WO2010055811A1 - 熱硬化性樹脂組成物とそれを用いたプリプレグ - Google Patents

熱硬化性樹脂組成物とそれを用いたプリプレグ Download PDF

Info

Publication number
WO2010055811A1
WO2010055811A1 PCT/JP2009/069009 JP2009069009W WO2010055811A1 WO 2010055811 A1 WO2010055811 A1 WO 2010055811A1 JP 2009069009 W JP2009069009 W JP 2009069009W WO 2010055811 A1 WO2010055811 A1 WO 2010055811A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
thermosetting resin
resin
resin composition
thermoplastic resin
Prior art date
Application number
PCT/JP2009/069009
Other languages
English (en)
French (fr)
Inventor
博 沼田
紘典 河本
Original Assignee
東邦テナックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦テナックス株式会社 filed Critical 東邦テナックス株式会社
Priority to JP2010537763A priority Critical patent/JP5469086B2/ja
Priority to US13/128,559 priority patent/US20110218272A1/en
Priority to EP09826061A priority patent/EP2366742A4/en
Priority to CN2009801454935A priority patent/CN102216394A/zh
Publication of WO2010055811A1 publication Critical patent/WO2010055811A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • C08G18/3865Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms
    • C08G18/3872Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms the sulfur atom belonging to a sulfoxide or sulfone group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • C08G18/581Reaction products of epoxy resins with less than equivalent amounts of compounds containing active hydrogen added before or during the reaction with the isocyanate component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermosetting resin composition suitable for molding a composite material excellent in mechanical properties such as high heat and humidity resistance and toughness, and a prepreg using the resin composition as a matrix resin.
  • Fiber reinforced plastic is a thermosetting resin such as unsaturated polyester resin, epoxy resin, thermosetting polyimide resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), etc.
  • thermosetting resin such as unsaturated polyester resin, epoxy resin, thermosetting polyimide resin, polyethylene, polypropylene, polyamide, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), etc.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • FRP molding is performed by dissolving a matrix resin in a solvent, mixing a curing agent and additives, and impregnating the obtained resin composition into a fiber reinforcement such as cloth, mat, or roving.
  • a prepreg as an intermediate substrate is obtained.
  • a honeycomb sandwich panel having such a prepreg as a face plate is used as a structural material for aircraft from the viewpoint of weight reduction and strength (for example, Patent Document 1).
  • applications other than honeycomb sandwich panel applications have been attempted.
  • conventional FRP has a problem that its mechanical properties such as toughness and impact resistance are significantly reduced under high temperature and high humidity conditions. was there. Therefore, it is desired to improve mechanical properties such as toughness and impact resistance while maintaining basic performance such as heat resistance and heat and humidity resistance.
  • An object of the present invention is to provide a thermosetting resin composition suitable for molding a composite material having good mechanical properties, particularly excellent impact resistance and toughness, even in a high temperature and high humidity environment, and the thermosetting resin.
  • the object is to provide a prepreg using the composition.
  • thermosetting resin composition comprising at least a component [A] composed of thermoplastic resin particles and a thermosetting resin [B], wherein the thermoplastic resin particles are at least the following: A thermosetting resin composition comprising a melt blend of components [A-1] and [A-2].
  • the thermoplastic resin insoluble in the thermosetting resin [B] means that the thermoplastic resin is put into the thermosetting resin [B] in the form of particles such as pellets, pulverized material, or powder, and is thermosetting. It means a thermoplastic resin in which the particle size hardly changes even when the resin [B] is stirred below the curing temperature.
  • the thermoplastic resin soluble in the thermosetting resin [B] means that the thermoplastic resin is put into the thermosetting resin [B] in the form of particles such as pellets, pulverized products, or powders. When stirred below the curing temperature of [B], it means a thermoplastic resin in which particles are at least partially dissolved in [B] and the size of the particles becomes smaller or disappears.
  • the content of the component [A] composed of the thermoplastic resin particles is 1 to 50% by weight of the entire thermosetting resin composition. It is a thermosetting resin composition.
  • the component [A-1] and the component [A-2] constituting the component [A] made of thermoplastic resin particles are compatibilized in the particles. It is a thermosetting resin composition characterized by being in the state which has not been carried out.
  • the state where the component [A-1] and the component [A-2] are not compatibilized in the particles means that the Tg of the mixture of the component [A-1] and the component [A-2] is measured. Means that the Tg based on the component [A-1] and the component [A-2] appears in two separated states.
  • the component [A-1] and the component [A-2] constituting the component [A] made of thermoplastic resin particles are compatibilized in the particles. It is a thermosetting resin composition characterized by being in the state which is carrying out.
  • the state in which the component [A-1] and the component [A-2] are compatibilized in the particles means that the Tg of the mixture of the component [A-1] and the component [A-2] is measured. This means a state in which one Tg appears mainly without the Tg based on the component [A-1] and the component [A-2] appearing separately.
  • the thermosetting resin composition includes a thermoplastic resin other than the component [A], in addition to the component [A] and the thermosetting resin [B]. C] and a curing agent [D].
  • thermosetting resin composition according to the first aspect wherein the thermosetting resin [B] contains at least an epoxy resin.
  • thermosetting resin composition according to the first aspect wherein the thermosetting resin [B] contains an epoxy resin having at least three functionalities. .
  • thermosetting resin composition according to the first aspect, wherein the curing agent [D] contains at least an aromatic amine curing agent.
  • the ninth aspect of the present invention is formed from a melt blend of at least the following components [A-1] and [A-2], and the components [A-1] and [A-2] are compatibilized in the particles. It is the thermoplastic resin particle characterized by being in the state which is not carried out.
  • Component [A-1] Thermoplastic resin insoluble in thermosetting resin
  • Component [A-2] Thermoplastic resin soluble in thermosetting resin
  • the tenth aspect of the present invention is formed from a melt blend of at least the following components [A-1] and [A-2], and the components [A-1] and [A-2] are compatibilized in the particles: It is the thermoplastic resin particle characterized by being in the state which is carrying out.
  • thermosetting resin composition comprising at least a component [A] composed of thermoplastic resin particles and a thermosetting resin [B], wherein the thermoplastic resin particles are at least the following: A prepreg obtained by impregnating a fiber reinforcing material sheet with a thermosetting resin composition comprising a melt blend of components [A-1] and [A-2].
  • Component [A-2] Thermoplastic resin soluble in thermosetting resin [B]
  • the component [A-1] and the component [A-2] constituting the component [A] composed of thermoplastic resin particles are compatibilized in the particles. It is the prepreg characterized by being in the state which has not been carried out.
  • the component [A-1] and the component [A-2] constituting the component [A] made of thermoplastic resin particles are compatibilized in the particles. It is the prepreg characterized by being in the state which is carrying out.
  • thermosetting resin composition of the present invention As a matrix resin is laminated and cured, it has high heat resistance and moist heat resistance, and has mechanical properties such as impact resistance (compression strength after impact, CAI) and toughness. A composite material with improved can be obtained.
  • thermosetting resin composition of the present invention comprises at least a component [A] (including at least components [A-1] and [A-2]) composed of thermoplastic resin particles and a thermosetting resin [B]. Although it is a thermosetting resin composition, first, a thermoplastic resin [A-1] insoluble in the thermosetting resin [B] and a thermoplastic resin [A-2] soluble in the thermosetting resin [B]. Are melt-blended, pulverized into particles, and the resulting thermoplastic resin particles are mixed with the thermosetting resin [B] as a toughness imparting material.
  • thermoplastic resin is soluble or insoluble in the thermosetting resin [B]
  • thermosetting resin [B] in the form of particles such as pellets, pulverized material or powder
  • thermosetting resin [A-1] insoluble in the thermosetting resin [B] for example, when a polyfunctional epoxy resin having a glycidylamino group is used as the thermosetting resin [B], a polyether ether ketone ( PEK), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), nylon 6, nylon 12, amorphous nylon, amorphous polyimide, and the like.
  • thermoplastic resin [A-2] soluble in the thermosetting resin [B] for example, when a polyfunctional epoxy resin having a glycidylamino group is used as the thermosetting resin [B], polyethersulfone ( PES) and polyetherimide (PEI).
  • PES polyethersulfone
  • PEI polyetherimide
  • the specific thermoplastic resin becomes soluble or insoluble depending on the type of the thermosetting resin used. Accordingly, the thermoplastic resins [A-1] and [A-2] in the present invention are selected only by a specific combination with the thermosetting resin [B].
  • the form of the thermoplastic resin needs to be particulate in order to be added to the resin composition while maintaining homogeneity and moldability.
  • the average particle diameter of the thermoplastic resin particles is preferably in the range of 0.1 to 100 ⁇ m. When the particle size is less than 0.1 ⁇ m, the particles are likely to aggregate, the bulk density of the aggregate is increased, the viscosity of the thermosetting resin composition is significantly increased, or it is difficult to add a sufficient amount There is. On the other hand, when the thermosetting resin composition obtained when it is larger than 100 ⁇ m is formed into a sheet, it may be difficult to obtain a sheet having a uniform thickness. More preferably, the average particle size of the particles is 1 to 50 ⁇ m.
  • the content (mixing ratio) of the component [A] composed of thermoplastic resin particles is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, based on the entire thermosetting resin composition.
  • the method of mixing is not particularly limited, but it is preferable to mix as uniformly as possible.
  • the component [A-1] and the component [A-2] constituting the component [A] composed of thermoplastic resin particles are not in a state of being compatibilized in the particles as a mixture (melt blend). There are cases where there are cases and cases where they are in a compatible state. When both are in a state where they are not compatibilized, a composite material having particularly high interlaminar fracture toughness tends to be obtained. On the other hand, when both are in a state of being compatible, a composite material having a particularly high impact resistance tends to be obtained.
  • Tg Tg based on component [A-1] and component [A-2] is one Tg appear.
  • Tg appears to be separated into two.
  • thermosetting resin used as the component [B] of the present invention examples include thermosetting mainly composed of epoxy resin, bismaleimide resin, oxetane resin, benzoxazine resin, polyester resin, vinyl resin, cyanate ester resin, and the like. Resin.
  • An epoxy resin is preferable as the thermosetting resin.
  • a conventionally well-known epoxy resin can be used as an epoxy resin, It does not specifically limit.
  • N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane for example, jER604 manufactured by Japan Epoxy Resin, Sumiepoxy ELM-434 manufactured by Sumitomo Chemical Co., Ltd., ELM-120 manufactured by Asahi Ciba Co., Ltd.
  • Multifunctionals having a glycidylamino group such as Araldite MY9634, MY-720, Etoto YH434 manufactured by Tohto Kasei), N, N, O-triglycidyl-p-aminophenol (for example, Sumiepoxy ELM-100 manufactured by Sumitomo Chemical Co., Ltd.)
  • Epoxy resin bisphenol type epoxy resin, alcohol type epoxy resin, hydrophthalic acid type epoxy resin, dimer acid type epoxy resin, alicyclic epoxy
  • bifunctional epoxy resin phenol novolac type epoxy resin, cresol novolac type epoxy resin, etc.
  • Novolac type Polyfunctional epoxy resins such as epoxy resins.
  • various modified epoxy resins such as urethane-modified epoxy resin and rubber-modified epoxy resin can also be used.
  • Preferable examples include bisphenol type epoxy resins, alicyclic epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, and urethane-modified bisphenol A epoxy resins in addition to the above-mentioned polyfunctional epoxy resins having a glycidylamino group. Can be mentioned.
  • Examples of the bisphenol type epoxy resin include bisphenol A type resin, bisphenol F type resin, bisphenol AD type resin, bisphenol S type resin and the like. More specifically, examples of commercially available resins include jER815, jER828, jER834, jER1001, jER807, jER807, Mitsui Petrochemical's Epomic R-710, Dainippon Ink & Chemicals EXA1514, etc. .
  • Examples of the alicyclic epoxy resin include commercially available resins such as Araldite CY-179, CY-178, CY-182 and CY-183 manufactured by Asahi Ciba.
  • Examples of the phenol novolac type epoxy resin include jER152 and jER154 manufactured by Japan Epoxy Resin, DEN431 and DEN485 and DEN438 manufactured by Dow Chemical Co., and Epicron N740 manufactured by Dainippon Ink and Chemicals, Inc.
  • Examples of the cresol novolac epoxy resin include Araldite ECN1235, ECN1273, ECN1280, Nippon Kayaku EOCN102, EOCN103, and EOCN104 manufactured by Asahi Ciba.
  • examples of the urethane-modified bisphenol A epoxy resin include Adeka Resin EPU-6 and EPU-4 manufactured by Asahi Denka.
  • the epoxy resin contains at least a trifunctional or higher functional epoxy resin.
  • the epoxy resin having three functional groups include ELM-100, ELM-120, and YX-4 manufactured by Sumitomo Chemical Co., Ltd., MY0510 manufactured by Huntsman, EXD506 manufactured by Dainippon Ink, and the like.
  • the said epoxy resin can be selected suitably and can be used 1 type or in mixture of 2 or more types.
  • the epoxy resin may contain the thermoplastic resin [C] other than the component [A] as described above within a range not impeding the effects of the present invention.
  • a thermoplastic resin [C] has an effect of, for example, dissolving in the epoxy resin during the curing process of the epoxy resin, increasing the viscosity of the matrix, and preventing a decrease in the viscosity of the epoxy resin composition.
  • these thermoplastic resins can also be used by disperse
  • the thermosetting resin composition of the present invention may appropriately contain a curing agent and an accelerator.
  • an epoxy resin is usually used with a known curing agent, but the same applies to the present invention.
  • the curing agent [D] used in the present invention is not particularly limited as long as it is usually used as a curing agent for epoxy resins, but an aromatic amine curing agent is preferable. Specific examples include diaminodiphenyl sulfone (DDS), diaminodiphenylmethane (DDM), diaminodiphenyl ether (DPE), and phenylenediamine. These may be used singly or as a mixture of two or more, but DDS is preferable in terms of imparting heat resistance.
  • what was microencapsulated with the melanin resin etc. can also be used for an aromatic amine type hardening
  • an aromatic amine curing agent in the epoxy resin composition of the present invention, high heat resistance can be expressed in the cured product of the epoxy resin composition.
  • a resin other than an epoxy resin such as an aromatic bismaleimide or alkenylphenol is used as the thermosetting resin.
  • the blending amount of the curing agent can be appropriately used in a desired blending amount in consideration of the presence / absence and addition amount of the curing accelerator, the chemical reaction stoichiometry with the thermosetting resin, the curing rate of the composition, and the like.
  • thermosetting resin composition contains a polyisocyanate compound in addition to the component [A] and the thermosetting resin [B].
  • the polyisocyanate compound is a compound having two or more isocyanate groups in the molecule, and is not particularly limited as long as it reacts with an epoxy resin and exhibits a thickening effect.
  • a polyisocyanate compound can be used after being pre-reacted with the component [B].
  • the preliminary reaction is carried out, the hygroscopic property of the resulting thermosetting resin composition is suppressed, and the effect of absorbing the moisture during the production, storage and use of the prepreg and suppressing the performance deterioration is obtained. Moreover, the effect of stabilizing the viscosity of the resulting thermosetting resin composition can be obtained.
  • Such a polyisocyanate compound has a role of adjusting the resin flow at the time of molding and curing to improve the moldability.
  • the content (mixing ratio) of the component [A] is preferably 1 to 50% by weight, more preferably 5 to 40% by weight of the entire thermosetting resin composition.
  • the blending amount of the isocyanate compound can be appropriately selected from the viewpoints of the thermosetting resin composition production, the prepreg production and the composite material production, as long as it does not affect the handleability, and is not particularly limited.
  • a preferable range is about 0.1 to 15% by weight with respect to the total weight of the thermosetting resin composition.
  • the thickening effect of the thermosetting resin composition expected by addition becomes insufficient, and if it exceeds 15% by weight, tackiness and draping of the prepreg will be reduced, and handling of the prepreg will be reduced. In some cases, the properties may be impaired, foaming may occur during curing, and the toughness of the cured product may be reduced.
  • it is 0.5 to 10% by weight, and more preferably 1 to 7% by weight.
  • the thermoplastic resin [C] means a thermoplastic resin that is not used as the component [A] in a specific combination, and is represented by, for example, polyethersulfone (PES) and polyetherimide (PEI).
  • PES polyethersulfone
  • PEI polyetherimide
  • thermoplastic polyimide, polyamideimide, polysulfone, polycarbonate, polyetheretherketone, polyamides such as nylon 6, nylon 12, amorphous nylon, aramid, arylate, polyester carbonate, and the like thermoplastic polyimide, polyetherimide (PEI), polyethersulfone (PES), polysulfone, and polyamideimide can be cited as more preferable examples from the viewpoint of heat resistance.
  • thermoplastic resin [C] used in the thermosetting resin composition of the present invention includes a rubber component.
  • Typical examples of the rubber component include rubber components represented by carboxy-terminated styrene butadiene rubber and carboxy-terminated hydrogenated acrylonitrile butadiene rubber.
  • the blending amount of the thermoplastic resin [C] other than the component [A] is preferably 10 to 50% by weight of the entire thermosetting resin composition. If it is less than 10% by weight, the resulting prepreg and composite material will have insufficient impact resistance. If it exceeds 50% by weight, the viscosity of the resin composition becomes high and the moldability and handleability may be inferior.
  • the amount is preferably 12 to 45% by weight, more preferably 13 to 40% by weight.
  • thermosetting resin composition of the present invention essentially comprises the above-described components [A-1], [A-2] and [B], but is necessary as long as the effects of the present invention are not impaired. Accordingly, various additives such as curing accelerators, reactive diluents, fillers, anti-aging agents, flame retardants, and pigments other than the above-described components may be appropriately contained.
  • the curing accelerator include basic curing agents such as acid anhydrides, Lewis acids, dicyandiamides and imidazoles, urea compounds, and organic metal salts. More specifically, examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • Examples of the Lewis acid include boron trifluoride salts, and more specifically, BF 3 monoethylamine, BF 3 benzylamine, and the like.
  • Examples of imidazoles include 2-ethyl-4-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, and 2-phenylimidazole.
  • examples include urea compounds such as 3- [3,4-dichlorophenyl] -1,1-dimethylurea and the like, and organometallic salts such as Co [III] acetylacetonate.
  • Examples of the reactive diluent include reactive diluents such as polypropylene diglycol / diglycidyl ether and phenyl glycidyl ether.
  • the method for producing the thermosetting resin composition of the present invention is not particularly limited, and any conventionally known method may be used.
  • the kneading temperature applied during the production of the resin composition can be exemplified by a range of 10 to 160 ° C. If it exceeds 160 ° C., the resin component may be thermally deteriorated or a partial curing reaction may be started, and the storage stability of the resulting thermosetting resin composition and the prepreg using the composition may be lowered. If it is lower than 10 ° C., the viscosity of the resin composition is high, and it may be difficult to knead substantially.
  • the temperature is preferably 20 to 130 ° C, more preferably 30 to 110 ° C.
  • a conventionally well-known thing can be used as a kneading machine apparatus.
  • Specific examples include a roll mill, a planetary mixer, a kneader, an extruder, a Banbury mixer, a mixing container provided with a stirring blade, a horizontal mixing tank, and the like.
  • the kneading of each component can be performed in the air or in an inert gas atmosphere.
  • an atmosphere in which temperature and humidity are controlled is preferable.
  • a low humidity atmosphere such as a temperature controlled at a constant temperature of 30 ° C. or lower or a relative humidity of 50% RH or lower.
  • each component may be performed in a single stage, or may be performed in multiple stages by sequential addition. Moreover, when adding sequentially, it can add in arbitrary orders.
  • the polyisocyanate compound can be used after reacting with the component [B] in advance.
  • the part or whole quantity can also be provided after making it melt
  • the prepreg of the present invention is a prepreg obtained by impregnating a fiber reinforced material sheet with the thermosetting resin composition of the present invention, which is obtained as described above and has excellent wet heat resistance.
  • the fiber reinforcing material used in the prepreg of the present invention include carbon fiber, glass fiber, aromatic polyamide fiber, polyimide fiber, polybenzoxazole fiber, wholly aromatic polyester fiber, and the like. These can be used alone or in combination of two or more. Although not particularly limited, in order to improve the mechanical properties of the composite material, it is preferable to use carbon fibers having excellent tensile strength.
  • the form of the fiber reinforcing material is preferably a sheet-like material such as a woven fabric, a multiaxial woven fabric, and a unidirectionally aligned product.
  • the prepreg of the present invention preferably has a constituent thermosetting resin composition content (RC) of 15 to 70% by weight. If it is less than 15% by weight, voids or the like are generated in the obtained composite material, and the mechanical properties may be deteriorated. If it exceeds 70% by weight, the reinforcing effect by the reinforcing fibers becomes insufficient, and the mechanical properties in comparison with weight may be substantially low.
  • the range is preferably 20 to 60% by weight, and more preferably 30 to 50% by weight.
  • the thermosetting resin composition content (RC) here is a ratio calculated from a change in weight when the resin of the prepreg is decomposed by sulfuric acid decomposition.
  • a prepreg is cut out to 100 mm ⁇ 100 mm to prepare a test piece, its weight is measured, and the resin remaining in the sulfuric acid is immersed or boiled until the resin component is eluted, and the fiber remaining after filtration is washed with water. It is a value obtained by measuring and calculating the mass after washing with, and drying.
  • a reinforcing fiber layer composed of a reinforcing fiber and a resin composition impregnated between the reinforcing fibers, and a surface of the reinforcing fiber layer
  • examples thereof include a coated resin coating layer having a resin coating layer thickness of 2 to 50 ⁇ m.
  • the thickness is less than 2 ⁇ m, tackiness becomes insufficient, and the molding processability of the prepreg may be significantly lowered. If it exceeds 50 ⁇ m, it will be difficult to wind the prepreg into a roll with a uniform thickness, and the molding accuracy may be significantly reduced. More preferably, it is 5 to 45 ⁇ m, and still more preferably 10 to 40 ⁇ m.
  • Interlaminar fracture toughness is a technique for evaluating the fracture toughness of a specimen by applying a load to the specimen that has been cracked by a predetermined method and measuring the amount of energy required to generate the crack. Interlaminar fracture toughness is classified into mode I (opening type), mode II (in-plane shear type), and mode III (out-of-plane shear type) depending on the deformation mode. Among them, a particularly important characteristic as an aircraft composite material is mode II interlaminar fracture toughness (GIIc).
  • GTIc mode II interlaminar fracture toughness
  • thermosetting resin composition of the present invention having the above-described configuration, a cured product having a high GIIc, that is, excellent toughness can be obtained.
  • a prepreg in which the composite material obtained by molding and curing has a GIIc of 2400 J / m 2 or more is particularly preferable.
  • GIIc here is a value measured according to EN6034.
  • CAI post-impact compressive strength
  • a prepreg in which the composite material obtained by molding and curing has a compressive strength after impact exceeding 240 MPa is particularly preferable. Particularly preferably, it is 245 MPa or more.
  • the post-impact compressive strength here is a value measured according to EN6038.
  • the manufacturing method of the prepreg of this invention is not specifically limited, It can manufacture using any conventionally well-known method.
  • the above-mentioned thermosetting resin composition of the present invention is applied to a release paper in a thin film shape, and the resin film obtained by peeling is laminated and formed on a sheet-like fiber reinforcing material to be thermosetting.
  • examples thereof include a so-called hot melt method in which the resin composition is impregnated and a solvent method in which the thermosetting resin composition is made into a varnish using an appropriate solvent and the fiber reinforced material sheet is impregnated with the varnish.
  • the prepreg of the present invention can be particularly preferably produced by a hot melt method which is a conventionally known production method.
  • the method for forming the thermosetting resin composition of the present invention into a resin film or sheet is not particularly limited, and any conventionally known method can be used. More specifically, it can be obtained by casting and casting on a support such as release paper or film by die extrusion, applicator, reverse roll coater, comma coater or the like.
  • the resin temperature at the time of forming a film or a sheet can be appropriately set according to the resin composition / viscosity, but the same conditions as the kneading temperature in the method for producing the thermosetting resin composition described above are preferably used. it can.
  • the fiber reinforcing material sheet in the present invention refers to a form of fiber reinforcing material, and is a sheet-like reinforcing fiber such as a woven fabric or a one-way aligned product.
  • the size of these fiber reinforcing material sheets and the resin film or sheet are not particularly limited. However, when manufacturing continuously, the width is preferably 30 cm or more from the viewpoint of productivity.
  • the upper limit is not particularly limited, but is substantially 5 m. If it exceeds 5 m, the production stability may decrease. Further, in the case of continuous production, the production speed is not particularly limited, but is 0.1 m / min or more in consideration of productivity, economy and the like. More preferably, it is 1 m / min or more, More preferably, it is 5 m / min or more.
  • the impregnation pressurization when the resin sheet is impregnated into the sheet-like fiber reinforcing material sheet may be any pressure in consideration of the viscosity and resin flow of the resin composition.
  • the impregnation temperature of the resin sheet into the fiber reinforcement sheet is in the range of 50 to 150 ° C. When the temperature is lower than 50 ° C., the viscosity of the resin sheet is high, and the fiber reinforcing material sheet may not be sufficiently impregnated. When the temperature is 150 ° C. or higher, the curing reaction of the resin composition is started, and the storage stability of the prepreg may be reduced, or the drapeability may be reduced.
  • the temperature is preferably 60 to 145 ° C, more preferably 70 to 140 ° C. Further, the impregnation can be performed in multiple stages at an arbitrary pressure and temperature in a plurality of times instead of once.
  • a composite material produced by molding and curing such as lamination using a prepreg obtained by such means has high moisture and heat resistance properties, and further has excellent impact resistance and interlaminar fracture toughness. It is suitable for structural material applications.
  • Tg of drying conditions (DRY ⁇ Tg)
  • a cured product obtained by curing each resin composition at 180 ° C. for 2 hours was cut into a length of 50 mm, a width of 6 mm, and a thickness of 2 mm to prepare a test piece.
  • the test piece was conditioned in an atmosphere of 20 ° C. and 50% RH for 40 hours or more, and then heated at 3 ° C./min by three-point bending using a DMA measuring device (Rhegel-E4000 manufactured by UBM). Measurement was performed with a strain of speed and frequency of 1 Hz.
  • Tg evaluation was performed based on EN6032 which employ
  • GIIc Interlaminar Fracture Toughness
  • GIIc test piece X Cut to a length of 110 mm or more to obtain a GIIc test piece.
  • a GIIc test was performed using this test piece. That is, the test piece was placed at a position where the crack produced by the release film was 35 ⁇ 1 mm from the fulcrum, and a bending load was applied at a speed of 1 mm / min, and the GIIc test was performed.
  • CAI compressive strength after impact
  • a prepreg obtained by a predetermined method is cut and laminated to obtain a laminated body of a laminated structure [+ 45/0 / ⁇ 45 / 90] 3S , using a normal autoclave molding method, a pressure of 0.49 MPa, and a temperature of 180 ° C. And molded for 2 hours.
  • the obtained molded product was cut into dimensions of 150 mm in the 0 ° direction and 100 mm in the 90 ° direction to obtain test pieces for compressive strength after impact (CAI) test.
  • the post-impact compressive strength (CAI) after 30 J impact was measured at room temperature (25 ° C., 50% RH).
  • Example 1 Using 5 parts by weight of thermoplastic polyimide Aurum PD450M manufactured by Mitsui Chemicals as component [A-1] and 5 parts by weight of polyetherimide Ultem 1010-1000 manufactured by GE Plastics as component [A-2] A melt blend resin was obtained using a ruder. The Tg of the obtained blend resin was separated into two points, and when observed under a microscope, it had a layer separation structure. The obtained blend resin was pulverized to obtain a powder of 1 to 100 ⁇ m.
  • thermosetting resin of component [B] a polyfunctional epoxy resin having a glycidylamino group (jER604 made by Japan Epoxy Resin), bisphenol type epoxy resin (jER828 made by Japan Epoxy Resin), urethane-modified bisphenol A type epoxy resin ( Adeka Resin EPU-6) manufactured by Asahi Denka Co., Ltd. was used at the compounding ratio shown in Table 1. Further, 5 parts by weight of MR100 manufactured by Nippon Polyurethane Industry Co., Ltd. as the polyisocyanate compound, and 4,4′-diaminodiphenylsulfone (4,4′-DDS) manufactured by Wakayama Seika Co., Ltd.
  • thermoplastic resin 50 parts by weight and component [C]
  • polyethersulfone As a thermoplastic resin of 50 parts by weight and component [C], 30 parts by weight of polyethersulfone (Sumitomo Chemical Sumika Excel PES5003P (average particle diameter 10 ⁇ m)) was used.
  • Various raw materials and compositions are shown in Table 1.
  • a prepreg was prepared by the following procedure. First, the epoxy resin composition was cast at 60 ° C. with a film coater to prepare a resin film. A prepreg is obtained by impregnating this resin film with carbon fiber manufactured by Toho Tenax Co., Ltd., Tenax (trademark of Toho Tenax Co., Ltd.) HTA-3K (E30), in a unidirectional fiber reinforcement (fiber basis weight 190 ⁇ 10 g / m 2 ). It was. The basis weight (FAW) of the obtained prepreg was 292 g / m 2 and the resin amount (RC) was 35%. Using the obtained prepreg, a composite material (molded plate) was obtained and subjected to various measurements. The results are shown in Table 1.
  • Example 2 A melt blended resin was obtained in the same manner as in Example 1 except that the blending ratio shown in Table 1 was used for Component [A-1] and Component [A-2].
  • the Tg of the obtained blended resin was separated into two points, and when observed under a microscope, it had a layer separation structure.
  • Example 4 only 1 point of Tg appeared, and both resins were compatibilized when observed under a microscope.
  • the obtained blend resin was pulverized to obtain a powder of 1 to 100 ⁇ m.
  • thermosetting resin of component [B] a polyfunctional epoxy resin having a glycidylamino group (jER604), a bisphenol type epoxy resin (jER828), and a urethane-modified bisphenol A type epoxy resin (Adeka Resin EPU-6) are shown in Table 1, respectively. Used at the indicated blending ratio. Further, 4,4′-diaminodiphenylsulfone (4,4′-DDS) is used as the aromatic amine curing agent [D], and polyethersulfone (Sumika Excel PES5003P (average particle size) is used as the thermoplastic resin of the component [C]. 10 ⁇ m in diameter)) were used at the compounding ratios listed in Table 1. In the same manner as in Example 1, a thermosetting resin composition, a prepreg, and a composite material (molded plate) were obtained, and various measurements were performed. The results are shown in Table 1.
  • Example 5 As component [A-1], 45 parts by weight of polyethylene naphthalate (PEN) and Teonex (registered trademark) TN8065S manufactured by Teijin Chemicals Ltd. As component [A-2], 45 parts by weight of polyetherimide Ultem 1010-1000 Using an extruder, a melt blend resin was obtained. Only one point of Tg of the obtained blended resin appeared and both resins were compatibilized when observed under a microscope. The obtained blend resin was pulverized to obtain a powder of 1 to 100 ⁇ m. Others were the same as in Example 1, and a thermosetting resin composition, a prepreg, and a composite material (molded plate) were obtained and subjected to various measurements. The results are shown in Table 1.
  • Example 6 A melt blended resin was obtained in the same manner as in Example 1 except that the blending ratio shown in Table 1 was used for Component [A-1] and Component [A-2]. Only one point of Tg of the obtained blended resin appeared and both resins were compatibilized when observed under a microscope. The obtained blend resin was pulverized to obtain a powder of 1 to 100 ⁇ m.
  • thermosetting resin of component [B] a polyfunctional epoxy resin having a glycidylamino group (jER604), a bisphenol type epoxy resin (jER828), and a urethane-modified bisphenol A type epoxy resin (Adeka Resin EPU-6) are shown in Table 1, respectively. Used at the indicated blending ratio. Further, 4,4′-diaminodiphenylsulfone (4,4′-DDS) is used as the aromatic amine curing agent [D], and polyethersulfone (Sumika Excel PES5003P (average particle size) is used as the thermoplastic resin of the component [C]. 10 ⁇ m in diameter)) were used at the compounding ratios listed in Table 1. In the same manner as in Example 1, a thermosetting resin composition, a prepreg, and a composite material (molded plate) were obtained, and various measurements were performed. The results are shown in Table 1.
  • a melt blend resin is obtained by using 27 parts by weight of thermoplastic polyimide Aurum PD450M as component [A-1] and 3 parts by weight of polyethersulfone (Sumika Excel PES5003P (average particle size 10 ⁇ m)) as component [A-2]. It was. Only one point of Tg of the obtained blended resin appeared and both resins were compatibilized when observed under a microscope. The obtained blend resin was pulverized to obtain a powder of 1 to 100 ⁇ m.
  • thermosetting resin of component [B] a polyfunctional epoxy resin having a glycidylamino group (jER604), a bisphenol type epoxy resin (jER828), and a urethane-modified bisphenol A type epoxy resin (Adeka Resin EPU-6) are shown in Table 1, respectively. Used at the indicated blending ratio. Further, 4,4′-diaminodiphenylsulfone (4,4′-DDS) is used as the aromatic amine curing agent [D], and polyethersulfone (Sumika Excel PES5003P (average particle size) is used as the thermoplastic resin of the component [C]. 10 ⁇ m in diameter)) were used at the compounding ratios listed in Table 1. In the same manner as in Example 1, a thermosetting resin composition, a prepreg, and a composite material (molded plate) were obtained, and various measurements were performed. The results are shown in Table 1.
  • Example 8 Extruder using 15 parts by weight of polyethylene naphthalate (PEN) and Teonex (registered trademark) TN8065S as component [A-1] and 15 parts by weight of polyetherimide Ultem 1010-1000 as component [A-2] was used to obtain a melt blend resin. Only one point of Tg of the obtained blended resin appeared and both resins were compatibilized when observed under a microscope. The obtained blend resin was pulverized to obtain a powder of 1 to 100 ⁇ m. Others were the same as in Example 1, and a thermosetting resin composition, a prepreg, and a composite material (molded plate) were obtained and subjected to various measurements. The results are shown in Table 1.
  • Example 9 Using an extruder with 15 parts by weight of Aurum PD450M as component [A-1] and 15 parts by weight of Sumika Excel PES5003P (average particle size 10 ⁇ m) of polyethersulfone as component [A-2], a melt blend resin Got. Other than that was carried out similarly to Example 1 (however, PES5003P used 35 weight part), obtained the thermosetting resin composition, the prepreg, and the composite material (molded board), and performed various measurements. It was shown to.
  • thermosetting resin was the same as in Example 1, except that 150 parts by weight of PEN of component [A-1] and 150 parts by weight of Ultem 1010-1000 of component [A-2] were used as component [A]. Compositions and prepregs were made. However, since the ratio of the thermoplastic resin component [A] was too large, the handleability of the obtained resin composition and prepreg was poor, and a composite material could not be prepared.
  • thermosetting resin of component [B] a polyfunctional epoxy resin having a glycidylamino group (jER604), a bisphenol type epoxy resin (jER828), and a urethane-modified bisphenol A type epoxy resin (Adeka Resin EPU-6) are shown in Table 1, respectively. Used at the indicated blending ratio.
  • thermoplastic polyimide aurum PD450M is used, and as component [A-2], polyetherimide ultem 1010-1000 is used in the mixing ratio shown in Table 2, and a melt blend resin is obtained in the same manner as in Example 1.
  • a melt blend resin is obtained in the same manner as in Example 1.
  • thermosetting resin of component [B] 57 parts by weight of 4,4′-bismaleimide diphenylmethane (Matrimid 5292A: manufactured by Huntsman) and O, O′-diallylbisphenol A (Matrimid) as a curing agent [D] 5292B (manufactured by Huntsman) and 43 parts by weight were blended by the following procedure.
  • the thermosetting resin [B] and the curing agent [D] were mixed in a kneader at 130 ° C. for 60 minutes.
  • component [A] was kneaded well to obtain a bismaleimide resin composition.
  • Table 2 shows Tg (° C.) of the drying condition and Tg (° C.) of the moisture absorption condition of the resin composition.
  • thermosetting resin composition a thermosetting resin composition, a prepreg and a composite material (molded plate) were prepared in the same manner as in Example 1 to obtain GIIc and CAI test pieces. Using this test piece, tests of GIIc and CAI were performed and the results are shown in Table 2.
  • thermosetting resin composition a prepreg, and a composite material (molding) were carried out in the same manner as in Example 1 except that Ultem 1010-1000 and Aurum 450M were used as component [C] instead of component [A] without melt blending. Plate) and GIIc and CAI test pieces were obtained. Using this test piece, tests of GIIc and CAI were performed and the results are shown in Table 2.
  • melt-blended thermoplastic resin component [A] has superior interlaminar fracture toughness.
  • thermoplastic polyimide aurum PD450M or PEN, Teonex (registered trademark) TN8065S was used as component [A-2]
  • polyetherimide ultem 1010-1000 was used in the mixing ratio shown in Table 3. In the same manner as in Example 1, a melt blend resin was obtained.
  • thermosetting resin of component [B] 90 parts by weight of N-phenyl-bisphenol A-benzoxazine (manufactured by Shikoku Chemicals Co., Ltd.), 10 parts of jER828, PES5003P as thermoplastic resin [C] Using 25 parts by weight, a thermosetting resin composition, a prepreg, and a composite material (molded plate) were obtained in the same manner as in Example 1. Various measurements were performed and the results are shown in Table 3.
  • thermosetting resin composition a prepreg and a composite material (molded plate) were prepared in the same manner as in Example 1 except that the component [A] was not used, and test pieces of GIIc and CAI were obtained. Using this test piece, GIIc and CAI tests were conducted and the results are shown in Table 3.
  • melt-blended thermoplastic resin component [A] has superior interlaminar fracture toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

耐湿熱性や靭性等の機械的特性に優れた複合材料を成形するのに適した熱硬化性樹脂組成物、及びそれを用いたプリプレグを提供するものであり、この熱硬化性樹脂組成物は、少なくとも熱可塑性樹脂粒子からなる成分[A]と熱硬化性樹脂[B]とからなるものであって、この成分[A]は、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドからなるものである。成分[A-1]と成分[A-2]とは粒子中で相溶化していない状態の場合と、相溶化している状態の場合がある。 成分[A-1]:熱硬化性樹脂[B]に、不溶な熱可塑性樹脂 成分[A-2]:熱硬化性樹脂[B]に可溶な熱可塑性樹脂

Description

熱硬化性樹脂組成物とそれを用いたプリプレグ
本発明は、高い耐湿熱性や靭性等の機械的特性に優れた複合材料を成形するのに適した熱硬化性樹脂組成物、及びこの樹脂組成物をマトリックス樹脂としたプリプレグに関する。
繊維強化プラスチック(FRP)は、不飽和ポリエステル樹脂、エポキシ樹脂、熱硬化性ポリイミド樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)等の熱可塑性樹脂のマトリックス樹脂と、炭素繊維、ガラス繊維、アラミド繊維等の繊維強化材とからなる複合材料であり、軽量で且つ強度特性に優れるため、近年、航空宇宙産業から一般産業分野に至るまで、幅広い分野において利用されている。
一般的に、マトリックス樹脂を溶剤に溶かし、硬化剤や添加剤を混合し、そして、得られた樹脂組成物を、クロス、マット、ロービング等の繊維強化材に含浸させることによって、FRP用の成形中間基材であるプリプレグが得られる。例えば、航空機用途においては、軽量化と強度の観点から、このようなプリプレグを面板としたハニカムサンドウィッチパネルが航空機の構造材料用として用いられるようになっている(例えば、特許文献1)。
また、最近では、航空機用途において、ハニカムサンドウィッチパネル用途以外への適用も試みられている。しかしながら、特に高度の耐熱性や靭性(タフネス)が要求される航空機用材料においては、従来のFRPは、高温高湿度条件において、その靭性や耐衝撃性等の機械物性が顕著に低下するという問題があった。そこで、耐熱性や耐湿熱性等の基本性能を維持しながら、靭性や耐衝撃性等の機械物性の改善をすることが望まれている。
特開2006-289646号公報
本発明の課題は、高温高湿環境においても良好な機械物性、特に優れた耐衝撃性や靭性を有する複合材料を成形するのに適した熱硬化性樹脂組成物、及び、この熱硬化性樹脂組成物を用いたプリプレグを提供することにある。
上記課題は、請求の範囲の請求項1~13に記載された本発明の各態様によって達成される。
本発明の第1の態様は、少なくとも熱可塑性樹脂粒子からなる成分[A]と熱硬化性樹脂[B]とからなる熱硬化性樹脂組成物であって、該熱可塑性樹脂粒子が、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドからなることを特徴とする熱硬化性樹脂組成物である。
成分[A-1]:熱硬化性樹脂[B]に不溶な熱可塑性樹脂
成分[A-2]:熱硬化性樹脂[B]に可溶な熱可塑性樹脂
本発明において、熱硬化性樹脂[B]に不溶な熱可塑性樹脂とは、熱可塑性樹脂をペレット、粉砕物若しくはパウダー等の粒子状で熱硬化性樹脂[B]中に投入し、熱硬化性樹脂[B]の硬化温度以下で撹拌しても、粒子の大きさが殆ど変化しない熱可塑性樹脂を意味する。また、熱硬化性樹脂[B]に可溶な熱可塑性樹脂とは、熱可塑性樹脂をペレット、粉砕物若しくはパウダー等の粒子状で熱硬化性樹脂[B]中に投入し、熱硬化性樹脂[B]の硬化温度以下で撹拌した場合に、粒子が[B]中に少なくとも一部溶解し、粒子の大きさが小さくなるか若しくは消失する熱可塑性樹脂を意味する。
本発明の第2の態様は、前記第1の態様において、熱可塑性樹脂粒子からなる成分[A]の含有率が、熱硬化性樹脂組成物全体の1~50重量%であることを特徴とする熱硬化性樹脂組成物である。
本発明の第3の態様は、前記第1の態様において、熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化していない状態にあることを特徴とする熱硬化性樹脂組成物である。本発明において、成分[A-1]と成分[A-2]とが粒子中で相溶化していない状態とは、成分[A-1]と成分[A-2]の混合物のTgを測定したとき、成分[A-1]と成分[A-2]に基づくTgが2つに分離して現れる状態を意味する。
本発明の第4の態様は、前記第1の態様において、熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化している状態にあることを特徴とする熱硬化性樹脂組成物である。本発明において、成分[A-1]と成分[A-2]とが粒子中で相溶化している状態とは、成分[A-1]と成分[A-2]の混合物のTgを測定したとき、成分[A-1]と成分[A-2]に基づくTgが2つに分離して現れることなく、主として1つのTgが現れるような状態を意味する。
本発明の第5の態様は、前記第1の態様において、熱硬化性樹脂組成物が、成分[A]と熱硬化性樹脂[B]の他に、成分[A]以外の熱可塑性樹脂[C]と硬化剤[D]を含有することを特徴とする熱硬化性樹脂組成物である。
本発明の第6の態様は、前記第1の態様において、熱硬化性樹脂[B]が、少なくともエポキシ樹脂を含有していることを特徴とする熱硬化性樹脂組成物である。
本発明の第7の態様は、前記第1の態様において、熱硬化性樹脂[B]が、少なくとも3官能以上のエポキシ樹脂を含有していることを特徴とする熱硬化性樹脂組成物である。
本発明の第8の態様は、前記第1の態様において、硬化剤[D]が、少なくとも芳香族アミン系硬化剤を含有していることを特徴とする熱硬化性樹脂組成物である。
本発明の第9の態様は、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドから形成され、成分[A-1]と成分[A-2]とは粒子中で相溶化していない状態にあることを特徴とする熱可塑性樹脂粒子である。
成分[A-1]:熱硬化性樹脂に不溶な熱可塑性樹脂
成分[A-2]:熱硬化性樹脂に可溶な熱可塑性樹脂
本発明の第10の態様は、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドから形成され、成分[A-1]と成分[A-2]とは粒子中で相溶化している状態にあることを特徴とする熱可塑性樹脂粒子である。
成分[A-1]:熱硬化性樹脂に不溶な熱可塑性樹脂
成分[A-2]:熱硬化性樹脂に可溶な熱可塑性樹脂
本発明の第11の態様は、少なくとも熱可塑性樹脂粒子からなる成分[A]と熱硬化性樹脂[B]とからなる熱硬化性樹脂組成物であって、該熱可塑性樹脂粒子が、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドからなる熱硬化性樹脂組成物を、繊維強化材シートに含浸させてなるプリプレグである。
成分[A-1]:熱硬化性樹脂[B]に不溶な熱可塑性樹脂
成分[A-2]:熱硬化性樹脂[B]に可溶な熱可塑性樹脂
本発明の第12の態様は、前記第11の態様において、熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化していない状態にあることを特徴とするプリプレグである。
本発明の第13の態様は、前記第11の態様において、熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化している状態にあることを特徴とするプリプレグである。
本発明の熱硬化性樹脂組成物をマトリックス樹脂としたプリプレグを積層し、硬化成形すると、高い耐熱性及び耐湿熱性を持ち、機械特性、例えば、耐衝撃性(衝撃後圧縮強度、CAI)や靭性が向上した複合材料が得られる。
本発明の熱硬化性樹脂組成物は、少なくとも熱可塑性樹脂粒子からなる成分[A](少なくとも成分[A-1]と[A-2]を含む)と熱硬化性樹脂[B]とからなる熱硬化性樹脂組成物であるが、先ず、熱硬化性樹脂[B]に不溶な熱可塑性樹脂[A-1]と熱硬化性樹脂[B]に可溶な熱可塑性樹脂[A-2]とを溶融ブレンドし、これを粉砕し粒子状とし、得られた熱可塑性樹脂粒子を靭性付与材として熱硬化性樹脂[B]に混合したものである。本発明において、熱硬化性樹脂[B]に熱可塑性樹脂が可溶又は不溶とは、熱可塑性樹脂をペレット、粉砕物若しくはパウダー等の粒子状で熱硬化樹脂[B]中に投入し、熱硬化性樹脂[B]の硬化温度以下で撹拌した際に、粒子の大きさが殆ど変化しない場合を不溶とし、粒子が熱硬化性樹脂[B]中に少なくとも一部溶解し、粒子の大きさが小さくなるか若しくは消失する場合を可溶と定義される。
熱硬化性樹脂[B]に不溶な熱可塑性樹脂[A-1]としては、例えば、熱硬化性樹脂[B]としてグリシジルアミノ基を有する多官能エポキシ樹脂を用いた場合、ポリエーテルエーテルケトン(PEK)や、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ナイロン6、ナイロン12、非晶性ナイロン、非晶性ポリイミドなどのポリアミド等が挙げられる。熱硬化性樹脂[B]に可溶な熱可塑性樹脂[A-2]としては、例えば、熱硬化性樹脂[B]としてグリシジルアミノ基を有する多官能エポキシ樹脂を用いた場合、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)などが挙げられる。特定の熱可塑性樹脂は、用いられる熱硬化性樹脂の種類によって、これに可溶性になったり、不溶性になったりする。従って、本発明における熱可塑性樹脂[A-1]と[A-2]は、あくまでも熱硬化性樹脂[B]との特定の組み合わせによって選択されるものである。
前記成分[A]としては、任意の割合で、異なる種類の成分[A]を二種以上併用することもできる。熱可塑性樹脂の形態は、樹脂組成物中に均質かつ成形性を維持して添加されるために、粒子状である必要がある。該熱可塑性樹脂粒子の平均粒子径は、0.1~100μmの範囲であることが好ましい。0.1μmより小さいと粒子が集合し易く、集合体の嵩密度が高くなり、熱硬化性樹脂組成物の粘度が著しく増粘したり、十分な量を添加することが困難となったりする場合がある。一方、100μmより大きいと得られる熱硬化性樹脂組成物をシート状にする際、均質な厚みのシート状のものが得られにくくなる場合がある。より好ましくは、粒子の平均粒子径は1~50μmである。
熱可塑性樹脂粒子からなる成分[A]の含有率(混合率)は、熱硬化性樹脂組成物全体の1~50重量%が好ましく、より好ましくは5~40重量%である。混合の仕方は特に限定されるものではないが、できるだけ均一に混合するのが好ましい。上記のごとく熱可塑性樹脂粒子を配合することにより、本発明の熱硬化性樹脂組成物を硬化して得られる硬化物の耐熱性を殆ど低下させず、耐衝撃性や層間破壊靭性等の機械的特性を向上させることができる。
本発明においては、熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]は、混合物(溶融ブレンド)としての粒子中で相溶化していない状態にある場合と、相溶化している状態にある場合とがある。両者が相溶化していない状態にある場合は、特に、層間破壊靭性が高い複合材料が得られる傾向にある。一方、両者が相溶化している状態にある場合には、特に、耐衝撃性が高い複合材料が得られる傾向にある。
成分[A-1]と成分[A-2]が相溶化していると、混合物のTgを測定したとき、成分[A-1]と成分[A-2]に基づくTgが1つのTgとして現れる。一方、成分[A-1]と成分[A-2]とが粒子中で相溶化していないときは(層分離しているとき)、Tgが2つに分離して現れる。溶融ブレンド中の成分[A-1]と成分[A-2]の配合割合は、樹脂の種類と組合わせに依存し特に限定されるものではないが、好ましいのは、成分[A-1]:成分[A-2]=5~95重量部:95~5重量部の範囲にある場合である。
本発明の成分[B]として用いられる熱硬化性樹脂としては、例えば、主としてエポキシ樹脂、ビスマレイミド樹脂、オキセタン樹脂、ベンゾオキサジン樹脂、ポリエステル樹脂、ビニル樹脂、シアネートエステル樹脂などから構成される熱硬化性樹脂が挙げられる。
熱硬化性樹脂として好ましいのは、エポキシ樹脂である。エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができ、特に限定されるものではない。具体的には、例えば、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン(例として、ジャパンエポキシレジン社製jER604、住友化学社製スミエポキシELM-434、同ELM-120、旭チバ社製アラルダイトMY9634、同MY-720、東都化成製エポトートYH434)、N,N,O-トリグリシジル-p-アミノフェノール(例として、住友化学社製スミエポキシELM-100)等のグリシジルアミノ基を有する多官能エポキシ樹脂、ビスフェノール型エポキシ樹脂、アルコール型エポキシ樹脂、ヒドロフタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、脂環型エポキシ樹脂等の2官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂等の多官能エポキシ樹脂が挙げられる。更に、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂等の各種変性エポキシ樹脂も用いることができる。好ましいものとしては、前記のグリシジルアミノ基を有する多官能エポキシ樹脂の他に、ビスフェノール型エポキシ樹脂、脂環型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ウレタン変性ビスフェノールAエポキシ樹脂が挙げられる。
ビスフェノール型エポキシ樹脂としては、ビスフェノールA型樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、ビスフェノールS型樹脂等が挙げられる。更に具体的には、市販の樹脂として、ジャパンエポキシレジン社製jER815、同jER828、同jER834、同jER1001、同jER807、三井石油化学製エポミックR-710、大日本インキ化学工業製EXA1514等を例示できる。
脂環型エポキシ樹脂としては、市販の樹脂として、旭チバ社製アラルダイトCY-179、同CY-178、同CY-182、同CY-183等が例示される。フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン社製jER152、同jER154、ダウケミカル社製DEN431、同DEN485、同DEN438、大日本インキ化学工業製エピクロンN740等が例示される。また、クレゾールノボラック型エポキシ樹脂としては、旭チバ社製アラルダイトECN1235、同ECN1273、同ECN1280、日本化薬製EOCN102、同EOCN103、同EOCN104等を例示できる。更に、ウレタン変性ビスフェノールAエポキシ樹脂としては、旭電化製アデカレジンEPU-6、同EPU-4等が例示できる。
本発明においては、エポキシ樹脂が、少なくとも3官能以上のエポキシ樹脂を含むものであるのが好ましい。3つの官能基を有するエポキシ樹脂としては、住友化学社製のELM-100、ELM-120、YX-4、ハンツマン社製のMY0510、大日本インキ社製EXD506等が挙げられる。
前記エポキシ樹脂は、適時選択して1種あるいは2種以上を混合して用いることができる。また、エポキシ樹脂は、本発明の効果を妨げない範囲で、前述したように成分[A]以外の熱可塑性樹脂[C]を含んでいてもよい。かかる熱可塑性樹脂[C]は、例えば、エポキシ樹脂の硬化過程でエポキシ樹脂に溶解し、マトリックスの粘度を増加させ、エポキシ樹脂組成物の粘度の低下を防ぐ効果がある。また、これらの熱可塑性樹脂は、エポキシ樹脂に一部又は全量を分散させて用いることもできる。
本発明の熱硬化性樹脂組成物は適宜硬化剤、促進剤を含んでいても良い。例えば、エポキシ樹脂は、通常、公知の硬化剤と共に用いられるが、本発明においても同様である。本発明で用いられる硬化剤[D]は、通常、エポキシ樹脂の硬化剤として用いられるものなら何でもよいが、芳香族アミン系硬化剤が好ましい。具体的には、例えば、ジアミノジフェニルスルホン(DDS)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルエーテル(DPE)、フェニレンジアミンが例示される。これらは単独で使用してもよく、あるいは2種以上の混合物として使用しても良いが、耐熱性を付与する点でDDSが好ましい。また、芳香族アミン系硬化剤は、例えば、メラニン樹脂などによりマイクロカプセル化されたものを用いることもできる。芳香族アミン系硬化剤を本発明のエポキシ樹脂組成物に含ませることにより、エポキシ樹脂組成物の硬化物に高い耐熱性を発現させることができる。また、熱硬化性樹脂として、エポキシ樹脂以外の樹脂、たとえば芳香族ビスマレイミドやアルケニルフェノールなどを用いた場合も同様である。硬化剤の配合量は、硬化促進剤の有無と添加量、熱硬化樹脂との化学反応量論及び組成物の硬化速度などを考慮して、適宜、所望の配合量で用いることができる。
本発明においては、また、熱硬化性樹脂組成物が、前記成分[A]と熱硬化性樹脂[B]の他に、ポリイソシアネート化合物を含むものも好ましい。
前記ポリイソシアネート化合物とは、分子内に2つ以上のイソシアネート基を有する化合物であり、エポキシ樹脂と反応して増粘効果を示すものであれば特に限定されるもではない。かかるポリイソシアネート化合物は、成分[B]と予備反応させて使用することもできる。予備反応をさせると、得られる熱硬化性樹脂組成物の吸湿性を抑制し、プリプレグの製造、保管及び使用時に吸湿し性能低下を抑制する効果が得られる。また、得られる熱硬化性樹脂組成物の、粘度の安定化の効果が得られる。かかるポリイソシアネート化合物は、成形・硬化時の樹脂流れ性を調整し、成型性を良好なものとする役割を有する。
本発明において、成分[A]の含有率(混合率)が、熱硬化性樹脂組成物全体の1~50重量%が好ましく、より好ましくは5~40重量%であることは前述したが、ポリイソシアネート化合物の配合量は、熱硬化性樹脂組成物製造上、プリプレグ製造上及び複合材料製造上の観点から、取扱性などに影響が無い範囲で、適宜選定でき、特に限定されるものではないが、例えば、熱硬化性樹脂組成物の全重量に対して0.1~15重量%程度が好ましい範囲として例示される。こ0.1重量%より少ないと、添加により期待される熱硬化性樹脂組成物の増粘効果が不十分となり、15重量%を超えるとプリプレグのタック性及びドレープ性が低下し、プリプレグの取扱性が損なわれたり、硬化時の発泡の原因となったり、更には硬化物の靭性低下を招いたりする場合がある。好ましくは、0.5~10重量%であり、更に好ましくは1~7重量%である。
熱可塑性樹脂[C]としては、ある特定の組合わせにおいて、成分[A]として用いられなかった熱可塑性樹脂を意味し、例えば、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)に代表される熱可塑性樹脂のほか、熱可塑性ポリイミド、ポリアミドイミド、ポリスルフォン、ポリカーボネート、ポリエーテルエーテルケトンや、ナイロン6、ナイロン12、非晶性ナイロンなどのポリアミド、アラミド、アリレート、ポリエステルカーボネート等が挙げられる。この中でも、熱可塑性ポリイミド、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリスルフォン、ポリアミドイミドは耐熱性の観点からより好ましい例として挙げることができる。また、本発明の熱硬化性樹脂組成物に用いられる熱可塑性樹脂[C]としては、ゴム成分も含まれる。ゴム成分の代表的な例示としては、カルボキシ末端スチレンブタジエンゴム、カルボキシ末端水素化アクリロニトリルブタジエンゴムに代表されるゴム成分が挙げられる。
本発明において、前記の成分[A]以外の熱可塑性樹脂[C]の配合量は、熱硬化性樹脂組成物全体の10~50重量%であることが好ましい。10重量%より少ないと、得られるプリプレグ及び複合材料の耐衝撃性が不十分になる。50重量%を超えると、樹脂組成物の粘度が高くなり成形性・取扱性の劣るものとなる場合がある。好ましくは、12~45重量%であり、更に好ましくは13~40重量%である。
本発明の熱硬化性樹脂組成物は、上述した成分[A-1]と[A-2]と[B]を必須とするものであるが、本発明の効果を損なわない範囲で、必要に応じて、適宜、上述の成分以外の硬化促進剤、反応性希釈剤、充填剤、老化防止剤、難燃剤、顔料等の各種添加剤を含有していてもよい。硬化促進剤としては、酸無水物、ルイス酸、ジシアンジアミドやイミダゾール類の如く塩基性硬化剤、尿素化合物、有機金属塩等が挙げられる。より具体的には、酸無水物としては、無水フタル酸、トリメリット酸無水物、無水ピロメリット酸等が例示される。ルイス酸としては、三フッ化ホウ素塩類が例示され、更に詳細には、BF3モノエチルアミン、BFベンジルアミン等が例示される。イミダゾール類としては、2-エチル-4-メチルイミダゾール、2-エチルイミダゾール、2,4-ジメチルイミダゾール、2-フェニルイミダゾールが例示される。また、尿素化合物である3-[3,4-ジクロロフェニル]-1,1-ジメチル尿素等や、有機金属塩であるCo[III]アセチルアセトネート等を例示することができる。反応性希釈剤としては、例えば、ポリプロピレンジグリコール・ジグリシジルエーテル、フェニルグリシジルエーテル等の反応性希釈剤が例示される。
本発明の熱硬化性樹脂組成物の製造方法は、特に限定されるものではなく、従来公知のいずれの方法を用いてもよい。例えば、樹脂組成物製造時に適用される混練温度としては、10~160℃の範囲が例示できる。160℃を超えると樹脂成分の熱劣化や、部分的な硬化反応が開始し、得られる熱硬化性樹脂組成物並びにそれを用いたプリプレグの保存安定性が低下する場合がある。10℃より低いと樹脂組成物の粘度が高く、実質的に混練が困難となる場合がある。好ましくは20~130℃であり、更に好ましくは30~110℃の範囲である。
混練機械装置としては、従来公知のものを用いることができる。具体的な例としては、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を供えた混合容器、横型混合槽などが挙げられる。各成分の混練は、大気中又は不活性ガス雰囲気下にて行うことができる。また、特に大気中で混練が行われる場合は、温度、湿度管理された雰囲気が好ましい。特に限定されるものではないが、例えば、30℃以下にて一定温度に管理された温度や、相対湿度50%RH以下といった低湿度雰囲気にて混練されるのが好ましい。
各成分の混練は一段で行われても、逐次添加することにより多段的に行われても良い。また、逐次添加する場合は、任意の順序で添加することができる。この中でも、先に述べた通り、ポリイソシアネート化合物については、予め、成分[B]に反応させてから用いることもできる。また、成分[A]以外の熱可塑性樹脂[C]については、その一部又は全量を予め、成分[B]に溶解せしめた後に、供することもできる。また、特に限定するものではないが、混練・添加順序として硬化剤を最後に添加することが、得られる熱硬化性樹脂組成物及びにそれからなるプリプレグの保存安定性の観点から、好ましい。
次に、本発明の他の態様であるプリプレグについて説明する。本発明のプリプレグとは、上記の如くして得られる耐湿熱特性に優れた本発明の熱硬化性樹脂組成物を、繊維強化材シートに含浸させてなるプリプレグである。本発明のプリプレグに用いられる繊維強化材としては、炭素繊維、ガラス繊維、芳香族ポリアミド繊維、ポリイミド繊維、ポリベンゾオキサゾール繊維、全芳香族ポリエステル繊維などが挙げられる。これらは、単独又は、二種以上を併用することができる。特に限定されるものではないが、複合材料の機械的性質を向上させるためには、引っ張り強度に優れる炭素繊維を用いることが好ましい。また、繊維強化材の形態は、織物、多軸織物、一方向引き揃え物等のシート状のものが好ましい。
本発明のプリプレグは、構成する熱硬化性樹脂組成物含有率(RC)が15~70重量%であることが好ましい。15重量%より少ないと、得られる複合材料に空隙などが発生し、機械特性を低下させる場合がある。70重量%を超えると強化繊維による補強効果が不十分となり、実質的に重量対比機械特性が低いものとなる場合がある。好ましくは20~60量%の範囲であり、より好ましくは30~50重量%の範囲である。ここでいう熱硬化性樹脂組成物含有率(RC)とは、プリプレグの樹脂を硫酸分解にて分解させた場合における重量変化から算出される割合である。より具体的には、プリプレグを100mm×100mmに切り出して試験片を作成し、その重量を測定し、硫酸中で樹脂分が溶出するまで、浸漬または煮沸を行い、ろ過して残った繊維を水で洗浄し、乾燥してからその質量を測定し、算出することによって得られる値である。
また、特に限定されるものではないが、具体的なプリプレグの好ましい形態としては、例えば、強化繊維及び前記強化繊維間に含浸された樹脂組成物からなる強化繊維層と、前記強化繊維層表面に被覆された樹脂被覆層とからなり、樹脂被覆層の厚みが2~50μmであるものが例示される。2μm未満の場合、タック性が不十分となり、プリプレグの成形加工性が著しく低下する場合がある。50μmを超えると、プリプレグを均質な厚みでロール状に巻き取ることが困難となり、成形精度が著しく低下する場合がある。より好ましくは、5~45μmであり、更に好ましくは10~40μmである。
航空機用複合材料が具備すべき特性の一つに、層間破壊靭性が挙げられる。層間破壊靭性とは、所定の方法でクラックを作製した供試体に荷重を付与し、クラックの生成に必要なエネルギー量を計測することで、供試体の破壊靱性を評価する手法である。層間破壊靭性は、その変形様式に応じてモードI(開口型)、モードII(面内せん断型)、モードIII(面外せん断型)に分類される。そのうち、航空機用複合材料として特に重要な特性は、モードIIの層間破壊靭性(GIIc)である。上記の如き構成の本発明の熱硬化性樹脂組成物を用いることによって、GIIcの高い、即ち、靭性に優れる硬化物が得られる。本発明においては、成形・硬化して得られる複合材料のGIIcが、2400J/m以上となるようなプリプレグが特に好ましい。ここでいうGIIcは、EN6034に準拠し測定した値である。
航空機用複合材料が具備すべきもう一つの特性として耐衝撃特性が挙げられる。耐衝撃性の評価には一般的に衝撃後圧縮強度(CAI)が用いられる。CAIとは、所定のエネルギーを供試体に付与し、その後の残留圧縮強度を評価する手法である。上記の如き構成の本発明の熱硬化性樹脂組成物を用いることによって、衝撃後圧縮強度の高い、即ち耐衝撃性に優れる硬化物が得られる。本発明においては、成形・硬化して得られる複合材料の衝撃後圧縮強度が、240MPaを超えるプリプレグが特に好ましい。特に好ましくは245MPa以上である。ここでいう衝撃後圧縮強度とは、EN6038に準拠し測定した値である。
本発明のプリプレグの製法は、特に限定されるものではなく、従来公知のいかなる方法を用いて製造することができる。例えば、上記本発明の熱硬化性樹脂組成物を、離型紙の上に薄いフィルム状に塗布し、剥離して得られた樹脂フィルムを、シート状の繊維強化材に積層成形して熱硬化性樹脂組成物を含浸させる、いわゆるホットメルト法や、熱硬化性樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを繊維強化材シートに含浸させる溶剤法が挙げられる。この中でも、特に本発明のプリプレグは、従来公知の製造方法であるホットメルト法により、好適に製造することができる。
本発明の熱硬化性樹脂組成物を、樹脂フィルム又はシートにする方法としては、特に限定されるものではなく、従来公知のいずれの方法を用いることもできる。より具体的には、ダイ押し出し、アプリケーター、リバースロールコーター、コンマコーターなどにより、離型紙、フィルムなどの支持体上に流延、キャストをすることにより得ることが出来る。フィルム又はシート化の際の樹脂温度としては、その樹脂組成・粘度に応じて適宜設定可能であるが、前述の熱硬化性樹脂組成物の製造方法における混練温度と同じ条件が好適に用いることができる。
本発明における繊維強化材シートとは、繊維強化材の形態を指し、織物、一方向引き揃え物等のごとくシート状の強化繊維である。これらの繊維強化材シート並びに樹脂フィルム又はシートの大きさなどは、特に限定されるものではない。しかしながら、連続的に製造する場合、その幅は、その生産性の観点から、30cm以上が好ましい。上限は特に限定しないが、実質的に5mである。5mを超えるとその生産安定性が低下する場合がある。
また、連続製造の場合、生産速度としては、特に限定しないが、生産性や経済性などを考慮すると、0.1m/分以上である。より好ましくは1m/分以上であり、更に好ましくは5m/分以上である。
樹脂シートをシート状の繊維強化材シートへ含浸させる際の含浸加圧は、その樹脂組成物の粘度・樹脂フローなどを勘案し、任意の圧力を用いることが出来る。樹脂シートの繊維強化材シートへの含浸温度は、50~150℃の範囲である。50℃未満の場合、樹脂シートの粘度が高く、繊維強化材シートの中へ十分含浸しない場合がある。150℃以上の場合、樹脂組成物の硬化反応が開始され、プリプレグの保存安定性が低下したり、ドレープ性が低下したりする場合がある。好ましくは、60~145℃であり、より好ましくは70~140℃である。また、含浸は1回ではなく、複数回に分けて任意の圧力と温度にて、多段的に行うこともできる。
かかる手段により得られるプリプレグを用いて、積層等の成形並びに硬化せしめて製造される複合材料は、高い耐湿熱特性を有し、更に優れた耐衝撃性と層間破壊靭性を有しており、航空機用構造材料用途へと好適なものである。
 
以下、実施例により本発明を更に詳細に説明する。本実施例、比較例において用いた各種試験方法は下記のとおりである。
[乾燥条件のTg(DRY・Tg)]
各樹脂組成物を180℃で2時間硬化させて得られた硬化物を、長さ50mm、幅6mm、厚さ2mmに切り出して試験片を作成した。この試験片を20℃、50%RHの雰囲気中に40時間以上状態調節した後、DMA測定装置(ユービーエム社製Rheogel-E4000)を用いて、3点曲げにて3℃/分の昇温速度、周波数1Hzの歪をかけて測定した。なお、Tg評価は、損失粘弾性(E”)のピークトップを採用するEN6032に準拠して行った。
[吸湿条件のTg(WET・Tg)]
前記の試験片を、121℃、飽和蒸気圧の雰囲気中に24時間暴露した以外は、前記と同様の方法で測定した。
[層間破壊靭性(GIIc)の測定]
靭性の指標として、GIIcの評価をEN6034に準拠し測定した。所定の方法により得られたプリプレグをカットし、0°方向に8層積層した積層体を2つ作製した。初期クラックを発生されるための離型フィルムを、2つの積層体の間にはさみ、両者を組み合わせ、積層構成[0]16の厚さ約3mmのプリプレグ積層体を得た。真空オートクレーブ成形法を用い、0.49MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅25mm
× 長さ110mm以上の寸法に切断し、GIIcの試験片を得た。この試験片を用いて、GIIc試験を行った。即ち、離型フィルムにより作製したクラックが、支点から35±1mmとなる位置に試験片を配置し、1mm/minの速度で曲げの負荷をかけGIIc試験を実施した。
[衝撃後圧縮強度(CAI)の測定]

耐衝撃性の指標として、衝撃後圧縮強度の評価を、EN6038に準拠して測定した。所定の方法により得られたプリプレグをカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得、通常のオートクレーブ成形法を用い、圧力0.49MPaで、温度180℃で、2時間成形した。得られた成形物を0゜方向が
150mm、90゜方向が100mmの寸法に切断し、衝撃後圧縮強度(CAI)試験の試験片を得た。この試験片を用いて30J衝撃後の衝撃後圧縮強度(CAI)を室温下(25℃、50%RH)で測定した。
[実施例1]
成分[A-1]として、三井化学社製熱可塑性ポリイミドのオーラムPD450Mを5重量部、成分[A-2]として、GEプラスチック社製ポリエーテルイミドのウルテム1010-1000を5重量部用いてエクストルーダーを用い、溶融ブレンド樹脂を得た。得られたブレンド樹脂のTgは2点に分離しており、顕微鏡下で観察すると層分離構造になっていた。得られたブレンド樹脂を粉砕し、1~100μmのパウダーを得た。
成分[B]の熱硬化性樹脂として、グリシジルアミノ基を有する多官能エポキシ樹脂(ジャパンエポキシレジン社製jER604)、ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン社製jER828)、ウレタン変性ビスフェノールA型エポキシ樹脂(旭電化製アデカレジンEPU-6)をそれぞれ表1に記載の配合比で用いた。また、ポリイソシアネート化合物として日本ポリウレタン工業社製MR100を5重量部、芳香族アミン系硬化剤[D]として和歌山精化社製4,4’-ジアミノジフェニルスルホン(4,4’-DDS)を、50重量部、成分[C]の熱可塑性樹脂として、ポリエーテルスルホン(住友化学製スミカエクセルPES5003P(平均粒子径10μm))を30重量部用いた。各種原材料と組成は表1に示した。
上記の各種原材料を以下の手順で配合した。先ず、jER604、jER828及びEPU-6を、ニーダー中にて加熱・混合させた。得られた混合物中に、MR100を添加し、更にニーダー中で加熱混合することにより、成分jER604、jER828及びEPU-6とMR100とを混練した。続いて、得られた樹脂混合物をロールミルに移し、硬化剤[D]と成分[C]及び成分[A-1]と成分[A-2]の混合樹脂粒子とを良く混練し、本実施例1のエポキシ樹脂組成物(熱硬化性樹脂組成物)を得た。このエポキシ樹脂組成物の乾燥条件(DRY)のTg(℃)と、吸湿条件(WET)のTg(℃)を表1に示した。
上記で得られたエポキシ樹脂組成物を用いて、以下の手順でプリプレグを作成した。先ず、エポキシ樹脂組成物を、フィルムコーターにて60℃にて流延し、樹脂フィルムを作成した。この樹脂フィルムを、東邦テナックス社製炭素繊維、テナックス(東邦テナックス社商標)HTA-3K(E30)の、一方向繊維強化材(繊維目付190±10g/m)に含浸せしめることによりプリプレグを得た。得られたプリプレグの目付(FAW)は292g/mで、樹脂量(RC)は35%であった。得られたプリプレグを用いて複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[実施例2~4]
成分[A-1]と成分[A-2]を表1に記載の配合比に変更した以外は実施例1と同様にして、溶融ブレンド樹脂を得た。実施例2及び3では得られたブレンド樹脂のTgは2点に分離しており、顕微鏡下で観察すると層分離構造になっていた。実施例4ではTgは1点のみ現れており、顕微鏡下で観察すると両樹脂は相溶化していた。得られたブレンド樹脂を粉砕し、1~100μmのパウダーを得た。
成分[B]の熱硬化性樹脂として、グリシジルアミノ基を有する多官能エポキシ樹脂(jER604)、ビスフェノール型エポキシ樹脂(jER828)、ウレタン変性ビスフェノールA型エポキシ樹脂(アデカレジンEPU-6)をそれぞれ表1に記載の配合比で用いた。また、芳香族アミン系硬化剤[D]として4,4’-ジアミノジフェニルスルホン(4,4’-DDS)を、成分[C]の熱可塑性樹脂として、ポリエーテルスルホン(スミカエクセルPES5003P(平均粒子径10μm))をそれぞれ表1に記載の配合比で用いた。実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[実施例5]
成分[A-1]として、帝人化成社製ポリエチレンナフタレート(PEN)、テオネックス(登録商標)TN8065Sを45重量部、成分[A-2]として、ポリエーテルイミドのウルテム1010-1000を45重量部用いてエクストルーダーを用い、溶融ブレンド樹脂を得た。得られたブレンド樹脂のTgは1点のみ現れており、顕微鏡下で観察すると両樹脂は相溶化していた。得られたブレンド樹脂を粉砕し、1~100μmのパウダーを得た。その他は実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[実施例6]
成分[A-1]と成分[A-2]を表1に記載の配合比に変更した以外は実施例1と同様にして、溶融ブレンド樹脂を得た。得られたブレンド樹脂のTgは1点のみ現れており、顕微鏡下で観察すると両樹脂は相溶化していた。得られたブレンド樹脂を粉砕し、1~100μmのパウダーを得た。
成分[B]の熱硬化性樹脂として、グリシジルアミノ基を有する多官能エポキシ樹脂(jER604)、ビスフェノール型エポキシ樹脂(jER828)、ウレタン変性ビスフェノールA型エポキシ樹脂(アデカレジンEPU-6)をそれぞれ表1に記載の配合比で用いた。また、芳香族アミン系硬化剤[D]として4,4’-ジアミノジフェニルスルホン(4,4’-DDS)を、成分[C]の熱可塑性樹脂として、ポリエーテルスルホン(スミカエクセルPES5003P(平均粒子径10μm))をそれぞれ表1に記載の配合比で用いた。実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[実施例7]
成分[A-1]として熱可塑性ポリイミドのオーラムPD450Mを27重量部、成分[A-2]としてポリエーテルスルホン(スミカエクセルPES5003P(平均粒子径10μm))を3重量部用いて溶融ブレンド樹脂を得た。得られたブレンド樹脂のTgは1点のみ現れており、顕微鏡下で観察すると両樹脂は相溶化していた。得られたブレンド樹脂を粉砕し、1~100μmのパウダーを得た。
成分[B]の熱硬化性樹脂として、グリシジルアミノ基を有する多官能エポキシ樹脂(jER604)、ビスフェノール型エポキシ樹脂(jER828)、ウレタン変性ビスフェノールA型エポキシ樹脂(アデカレジンEPU-6)をそれぞれ表1に記載の配合比で用いた。また、芳香族アミン系硬化剤[D]として4,4’-ジアミノジフェニルスルホン(4,4’-DDS)を、成分[C]の熱可塑性樹脂として、ポリエーテルスルホン(スミカエクセルPES5003P(平均粒子径10μm))をそれぞれ表1に記載の配合比で用いた。実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[実施例8]
成分[A-1]として、ポリエチレンナフタレート(PEN)、テオネックス(登録商標)TN8065Sを15重量部、成分[A-2]として、ポリエーテルイミドのウルテム1010-1000を15重量部用いてエクストルーダーを用い、溶融ブレンド樹脂を得た。得られたブレンド樹脂のTgは1点のみ現れており、顕微鏡下で観察すると両樹脂は相溶化していた。得られたブレンド樹脂を粉砕し、1~100μmのパウダーを得た。その他は実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[実施例9]
成分[A-1]として、オーラムPD450Mを15重量部、成分[A-2]として、ポリエーテルスルホンのスミカエクセルPES5003P(平均粒子径10μm)を15重量部用いてエクストルーダーを用い、溶融ブレンド樹脂を得た。それ以外は実施例1と同様にして(但し、PES5003Pは35重量部用い)、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
[比較例1]
成分[A-1]として、オーラムPD450Mを150重量部、成分[A-2]として、ポリエーテルスルホンのスミカエクセルPES5003P(平均粒子径10μm)を150重量部用いてエクストルーダーを用い、溶融ブレンド樹脂を得た。それ以外は実施例1と同様にして、熱硬化性樹脂組成物およびプリプレグの作成を行った。しかし、熱可塑性樹脂成分[A]の割合が多すぎたため、得られた樹脂組成物及びプリプレグの取扱い性が悪く、複合材料を作成することはできなかった。
 [比較例2]
成分[A]として、成分[A-1]のPENを150重量部、成分[A-2]のウルテム1010-1000を150重量部用いた以外は実施例1と同様にして、熱硬化性樹脂組成物およびプリプレグの作成を行った。しかし、熱可塑性樹脂成分[A]の割合が多すぎたため、得られた樹脂組成物及びプリプレグの取扱い性が悪く、複合材料を作成することはできなかった。
[比較例3及び4]
成分[A]を用いない場合の実験を行った。成分[B]の熱硬化性樹脂として、グリシジルアミノ基を有する多官能エポキシ樹脂(jER604)、ビスフェノール型エポキシ樹脂(jER828)、ウレタン変性ビスフェノールA型エポキシ樹脂(アデカレジンEPU-6)をそれぞれ表1に記載の配合比で用いた。また、芳香族アミン系硬化剤[D]として4,4’-ジアミノジフェニルスルホン(4,4’-DDS)を、45重量部、成分[C]の熱可塑性樹脂として、オーラムPD450M、ポリエーテルスルホン(スミカエクセルPES5003P、平均粒子径10μm)、又は非晶性ナイロン(EMS-CHEMIE製グリルアミドTR-55)を表1に示す配合部用いた。それ以外は実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得て各種の測定を行い、その結果を表1に示した。
表1の結果から、本発明の実施例のものは、比較例のものに比べて優れた層間破壊靭性(GIIc)とCAIを有することが分かる。
[実施例10及び11]
成分[A-1]として、熱可塑性ポリイミドオーラムPD450Mを、成分[A-2]として、ポリエーテルイミドウルテム1010-1000を表2記載の配合比で用い、実施例1と同様にして溶融ブレンド樹脂を得た。
成分[B]の熱硬化性樹脂として、4,4’-ビスマレイミドジフェニルメタン(Matrimid5292A:ハンツマン社製)57重量部、硬化剤[D]としてO,O’-ジアリルビスフェノールA(Matrimid
5292B:ハンツマン社製)43重量部を用い、以下の手順で配合した。先ず、熱硬化性樹脂[B]と硬化剤[D]を、ニーダー中にて130℃で60分間混合した。得られた混合物中に、成分[A]を良く混練し、ビスマレイミド樹脂組成物を得た。この樹脂組成物の乾燥条件のTg(℃)と、吸湿条件のTg(℃)を表2に示した。
上記で得られたビスマレイミド樹脂組成物を用いて、実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を作成し、GIIcとCAIの試験片を得た。この試験片を用いて、GIIcとCAIの試験を行いその結果を表2に示した。
[比較例5]
成分[A]の替りに成分[C]としてウルテム1010-1000とオーラム450Mを溶融ブレンドせずに用いた以外は実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を作成し、GIIcとCAIの試験片を得た。この試験片を用いて、GIIcとCAIの試験を行いその結果を表2に示した。
エポキシ樹脂を用いた場合と同様、溶融ブレンドをした熱可塑性樹脂成分[A]を用いた方が優れた層間破壊靱性を有することがわかる。
[実施例12及び13]
成分[A-1]として、熱可塑性ポリイミドオーラムPD450M又はPEN、テオネックス(登録商標)TN8065Sを、成分[A-2]として、ポリエーテルイミドウルテム1010-1000を表3記載の配合比で用い、実施例1と同様にして溶融ブレンド樹脂を得た。
成分[B]の熱硬化性樹脂として、N-フェニル-ビスフェノールA-ベンゾオキサジン(四国化成工業(株)製)を90重量部、jER828を10重両部、熱可塑性樹脂[C]としてPES5003Pを25重量部用い、実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)を得た。各種の測定を行い、その結果を表3に示した。
[比較例6]
成分[A]を用いなかった以外は実施例1と同様にして、熱硬化性樹脂組成物、プリプレグ及び複合材料(成形板)作成し、GIIcとCAIの試験片を得た。この試験片を用いて、GIIcとCAIの試験を行いその結果を表3に示した。
エポキシ樹脂を用いた場合と同様、溶融ブレンドをした熱可塑性樹脂成分[A]を用いた方が優れた層間破壊靱性を有することがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (13)

  1. 少なくとも熱可塑性樹脂粒子からなる成分[A]と熱硬化性樹脂[B]とからなる熱硬化性樹脂組成物であって、該熱可塑性樹脂粒子が、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドからなることを特徴とする熱硬化性樹脂組成物。
    成分[A-1]:熱硬化性樹脂[B]に不溶な熱可塑性樹脂
    成分[A-2]:熱硬化性樹脂[B]に可溶な熱可塑性樹脂
  2. 熱可塑性樹脂粒子からなる成分[A]の含有率が、熱硬化性樹脂組成物の1~50重量%であることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  3. 熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化していない状態にあることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  4. 熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化している状態にあることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  5. 熱硬化性樹脂組成物が、成分[A]と熱硬化性樹脂[B]の他に、成分[A]以外の熱可塑性樹脂[C]と硬化剤[D]を含有することを特徴とする請求項1記載の熱硬化性樹脂組成物。
  6. 熱硬化性樹脂[B]が、少なくともエポキシ樹脂を含有していることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  7. 熱硬化性樹脂[B]が、少なくとも3官能以上のエポキシ樹脂を含有していることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  8. 硬化剤[D]が、少なくとも芳香族アミン系硬化剤を含有していることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  9. 少なくとも下記成分[A-1]と[A-2]の溶融ブレンドから形成され、成分[A-1]と成分[A-2]とは粒子中で相溶化していない状態にあることを特徴とする熱可塑性樹脂粒子。
    成分[A-1]:熱硬化性樹脂に不溶な熱可塑性樹脂
    成分[A-2]:熱硬化性樹脂に可溶な熱可塑性樹脂
  10. 少なくとも下記成分[A-1]と[A-2]の溶融ブレンドから形成され、成分[A-1]と成分[A-2]とは粒子中で相溶化している状態にあることを特徴とする熱可塑性樹脂粒子。
    成分[A-1]:熱硬化性樹脂に不溶な熱可塑性樹脂
    成分[A-2]:熱硬化性樹脂に可溶な熱可塑性樹脂
  11. 少なくとも熱可塑性樹脂粒子からなる成分[A]と熱硬化性樹脂[B]とからなる熱硬化性樹脂組成物であって、該熱可塑性樹脂粒子が、少なくとも下記成分[A-1]と[A-2]の溶融ブレンドからなる熱硬化性樹脂組成物を、繊維強化材シートに含浸させてなるプリプレグ。
    成分[A-1]:熱硬化性樹脂[B]に不溶な熱可塑性樹脂
    成分[A-2]:熱硬化性樹脂[B]に可溶な熱可塑性樹脂
  12. 熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化していない状態にあることを特徴とする請求項11記載のプリプレグ。
  13. 熱可塑性樹脂粒子からなる成分[A]を構成する成分[A-1]と成分[A-2]とが、粒子中で相溶化している状態にあることを特徴とする請求項11記載のプリプレグ。
     
     
     
PCT/JP2009/069009 2008-11-13 2009-11-07 熱硬化性樹脂組成物とそれを用いたプリプレグ WO2010055811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010537763A JP5469086B2 (ja) 2008-11-13 2009-11-07 熱硬化性樹脂組成物とそれを用いたプリプレグ
US13/128,559 US20110218272A1 (en) 2008-11-13 2009-11-07 Thermosetting resin composition and prepreg using the same
EP09826061A EP2366742A4 (en) 2008-11-13 2009-11-07 THERMOSETTING RESIN COMPOSITION AND PREPREGATION USING THE SAME
CN2009801454935A CN102216394A (zh) 2008-11-13 2009-11-07 热固性树脂组合物以及使用该热固性树脂组合物的预浸料坯

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008291306 2008-11-13
JP2008-291306 2008-11-13
JP2008-291181 2008-11-13
JP2008291181 2008-11-13

Publications (1)

Publication Number Publication Date
WO2010055811A1 true WO2010055811A1 (ja) 2010-05-20

Family

ID=42169946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069009 WO2010055811A1 (ja) 2008-11-13 2009-11-07 熱硬化性樹脂組成物とそれを用いたプリプレグ

Country Status (5)

Country Link
US (1) US20110218272A1 (ja)
EP (1) EP2366742A4 (ja)
JP (1) JP5469086B2 (ja)
CN (1) CN102216394A (ja)
WO (1) WO2010055811A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541629A (ja) * 2010-11-09 2013-11-14 サイテク・テクノロジー・コーポレーシヨン 二次強化用適合性キャリヤー
WO2015019965A1 (ja) 2013-08-07 2015-02-12 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2017501072A (ja) * 2013-12-05 2017-01-12 ザ・ボーイング・カンパニーThe Boeing Company 接合され且つ調整可能な複合材アセンブリ
JP2018024879A (ja) * 2012-12-19 2018-02-15 サイテク・インダストリーズ・インコーポレーテツド 硬化性プリプレグプライを作製するための方法
JP2020528471A (ja) * 2018-02-13 2020-09-24 エルジー・ケム・リミテッド 半導体パッケージ用熱硬化性樹脂組成物およびこれを用いたプリプレグ
WO2021149698A1 (ja) * 2020-01-22 2021-07-29 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び半導体パッケージ
WO2022113976A1 (ja) * 2020-11-27 2022-06-02 東レ株式会社 プリプレグおよびプリプレグの製造方法
WO2023058546A1 (ja) * 2021-10-06 2023-04-13 東レ株式会社 プリプレグ、繊維強化樹脂成形体、および一体化成形品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292375A1 (en) * 2005-06-28 2006-12-28 Martin Cary J Resin compositions with high thermoplatic loading
US10065393B2 (en) 2006-03-25 2018-09-04 Hexcel Composites Limited Structured thermoplastic in composite interleaves
GB201008884D0 (en) * 2010-05-27 2010-07-14 Hexcel Composites Ltd Improvements in composite materials
US10618227B2 (en) 2006-03-25 2020-04-14 Hexcel Composites, Ltd. Structured thermoplastic in composite interleaves
RU2486217C1 (ru) * 2011-12-21 2013-06-27 Открытое акционерное общество "Национальный институт авиационных технологий" (ОАО НИАТ) Термоплавкое связующее, способ получения его, препрег и сотовая панель, выполненные на его основе
EP2857474A4 (en) * 2012-05-29 2016-02-17 Nitto Denko Corp ADHESIVE AND TRANSPARENT SUBSTRATE THEREWITH
EP2781539A1 (en) * 2013-03-19 2014-09-24 Siemens Aktiengesellschaft Fibre reinforced plastic composite, method of manufacturing thereof, plastic composite starting material for manufacturing the fibre reinforced plastic composite, and component of a wind turbine comprising the fibre reinforced plastic composite
US11820858B2 (en) * 2017-12-01 2023-11-21 Teijin Limited Prepreg, method for producing same, and method for producing fiber-reinforced composite material
RU2020131425A (ru) * 2018-03-30 2022-05-04 Торэй Индастриз, Инк. Препрег, многослойное тело, армированный волокном композитный материал и способ получения армированного волокном композитного материала
CN112876946B (zh) * 2021-02-03 2022-07-19 中北大学 一种供热管道内壁耐温防腐粉体涂料及其使用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151623A (ja) * 1988-12-02 1990-06-11 Toho Rayon Co Ltd エポキシ樹脂組成物及びプリプレグ
JPH04249544A (ja) * 1990-12-28 1992-09-04 Toho Rayon Co Ltd プリプレグ及びその製造方法
JPH0776658A (ja) * 1990-01-19 1995-03-20 Minnesota Mining & Mfg Co <3M> 熱硬化性組成物
WO1999002586A1 (fr) * 1997-07-11 1999-01-21 Toray Industries, Inc. Tissu preimpregnee et panneau sandwich a ame alveolaire
JPH11269428A (ja) * 1998-01-22 1999-10-05 Inst Fr Petrole 表面被覆用重合体組成物の使用および該組成物を含む表面被覆物
JP2006291095A (ja) * 2005-04-13 2006-10-26 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2006291218A (ja) * 2001-02-27 2006-10-26 Hexcel Corp サンドイッチパネル用接着性プレプレグ面シート
JP2007297529A (ja) * 2006-05-01 2007-11-15 Yokohama Rubber Co Ltd:The 熱硬化性樹脂組成物、硬化物、プリプレグおよび繊維強化複合材料
JP2007314753A (ja) * 2006-04-25 2007-12-06 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
WO2008133054A1 (ja) * 2007-04-13 2008-11-06 Toho Tenax Co., Ltd. 樹脂組成物、及びプリプレグ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652398A (en) * 1985-09-12 1987-03-24 Stauffer Chemical Company Rapid curing, thermally stable adhesive composition comprising epoxy resin, polyimide, reactive solvent, and crosslinker
DE3750609T2 (de) * 1986-12-20 1995-03-23 Toho Rayon Kk Verfahren zur Herstellung eines kohlenstoffaserverstärkten thermoplastischen Harzgegenstandes.
US5371152A (en) * 1990-12-28 1994-12-06 Toho Rayon Co., Ltd. Resin composition and process for producing the composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151623A (ja) * 1988-12-02 1990-06-11 Toho Rayon Co Ltd エポキシ樹脂組成物及びプリプレグ
JPH0776658A (ja) * 1990-01-19 1995-03-20 Minnesota Mining & Mfg Co <3M> 熱硬化性組成物
JPH04249544A (ja) * 1990-12-28 1992-09-04 Toho Rayon Co Ltd プリプレグ及びその製造方法
WO1999002586A1 (fr) * 1997-07-11 1999-01-21 Toray Industries, Inc. Tissu preimpregnee et panneau sandwich a ame alveolaire
JPH11269428A (ja) * 1998-01-22 1999-10-05 Inst Fr Petrole 表面被覆用重合体組成物の使用および該組成物を含む表面被覆物
JP2006291218A (ja) * 2001-02-27 2006-10-26 Hexcel Corp サンドイッチパネル用接着性プレプレグ面シート
JP2006291095A (ja) * 2005-04-13 2006-10-26 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2007314753A (ja) * 2006-04-25 2007-12-06 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2007297529A (ja) * 2006-05-01 2007-11-15 Yokohama Rubber Co Ltd:The 熱硬化性樹脂組成物、硬化物、プリプレグおよび繊維強化複合材料
WO2008133054A1 (ja) * 2007-04-13 2008-11-06 Toho Tenax Co., Ltd. 樹脂組成物、及びプリプレグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2366742A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541629A (ja) * 2010-11-09 2013-11-14 サイテク・テクノロジー・コーポレーシヨン 二次強化用適合性キャリヤー
KR101832017B1 (ko) * 2010-11-09 2018-04-04 사이텍 테크놀러지 코포레이션 2차 강인화를 위한 융화성 캐리어
US10155581B2 (en) 2012-08-28 2018-12-18 The Boeing Company Bonded and tailorable composite assembly
JP2018024879A (ja) * 2012-12-19 2018-02-15 サイテク・インダストリーズ・インコーポレーテツド 硬化性プリプレグプライを作製するための方法
WO2015019965A1 (ja) 2013-08-07 2015-02-12 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US20160122528A1 (en) * 2013-08-07 2016-05-05 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
US9676937B2 (en) * 2013-08-07 2017-06-13 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2017501072A (ja) * 2013-12-05 2017-01-12 ザ・ボーイング・カンパニーThe Boeing Company 接合され且つ調整可能な複合材アセンブリ
JP2020528471A (ja) * 2018-02-13 2020-09-24 エルジー・ケム・リミテッド 半導体パッケージ用熱硬化性樹脂組成物およびこれを用いたプリプレグ
US11193015B2 (en) 2018-02-13 2021-12-07 Lg Chem, Ltd. Thermosetting resin composition for semiconductor package and prepreg using the same
JP6989086B6 (ja) 2018-02-13 2022-02-28 エルジー・ケム・リミテッド 半導体パッケージ用熱硬化性樹脂組成物およびこれを用いたプリプレグ
WO2021149698A1 (ja) * 2020-01-22 2021-07-29 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び半導体パッケージ
WO2022113976A1 (ja) * 2020-11-27 2022-06-02 東レ株式会社 プリプレグおよびプリプレグの製造方法
WO2023058546A1 (ja) * 2021-10-06 2023-04-13 東レ株式会社 プリプレグ、繊維強化樹脂成形体、および一体化成形品
JP7334867B1 (ja) * 2021-10-06 2023-08-29 東レ株式会社 プリプレグ、繊維強化樹脂成形体、および一体化成形品

Also Published As

Publication number Publication date
CN102216394A (zh) 2011-10-12
EP2366742A1 (en) 2011-09-21
EP2366742A4 (en) 2013-01-02
JP5469086B2 (ja) 2014-04-09
JPWO2010055811A1 (ja) 2012-04-12
US20110218272A1 (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5469086B2 (ja) 熱硬化性樹脂組成物とそれを用いたプリプレグ
JP5319673B2 (ja) エポキシ樹脂組成物及びそれを用いたプリプレグ
KR102081662B1 (ko) 에폭시 수지 조성물, 프리프레그 및 탄소 섬유 강화 복합 재료
EP2655512B1 (en) Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
EP3279263B1 (en) Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
KR20110120314A (ko) 벤조옥사진 수지 조성물
KR20100133963A (ko) 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
KR20140127868A (ko) 섬유강화 복합 재료
KR20130018698A (ko) 탄소 섬유 강화 복합 재료용 에폭시 수지 조성물, 프리프레그 및 탄소 섬유 강화 복합 재료
JP5468853B2 (ja) 複合材料
KR20140127869A (ko) 섬유강화 복합 재료
WO2014030638A1 (ja) エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
EP3476886A1 (en) Prepreg and production method therefor
JP6771884B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US12091479B2 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and production method thereof
JP2010059225A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR20140127867A (ko) 섬유강화 복합 재료
JP6771885B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2012211255A (ja) 樹脂組成物、硬化物、プリプレグ、および繊維強化複合材料
JP6555006B2 (ja) エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2012149237A (ja) 熱硬化性樹脂組成物、プリプレグ、および繊維強化複合材料
CN104583284B (zh) 纤维增强复合材料
JP6782553B2 (ja) プリプレグの製造方法
JP4894339B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP5468819B2 (ja) エポキシ樹脂組成物及びそれをマトリックス樹脂とするプリプレグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145493.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826061

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2010537763

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13128559

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009826061

Country of ref document: EP