WO2010058449A1 - 同期機起動装置 - Google Patents

同期機起動装置 Download PDF

Info

Publication number
WO2010058449A1
WO2010058449A1 PCT/JP2008/070900 JP2008070900W WO2010058449A1 WO 2010058449 A1 WO2010058449 A1 WO 2010058449A1 JP 2008070900 W JP2008070900 W JP 2008070900W WO 2010058449 A1 WO2010058449 A1 WO 2010058449A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
synchronous machine
voltage
induced voltage
estimated
Prior art date
Application number
PCT/JP2008/070900
Other languages
English (en)
French (fr)
Inventor
伸三 玉井
藤井 洋介
彰修 安藤
靖彦 細川
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to EP08878246.1A priority Critical patent/EP2357722B1/en
Priority to JP2010539060A priority patent/JP5421287B2/ja
Priority to EP14181990.4A priority patent/EP2824827B1/en
Priority to PCT/JP2008/070900 priority patent/WO2010058449A1/ja
Priority to US13/129,993 priority patent/US8531144B2/en
Publication of WO2010058449A1 publication Critical patent/WO2010058449A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/181Circuit arrangements for detecting position without separate position detecting elements using different methods depending on the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the present invention relates to a synchronous machine starting device, and more particularly to a synchronous machine starting device that detects a rotor position of the synchronous machine.
  • Synchronous machine starting devices for starting synchronous machines such as generators and motors have been developed.
  • a mechanical distributor that detects the position of the rotor of the synchronous machine with a proximity switch or the like is used.
  • mechanical distributors are fragile and are susceptible to noise due to the large number of wires.
  • the synchronous generator starting device includes a separately-excited converter including a separately-excited element such as a thyristor, and a separately-excited inverter including a separately-excited element such as a thyristor that converts DC power obtained by the converter into AC power. Start the synchronous generator with AC power obtained by the inverter.
  • this synchronous generator starting device includes an AC voltage detector for detecting the voltage of the armature terminal of the synchronous generator, an AC current detector for detecting an inverter output current flowing from the inverter to the armature of the synchronous generator, From the detected AC current value of the inverter from the output current detector and the estimated value of the first synchronous generator rotation speed, the induced voltage induced in the armature winding of the synchronous generator by the field current of the synchronous generator , An induced voltage calculation circuit that calculates an in-phase component and a quadrature component with respect to the first reference phase, and a second reference phase that sets the quadrature component of the first reference phase of the induced voltage from the induced voltage calculation circuit to zero.
  • a PLL circuit that outputs a second synchronous generator rotational speed estimated value.
  • this synchronous generator starting device produces
  • the second synchronous generator rotational speed estimated value is input to the first synchronous generator rotational speed estimated value of the induced voltage calculation circuit.
  • an object of the present invention is to provide a synchronous machine starting device capable of stably starting a synchronous machine.
  • a synchronous machine starting device is a power converter that converts supplied power into AC power and supplies the AC power to an armature of the synchronous machine, and detects an AC voltage supplied to the armature of the synchronous machine.
  • An AC voltage detection unit that outputs an AC voltage signal indicating the detected AC voltage
  • an AC current detection that detects an AC current supplied to the armature of the synchronous machine and outputs an AC current signal indicating the detected AC current
  • a rotor position detection unit that detects the rotor position of the synchronous machine based on the AC voltage signal and the AC current signal, and a power conversion control unit that controls the power conversion unit based on the detected rotor position
  • the rotor position detector calculates an induced voltage induced in the armature of the synchronous machine based on the estimated phase indicating the rotor position, the estimated rotational speed of the rotor, the AC voltage signal, and the AC current signal.
  • An induction voltage calculation unit that outputs an induced voltage signal
  • a selection unit that selects and outputs either an induced voltage signal received from the induction voltage calculation unit or an AC voltage signal received from the AC voltage detection unit
  • a selection unit An estimated phase error is calculated based on the received induced voltage signal or AC voltage signal, an estimated phase and an estimated rotational speed are calculated based on the calculated phase error, and a speed signal indicating the calculated estimated rotational speed is calculated as an induced voltage.
  • a feedback calculation unit that outputs a position signal indicating the calculated estimated phase to the power conversion control unit and the induced voltage calculation unit.
  • a synchronous machine starting device includes a power conversion unit that converts supplied power into AC power and supplies the AC power to the armature of the synchronous machine, and an AC supplied to the armature of the synchronous machine.
  • AC voltage detector for detecting voltage
  • AC current detector for detecting AC current supplied to the armature of the synchronous machine, and detecting the rotor position of the synchronous machine based on the detected AC voltage and AC current
  • a power conversion control unit that controls the power conversion unit based on the detected rotor position, the rotor position detection unit including an estimated phase indicating the rotor position,
  • an induced voltage calculation unit that calculates an induced voltage of the first phase and an induced voltage of the second phase induced in the armature of the synchronous machine, and calculated Phase 1 induced voltage and second phase
  • a feedback calculation unit that calculates an estimated phase error based on the induced voltage, calculates an estimated phase and an estimated rotation speed based on the calculated phase error
  • the feedback calculation unit calculates a phase error based on a result of division using the induced voltage of the first phase as a dividend and the induced voltage of the second phase as a divisor, and calculates the induced voltage of the first phase. It is possible to switch the calculation of the phase error based on the result of division with the divisor fixed to a predetermined value.
  • a synchronous machine starting device includes a power conversion unit that converts supplied power into AC power and supplies the AC power to the armature of the synchronous machine, and an AC supplied to the armature of the synchronous machine.
  • An AC voltage detector that detects voltage
  • an AC current detector that detects AC current supplied to the armature of the synchronous machine, and detects the rotor position of the synchronous machine based on the detected AC voltage and AC current.
  • a power conversion control unit that controls the power conversion unit based on the detected rotor position, the rotor position detection unit including an estimated phase indicating the rotor position, Based on the estimated rotational speed and the detected AC voltage and AC current, an induced voltage calculation unit that calculates an induced voltage of the first phase and an induced voltage of the second phase induced in the armature of the synchronous machine, and calculated Phase 1 induced voltage and second phase
  • a feedback calculation unit that calculates an error of the estimated phase based on the induced voltage, calculates an estimated phase and an estimated rotation speed based on the calculated phase error, and outputs a position signal indicating the calculated estimated phase to the power conversion control unit
  • the feedback calculation unit calculates the estimated rotational speed by amplifying the calculated phase error, calculates the estimated phase by integrating the calculated estimated rotational speed, and can switch the gain in amplification. .
  • the synchronous machine can be started stably.
  • FIG. 3 is a diagram illustrating a configuration of a rotor position detection unit 11. It is a figure which shows the structure of the PLL circuit in the synchronous machine starting device which concerns on the 2nd Embodiment of this invention. It is a figure which shows the structure of the error amplification part in the synchronous machine starting device which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a diagram showing the configuration of the synchronous machine starting device according to the first embodiment of the present invention.
  • a synchronous machine starting device 101 includes a power conversion unit 71, an AC voltage detector 8, an AC current detector 9, a rotor position detection unit 11, an inverter control unit (power conversion control unit). 19).
  • the power conversion unit 71 includes a converter 1, an inverter 2, and a DC reactor 3.
  • the inverter control unit 19 includes a reference sine wave calculator 12, a gate pulse generator 13, and a ⁇ command circuit 14.
  • the synchronous machine 4 and the motor M are connected via an axis SH.
  • the synchronous machine 4 is a synchronous generator or a synchronous motor, for example, and has an armature and a rotor.
  • the motor M rotates at a predetermined speed when the synchronous machine 4 is on standby. This rotational speed is low, for example several rpm. On the other hand, the normal rotation speed is 3000 rpm to 3600 rpm. For this reason, the voltage applied to the armature of the synchronous machine 4 at the time of start-up is very small as 1/1000 of the steady state as described above, and the detection voltage by the AC voltage detector 8 is often distorted. It is difficult to detect accurately.
  • Converter 1 is composed of an element such as a thyristor, and converts AC power from AC power supply e1 into DC power.
  • the inverter 2 is composed of an element such as a thyristor, and drives the synchronous machine 4 by converting DC power obtained by the converter 1 into AC power and supplying it to the armature of the synchronous machine 4.
  • the converter 1 and the inverter 2 are connected via a DC reactor 3.
  • the AC side of the inverter 2 is connected to the armature of the synchronous machine 4.
  • the AC voltage detector 8 detects the three-phase AC voltage supplied to the armature of the synchronous machine 4 and outputs the voltage detection values V1, V2, and V3 to the rotor position detection unit 11.
  • the alternating current detector 9 detects a three-phase alternating current supplied to the armature of the synchronous machine 4 and outputs detected current values I1, I2, and I3 to the rotor position detector 11.
  • the rotor position detector 11 detects the rotor position (phase) of the synchronous machine 4 based on the detection values received from the AC voltage detector 8 and the AC current detector 9, and the rotor position of the synchronous machine 4. Is output to the inverter control unit 19.
  • the inverter control unit 19 controls the inverter 2 based on the rotor position signal POS received from the rotor position detection unit 11.
  • the reference sine wave calculator 12 outputs a reference sine wave sin ⁇ based on the position signal POS received from the rotor position detection unit 11.
  • the ⁇ command circuit 14 calculates the control advance angle command value ⁇ and outputs it to the gate pulse generator 13.
  • Gate pulse generator 13 outputs a gate pulse to the elements in inverter 2 based on reference sine wave sin ⁇ received from reference sine wave calculator 12 and control advance angle command value ⁇ received from ⁇ command circuit 14. .
  • FIG. 2 is a diagram illustrating a configuration of the rotor position detection unit 11.
  • rotor position detection unit 11 includes an induced voltage calculation unit 61, a PLL circuit (feedback calculation unit) 34, and a selection unit SEL.
  • the induced voltage calculation unit 61 includes three-phase to two-phase conversion circuits 31 and 32 and an induced voltage calculation circuit 33.
  • the induced voltage calculation unit 61 includes an estimated phase indicating the rotor position of the synchronous machine 4, an estimated rotational speed of the rotor of the synchronous machine 4, voltage detection values V 1, V 2, V 3 received from the AC voltage detector 8 and AC current detection. Based on the current detection values I1, I2, and I3 received from the generator 9, the induced voltage induced in the armature of the synchronous machine 4 is calculated, and the calculated induced voltage values Zq and Zd are output.
  • the selection unit SEL selects and outputs one of the induced voltage values Zq and Zd received from the induced voltage calculation circuit 33 and the voltage values Vd and Vq received from the three-phase / two-phase conversion circuit 31.
  • the PLL circuit 34 calculates an error of the estimated phase based on the induced voltage values Zq and Zd received from the selection unit SEL or the voltage values Vd and Vq. Then, the PLL circuit 34 calculates an estimated phase and an estimated rotation speed based on the calculated phase error, outputs a speed signal ⁇ indicating the calculated estimated rotation speed to the induced voltage calculation unit 61, and calculates the calculated estimated phase.
  • the position signal ⁇ shown is output to the inverter control unit 2 and the induced voltage calculation unit 61.
  • the induced voltage calculation unit 61 receives the speed signal ⁇ and the position signal ⁇ received from the PLL circuit 34, the voltage detection values V1, V2, V3 newly received from the AC voltage detector 8, and the new AC current detector 9. An induced voltage induced in the armature of the synchronous machine 4 is newly calculated based on the received current detection values I1, I2, and I3.
  • the three-phase to two-phase conversion circuit 31 performs three-phase to two-phase conversion (dq conversion) on the detected voltage values V1, V2, and V3 received from the AC voltage detector 8 based on the reference phase ⁇ . .
  • the three-phase to two-phase conversion circuit 32 performs three-phase to two-phase conversion (dq conversion) on the current detection values I1, I2, and I3 received from the AC current detector 9 based on the reference phase ⁇ .
  • the induced voltage calculation circuit 33 is based on the voltage values Vd and Vq that have been three-phase to two-phase converted by the three-phase to two-phase conversion circuit 31 and the current values Id and Iq that have been three-phase to two-phase converted by the three-phase to two-phase conversion circuit 32. Thus, the two-phase induced voltage induced in the armature of the synchronous machine 4 is calculated.
  • the three-phase two-phase conversion circuits 31 and 32 are given an initial value of the reference phase ⁇ when the synchronous machine starting device 101 is started, and coordinate conversion is performed. To do.
  • the induced voltage calculation circuit 33 is based on the d-axis (in-phase) of the synchronous machine 4 based on the voltage values Vd, Vq and current values Id, Iq on the dq axis converted by the three-phase two-phase conversion circuits 31 and 32. Component) The induced voltage of the armature on the -q axis (orthogonal component) is calculated.
  • the rotational speed ⁇ is required, but since there is no position sensor, the initial value of the rotational speed ⁇ of the synchronous machine 4 is given to the induced voltage calculation circuit 33 when the synchronous machine starting device 101 is started. It is done.
  • the synchronous machine starting device is provided with a PLL circuit 34 that performs control so that the q-axis component Zq of the induced voltage becomes zero.
  • the PLL circuit 34 calculates the rotational speed ⁇ that causes the q-axis component Zq of the induced voltage to become zero, that is, the estimated rotational speed of the rotor of the synchronous machine 4, and the reference phase ⁇ , that is, the estimated phase of the rotor of the synchronous machine 4. To do.
  • the reference phase ⁇ calculated by the PLL circuit 34 is fed back to the three-phase / two-phase conversion circuits 31 and 32 and is output to the inverter control unit 19 as the position signal POS. Thereafter, the three-phase / two-phase conversion circuits 31 and 32 perform the three-phase / two-phase conversion based on the reference phase ⁇ from the PLL circuit 34.
  • the rotation speed ⁇ calculated by the PLL circuit 34 is given to the induced voltage calculation circuit 33.
  • the induced voltage calculation circuit 33 thereafter calculates an induced voltage value (in-phase component) Zd and an induced voltage value (orthogonal component) Zq based on the rotational speed ⁇ from the PLL circuit 34.
  • the induced voltage calculation circuit 33 is based on the voltage values Vd and Vq converted by the three-phase two-phase conversion circuit 31 and the current values Id and Iq converted by the three-phase two-phase conversion circuit 32.
  • the induced voltage induced in the armature 4 is calculated.
  • the voltage supplied to the armature of the synchronous machine 4 at the time of start-up is very small, for example, 1/1000 compared to the rated voltage in the steady state. Further, since the frequency of the current supplied to the armature of the synchronous machine 4 at the time of startup is low, the detection error of the AC current detector 9 may become large in the low frequency range.
  • the induced voltage is calculated based on the very small voltage values Vd and Vq and the large current values Id and Iq in the induced voltage calculation circuit 33, the induced voltage calculated by the induced voltage calculation circuit 33 and the actual voltage are calculated. In addition, the difference from the voltage induced in the armature of the synchronous machine 4 becomes very large.
  • the selection unit SEL is provided. That is, the selection unit SEL outputs the voltage values Vd and Vq converted by the three-phase / two-phase conversion circuit 31 to the PLL circuit 34 as the selection voltage values Sd and Sq based on the rotational speed ⁇ received from the PLL circuit 34. Or whether to output the induced voltage values Zd and Zq calculated by the induced voltage calculation circuit 33 to the PLL circuit 34 as the selection voltage values Sd and Sq.
  • the selection unit SEL bypasses the induced voltage calculation circuit 33 and directly supplies the voltage values Vd and Vq to the PLL circuit 34 when the synchronous machine 4 is started, that is, when the rotational speed ⁇ is less than a predetermined value.
  • the selection unit SEL gives the induced voltage values Zd and Zq to the PLL circuit 34 when the rotational speed ⁇ of the synchronous machine 4 becomes equal to or higher than a predetermined value.
  • the selection unit SEL is configured to select one of the voltage values Vd and Vq and the induced voltage values Zd and Zq based on the rotational speed ⁇ received from the PLL circuit 34.
  • the selection unit SEL is not limited thereto. is not.
  • Selection unit SEL may be configured to perform selection based on the square root of the sum of the square of voltage value Vd and the square of Vq, for example. Further, since the voltage value Vq is very small as compared with the voltage value Vd, a configuration in which selection is performed simply based on the voltage value Vd may be employed.
  • the voltage supplied to the armature of the synchronous machine 4 is small and the current supplied to the armature of the synchronous machine 4 is detected.
  • the induced voltage calculation circuit 33 is bypassed, and the estimated rotational speed of the rotor of the synchronous machine 4 and the estimated phase of the rotor of the synchronous machine 4 are calculated based on the voltage values Vd and Vq. To do.
  • errors in the estimated rotational speed and estimated phase of the rotor of the synchronous machine at the time of startup can be reduced, so that the synchronous machine can be started up stably.
  • the power converter 71 is configured to include the converter 1, the inverter 2, and the DC reactor 3, but the present invention is limited to this. It is not a thing.
  • the power conversion unit 71 may include a circuit such as a matrix converter that converts the supplied power into AC power and supplies it to the armature of the synchronous machine 4 instead of the converter 1, the inverter 2, and the DC reactor 3. That's fine.
  • the present embodiment relates to a synchronous machine starting device to which a function for accurately performing the operation of the PLL circuit is added as compared with the synchronous machine starting device according to the first embodiment.
  • the contents other than those described below are the same as those of the synchronous machine starting device according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration of a PLL circuit in the synchronous machine starting device according to the second embodiment of the present invention.
  • the PLL circuit 34 includes a division unit 41, a clamp unit 42, an error amplification unit 43, and an integration unit 44.
  • the division unit 41 performs division using the selection voltage value Sq received from the selection unit SEL as a dividend and the selection voltage value Sd as a divisor.
  • the division result DIV is not zero, the estimated phase calculated by the PLL circuit 34 is shifted from the actual rotor phase of the synchronous machine 4.
  • the division result DIV corresponds to an error in the estimated phase of the rotor in the synchronous machine 4.
  • phase estimation is achieved by controlling the PLL circuit 34 so that Zq becomes zero.
  • the voltage induced in the armature of the synchronous machine 4 increases as the rotational speed of the synchronous machine 4 increases.
  • the voltage induced in the armature of the synchronous machine 4 is small immediately after the start of the synchronous machine 4 and at a low speed during the speed increase. Therefore, at low speed and high speed, the magnitude of the induced voltage value Zq is larger at high speed even if the phase error is the same.
  • the error amplification unit 43 receives the induced voltage value Zq that varies depending on the rotation speed of the synchronous machine 4, so that the phase tracking performance of the PLL circuit 34 is that of the synchronous machine 4. It will change depending on the rotation speed.
  • the PLL circuit 34 cannot follow the phase change of the synchronous machine 4, and the rotation of the synchronous machine 4 and the synchronous machine starting device 101 May be out of sync with.
  • the error amplification unit 43 is not the induced voltage value Zq but Zq / Zd or tan ⁇ 1. It can be set as the structure which receives (Zq / Zd). Therefore, it is possible to improve the response of the PLL circuit 34 at a low speed with a small induced voltage. Note that the calculation accuracy can be improved by adopting a configuration in which the error amplifying unit 43 receives tan ⁇ 1 (Zq / Zd) and performs the calculation. Further, by adopting a configuration in which the error amplifying unit 43 receives Zq / Zd and performs the calculation, the calculation process can be simplified.
  • PLL circuit 34 performs division using selection voltage value Sq received from selection unit SEL as a dividend and selection voltage value Sd as a divisor. , And the selection voltage value Sq received from the selection unit SEL is used as a dividend, and the division is fixed with the divisor fixed to a predetermined value.
  • the clamp unit 42 clamps the selection voltage value Sd to a predetermined value and outputs the clamped voltage value Sd to the division unit 41.
  • the clamping unit 42 determines whether to output the selection voltage value Sd received from the selection unit SEL to the division unit 41 or to output a predetermined value to the division unit 41 based on the rotational speed ⁇ received from the PLL circuit 34. It may be configured to switch.
  • the division unit 41 performs division using the selection voltage value Sq received from the selection unit SEL as a dividend and the voltage received from the clamp unit 42 as a divisor, and outputs the division result DIV to the error amplification unit 43.
  • the error amplifying unit 43 calculates the estimated rotation speed of the rotor in the synchronous machine 4 by amplifying the phase error calculated by the division result DIV, that is, the division result DIV received from the division unit 41, and outputs it as the rotation speed ⁇ . .
  • the error amplifying unit 43 proportionally integrates the division result DIV, for example.
  • the integrating unit 44 calculates the estimated phase of the rotor in the synchronous machine 4 by integrating the rotational speed ⁇ received from the error amplifying unit 43 and outputs it as the reference phase ⁇ .
  • the detection error is large.
  • the d-axis component Zd of the induced voltage has a larger value than the q-axis component Zq
  • the error of the d-axis component Zd is calculated as a phase error by the division unit 41, that is, the selection voltage value Sq / selection voltage value Sd. Large impact on computation.
  • a clamp unit 42 is provided in the synchronous machine starting device according to the second embodiment of the present invention. Accordingly, the selection voltage value Sd corresponding to the d-axis component Zd is clamped to a predetermined value, so that a voltage less than the predetermined value is not output to the division unit 41. With such a configuration, it is possible to prevent a phase error calculation of the rotor of the synchronous machine from being greatly mistaken at the time of startup, so that the synchronous machine 4 can be started up stably.
  • the present embodiment relates to a synchronous machine starting device to which a function for accurately performing PI calculation is added as compared with the synchronous machine starting device according to the first embodiment.
  • the contents other than those described below are the same as those of the synchronous machine starting device according to the second embodiment.
  • FIG. 4 is a diagram showing a configuration of an error amplifying unit in the synchronous machine starting device according to the third embodiment of the present invention.
  • error amplifying unit 43 includes a gain multiplying unit 51, an adding unit 52, and an integrating unit 53.
  • the gain multiplication unit 51 multiplies the division result DIV received from the division unit 41 and the gain K1.
  • the integrating unit 53 integrates the division result DIV received from the dividing unit 41 based on the gain K2.
  • the addition unit 52 adds the multiplication result of the gain multiplication unit 51 and the integration result of the integration unit 53, and outputs the result as a rotation speed ⁇ .
  • the gain multiplication unit 51 switches the gain K1 when the synchronous machine 4 is activated and when it is stationary. Further, the integrating unit 53 switches the gain K2 when the synchronous machine 4 is activated and when it is stationary. For example, since the voltage value received by the PLL circuit 34 when the synchronous machine 4 is started is small and the detection error is large, the gains K1 and K2 are reduced. Thereby, the influence of detection error can be reduced.
  • the acceleration of the synchronous machine 4 is large when the synchronous machine 4 is started up, it may be required to make the PLL circuit 34 follow faster even if there is some detection error.
  • the gain K1 is increased to increase the response of the PLL circuit 34, and the gain K2 is further decreased so that the detection error is not greatly amplified.
  • the balance between the starting speed of the synchronous machine 4 and the phase error detection accuracy is adjusted by switching the gains of the gain multiplier 51 and the integrator 53. It becomes possible to do.

Abstract

 同期機起動装置は、回転子位置を示す推定位相、回転子の推定回転速度、交流電圧信号および交流電流信号に基づいて同期機の電機子に誘起される誘起電圧を算出し、算出した誘起電圧を示す誘起電圧信号を出力する誘起電圧演算部(61)と、誘起電圧演算部(61)から受けた誘起電圧信号および交流電圧検出部から受けた交流電圧信号のいずれかを選択して出力する選択部(SEL)と、選択部(SEL)から受けた誘起電圧信号または交流電圧信号に基づいて推定位相の誤差を算出し、算出した位相誤差に基づいて推定位相および推定回転速度を算出し、算出した推定回転速度を示す速度信号を誘起電圧演算部(61)へ出力し、かつ算出した推定位相を示す位置信号を電力変換制御部(19)および誘起電圧演算部(61)へ出力するフィードバック演算部(34)とを備える。

Description

同期機起動装置
 本発明は、同期機起動装置に関し、特に、同期機の回転子位置を検出する同期機起動装置に関する。
 発電機および電動機等の同期機を起動するための同期機起動装置が開発されている。従来、同期機起動装置では、同期機の回転子の位置を近接スイッチ等により検出する機械式分配器が用いられている。しかしながら、機械式分配器は壊れやすく、また、配線が多いためにノイズの影響を受けやすい。
 このような機械式分配器を不要とするための同期機起動装置の一例が特開2006-271038号公報(特許文献1)に開示されている。すなわち、この同期発電機起動装置は、サイリスタなどの他励素子からなる他励式コンバータと、コンバータにより得られる直流電力を交流電力に変換するサイリスタなどの他励素子からなる他励式インバータとを備え、インバータにより得られる交流電力による同期発電機を起動する。そして、この同期発電機起動装置は、同期発電機の電機子端子の電圧を検出する交流電圧検出器と、インバータから同期発電機の電機子に流し込まれるインバータ出力電流を検出する交流電流検出器と、出力電流検出器からのインバータの交流電流検出値と、第一の同期発電機回転速度推定値から、同期発電機の界磁電流により同期発電機の電機子巻線に誘起される誘起電圧の、第一の基準位相に対する同相成分と直交成分を演算する誘起電圧演算回路と、誘起電圧演算回路からの誘起電圧の第一の基準位相の直交成分をゼロとするような第二の基準位相と第二の同期発電機回転速度推定値を出力するPLL回路とを備える。そして、この同期発電機起動装置は、PLL回路の出力である第二の基準位相に基づき、所定の制御進み角のインバータのゲートパルスを生成するとともに、第二の基準位相を、誘起電圧演算回路の第一の基準位相に入力し、第二の同期発電機回転速度推定値を誘起電圧演算回路の第一の同期発電機回転速度推定値に入力する。
特開2006-271038号公報
 起動時において同期機の電機子に供給される電圧は、定常時の定格電圧と比べてたとえば1/1000と非常に小さい。このため、特許文献1記載の構成では、起動時において同期機の電機子に供給される電圧を高精度で検出し、回転子の位置を正確に検出することが困難であることから、同期機を安定して起動することができない場合がある。
 それゆえに、本発明の目的は、同期機を安定して起動することが可能な同期機起動装置を提供することである。
 この発明のある局面に係わる同期機起動装置は、供給された電力を交流電力に変換して同期機の電機子に供給する電力変換部と、同期機の電機子に供給される交流電圧を検出し、検出した交流電圧を示す交流電圧信号を出力する交流電圧検出部と、同期機の電機子に供給される交流電流を検出し、検出した交流電流を示す交流電流信号を出力する交流電流検出部と、交流電圧信号および交流電流信号に基づいて、同期機の回転子位置を検出する回転子位置検出部と、検出された回転子位置に基づいて、電力変換部を制御する電力変換制御部とを備え、回転子位置検出部は、回転子位置を示す推定位相、回転子の推定回転速度、交流電圧信号および交流電流信号に基づいて同期機の電機子に誘起される誘起電圧を算出し、算出した誘起電圧を示す誘起電圧信号を出力する誘起電圧演算部と、誘起電圧演算部から受けた誘起電圧信号および交流電圧検出部から受けた交流電圧信号のいずれかを選択して出力する選択部と、選択部から受けた誘起電圧信号または交流電圧信号に基づいて推定位相の誤差を算出し、算出した位相誤差に基づいて推定位相および推定回転速度を算出し、算出した推定回転速度を示す速度信号を誘起電圧演算部へ出力し、かつ算出した推定位相を示す位置信号を電力変換制御部および誘起電圧演算部へ出力するフィードバック演算部とを含む。
 またこの発明のさらに別の局面に係わる同期機起動装置は、供給された電力を交流電力に変換して同期機の電機子に供給する電力変換部と、同期機の電機子に供給される交流電圧を検出する交流電圧検出部と、同期機の電機子に供給される交流電流を検出する交流電流検出部と、検出された交流電圧および交流電流に基づいて、同期機の回転子位置を検出する回転子位置検出部と、検出された回転子位置に基づいて、電力変換部を制御する電力変換制御部とを備え、回転子位置検出部は、回転子位置を示す推定位相、回転子の推定回転速度ならびに検出された交流電圧および交流電流に基づいて、同期機の電機子に誘起される第1相の誘起電圧および第2相の誘起電圧を算出する誘起電圧演算部と、算出された第1相の誘起電圧および第2相の誘起電圧に基づいて推定位相の誤差を算出し、算出した位相誤差に基づいて推定位相および推定回転速度を算出し、算出した推定位相を示す位置信号を電力変換制御部へ出力するフィードバック演算部とを含み、フィードバック演算部は、第1相の誘起電圧を被除数とし、第2相の誘起電圧を除数として除算を行なった結果に基づいて位相誤差を算出する。
 好ましくは、フィードバック演算部は、第1相の誘起電圧を被除数とし、第2相の誘起電圧を除数として除算を行なった結果に基づいて位相誤差を算出すること、および第1相の誘起電圧を被除数とし、除数を所定値に固定して除算を行なった結果に基づいて位相誤差を算出することを切り替え可能である。
 またこの発明のさらに別の局面に係わる同期機起動装置は、供給された電力を交流電力に変換して同期機の電機子に供給する電力変換部と、同期機の電機子に供給される交流電圧を検出する交流電圧検出部と、同期機の電機子に供給される交流電流を検出する交流電流検出部と、検出された交流電圧および交流電流に基づいて、同期機の回転子位置を検出する回転子位置検出部と、検出された回転子位置に基づいて、電力変換部を制御する電力変換制御部とを備え、回転子位置検出部は、回転子位置を示す推定位相、回転子の推定回転速度ならびに検出された交流電圧および交流電流に基づいて、同期機の電機子に誘起される第1相の誘起電圧および第2相の誘起電圧を算出する誘起電圧演算部と、算出された第1相の誘起電圧および第2相の誘起電圧に基づいて推定位相の誤差を算出し、算出した位相誤差に基づいて推定位相および推定回転速度を算出し、算出した推定位相を示す位置信号を電力変換制御部へ出力するフィードバック演算部とを含み、フィードバック演算部は、算出した位相誤差を増幅することにより推定回転速度を算出し、算出した推定回転速度を積分することにより推定位相を算出し、かつ増幅におけるゲインを切り替え可能である。
 本発明によれば、同期機を安定して起動することができる。
本発明の第1の実施の形態に係る同期機起動装置の構成を示す図である。 回転子位置検出部11の構成を示す図である。 本発明の第2の実施の形態に係る同期機起動装置におけるPLL回路の構成を示す図である。 本発明の第3の実施の形態に係る同期機起動装置における誤差増幅部の構成を示す図である。
符号の説明
 1 コンバータ、2 インバータ、3 直流リアクトル、8 交流電圧検出器、9 交流電流検出器、11 回転子位置検出部、12 基準正弦波演算器、13 ゲートパルス発生器、14 β指令回路、19 インバータ制御部(電力変換制御部)、31,32 三相二相変換回路、33 誘起電圧演算回路、34 PLL回路、41 除算部、42 クランプ部、43 誤差増幅部、44 積分部、51 ゲイン乗算部、52 加算部、53 積分部、61 誘起電圧演算部、71 電力変換部、101 同期機起動装置、SEL 選択部。
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態に係る同期機起動装置の構成を示す図である。
 図1を参照して、同期機起動装置101は、電力変換部71と、交流電圧検出器8と、交流電流検出器9と、回転子位置検出部11と、インバータ制御部(電力変換制御部)19とを備える。電力変換部71は、コンバータ1と、インバータ2と、直流リアクトル3とを含む。インバータ制御部19は、基準正弦波演算器12と、ゲートパルス発生器13と、β指令回路14とを含む。
 同期機4およびモータMは、軸SHを介して接続されている。同期機4はたとえば同期発電機または同期電動機であり、電機子および回転子を有する。モータMは、同期機4の待機時、所定速度で回転する。この回転速度は低速であり、たとえば数rpmである。これに対して、通常時の回転速度は3000rpm~3600rpmである。このため、起動時に同期機4の電機子に印加される電圧は、前述のように定常時の1/1000と非常に小さく、交流電圧検出器8による検出電圧は歪んでいる場合も多いことから、正確に検出することは困難である。
 コンバータ1は、サイリスタなどの素子からなり、交流電源e1からの交流電力を直流電力に変換する。
 インバータ2は、サイリスタなどの素子からなり、コンバータ1により得られる直流電力を交流電力に変換して同期機4の電機子に供給することにより、同期機4を駆動する。
 コンバータ1およびインバータ2は、直流リアクトル3を介して接続されている。インバータ2の交流側は同期機4の電機子に接続されている。
 交流電圧検出器8は、同期機4の電機子に供給される三相交流電圧を検出し、電圧検出値V1,V2,V3を回転子位置検出部11へ出力する。
 交流電流検出器9は、同期機4の電機子に供給される三相交流電流を検出し、電流検出値I1,I2,I3を回転子位置検出部11へ出力する。
 回転子位置検出部11は、交流電圧検出器8および交流電流検出器9から受けた各検出値に基づいて、同期機4の回転子位置(位相)を検出し、同期機4の回転子位置を示す回転子位置信号POSをインバータ制御部19へ出力する。
 インバータ制御部19は、回転子位置検出部11から受けた回転子位置信号POSに基づいてインバータ2を制御する。
 インバータ制御部19において、基準正弦波演算器12は、回転子位置検出部11から受けた位置信号POSに基づいて、基準正弦波sinφを出力する。
 β指令回路14は、制御進み角指令値βを演算し、ゲートパルス発生器13へ出力する。
 ゲートパルス発生器13は、基準正弦波演算器12から受けた基準正弦波sinφと、β指令回路14から受けた制御進み角指令値βとに基づいて、インバータ2における素子へゲートパルスを出力する。
 図2は、回転子位置検出部11の構成を示す図である。
 図2を参照して、回転子位置検出部11は、誘起電圧演算部61と、PLL回路(フィードバック演算部)34と、選択部SELとを含む。誘起電圧演算部61は、三相二相変換回路31および32と、誘起電圧演算回路33とを含む。
 誘起電圧演算部61は、同期機4の回転子位置を示す推定位相、同期機4の回転子の推定回転速度、交流電圧検出器8から受けた電圧検出値V1,V2,V3および交流電流検出器9から受けた電流検出値I1,I2,I3に基づいて、同期機4の電機子に誘起される誘起電圧を算出し、算出した誘起電圧値Zq,Zdを出力する。
 選択部SELは、誘起電圧演算回路33から受けた誘起電圧値Zq,Zdおよび三相二相変換回路31から受けた電圧値Vd,Vqのいずれかを選択して出力する。
 PLL回路34は、選択部SELから受けた誘起電圧値Zq,Zdまたは電圧値Vd,Vqに基づいて推定位相の誤差を算出する。そして、PLL回路34は、算出した位相誤差に基づいて推定位相および推定回転速度を算出し、算出した推定回転速度を示す速度信号ωを誘起電圧演算部61へ出力し、かつ算出した推定位相を示す位置信号φをインバータ制御部2および誘起電圧演算部61へ出力する。
 そして、誘起電圧演算部61は、PLL回路34から受けた速度信号ωおよび位置信号φならびに新たに交流電圧検出器8から受けた電圧検出値V1,V2,V3および新たに交流電流検出器9から受けた電流検出値I1,I2,I3に基づいて、同期機4の電機子に誘起される誘起電圧を新たに算出する。
 より詳細には、三相二相変換回路31は、基準位相φに基づいて、交流電圧検出器8から受けた電圧検出値V1、V2、V3を三相二相変換(d-q変換)する。
 三相二相変換回路32は、基準位相φに基づいて、交流電流検出器9から受けた電流検出値I1、I2、I3を三相二相変換(d-q変換)する。
 誘起電圧演算回路33は、三相二相変換回路31によって三相二相変換された電圧値VdおよびVqならびに三相二相変換回路32によって三相二相変換された電流値IdおよびIqに基づいて、同期機4の電機子に誘起される2相の誘起電圧を算出する。
 三相二相変換回路31および32によって電圧および電流の座標変換すなわち三相二相変換を行なうためには、同期機4の回転子の回転に同期した基準位相が必要になる。ところが、機械式分配器などの位置センサが無い場合、この信号が直接得られない。
 そこで、本発明の第1の実施の形態に係る同期機起動装置では、三相二相変換回路31および32は、同期機起動装置101の起動時に基準位相φの初期値が与えられ、座標変換を行なう。
 そして、誘起電圧演算回路33は、三相二相変換回路31および32によって変換されたd-q軸上の電圧値Vd,Vqおよび電流値Id,Iqに基づいて同期機4のd軸(同相成分)-q軸(直交成分)上での電機子の誘起電圧を算出する。誘起電圧を算出するためには、回転速度ωが必要になるが、位置センサがないため、同期機起動装置101の起動時に同期機4の回転速度ωの初期値が誘起電圧演算回路33に与えられる。
 誘起電圧演算回路33によって算出された誘起電圧のq軸成分Zqすなわち基準位相φに対する直交成分がゼロでない場合には、基準位相φが実際の同期機4の回転子位相に対してずれている。この誘起電圧のq軸成分Zqが、同期機4における回転子の推定位相の誤差に相当する。そこで、本発明の第1の実施の形態に係る同期機起動装置では、誘起電圧のq軸成分Zqがゼロとなるような制御を行なうPLL回路34を設ける。PLL回路34は、誘起電圧のq軸成分Zqがゼロになるような回転速度ωすなわち同期機4の回転子の推定回転速度と、基準位相φすなわち同期機4の回転子の推定位相とを算出する。
 PLL回路34によって算出された基準位相φは、三相二相変換回路31および32にフィードバックされ、また、位置信号POSとしてインバータ制御部19へ出力される。三相二相変換回路31および32は、以後、PLL回路34からの基準位相φに基づいて三相二相変換を行なう。
 また、PLL回路34によって算出された回転速度ωは、誘起電圧演算回路33に与えられる。誘起電圧演算回路33は、以後、PLL回路34からの回転速度ωに基づいて、誘起電圧値(同相成分)Zdおよび誘起電圧値(直交成分)Zqを演算する。
 このように、誘起電圧演算回路33は、三相二相変換回路31によって変換された電圧値VdおよびVqならびに三相二相変換回路32によって変換された電流値IdおよびIqに基づいて、同期機4の電機子に誘起される誘起電圧を算出する。
 しかしながら、起動時において同期機4の電機子に供給される電圧は、定常時の定格電圧と比べてたとえば1/1000と非常に小さい。また、起動時において同期機4の電機子に供給される電流の周波数は低いため、低周波数域では交流電流検出器9の検出誤差が大きくなる場合がある。
 このため、誘起電圧演算回路33において、非常に小さい電圧値VdおよびVqと誤差の大きい電流値IdおよびIqとに基づいて誘起電圧を算出すると、誘起電圧演算回路33によって算出される誘起電圧と実際に同期機4の電機子に誘起される電圧との差が非常に大きくなってしまう。
 そこで、本発明の第1の実施の形態に係る同期機起動装置では、選択部SELを設ける。すなわち、選択部SELは、PLL回路34から受けた回転速度ωに基づいて、三相二相変換回路31によって変換された電圧値VdおよびVqを選択電圧値SdおよびSqとしてPLL回路34へ出力するか、誘起電圧演算回路33によって算出された誘起電圧値ZdおよびZqを選択電圧値SdおよびSqとしてPLL回路34へ出力するかを切り替える。たとえば、選択部SELは、同期機4の起動時すなわち回転速度ωが所定値未満の場合には、誘起電圧演算回路33をバイパスして、電圧値VdおよびVqを直接PLL回路34に与える。また、選択部SELは、同期機4の回転速度ωが所定値以上になると誘起電圧値ZdおよびZqをPLL回路34に与える。
 なお、選択部SELは、PLL回路34から受けた回転速度ωに基づいて電圧値VdおよびVqと誘起電圧値ZdおよびZqとのいずれかを選択する構成であるとしたが、これに限定するものではない。選択部SELは、たとえば電圧値Vdの二乗およびVqの二乗の和の平方根に基づいて選択を行なう構成であってもよい。また、電圧値Vqは電圧値Vdと比べて非常に小さいことから、単に電圧値Vdに基づいて選択を行なう構成であってもよい。
 以上のように、本発明の第1の実施の形態に係る同期機起動装置では、同期機4の電機子に供給される電圧が小さく、かつ同期機4の電機子に供給される電流の検出値の誤差が大きい起動時において、誘起電圧演算回路33をバイパスし、電圧値VdおよびVqに基づいて同期機4の回転子の推定回転速度と、同期機4の回転子の推定位相とを算出する。このような構成により、起動時における同期機の回転子の推定回転速度および推定位相の誤差を小さくすることができるため、同期機を安定して起動することができる。
 なお、本発明の第1の実施の形態に係る同期機起動装置では、電力変換部71は、コンバータ1と、インバータ2と、直流リアクトル3とを含む構成であるとしたが、これに限定するものではない。電力変換部71は、コンバータ1、インバータ2および直流リアクトル3の代わりに、マトリックスコンバータ等、供給された電力を交流電力に変換して同期機4の電機子に供給する何らかの回路を含む構成であればよい。
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第2の実施の形態>
 本実施の形態は、第1の実施の形態に係る同期機起動装置と比べてPLL回路の演算を正確に行なうための機能を追加した同期機起動装置に関する。以下で説明する内容以外は第1の実施の形態に係る同期機起動装置と同様である。
 図3は、本発明の第2の実施の形態に係る同期機起動装置におけるPLL回路の構成を示す図である。
 図3を参照して、PLL回路34は、除算部41と、クランプ部42と、誤差増幅部43と、積分部44とを含む。
 PLL回路34は、除算部41により、選択部SELから受けた選択電圧値Sqを被除数とし、かつ選択電圧値Sdを除数として除算を行なう。この除算結果DIVがゼロでない場合には、PLL回路34の算出した推定位相が実際の同期機4の回転子位相に対してずれている。除算結果DIVが、同期機4における回転子の推定位相の誤差に相当する。
 PLL回路34の算出する推定位相が同期機4の電機子における誘起電圧の位相と一致している場合には、誘起電圧値Zqはゼロとなる。一方、推定位相に誤差がある場合には、その位相誤差はtan-1(Zq/Zd)で表わされる。したがって、ZqをゼロにするようにPLL回路34を制御することで位相の推定は原理的には達成される。しかしながら、励磁が一定であれば、同期機4の電機子に誘起される電圧は同期機4の回転速度の上昇とともに大きくなる。同期機4の起動直後および速度上昇中における低速時には同期機4の電機子に誘起される電圧は小さい。したがって、低速時および高速時では、位相誤差が同じであっても誘起電圧値Zqの大きさは高速時の方が大きい。
 PLL回路34が除算部41を含まないと仮定した場合、誤差増幅部43は同期機4の回転速度によって変化する誘起電圧値Zqを受けることから、PLL回路34の位相追従性能が同期機4の回転速度によって変化することになる。特に、低速時に同期機4の加速度が大きい場合には、PLL回路34のゲイン設定によっては、PLL回路34が同期機4の位相変化に追従できず、同期機4の回転と同期機起動装置101との同期が外れてしまう場合もある。
 しかしながら、本発明の第2の実施の形態に係る同期機起動装置では、PLL回路34が除算部41を含むことにより、誤差増幅部43が誘起電圧値Zqではなく、Zq/Zdあるいはtan-1(Zq/Zd)を受ける構成とすることができる。したがって、誘起電圧の小さい低速時におけるPLL回路34の応答を改善することができる。なお、誤差増幅部43がtan-1(Zq/Zd)を受けて演算を行なう構成とすることにより、演算精度を上げることができる。また、誤差増幅部43がZq/Zdを受けて演算を行なう構成とすることにより、演算処理の簡易化を図ることができる。
 さらに、本発明の第2の実施の形態に係る同期機起動装置では、PLL回路34は、選択部SELから受けた選択電圧値Sqを被除数とし、かつ選択電圧値Sdを除数として除算を行なうこと、および選択部SELから受けた選択電圧値Sqを被除数とし、かつ除数を所定値に固定して除算を行なうことを切り替える。
 より詳細には、クランプ部42は、選択部SELから受けた選択電圧値Sdが所定値未満である場合には、選択電圧値Sdを所定値にクランプして除算部41へ出力する。
 なお、クランプ部42は、PLL回路34から受けた回転速度ωに基づいて、選択部SELから受けた選択電圧値Sdを除算部41へ出力するか、所定値を除算部41へ出力するかを切り替える構成であってもよい。
 除算部41は、選択部SELから受けた選択電圧値Sqを被除数とし、クランプ部42から受けた電圧を除数として除算を行ない、除算結果DIVを誤差増幅部43へ出力する。
 誤差増幅部43は、除算結果DIVによって算出された位相誤差すなわち除算部41から受けた除算結果DIVを増幅することにより同期機4における回転子の推定回転速度を算出し、回転速度ωとして出力する。ここでは、誤差増幅部43は、除算結果DIVをたとえば比例積分する。
 積分部44は、誤差増幅部43から受けた回転速度ωを積分することにより同期機4における回転子の推定位相を算出し、基準位相φとして出力する。
 ここで、起動時において同期機の電機子に供給される電圧は、定常時の定格電圧と比べてたとえば1/1000と非常に小さいことから、検出誤差が大きい。特に、誘起電圧のd軸成分Zdはq軸成分Zqと比べて値が大きいことから、d軸成分Zdの誤差は、除算部41による位相誤差の演算すなわち選択電圧値Sq/選択電圧値Sdの演算に与える影響が大きい。
 そこで、本発明の第2の実施の形態に係る同期機起動装置では、クランプ部42を設ける。これにより、d軸成分Zdに対応する選択電圧値Sdを所定値にクランプすることにより、所定値未満の電圧が除算部41へ出力されないようにする。このような構成により、起動時における同期機の回転子の位相誤差演算が大きく誤ることを防ぐことができるため、同期機4を安定して起動することができる。
 その他の構成および動作は第1の実施の形態に係る同期機起動装置と同様であるため、ここでは詳細な説明を繰り返さない。
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第3の実施の形態>
 本実施の形態は、第1の実施の形態に係る同期機起動装置と比べてPI演算を正確に行なう機能を追加した同期機起動装置に関する。以下で説明する内容以外は第2の実施の形態に係る同期機起動装置と同様である。
 図4は、本発明の第3の実施の形態に係る同期機起動装置における誤差増幅部の構成を示す図である。
 図4を参照して、誤差増幅部43は、ゲイン乗算部51と、加算部52と、積分部53とを含む。
 ゲイン乗算部51は、除算部41から受けた除算結果DIVとゲインK1とを乗算する。積分部53は、除算部41から受けた除算結果DIVをゲインK2に基づき積分する。
 加算部52は、ゲイン乗算部51の乗算結果と積分部53の積分結果とを加算して、回転速度ωとして出力する。
 ここで、ゲイン乗算部51は、同期機4の起動時および定常時でゲインK1を切り替える。また、積分部53は、同期機4の起動時および定常時でゲインK2を切り替える。たとえば、同期機4の起動時においてPLL回路34が受ける電圧値は小さく、検出誤差が大きいことから、ゲインK1およびK2を小さくする。これにより、検出誤差の影響を少なくすることができる。
 また、同期機4の起動時には同期機4の加速度が大きいため、ある程度検出誤差があってもPLL回路34の追従を早くすることが要求される場合がある。この場合は、上記とは逆に、ゲインK1を大きくしてPLL回路34の応答を高め、さらにゲインK2を小さくして検出誤差を大きく積分増幅しないように設定する。
 すなわち、本発明の第3の実施の形態に係る同期機起動装置では、ゲイン乗算部51および積分部53のゲインを切り替えることにより、同期機4の起動速度と位相誤差検出精度とのバランスを調整することが可能となる。
 その他の構成および動作は第2の実施の形態に係る同期機起動装置と同様であるため、ここでは詳細な説明を繰り返さない。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (4)

  1.  供給された電力を交流電力に変換して同期機(4)の電機子に供給する電力変換部(71)と、
     前記同期機(4)の電機子に供給される交流電圧を検出し、前記検出した交流電圧を示す交流電圧信号を出力する交流電圧検出部(8)と、
     前記同期機(4)の電機子に供給される交流電流を検出し、前記検出した交流電流を示す交流電流信号を出力する交流電流検出部(9)と、
     前記交流電圧信号および前記交流電流信号に基づいて、前記同期機(4)の回転子位置を検出する回転子位置検出部(11)と、
     前記検出された回転子位置に基づいて、前記電力変換部(71)を制御する電力変換制御部(19)とを備え、
     前記回転子位置検出部(11)は、
     前記回転子位置を示す推定位相、前記回転子の推定回転速度、前記交流電圧信号および前記交流電流信号に基づいて前記同期機(4)の電機子に誘起される誘起電圧を算出し、前記算出した誘起電圧を示す誘起電圧信号を出力する誘起電圧演算部(61)と、
     前記誘起電圧演算部(61)から受けた前記誘起電圧信号および前記交流電圧検出部(8)から受けた前記交流電圧信号のいずれかを選択して出力する選択部(SEL)と、
     前記選択部(SEL)から受けた前記誘起電圧信号または前記交流電圧信号に基づいて前記推定位相の誤差を算出し、前記算出した位相誤差に基づいて前記推定位相および前記推定回転速度を算出し、前記算出した推定回転速度を示す速度信号を前記誘起電圧演算部(61)へ出力し、かつ前記算出した推定位相を示す位置信号を前記電力変換制御部(19)および前記誘起電圧演算部(61)へ出力するフィードバック演算部(34)とを含む同期機起動装置。
  2.  供給された電力を交流電力に変換して同期機(4)の電機子に供給する電力変換部(71)と、
     前記同期機(4)の電機子に供給される交流電圧を検出する交流電圧検出部(8)と、
     前記同期機(4)の電機子に供給される交流電流を検出する交流電流検出部(9)と、
     前記検出された交流電圧および交流電流に基づいて、前記同期機(4)の回転子位置を検出する回転子位置検出部(11)と、
     前記検出された回転子位置に基づいて、前記電力変換部(71)を制御する電力変換制御部(19)とを備え、
     前記回転子位置検出部(11)は、
     前記回転子位置を示す推定位相、前記回転子の推定回転速度ならびに前記検出された交流電圧および交流電流に基づいて、前記同期機(4)の電機子に誘起される第1相の誘起電圧および第2相の誘起電圧を算出する誘起電圧演算部(61)と、
     前記算出された第1相の誘起電圧および第2相の誘起電圧に基づいて前記推定位相の誤差を算出し、前記算出した位相誤差に基づいて前記推定位相および前記推定回転速度を算出し、前記算出した推定位相を示す位置信号を前記電力変換制御部(19)へ出力するフィードバック演算部(34)とを含み、
     前記フィードバック演算部(34)は、前記第1相の誘起電圧を被除数とし、前記第2相の誘起電圧を除数として除算を行なった結果に基づいて前記位相誤差を算出する同期機起動装置。
  3.  前記フィードバック演算部(34)は、前記第1相の誘起電圧を被除数とし、前記第2相の誘起電圧を除数として除算を行なった結果に基づいて前記位相誤差を算出すること、および前記第1相の誘起電圧を被除数とし、前記除数を所定値に固定して除算を行なった結果に基づいて前記位相誤差を算出することを切り替え可能である請求の範囲第2項に記載の同期機起動装置。
  4.  供給された電力を交流電力に変換して同期機(4)の電機子に供給する電力変換部(71)と、
     前記同期機(4)の電機子に供給される交流電圧を検出する交流電圧検出部(8)と、
     前記同期機(4)の電機子に供給される交流電流を検出する交流電流検出部(9)と、
     前記検出された交流電圧および交流電流に基づいて、前記同期機(4)の回転子位置を検出する回転子位置検出部(11)と、
     前記検出された回転子位置に基づいて、前記電力変換部(71)を制御する電力変換制御部(19)とを備え、
     前記回転子位置検出部(11)は、
     前記回転子位置を示す推定位相、前記回転子の推定回転速度ならびに前記検出された交流電圧および交流電流に基づいて、前記同期機(4)の電機子に誘起される第1相の誘起電圧および第2相の誘起電圧を算出する誘起電圧演算部(61)と、
     前記算出された第1相の誘起電圧および第2相の誘起電圧に基づいて前記推定位相の誤差を算出し、前記算出した位相誤差に基づいて前記推定位相および前記推定回転速度を算出し、前記算出した推定位相を示す位置信号を前記電力変換制御部(19)へ出力するフィードバック演算部(34)とを含み、
     前記フィードバック演算部(34)は、前記算出した位相誤差を増幅することにより前記推定回転速度を算出し、前記算出した前記推定回転速度を積分することにより前記推定位相を算出し、かつ前記増幅におけるゲインを切り替え可能である同期機起動装置。
PCT/JP2008/070900 2008-11-18 2008-11-18 同期機起動装置 WO2010058449A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08878246.1A EP2357722B1 (en) 2008-11-18 2008-11-18 Synchronous machine starting device
JP2010539060A JP5421287B2 (ja) 2008-11-18 2008-11-18 同期機起動装置
EP14181990.4A EP2824827B1 (en) 2008-11-18 2008-11-18 Synchronous-machine starting device
PCT/JP2008/070900 WO2010058449A1 (ja) 2008-11-18 2008-11-18 同期機起動装置
US13/129,993 US8531144B2 (en) 2008-11-18 2008-11-18 Synchronous-machine starting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070900 WO2010058449A1 (ja) 2008-11-18 2008-11-18 同期機起動装置

Publications (1)

Publication Number Publication Date
WO2010058449A1 true WO2010058449A1 (ja) 2010-05-27

Family

ID=42197896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070900 WO2010058449A1 (ja) 2008-11-18 2008-11-18 同期機起動装置

Country Status (4)

Country Link
US (1) US8531144B2 (ja)
EP (2) EP2357722B1 (ja)
JP (1) JP5421287B2 (ja)
WO (1) WO2010058449A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024247A1 (ja) 2009-08-24 2011-03-03 東芝三菱電機産業システム株式会社 同期機起動装置
DE102010020215A1 (de) * 2010-05-12 2011-11-17 Andreas Stihl Ag & Co. Kg Verfahren zum Betrieb eines elektronisch kommutierten Elektromotors sowie Vorrichtung zur Durchführung des Verfahrens
US9048770B2 (en) 2010-10-15 2015-06-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Synchronous machine starting device
US11028812B2 (en) 2016-07-27 2021-06-08 Astronics Advanced Electronic Systems Corp. Integrated brushless starter generator
EP3644498A4 (en) * 2017-06-21 2020-12-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation THYRISTOR STARTER
KR102357119B1 (ko) * 2020-10-16 2022-02-07 한국전력공사 동기기 정지중 기동장치 제어루프 튜닝 시스템 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272194A (ja) * 2001-03-08 2002-09-20 Hitachi Ltd 同期電動機の駆動装置
JP2003259699A (ja) * 2002-03-06 2003-09-12 Toshiba Corp 電力変換装置
JP2004289959A (ja) * 2003-03-24 2004-10-14 Hitachi Ltd 永久磁石形同期電動機の制御方法及び装置
JP2005065410A (ja) * 2003-08-12 2005-03-10 Toshiba Corp モータ制御装置
JP2006271038A (ja) 2005-03-22 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp 同期発電機起動装置の制御装置
JP2008263692A (ja) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd モータ駆動装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844707B1 (en) * 2003-12-30 2005-01-18 Pacific Scientific/Electro Kinetics Division AC/DC brushless starter-generator
US7026772B2 (en) * 2004-01-14 2006-04-11 International Rectifier Corporation Position sensorless drive for permanent magnet synchronous motors
JP5409644B2 (ja) 2008-10-01 2014-02-05 東芝三菱電機産業システム株式会社 同期機起動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272194A (ja) * 2001-03-08 2002-09-20 Hitachi Ltd 同期電動機の駆動装置
JP2003259699A (ja) * 2002-03-06 2003-09-12 Toshiba Corp 電力変換装置
JP2004289959A (ja) * 2003-03-24 2004-10-14 Hitachi Ltd 永久磁石形同期電動機の制御方法及び装置
JP2005065410A (ja) * 2003-08-12 2005-03-10 Toshiba Corp モータ制御装置
JP2006271038A (ja) 2005-03-22 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp 同期発電機起動装置の制御装置
JP2008263692A (ja) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd モータ駆動装置

Also Published As

Publication number Publication date
US8531144B2 (en) 2013-09-10
JP5421287B2 (ja) 2014-02-19
JPWO2010058449A1 (ja) 2012-04-12
EP2357722B1 (en) 2020-01-08
EP2357722A1 (en) 2011-08-17
EP2824827A2 (en) 2015-01-14
EP2824827B1 (en) 2019-07-03
US20110254491A1 (en) 2011-10-20
EP2824827A3 (en) 2015-01-28
EP2357722A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5318286B2 (ja) 交流回転機の制御装置
JP4519864B2 (ja) 交流回転機の電気的定数測定方法およびこの測定方法の実施に使用する交流回転機の制御装置
EP2337212B1 (en) Synchronous machine starting device
JP5098439B2 (ja) 永久磁石同期電動機のセンサレス制御装置
JP5421287B2 (ja) 同期機起動装置
JP2001245498A (ja) 同期モータ制御装置及びそれを用いた車両
JP4789491B2 (ja) 同期発電機起動装置の制御装置
US9048770B2 (en) Synchronous machine starting device
JP3832443B2 (ja) 交流電動機の制御装置
JP2006230200A (ja) 交流電動機の制御装置
JP4579627B2 (ja) 回転機の制御装置
WO2012011155A1 (ja) 交流回転機の制御装置および制御方法
JPH11275900A (ja) 同期電動機の制御装置
JP5337242B2 (ja) 同期機起動装置
JP2007228662A (ja) 誘導電動機の制御装置
JP5473166B2 (ja) 可変速揚水発電装置の制御装置
JP2017221001A (ja) 同期電動機の制御装置
JP2018121421A (ja) 同期モータの制御装置
JP2002191198A (ja) モータ駆動装置の直流電圧検出値補正方法、モータ駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13129993

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008878246

Country of ref document: EP