3は、複数の発電機GFがそれぞれの変圧器TFを介して並列に接続されることにより構成されている。発電機GFは、発電電力量を一定にすることが困難な発電機である。発電機GFは、例えば風車発電機などの風力発電機である。
 変圧器4は、二次電池システム2から出力される電力Pbと発電機3から出力される電力Pgの合計の出力電力Ptotalを変圧し、外部の電力系統に電力を出力する。
 変換器Cgは、発電機3から出力される電力量Pgを信号として出力電力制御装置1に送信する。変換器Cgが設けられている箇所は、電力量Pgの計測点となる。
 出力電力制御装置1は、電力検出器11と、減算器12と、リミッタ13とを備えている。
 電力検出器11は、変換器Cgから受信した信号に基づいて、発電機3から出力される電力量Pgを演算する。電力検出器11は、演算した電力量Pgを信号Spgとして、減算器12に出力する。
 減算器12には、本電力系統から電力を一定に出力させるための一定出力指令値が入力される。減算器12には、電力検出器11から信号Spgが入力される。減算器12は、一定出力指令値から信号Spgを減算する。減算器12により求められた値が、二次電池システム2から出力される電力Pbに対する指令値の基本となる値になる。減算器12は、求めた値を信号として、リミッタ13に出力する。
 リミッタ13は、減算器12から入力された信号が正常であれば、二次電池システム2から出力される電力Pbに対する指令値Sbとして、二次電池システム2に送信する。リミッタ13は、減算器12から入力された信号が異常であれば、指令値Sbを制限して、二次電池システム2に送信する。
 二次電池システム2は、リミッタ13から入力された指令値Sbに基づいて、出力電力が制御される。
 本実施形態によれば、二次電池システム2と発電機3とを並列に接続した電力系統において、この電力系統から出力される電力を一定出力指令値に一致させるように制御することができる。
(第2の実施形態)
 図2は、本発明の第2の実施形態に係る電力系統システムの構成を示す構成図である。
 本電力系統システムは、図1に示す第1の実施形態に係る電力系統システムにおいて、出力電力制御装置1を出力電力制御装置1Aに代えて、電気所内の負荷(所内負荷)に電力を供給するための系統に変換器Clを設けている。その他の点は、第1の実施形態に係る電力系統システムと同様の構成である。
 変換器Clは、所内負荷に供給される電力量Plを信号として出力電力制御装置1に送信する。変換器Clが設けられている箇所は、電力量Plの計測点となる。
 出力電力制御装置1Aは、図1に示す出力電力制御装置1において、電力検出器14及び減算器15を追加した構成である。
 電力検出器14は、変換器Clから受信した信号に基づいて、所内負荷に供給される電力量Plを演算する。電力検出器14は、演算した電力量Plを信号Splとして、減算器15に出力する。
 減算器15には、電力検出器11から信号Spgが入力される。減算器15には、電力検出器14から信号Splが入力される。減算器15は、信号Spgから信号Splを減算する。減算器15は、求めた値を減算器12Aに出力する。
 減算器12Aには、本電力系統から電力を一定に出力させるための一定出力指令値が入力される。減算器12Aには、減算器15から信号が入力される。減算器12Aは、一定出力指令値から減算器15から入力された信号を減算する。減算器12Aにより求められた値が、二次電池システム2から出力される電力Pbに対する指令値の基本となる値になる。減算器12Aは、求めた値を信号として、リミッタ13に出力する。
 リミッタ13は、減算器12Aから入力された信号が正常であれば、二次電池システム2から出力される電力Pbに対する指令値Sbとして、二次電池システム2に送信する。リミッタ13は、減算器12Aから入力された信号が異常であれば、指令値Sbを制限して、二次電池システム2に送信する。
 本実施形態によれば、二次電池システム2と発電機3とを並列に接続した電力系統において、所内負荷の変動を補償して、この電力系統から出力される電力を一定出力指令値に一致させるように制御することができる。
(第3の実施形態)
 図3は、本発明の第3の実施形態に係る電力系統システムの構成を示す構成図である。
 本電力系統システムは、図1に示す第1の実施形態に係る電力系統システムにおいて、出力電力制御装置1を出力電力制御装置1Bに代えて、変圧器4の出力側に変換器Ctを設けている。その他の点は、第1の実施形態に係る電力系統システムと同様の構成である。
 変換器Ctは、変圧器4から出力される電力量Ptを信号として出力電力制御装置1に送信する。変換器Ctが設けられている箇所は、変圧器4から出力される電力量Ptの計測点となる。
 出力電力制御装置1Bは、図1に示す出力電力制御装置1において、電力検出器16、減算器17、補正制御部18、及び加算器19を追加した構成である。
 電力検出器16は、変換器Ctから受信した信号に基づいて、変圧器4から出力される電力量Ptを演算する。電力検出器16は、演算した電力量Ptを信号Sptとして、減算器17に出力する。
 減算器17には、電力検出器16から信号Sptが入力される。減算器17には、本電力系統から電力を一定に出力させるための一定出力指令値が入力される。減算器17は、一定出力指令値から信号Sptを減算する。減算器17は、求めた値を信号として補正制御部18に出力する。
 補正制御部18は、減算器17から入力された信号に基づいて、出力電力を一定出力指令値に一致させるための一定出力指令値に対する補正値を演算する。補正制御部18は、演算した補正値を信号として、加算器19に出力する。
 加算器19は、リミッタ13の出力側に設けられている。加算器19には、リミッタ13からの信号が入力される。加算器19には、補正制御部18から補正値が信号として入力される。加算器19は、リミッタ13からの信号と補正制御部18からの信号とを加算する。加算器19により求められた値は、二次電池システム2から出力される電力Pbに対する指令値Sbとして、二次電池システム2に送信する。
 本実施形態によれば、二次電池システム2と発電機3とを並列に接続した電力系統において、変圧器4の損失及び所内負荷の変動を補償して、この電力系統から出力される電力を一定出力指令値に一致させるように制御することができる。
(第4の実施形態)
 図4は、本発明の第4の実施形態に係る電力系統システムの構成を示す構成図である。
 本電力系統システムは、図2に示す第2の実施形態に係る電力系統システムにおいて、出力電力制御装置1Aを出力電力制御装置1Cに代えて、変圧器4の出力側に変換器Ctを設けている。その他の点は、第2の実施形態に係る電力系統システムと同様の構成である。
 変換器Ctは、変圧器4から出力される電力量Ptを信号として出力電力制御装置1に送信する。変換器Ctが設けられている箇所は、変圧器4から出力される電力量Ptの計測点となる。
 出力電力制御装置1Cは、図2に示す出力電力制御装置1Aにおいて、電力検出器16、減算器17、補正制御部18、及び加算器19を追加した構成である。
 電力検出器16は、変換器Ctから受信した信号に基づいて、変圧器4から出力される電力量Ptを演算する。電力検出器16は、演算した電力量Ptを信号Sptとして、減算器17に出力する。
 減算器17には、電力検出器16から信号Sptが入力される。減算器17には、本電力系統から電力を一定に出力させるための一定出力指令値が入力される。減算器17は、一定出力指令値から信号Sptを減算する。減算器17は、求めた値を信号として補正制御部18に出力する。
 補正制御部18は、減算器17から入力された信号に基づいて、出力電力を一定出力指令値に一致させるための一定出力指令値に対する補正値を演算する。補正制御部18は、演算した補正値を信号として、加算器19に出力する。
 加算器19は、リミッタ13の出力側に設けられている。加算器19には、リミッタ13からの信号が入力される。加算器19には、補正制御部18から補正値が信号として入力される。加算器19は、リミッタ13からの信号と補正制御部18からの信号とを加算する。加算器19により求められた値は、二次電池システム2から出力される電力Pbに対する指令値Sbとして、二次電池システム2に送信する。
 本実施形態によれば、二次電池システム2と発電機3とを並列に接続した電力系統において、変圧器4の損失及び所内負荷の変動を補償して、この電力系統から出力される電力を一定出力指令値に一致させるように制御することができる。
 また、出力電力制御装置1Cは、所内負荷の変動を補償する回路を、変圧器4の損失を補償する回路と別構成としているため、所内負荷の変動の補償に対して、第3の実施形態より精度の高い制御をすることができる。
(第5の実施形態)
 図5は、本発明の第5の実施形態に係る電力系統システムの構成を示す構成図である。
 本電力系統システムは、図3に示す第3の実施形態に係る電力系統システムにおいて、出力電力制御装置1Bを出力電力制御装置1Dに代えている。その他の点は、第3の実施形態に係る電力系統システムと同様の構成である。
 出力電力制御装置1Dは、図3に示す出力電力制御装置1Bにおいて、減算器17を減算器17Dに代え、加算器21D及び比較器22Dを追加した構成である。
 加算器19により求められた値は、二次電池システム2から出力される電力Pbの有効電力に対する指令値Sb1として、二次電池システム2に送信する。
 加算器21Dには、一定出力指令値と蓄電池充電可能電力が入力される。蓄電池充電可能電力は、二次電池システム2が充電することのできる電力量である。加算器21Dは、一定出力指令値と蓄電池充電可能電力とを加算する。加算器21Dは、求めた値を信号として、比較器22Dに出力する。
 比較器22Dには、加算器21Dからの信号が入力される。比較器22Dには、発電機定格出力電力が入力される。発電機定格出力電力は、発電機3の定格出力電力である。比較器22Dは、加算器21Dにより求められた値と発電機定格出力電力とを比較し、小さい方を求める。比較器22Dは、求めた値を発電機3の出力電力の上限値に対する指令値Sfとして、発電機3に送信する。
 本実施形態によれば、第3の実施形態による作用効果に加え、以下の作用効果を得ることができる。
 出力電力制御装置1Dは、蓄電池充電可能電力を考慮に入れて、発電機3の出力電力を抑制することで、発電機3による過剰な発電を抑止することができる。これにより、発電機3による過剰な発電を防止し、本電力系統から出力される電力を一定出力指令値に一致させるように制御することができる。
(第6の実施形態)
 図6は、本発明の第6の実施形態に係る電力系統システムの構成を示す構成図である。
 本電力系統システムは、図3に示す第3の実施形態に係る電力系統システムにおいて、出力電力制御装置1Bを出力電力制御装置1Eに代えている。その他の点は、第3の実施形態に係る電力系統システムと同様の構成である。
 出力電力制御装置1Eは、図3に示す出力電力制御装置1Bにおいて、電力検出器16を電力検出器16Eに代え、減算器25E及び電圧制御部26Eを追加した構成である。
 電力検出器16Eは、変換器Ctから受信した信号に基づいて、変圧器4から出力される電力量Ptを演算する。電力検出器16Eは、演算した電力量Ptを信号Sptとして、減算器17に出力する。電力検出器16Eは、変圧器4から出力される電力量Ptの無効電力分を減算器25Eに信号として出力する。
 減算器25Eには、無効電力指令値が入力される。無効電力指令値は、変圧器4から出力される電力量Ptのうち無効電力分を制御するための指令値である。減算器25Eには、電力検出器16Eから電力量Ptの無効電力分の値が信号として入力される。減算器25Eは、無効電力指令値から電力量Ptの無効電力分を減算する。減算器25Eは、求めた値を信号として電圧制御部26Eに出力する。
 電圧制御部26Eは、減算器25Eから入力された信号に基づいて、二次電池システム2から出力される電力Pbの無効電力に対する指令値Sb2として、二次電池システム2に送信する。即ち、電圧制御部26Eは、二次電池システム2から出力される電力Pbの無効電力分を無効電力指令値に一致させるように、二次電池システム2の出力電圧を制御する。
 本実施形態によれば、第3の実施形態による作用効果に加え、以下の作用効果を得ることができる。
 出力電力制御装置1Eは、本電力系統の出力電力の有効電力を一定に制御し、無効電力も一定に制御することができる。これは、二次電池システム2に設けられている蓄電池用電力変換器が有効電力と無効電力を独立に制御することができることを利用した制御である。
 例えば、出力電力制御装置1Eは、無効電力指令値をゼロとすることで、力率1.0として、電気所内の無効電力を補償することもできる。
(第7の実施形態)
 図7は、本発明の第7の実施形態に係る電力系統システムの構成を示す構成図である。
 本電力系統システムは、図6に示す第6の実施形態に係る電力系統システムにおいて、出力電力制御装置1Eを出力電力制御装置1Fに代えている。その他の点は、第6の実施形態に係る電力系統システムと同様の構成である。
 出力電力制御装置1Fは、図6に示す出力電力制御装置1Eにおいて、電力検出器16Eを電力検出器16に代え、減算器25Eを減算器25Fに代え、電圧検出器27Fを追加した構成である。
 電圧検出器27Fは、変換器Ctから受信した信号に基づいて、変圧器4から出力される電圧量を演算する。電圧検出器27Fは、演算した電圧量を信号として、減算器25Fに出力する。
 減算器25Fには、電圧指令値が入力される。電圧指令値は、変圧器4から出力される電圧を制御するための指令値である。減算器25Fには、電圧検出器27Fから電圧量の値が信号として入力される。減算器25Fは、電圧指令値から電圧検出器27Fから入力された電圧量を減算する。減算器25Fは、求めた値を信号として電圧制御部26Eに出力する。
 電圧制御部26Eは、減算器25Fから入力された信号に基づいて、二次電池システム2から出力される電力Pbの無効電力に対する指令値Sb2として、二次電池システム2に送信する。即ち、電圧制御部26Eは、二次電池システム2から出力される電力Pbの無効電力分を無効電力指令値に一致させるように、二次電池システム2の出力電圧を制御する。
 本実施形態によれば、第6の実施形態と同様の作用効果を得ることができる。また、変圧器4の出力電圧を検出する構成を独立して設けているため、第6の実施形態よりも無効電力の制御の精度を高くすることができる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明によれば、二次電池システムと発電機とを並列に接続した電力系統において、この電力系統から出力される電力を制御することのできる出力電力制御装置を提供することができる。

Claims (12)

  1.  充放電を制御するための電力変換器が設けられた二次電池と発電機とが並列に接続された電力系統に設けられ、前記発電機と前記二次電池とのそれぞれの出力電力の合計である合計出力電力を制御する出力電力制御装置であって、
     前記合計出力電力を制御するための指令である合計出力電力指令を出力する合計出力電力指令出力手段と、
     前記発電機の出力電力を検出する発電機出力電力検出手段と、
     前記合計出力電力指令出力手段により出力された前記合計出力電力指令及び前記発電機出力電力検出手段により検出された前記発電機の出力電力に基づいて、前記二次電池の充電又は放電をする電力を制御するための指令である二次電池充放電電力指令を演算する二次電池充放電電力指令演算手段と、
     前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令に基づいて、前記電力変換器を制御する二次電池制御手段と
    を備えたことを特徴とする出力電力制御装置。
  2.  前記電力系統は、負荷が接続され、
     前記負荷に供給される電力を検出する負荷電力検出手段を備え、
     前記二次電池充放電電力指令演算手段は、前記負荷電力検出手段により検出された電力に基づいて、前記二次電池充放電電力指令を演算すること
    を特徴とする請求項1に記載の出力電力制御装置。
  3.  前記合計出力電力を検出する合計出力電力検出手段と、
     前記合計出力電力検出手段により検出された前記合計出力電力及び前記合計出力電力指令出力手段により出力された前記合計出力電力指令に基づいて、前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令の補正をするための補正量を演算する補正量演算手段と、
     前記補正量演算手段により演算された前記補正量に基づいて、前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令を補正する二次電池充放電電力指令補正手段とを備え、
     前記二次電池制御手段は、前記二次電池充放電電力指令補正手段により補正された前記二次電池充放電電力指令に基づいて、前記電力変換器を制御すること
    を特徴とする請求項1又は請求項2に記載の出力電力制御装置。
  4.  前記発電機による出力電力を、前記合計出力電力指令出力手段により出力された前記合計出力電力指令による前記合計出力電力と前記二次電池の充電可能な電力との合計の電力量と前記発電機の定格出力の電力量とを比較して少ない方の電力量に制限する発電機出力電力制限手段
    を備えたことを特徴とする請求項1から請求項3のいずれか1項に記載の出力電力制御装置。
  5.  前記合計出力電力検出手段により検出された前記合計出力電力の無効電力を演算する無効電力演算手段と、
     前記合計出力電力の無効電力を制御するための指令である無効電力指令を出力する無効電力指令出力手段と、
     前記無効電力演算手段により演算された無効電力及び前記無効電力指令出力手段により出力された前記無効電力指令に基づいて、前記合計出力電力の無効電力を制御するための前記電力変換器を制御する無効電力制御手段と
    を備えたことを特徴とする請求項3又は請求項4に記載の出力電力制御装置。
  6.  前記合計出力電力の電圧を検出する電圧検出手段と、
     前記合計出力電力の電圧を制御するための指令である電圧指令を出力する電圧指令出力手段と、
     前記電圧検出手段により検出された電圧及び前記電圧指令出力手段により出力された前記電圧指令に基づいて、前記合計出力電力の無効電力を制御するための前記電力変換器を制御する無効電力制御手段と
    を備えたことを特徴とする請求項3又は請求項4に記載の出力電力制御装置。
  7.  二次電池と、
     二次電池の充放電を制御するための電力変換器と、
     前記二次電池と並列に接続された発電機と、
     前記発電機と前記二次電池とのそれぞれの出力電力の合計である合計出力電力を制御するための指令である合計出力電力指令を出力する合計出力電力指令出力手段と、
     前記発電機の出力電力を検出する発電機出力電力検出手段と、
     前記合計出力電力指令出力手段により出力された前記合計出力電力指令及び前記発電機出力電力検出手段により検出された前記発電機の出力電力に基づいて、前記二次電池の充電又は放電をする電力を制御するための指令である二次電池充放電電力指令を演算する二次電池充放電電力指令演算手段と、
     前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令に基づいて、前記電力変換器を制御する二次電池制御手段と
    を備えたことを特徴とする電力系統システム。
  8.  前記二次電池及び前記発電機から電力供給を受ける負荷と、
     前記負荷に供給される電力を検出する負荷電力検出手段とを備え、
     前記二次電池充放電電力指令演算手段は、前記負荷電力検出手段により検出された電力に基づいて、前記二次電池充放電電力指令を演算すること
    を特徴とする請求項7に記載の電力系統システム。
  9.  前記合計出力電力を検出する合計出力電力検出手段と、
     前記合計出力電力検出手段により検出された前記合計出力電力及び前記合計出力電力指令出力手段により出力された前記合計出力電力指令に基づいて、前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令の補正をするための補正量を演算する補正量演算手段と、
     前記補正量演算手段により演算された前記補正量に基づいて、前記二次電池充放電電力指令演算手段により演算された前記二次電池充放電電力指令を補正する二次電池充放電電力指令補正手段とを備え、
     前記二次電池制御手段は、前記二次電池充放電電力指令補正手段により補正された前記二次電池充放電電力指令に基づいて、前記電力変換器を制御すること
    を特徴とする請求項7又は請求項8に記載の電力系統システム。
  10.  前記合計出力電力指令出力手段により出力された前記合計出力電力指令による前記合計出力電力と前記二次電池の充電可能な電力との合計の電力量と、前記発電機の定格出力の電力量とのうち少ない方の電力量に、前記発電機による出力電力を制限する発電機出力電力制限手段
    を備えたことを特徴とする請求項7から請求項9のいずれか1項に記載の電力系統システム。
  11.  前記合計出力電力検出手段により検出された前記合計出力電力の無効電力を演算する無効電力演算手段と、
     前記合計出力電力の無効電力を制御するための指令である無効電力指令を出力する無効電力指令出力手段と、
     前記無効電力演算手段により演算された無効電力及び前記無効電力指令出力手段により出力された前記無効電力指令に基づいて、前記合計出力電力の無効電力を制御するための前記電力変換器を制御する無効電力制御手段と
    を備えたことを特徴とする請求項9又は請求項10に記載の電力系統システム。
  12.  前記合計出力電力の電圧を検出する電圧検出手段と、
     前記合計出力電力の電圧を制御するための指令である電圧指令を出力する電圧指令出力手段と、
     前記電圧検出手段により検出された電圧及び前記電圧指令出力手段により出力された前記電圧指令に基づいて、前記合計出力電力の無効電力を制御するための前記電力変換器を制御する無効電力制御手段と
    を備えたことを特徴とする請求項9又は請求項10に記載の電力系統システム。
PCT/JP2008/071039 2008-11-19 2008-11-19 出力電力制御装置 WO2010058459A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020117011420A KR101490547B1 (ko) 2008-11-19 2008-11-19 출력 전력 제어 장치
EP08878256.0A EP2352214B1 (en) 2008-11-19 2008-11-19 Output power control apparatus
ES08878256.0T ES2671896T3 (es) 2008-11-19 2008-11-19 Aparato de control de potencia de salida
JP2010539070A JP5501247B2 (ja) 2008-11-19 2008-11-19 出力電力制御装置
HUE08878256A HUE038150T2 (hu) 2008-11-19 2008-11-19 Kimeneti teljesítmény szabályozó berendezés
CA2744176A CA2744176C (en) 2008-11-19 2008-11-19 Output-power control apparatus
AU2008364376A AU2008364376B2 (en) 2008-11-19 2008-11-19 Output power control apparatus
CN2008801320724A CN102204058B (zh) 2008-11-19 2008-11-19 输出功率控制装置
PCT/JP2008/071039 WO2010058459A1 (ja) 2008-11-19 2008-11-19 出力電力制御装置
MYPI2011002229A MY161536A (en) 2008-11-19 2008-11-19 Output-power control apparatus
US13/110,346 US8401707B2 (en) 2008-11-19 2011-05-18 Output-power control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071039 WO2010058459A1 (ja) 2008-11-19 2008-11-19 出力電力制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/110,346 Continuation US8401707B2 (en) 2008-11-19 2011-05-18 Output-power control apparatus

Publications (1)

Publication Number Publication Date
WO2010058459A1 true WO2010058459A1 (ja) 2010-05-27

Family

ID=42197906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071039 WO2010058459A1 (ja) 2008-11-19 2008-11-19 出力電力制御装置

Country Status (11)

Country Link
US (1) US8401707B2 (ja)
EP (1) EP2352214B1 (ja)
JP (1) JP5501247B2 (ja)
KR (1) KR101490547B1 (ja)
CN (1) CN102204058B (ja)
AU (1) AU2008364376B2 (ja)
CA (1) CA2744176C (ja)
ES (1) ES2671896T3 (ja)
HU (1) HUE038150T2 (ja)
MY (1) MY161536A (ja)
WO (1) WO2010058459A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070603A (ja) * 2011-09-20 2013-04-18 Siemens Ag ウインドファームの作動方法、ウインドファームコントローラおよびウインドファーム
JP2018164399A (ja) * 2013-02-08 2018-10-18 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法及び電池制御支援方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2645530T3 (en) * 2012-03-27 2018-11-12 Siemens Ag Method for controlling a wind farm, wind farm controller, wind farm, computer-readable medium and program element
US8872366B2 (en) 2013-01-31 2014-10-28 APR Energy, LLC Scalable portable modular power plant
CN117833190A (zh) * 2017-11-21 2024-04-05 国立研究开发法人理化学研究所 直流总线控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308104A (ja) * 1995-05-11 1996-11-22 Hitachi Ltd 分散型電源システム及びその制御方法
JP2002044867A (ja) * 2000-07-21 2002-02-08 Hitachi Ltd 電力変換器装置
JP2003333752A (ja) * 2002-05-14 2003-11-21 Hitachi Ltd 二次電池を備えた風力発電装置
JP2008182859A (ja) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755075B2 (ja) * 1999-01-22 2006-03-15 株式会社日立製作所 電力変動補償装置
JP3352662B2 (ja) * 2000-02-03 2002-12-03 関西電力株式会社 二次電池システムを用いた電力系統安定化装置および電力系統安定化方法
US6915185B2 (en) * 2000-03-24 2005-07-05 Matsushita Electric Industrial Co., Ltd. Power supply system
JP3964852B2 (ja) * 2003-10-22 2007-08-22 大阪瓦斯株式会社 分散型発電システム
US7265456B2 (en) * 2004-01-15 2007-09-04 Vrb Bower Systems Inc. Power generation system incorporating a vanadium redox battery and a direct current wind turbine generator
JP4850019B2 (ja) * 2006-10-16 2012-01-11 東京瓦斯株式会社 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法
JP4949902B2 (ja) * 2007-03-16 2012-06-13 日本碍子株式会社 二次電池の電力制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308104A (ja) * 1995-05-11 1996-11-22 Hitachi Ltd 分散型電源システム及びその制御方法
JP2002044867A (ja) * 2000-07-21 2002-02-08 Hitachi Ltd 電力変換器装置
JP2003333752A (ja) * 2002-05-14 2003-11-21 Hitachi Ltd 二次電池を備えた風力発電装置
JP2008182859A (ja) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The January Issue of Monthly Energy", 28 December 2004, THE NIKKAN KOGYO SHIMBUN, LTD., pages: 82 - 84
See also references of EP2352214A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070603A (ja) * 2011-09-20 2013-04-18 Siemens Ag ウインドファームの作動方法、ウインドファームコントローラおよびウインドファーム
JP2018164399A (ja) * 2013-02-08 2018-10-18 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法及び電池制御支援方法
US10365675B2 (en) 2013-02-08 2019-07-30 Nec Corporation Battery control device, battery control support device, battery control system, battery control method, battery control support method, and recording medium

Also Published As

Publication number Publication date
EP2352214A4 (en) 2014-12-31
JPWO2010058459A1 (ja) 2012-04-12
EP2352214B1 (en) 2018-04-11
MY161536A (en) 2017-04-28
HUE038150T2 (hu) 2018-09-28
CA2744176C (en) 2017-08-08
CA2744176A1 (en) 2010-05-27
AU2008364376B2 (en) 2015-07-09
AU2008364376A1 (en) 2010-05-27
CN102204058B (zh) 2013-11-06
KR101490547B1 (ko) 2015-02-05
KR20110096116A (ko) 2011-08-29
ES2671896T3 (es) 2018-06-11
CN102204058A (zh) 2011-09-28
US8401707B2 (en) 2013-03-19
US20110282503A1 (en) 2011-11-17
EP2352214A1 (en) 2011-08-03
JP5501247B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5391598B2 (ja) 分散型電源の安定化制御方式
JP4369450B2 (ja) 電力供給システム
US9450451B2 (en) Photovoltaic generation system and power feeding system
JP5613447B2 (ja) 蓄電池制御システム及び蓄電池制御方法
US8401712B2 (en) Method for controlling distributed power sources
WO2010016158A1 (ja) 二次電池の制御装置および制御方法
JP5501247B2 (ja) 出力電力制御装置
JP2008154360A (ja) 電力貯蔵装置及びハイブリッド型分散電源システム
TWI466406B (zh) Solar power generation system and power supply system
JP2016119820A (ja) 自立運転システム
JP5104991B1 (ja) 電力安定化制御装置、電力安定化プログラム
JP2011024386A (ja) 電力安定化装置、その制御装置
JP5964254B2 (ja) 分散型電源の出力平準化システム及びその方法並びに分散型電源システム
JP6089565B2 (ja) 非常用電源システム
JP4048475B2 (ja) 自然エネルギ発電システムの運用方法及びそれを用いた自然エネルギ発電システム
JP6337929B2 (ja) 電力貯蔵装置を用いた電力安定化システム及び制御装置
JP2001224183A (ja) 直流電力制限機能付き連系インバータ
JP2020054192A (ja) 蓄電システム、制御装置、および制御方法。
JP2008099494A (ja) 誘導発電機の単独運転検出方式
JP2006254660A (ja) 分散型電源装置
JP2016158436A (ja) 電力管理システム、電力変換装置及び電力管理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132072.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2744176

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117011420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008364376

Country of ref document: AU

Ref document number: 2008878256

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008364376

Country of ref document: AU

Date of ref document: 20081119

Kind code of ref document: A