JP2006254660A - 分散型電源装置 - Google Patents

分散型電源装置 Download PDF

Info

Publication number
JP2006254660A
JP2006254660A JP2005071087A JP2005071087A JP2006254660A JP 2006254660 A JP2006254660 A JP 2006254660A JP 2005071087 A JP2005071087 A JP 2005071087A JP 2005071087 A JP2005071087 A JP 2005071087A JP 2006254660 A JP2006254660 A JP 2006254660A
Authority
JP
Japan
Prior art keywords
voltage
power
circuit
distributed power
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071087A
Other languages
English (en)
Inventor
Kenichi Suzuki
健一 鈴木
Hideki Rachi
秀樹 良知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005071087A priority Critical patent/JP2006254660A/ja
Publication of JP2006254660A publication Critical patent/JP2006254660A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】待機時にナトリウム−硫黄電池に加わるストレスの小さな分散型電源装置を提供することである。
【解決手段】分散型電源装置は、構内母線と直流回路との間に備えられ、交流電力と直流電力とを双方向に変換する交直変換装置と上記直流回路に接続され、直流電力が充放電される分散型電源とから構成されている分散型電源装置において、上記分散型電源と上記直流回路との間に、上記分散型電源から上記直流回路への方向が順方向のダイオードと、上記分散型電源と上記直流回路との間に上記ダイオードと並列に、上記分散型電源に充放電するとき閉じられ、待機時開放される開閉器と、が備えられ、上記交直変換装置は、待機時、上記直流回路の電圧が上記分散型電源の端子電圧より高くなるように電圧制御する。
【選択図】図1

Description

この発明は、負荷平準化機能と瞬時電圧低下対策機能および停電対策機能とを併せ持ち、分散型電源が備えられた分散型電源装置に関する。
分散型電源装置は、ナトリウム−硫黄電池を電力供給源とする常時インバータ給電方式の無停電電源装置を主構成要素とする。その無停電電源装置は、直流電源に相当するナトリウム−硫黄電池と交直変換装置およびインバータとを必須の構成要素としており、さらに遮断器などの開閉器や、変圧器および電力系統に接続された無瞬断バイパス回路を有する装置である。
分散型電源装置では、上記ナトリウム−硫黄電池を充電する場合には、例えば6.6kVの電力系統から供給される交流電力が、変圧器で低圧、例えば210Vに降圧され、交直変換装置で直流電力に変換され、ナトリウム−硫黄電池を充電するとともに、インバータに供給され、インバータにより再び交流電力に変換され重要負荷に供給される。あるいは、充電されたナトリウム−硫黄電池から直流電力を放電させる場合には、交直変換装置から直流回路に供給される直流電力を減少させる、あるいは遮断することで、分散型電源の出力の一部又は全部がインバータを経由して重要負荷に供給される。
そして、商用系統が停電すると、ナトリウム−硫黄電池から直流電力が放電され、インバータに供給されるので、インバータから瞬断なく重要負荷に交流電力が供給される。このようにして、分散型電源装置は、無停電電源機能を実現する。また、分散型電源装置は、交直変換装置を双方向変換が可能な装置とすることで、ナトリウム−硫黄電池から重要負荷に供給する電力の余剰分を負荷平準化のために一般負荷に電力を供給することが可能となり、負荷平準化機能を大きく生かすことが出来る(例えば、特許文献1参照)。
特開2004−289980号公報
しかし、分散型電源装置では、待機時に微小充電または微小放電をナトリウム−硫黄電池に対して行う場合や、重要負荷が回生を行うなどの場合には、過充電または過放電状態になり、ナトリウム−硫黄電池に大きなストレスが加わり、寿命を短くしてしまうという問題がある。
この発明の目的は、待機時にナトリウム−硫黄電池に加わるストレスの小さな分散型電源装置を提供することである。
この発明に係わる分散型電源装置は、構内母線と直流回路との間に備えられ、交流電力と直流電力とを双方向に変換する交直変換装置と、上記直流回路に接続され、直流電力が充放電される分散型電源とから構成されている分散型電源装置において、上記分散型電源と上記直流回路との間に、上記分散型電源から上記直流回路への方向が順方向のダイオードと、上記分散型電源と上記直流回路との間に上記ダイオードと並列に、上記分散型電源に充放電するとき閉じられ、待機時開放される開閉器と、が備えられ、上記交直変換装置は、待機時、上記直流回路の電圧が上記分散型電源の端子電圧より高くなるように電圧制御する。
この発明に係わる分散型電源装置の効果は、直流回路とナトリウム−硫黄電池との間にダイオードとそれに並列に開閉器が挿入され、待機時に開閉器を開放し、直流回路の電圧がナトリウム−硫黄電池の端子電圧を下回らないように制御されるので、待機時にナトリウム−硫黄電池に微小放電または微小充電が行われない。そして、ナトリウム−硫黄電池に加わるストレスが小さいので、寿命を延ばすことができる。
図1は、この発明の実施の形態に係わる分散型電源装置が備えられている所内系統のブロック図である。
この実施の形態に係わる所内系統1は、図1に示すように、商用系統2と連系点3において連系用遮断器4を介して連系されている。そして、所内系統1には、商用系統2が停電しているとき電力の供給が絶たれる構内負荷5と商用系統2が停電しているときも電力の供給が必要な重要負荷6とが接続されている。
そして、所内系統1に接続されている分散型電源装置7は、負荷平準化機能と重要負荷6に対する瞬時電圧低下対策機能や停電対策機能とを合わせ持ったシステムである。
負荷平準化機能は、構内負荷5および重要負荷6の消費電力が小さくなる夜間にナトリウム−硫黄電池8を充電し、構内負荷5および重要負荷6の消費電力が大きくなる昼間にナトリウム−硫黄電池8から放電して重要負荷6に電力を供給しその余剰分を構内負荷5に電力を供給することにより商用系統2から供給されるデマンド量を減少して電力料金を低減することである。
また、重要負荷6に対する瞬時電圧低下対策機能や停電対策機能は、通常は商用系統2から常時インバータ給電方式により電力を重要負荷6に供給しているが、商用系統2が瞬低または停電になったとき、ナトリウム−硫黄電池8から第2の交直変換装置17を介して重要負荷6に電力を供給してバックアップすることである。
この重要負荷6からは回生時に直流回路16に直流電力が供給される。
そして、分散型電源装置7は、図1に示すように、分散型電源装置7を所内系統1から接続・開放するための設備開閉器11、設備開閉器11と第1の交直変換装置12との間に配設され、第1の交直変換装置12の交流側の電流を計測するためのPCS計器用変流器13、設備開閉器11と第1の交直変換装置12との間に配設され、第1の交直変換装置12の交流側の電圧を計測するためのPCS計器用変圧器14、設備開閉器11と直流回路16との間に配設され、交流を直流、または逆に直流を交流に電力を変換する第1の交直変換装置12、第1の交直変換装置12と第2の交直変換装置17とを接続する直流回路16、第2の交直変換装置17に並列に直流回路16に接続され、直流電力が充電され、または直流電力が放電される分散型電源としてのナトリウム−硫黄電池8、直流回路16の直流電力を重要負荷6に供給する交流電力に変換する第2の交直変換装置17、第2の交直変換装置17の交流出力の電圧を計測するINV計器用変圧器18、直流回路16の直流電圧を計測する直流電圧計測器21、直流回路16とナトリウム−硫黄電池8との間に挿入されるダイオード22、ダイオード22に並列に接続される開閉器23、ナトリウム−硫黄電池8に充電およびナトリウム−硫黄電池8から放電される直流電力を計測する電力計24、ナトリウム−硫黄電池の端子電圧を計測する直流電圧検出器26、分散型電源装置7を制御する制御装置25から構成されている。
第1の交直変換装置12は、大きく分けて2つの制御がおこなわれる。一方は、ナトリウム−硫黄電池8に充電し、ナトリウム−硫黄電池8から放電して負荷平準化する連系時の電力制御である。他方は、ナトリウム−硫黄電池8への充電およびナトリウム−硫黄電池8からの放電が完了してからの直流回路16の電圧を制御する直流電圧制御である。
そして、第1の交直変換装置12は、図示しない電力用半導体素子が用いられて構成されている順変換動作および逆変換動作が可能な変換器である。この電力用半導体素子のゲートをON、OFFするゲートパルスのパルス幅を制御することにより、電力および電圧が制御される。
この分散型電源装置7では分散型電源としてナトリウム−硫黄電池8を用いている。なお、分散型電源は、ナトリウム−硫黄電池8以外にもレドックスフロー電池、超電導コイル電力貯蔵装置、フライホイール電力貯蔵装置、電気二重層コンデンサ、リチウムイオン電池など商用系統2から電力を受電して貯蔵し、逆に電力を放電して構内負荷5に供給できるものであれば、この発明をナトリウム−硫黄電池8と同様に適用することができる。
次に、分散型電源装置7の制御装置25に入力される信号について説明する。
PCS計器用変流器13から3相のPCS電流IPa、IPb、IPcが入力される。また、PCS計器用変圧器14から3相のPCS電圧VPa、VPb、VPcが入力される。また、INV計器用変圧器18から3相のINV電圧VLa、VLb、VLcが入力される。また、直流電圧計測器21から直流電圧Vdcが入力される。また、電力計24からナトリウム−硫黄電池8に入出力される電池電力PBATが入力される。また、直流電圧検出器26からナトリウム−硫黄電池8の端子電圧VBATが入力される。
制御装置25から出力される信号としては、開閉器23を開閉するための開閉器開放信号/開閉器閉鎖信号が開閉器23に出力される。
また、第1の交直変換装置12と第2の交直変換装置17とにゲートパルス信号が出力される。
制御装置25は、図1に示すように、電池電力計画値に基づいて有効電流指令値を算出し、無効電力計画値に基づいて無効電流指令値を算出するPCS電力制御部31、電池電圧から5%から10%のマージンを加味した値に直流回路16の直流電圧になるように有効電流指令値を算出するPCS直流電圧制御部32、ナトリウム−硫黄電池8を充電および放電するときPCS電力制御部31、待機状態にあるときPCS直流電圧制御部32から得られる有効電流指令値を選択する第1のスイッチ33、有効電流指令値と無効電流指令値とに基づき有効電圧指令値と無効電圧指令値を算出するPCS交流電流制御部35、有効電圧指令値と無効電圧指令値とに基づき第1の交直変換装置12をPWM制御するゲートパルスを出力するPCSPWM制御部36、電池電力計画値が格納されている電池電力計画値37、分散型電源装置7の運転モードを切り替える運転モード切替部38を有している。
次に、制御装置25の各構成要素について説明する。図2は、電池電力計画値37に格納されているタイムテーブルの電池電力計画値を表した図である。
電池電力計画値37は、図2に示すように、ナトリウム−硫黄電池8に充電およびナトリウム−硫黄電池8から放電するときの電池電力計画値が時間毎に予め定められたタイムテーブルが格納されている。このタイムテーブルには1日に亘る電池電力計画値が登録されており、放電のときの電池電力計画値がプラスの値として登録されている。そして、所定の時間に亘る充電、その後の待機、さらにその後の放電、そして最後に待機からなるステージが設定されている。
運転モード切替部38は、タイムテーブルを参照して、充電および放電のときには充放電指令信号、待機のときには待機指令信号を発する。充放電指令信号が発せられると、開閉器閉鎖信号、待機指令信号が発せられると、開閉器開放信号が開閉器23に送信される。そして、開閉器23は、図2に示すように、on、offされる。
また、充放電指令信号が発せられると、電力制御信号が、待機指令信号が発せられると、電圧制御信号が第1のスイッチ(SW1)33に送られる。そして、第1のスイッチ(SW1)は、図2に示すように、有効電流指令値IdREFを切り換える。
また、充放電運転から待機にする場合には、待機指令信号が発生られてから所定の時間を経過後にマージン投入信号が第2のスイッチ(SW2)43に送られ第2のスイッチ(SW2)43をonし、待機から充放電運転にする場合には、マージン開放信号が第2のスイッチ(SW2)43に送られ第2のスイッチ(SW2)43をoffしてから所定の時間を経過後に充放電指令信号が発生られ、第2のスイッチ(SW2)43は、図2に示すように、on、offされる。
図3は、PCS電力制御部31、PCS直流電圧制御部32、第1のスイッチ33、PCS交流電流制御部35、PCSPWM制御部36の制御に係わるブロック線図であり、四角や丸が演算要素を表している。さらに、矢印線は信号の出力から入力を表している。なお、3相静止座標系では、a相が基準に取られており、b相がa相から電気角で120度遅れ、さらにc相はb相から120度遅れている。また、直交2相座標系では、α相がa相に一致し、β相がα相から電気角で90度遅れている。
PCS電力制御部31は、電池電力計画値Prefから電力計24の電池電力PBATを減算して、有効電力差分ΔPを算出する有効電力減算器41、有効電力差分ΔPをPI制御して有効電力差分ΔPがゼロに収束されるように有効電流指令値IdREFを算出する自動有効電力調整器(APR)42を有する。
また、PCS電力制御部31は、あらかじめ定められた無効電力指令値QrefからPCS無効電力Qを減算して無効電力差分ΔQを算出する無効電力減算器46、無効電力差分ΔQをPI制御して無効電力差分ΔQがゼロに収束するように無効電流指令値IqREFを算出する自動無効電力調整器47を有する。
直流電圧制御部32は、マージン追加指令信号が入力されたときONしてナトリウム−硫黄電池8の端子電圧VBATの5%のマージン電圧Vが出力される第2のスイッチ(SW2)43、直流回路16の直流電圧Vdcからナトリウム−硫黄電池8の端子電圧VBATおよびマージン電圧Vを減算して電圧差分ΔVを算出する電圧減算器44、電圧差分ΔVをPI制御して電圧差分ΔVがゼロに収束されるように有効電流指令値IdREFを算出する自動電圧調整器(AVR)45を有する。
第1のスイッチ(SW1)33は、充放電指令信号が入力されているとき、PCS電力制御部31の有効電流指令値IdREFを、待機指令信号が入力されているとき、PCS直流電圧制御部32の有効電流指令値IdREFを選択するスイッチである。
PCS交流電流制御部35は、第1の交直変換装置12の交流側の3相PCS電流IPa、IPb、IPcをα相PCS電流IPαおよびβ相PCS電流IPβに変換するPCS電流3相/αβ変換部48、α相PCS電流IPαおよびβ相PCS電流IPβをd軸PCS電流IPdおよびq軸PCS電流IPqに変換するPCS電流αβ/dq変換部49、有効電流指令値IdREFからd軸PCS電流IPdを減算してd軸電流差分ΔIを算出するd軸電流減算器51、無効電流指令値IqREFからq軸PCS電流IPqを減算してq軸電流差分ΔIを算出するq軸電流減算器52、d軸電流差分ΔIをPI制御する有効電流調整部53、q軸電流差分ΔIをPI制御する無効電流調整部54、第1の交直変換装置12の交流側の3相PCS電圧VPa、VPb、VPcをα相PCS電圧VPαおよびβ相PCS電圧VPβに変換するPCS電圧3相/αβ変換部55、α相PCS電圧VPαおよびβ相PCS電圧VPβをd軸PCS電圧VPdおよびq軸PCS電圧VPqに変換するPCS電圧αβ/dq変換部56、d軸電流差分ΔIを有効電流調整部53でPI制御された信号とd軸PCS電圧VPdとを加算してd軸PCS電圧指令値VdREFdを求めるd軸加算器57、q軸電流差分ΔIを無効電流調整部54でPI制御された信号とq軸PCS電圧VPqとを加算してq軸PCS電圧指令値qREFqを求めるq軸加算器58から構成されている。
PCSPWM制御部36は、d軸PCS電圧指令値VdREFdとq軸PCS電圧指令値VqREFqとをα相PCS電圧指令値V(ハット)αとβ相PCS電圧指令値V(ハット)βとに変換するPCSdq/αβ変換部59、α相PCS電圧指令値V(ハット)αとβ相PCS電圧指令値V(ハット)βとを3相PCS電圧指令値V(ハット)、V(ハット)、V(ハット)に変換するPCSαβ/3相変換部61、3相PCS電圧指令値V(ハット)、V(ハット)、V(ハット)に基づき交直変換装置12の半導体素子のゲートをON/OFFするゲートパルスを発生するゲートパルス発生部62から構成されている。
次に、分散型電源装置7の動作について図2を参照して説明する。
運転モード切替部38は、電池電力計画値37のタイムテーブルから電池電力計画値Prefを読み出す。図2に示す例では、時刻Aまでは充電条件であるので充放電指令信号を発しており、それに伴って開閉器投入信号が開閉器23に、電力制御信号が第1のスイッチ33に送られており、開閉器23は投入状態に、第1のスイッチ33は電力制御側に切り替えられているので、電池電力計画値Prefどおりにナトリウム−硫黄電池8が充電されている。時刻Aになると、電池電力計画値37の電池電力計画値Prefがゼロになるので、運転モード切替部38は待機指令信号を発し、それに伴って開閉器開放信号および電圧制御信号が開閉器23と第1のスイッチ33に送られる。そうすると、開閉器23が開放され、第1のスイッチ33が電圧制御側に切り替えられるので、直流回路16の電圧Vdcがナトリウム−硫黄電池8の端子電圧VBATに制御される。
待機信号を発してから所定の時間が経過すると運転モード切替部38はマージン投入信号を第2のスイッチ43に送信するので、直流回路16の電圧Vdcがナトリウム−硫黄電池8の端子電圧VBATよりマージン分だけ高くなるように制御される。このため、直流回路16とナトリウム−硫黄電池8との間に設置されるダイオード22は、非導通状態を保つことができるため、ナトリウム−硫黄電池8からの充放電は行われなくなる。
また、このような状態で所内系統1に瞬低もしくは停電が発生すると、第1の交直変換装置12によって直流回路16の電圧Vdcを維持することができなくなるため、ナトリウム−硫黄電池8の端子電圧VBATよりもマージン分だけ高く維持されていた直流回路16の電圧Vdcは、ナトリウム−硫黄電池8の端子電圧VBAT以下に低下し、ダイオード22は導通状態となって、ナトリウム−硫黄電池8から直流電力が放電するため、分散型電源装置7の瞬時電圧低下対策機能または停電対策機能が発揮できる。
時刻Bで電池電力計画値Prefがプラスになるように電池電力計画値37のタイムテーブルに設定されているので、時刻Bになる所定の時間以前に、運転モード切替部38はマージン開放信号を第2のスイッチ43に送信する。そうすると、直流回路16の電圧Vdcがナトリウム−硫黄電池8の端子電圧VBATに制御され、その後、時刻Bで電池電力計画値Prefがプラスになるので、運転モード切替部38は充放電指令信号を発し、それに伴って開閉器閉鎖信号と電力制御信号が開閉器23と第1のスイッチ33に送られて、開閉器23が投入されるとともに、第1のスイッチ33が電力制御側に切り換えられるので、ナトリウム−硫黄電池8から所定の電力が放電され、重要負荷6に送られるとともに余剰電力が所内系統1に放電される。
時刻Cになると、時刻Aのときと同様に、電池電力計画値37の電池電力計画値Prefがゼロになるので、運転モード切替部38は待機指令信号を発し、それに伴って開閉器開放信号および電圧制御信号が開閉器23と第1のスイッチ33に送られ、開閉器23が開放され、第1のスイッチ33が電圧制御側に切り替えられるので、直流回路16の電圧Vdcがナトリウム−硫黄電池8の端子電圧VBATに制御される。
待機信号を発してから所定の時間が経過すると運転モード切替部38はマージン投入信号を第2のスイッチ43に送信するので、直流回路16の電圧Vdcがナトリウム−硫黄電池8の端子電圧VBATより5%〜10%高くなるように制御されて、直流回路16とナトリウム−硫黄電池8との間に設置されるダイオード22は、非導通状態を保つことができるため、ナトリウム−硫黄電池8からの充放電は行われなくなる。
時刻Dでは電池電力計画値Prefがマイナスになるので、時刻Dになる所定の時間以前に、運転モード切替部38からマージン開放信号を第2のスイッチ43に送信されて、直流回路16の電圧Vdcがナトリウム−硫黄電池8の端子電圧VBATに制御される。その後、時刻Dになるとタイムテーブルの電池電力計画値Prefがマイナスになるので、運転モード切替部38は充放電指令信号を発し、それに伴って開閉器閉鎖信号と電力制御信号が開閉器23と第1のスイッチ33に送られ、開閉器23が投入されるとともに、第1のスイッチ33が電力制御側に切り換えられるので、ナトリウム−硫黄電池8に所定の電力が充電される。
このような分散型電源装置は、直流回路16とナトリウム−硫黄電池8との間にダイオード22とそれに並列に開閉器23が挿入され、待機時に開閉器23を開放し、直流回路16の電圧がナトリウム−硫黄電池8の端子電圧を下回らないように制御されるので、待機時にナトリウム−硫黄電池8に微小放電または微小充電が行われない。そして、ナトリウム−硫黄電池8に加わるストレスが小さいので、寿命を延ばすことができる。
また、直流回路16の電圧がナトリウム−硫黄電池8の端子電圧より5%〜10%高い電圧を下回らないように制御されるので、重要負荷6の負荷変動が大きくてもダイオード22に順方向の電圧が掛かることを防げる。
また、充放電時には開閉器23が投入されるので、ダイオード22による電力ロスを無くすことができる。
この発明の実施の形態に係わる分散型電源装置が備えられている所内系統のブロック図である。 実施の形態に係わるタイムテーブルおよび開閉器等の開閉の様子を示す図である。 PCS電力制御部、PCS直流電圧制御部、第1のスイッチ、PCS交流電流制御部、PCSPWM制御部の制御に係わるブロック線図である。
符号の説明
1 所内系統、2 商用系統、3 連系点、4 連系用遮断器、5 構内負荷、6 重要負荷、7 分散型電源装置、8 ナトリウム−硫黄電池、11 設備開閉器、12 第1の交直変換装置、13 PCS計器用変流器、14 PCS計器用変圧器、16 直流回路、17 第2の交直変換装置、18 INV計器用変圧器、21 直流電圧計測器、22 ダイオード、23 開閉器、24 電力計、25 制御装置、26 直流電圧検出器、31 PCS電力制御部、32 PCS直流電圧制御部、33 第1のスイッチ、35 PCS交流電流制御部、36 PCSPWM制御部、37 電池電力計画値、38 運転モード切替部、41 有効電力減算器、42 自動有効電力調整器(APR)、43 第2のスイッチ、44 電圧減算器、45 自動電圧調整器(AVR)、46 無効電力減算器、47 自動無効電力調整器(AQR)、48 PCS電流3相/αβ変換部、49 PCS電流αβ/dq変換部、51 d軸電流減算器、52 q軸電流減算器、53 有効電流調整部、54 無効電流調整部、55 PCS電圧3相/αβ変換部、56 PCS電圧αβ/dq変換部、57 d軸加算器、58 q軸加算器、59 PCSdq/αβ変換部、61 PCSαβ/3相変換部、62 PCSゲートパルス発生部。

Claims (2)

  1. 構内母線と直流回路との間に備えられ、交流電力と直流電力とを双方向に変換する交直変換装置と、上記直流回路に接続され、直流電力が充放電される分散型電源とから構成されている分散型電源装置において、
    上記分散型電源と上記直流回路との間に、上記分散型電源から上記直流回路への方向が順方向のダイオードと、
    上記分散型電源と上記直流回路との間に上記ダイオードと並列に、上記分散型電源に充放電するとき閉じられ、待機時開放される開閉器と、
    が備えられ、
    上記交直変換装置は、待機時、上記直流回路の電圧が上記分散型電源の端子電圧より高くなるように電圧制御することを特徴とする分散型電源装置。
  2. 上記交直変換装置は、待機時、上記直流回路の電圧が上記分散型電源の端子電圧より所定の割合高くなるように電圧制御することを特徴とする請求項1に記載する分散型電源装置。
JP2005071087A 2005-03-14 2005-03-14 分散型電源装置 Pending JP2006254660A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071087A JP2006254660A (ja) 2005-03-14 2005-03-14 分散型電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071087A JP2006254660A (ja) 2005-03-14 2005-03-14 分散型電源装置

Publications (1)

Publication Number Publication Date
JP2006254660A true JP2006254660A (ja) 2006-09-21

Family

ID=37094541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071087A Pending JP2006254660A (ja) 2005-03-14 2005-03-14 分散型電源装置

Country Status (1)

Country Link
JP (1) JP2006254660A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017893A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 電力貯蔵装置の制御装置、電力貯蔵装置の制御装置の制御方法及びプログラム
JP2017017894A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 電力貯蔵装置の制御装置、電力貯蔵装置の制御装置の制御方法及びプログラム
WO2021104459A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 一种备用电源及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017893A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 電力貯蔵装置の制御装置、電力貯蔵装置の制御装置の制御方法及びプログラム
JP2017017894A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 電力貯蔵装置の制御装置、電力貯蔵装置の制御装置の制御方法及びプログラム
WO2021104459A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 一种备用电源及其控制方法

Similar Documents

Publication Publication Date Title
US10461572B2 (en) Transformer coupled current capping power supply topology
US11043836B2 (en) UPS having a delta converter utilized as input power regulator in a double conversion system
US11031807B2 (en) Power supply device and power supply system
Kim et al. Operation and control strategy of a new hybrid ESS-UPS system
US20160134160A1 (en) Systems and methods for battery management
KR100958610B1 (ko) 대체 에너지원이 접속된 무정전전원장치
KR101454299B1 (ko) 다수의 에너지저장장치용 인버터를 이용한 독립형 마이크로그리드의 제어방법
US20140361624A1 (en) Apparatus and methods for control of load power quality in uninterruptible power systems
CN112398141A (zh) 用于提供电源接口的设备和方法
KR102142074B1 (ko) Ess 기능을 갖는 하이브리드 ups의 제어 장치
JP2008131736A (ja) 分散型電源システムと昇降圧チョッパ装置
US11329488B2 (en) Power conversion system, method for controlling converter circuit, and program
JP2005237121A (ja) 電力貯蔵機能を備えた太陽光発電システム
JP5948116B2 (ja) 無停電電源システム
JP2006067760A (ja) 分散型電源装置
JP5790313B2 (ja) 電力平準化装置
JP2008125218A (ja) 分散型電源制御システム
JP2006254659A (ja) 分散型電源装置
KR20200086835A (ko) Ups를 이용한 수용가 부하 관리 시스템
JP2006254660A (ja) 分散型電源装置
KR101899767B1 (ko) 무정전전원장치 및 그 제어방법
KR101977165B1 (ko) 비상 전원용 ess 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
JP4560657B2 (ja) 無停電電源装置
JP2002027670A (ja) 無瞬断自立移行発電システム
JPH05168160A (ja) 交直変換装置システム