WO2023058546A1 - プリプレグ、繊維強化樹脂成形体、および一体化成形品 - Google Patents

プリプレグ、繊維強化樹脂成形体、および一体化成形品 Download PDF

Info

Publication number
WO2023058546A1
WO2023058546A1 PCT/JP2022/036401 JP2022036401W WO2023058546A1 WO 2023058546 A1 WO2023058546 A1 WO 2023058546A1 JP 2022036401 W JP2022036401 W JP 2022036401W WO 2023058546 A1 WO2023058546 A1 WO 2023058546A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
prepreg
bifunctional
resin
fiber
Prior art date
Application number
PCT/JP2022/036401
Other languages
English (en)
French (fr)
Inventor
小林博
本間雅登
篠原光太郎
英秀樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280065102.4A priority Critical patent/CN118019784A/zh
Priority to JP2022561434A priority patent/JP7334867B1/ja
Publication of WO2023058546A1 publication Critical patent/WO2023058546A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a prepreg having a thermoplastic resin layer, a fiber-reinforced resin molded article formed by molding the prepreg, and an integrally molded article obtained by bonding the fiber-reinforced resin molded article to another member.
  • Fiber-reinforced composite materials which use a thermosetting resin or thermoplastic resin as a matrix resin and are combined with reinforcing fibers such as carbon fiber and glass fiber, are lightweight and have excellent mechanical properties such as strength and rigidity. It is applied in many fields such as aerospace, automobiles, railway vehicles, ships, civil engineering and sports equipment. However, these fiber-reinforced composite materials are not suitable for manufacturing parts or structures having complex shapes in a single molding process. and then integrating with another member. At this time, resins having different properties may be combined as necessary.
  • joining methods that use mechanical joining such as bolts, rivets, and screws, and joining methods that use adhesives are used.
  • the mechanical joining method requires a process to pre-process the joining part, such as making a hole, which leads to a longer manufacturing process and an increase in manufacturing cost.
  • Bonding methods that use adhesive require a bonding process that includes preparation and application of the adhesive, as well as a curing process, which leads to a longer manufacturing process. There was a problem that we could not obtain sufficient satisfaction.
  • Fiber-reinforced composite materials that use a thermoplastic resin as a matrix resin can be joined by heat welding, in addition to the above methods, so the time required to join the members can be shortened. have a nature.
  • Patent Document 1 discloses a prepreg sheet material in which a plurality of resin regions made of different thermoplastic resins are formed in a reinforcing fiber sheet layer aligned in a predetermined direction.
  • Patent Document 2 discloses a fiber-reinforced resin sheet in which a nonwoven fabric made of reinforcing fibers is impregnated with a plurality of different thermoplastic resins.
  • thermoplastic resin flows during welding, resulting in insufficient dimensional stability of the member during welding, and sufficient joint strength cannot be obtained under conditions where the flow is suppressed.
  • the present invention provides a prepreg having a thermoplastic resin layer containing reinforcing fibers and a thermoplastic resin, wherein the thermoplastic resin layer is present on at least one surface of the prepreg, and the thermoplastic resin layer is a thermoplastic resin layer. Containing 65.0 to 99.5% by mass of thermoplastic resin structural units with respect to 100% by mass of the total amount of resin structural units, thermosetting resin structural units and curing agent structural units,
  • the prepreg contains a total of 0.5 to 35.0% by mass of the structural units and the structural units of the curing agent.
  • FIG. 1 is a schematic diagram of a composite prepreg, which will be described later, and helps explain the method of measuring the roughness average length RSm and the average height Rc of the composite prepreg.
  • FIG. 2 is a schematic diagram of a cross section perpendicular to the plane of a composite prepreg, which will be described later, and helps explain the method of measuring the roughness average length RSm and the roughness average height Rc of the composite prepreg.
  • represents a range including the numerical values at both ends.
  • refers to a resin composition occupying a region other than the reinforcing fiber in the prepreg, that is, a composition containing a thermoplastic resin structural unit, a thermosetting resin structural unit and a curing agent structural unit, or a fiber reinforced resin
  • a resin composition that occupies a region other than reinforcing fibers in a molded article may be collectively referred to as a matrix resin.
  • thermoplastic resin layer a thermoplastic resin layer containing reinforcing fibers, a thermoplastic resin, a reactant [A] and a reactant [B] described later (that is, in the case of a composite prepreg described later shall refer to the first thermoplastic resin layer).
  • the prepreg of the present invention contains reinforcing fibers and a thermoplastic resin, and the thermoplastic resin composition is A thermoplastic resin layer containing 65.0 to 99.5% by mass of units and a total of 0.5 to 35.0% by mass of thermosetting resin structural units and curing agent structural units is formed on at least one surface of the prepreg. exists in At this time, either the structural unit of the thermosetting resin or the structural unit of the curing agent may be 0% by mass.
  • thermoplastic resin structural unit refers to the thermoplastic resin, the thermosetting resin and the curing agent in the thermoplastic resin layer. refers to the portion corresponding to the chemical structure of In other words, when the content is expressed in terms of "% by mass of the structural unit", even if the components are simply mixed to partially react to produce a reactant, if the total mass is preserved, the structural unit The unit mass % does not change.
  • the mass % of the structural units of the thermoplastic resin, the structural units of the thermosetting resin, and the structural units of the curing agent can be measured by known analytical techniques such as solution or solid NMR, mass spectrometry, or a combination thereof.
  • the matrix resin is moderately thickened and has excellent bonding strength compared to when the matrix resin is a pure thermoplastic resin.
  • An integrally molded product with excellent dimensional stability is obtained.
  • the constituent unit of the thermoplastic resin is less than 65.0% by mass, or the constituent unit of the thermosetting resin and the constituent unit of the curing agent is more than 35.0% by mass, the joint strength of the integrally molded product obtained is insufficient. Sometimes. In addition, when the constituent units of the thermosetting resin and the constituent units of the curing agent are less than 0.5% by mass, or the constituent units of the thermoplastic resin are more than 99.5% by mass, the resin flow becomes excessive and the dimension at the time of welding Stability may be insufficient.
  • the prepreg of the present invention is a prepreg having a thermoplastic resin layer containing reinforcing fibers and a thermoplastic resin as described above, and has the following first to third preferred embodiments.
  • the thermoplastic resin layer comprises a thermosetting resin monomer or prepolymer having two or more functions and a thermosetting resin monomer or prepolymer having two or more functions. is included in the form of the reaction product [A] with the curing agent.
  • reaction product [A] of a thermosetting resin monomer or prepolymer having two or more functions and a curing agent having two or more functions may be simply referred to as "reactant [A]".
  • thermoplastic resin layer contains a constituent unit of a thermosetting resin and/or a constituent unit of a curing agent in the form of a reactant [A]
  • thermoplastic resin layer is bifunctional or higher. It is meant to include a thermosetting resin monomer or prepolymer and a reactant [A] made from a bifunctional or higher curing agent, and a thermoplastic resin.
  • monomer refers to the smallest unit that constitutes a prepolymer or polymer, and serves as a constituent unit of thermoplastic resins, thermosetting resins and curing agents.
  • prepolymer refers to an intermediate product obtained by stopping the polymerization or condensation reaction of monomers at an appropriate point.
  • thermoplastic resin is a reactant made from a thermosetting resin monomer or prepolymer and a curing agent as raw materials.
  • additional effects such as improvement in heat resistance and solvent resistance and reduction in water absorption can be obtained depending on the type of thermosetting resin monomer or prepolymer and curing agent.
  • the thermoplastic resin may be simply mixed with the reactant [A], or part of the thermoplastic resin may react with part of the reactant [A].
  • the thermoplastic resin layer comprises a thermosetting resin monomer or prepolymer and/or difunctional thermosetting resin monomer or prepolymer and/or difunctional thermosetting resin constituent unit and/or curing agent constituent unit. It is contained in the form of a reactant [B] obtained by reacting a functional or higher curing agent with a thermoplastic resin.
  • reactant [B] in which a thermoplastic resin reacts with a thermosetting resin monomer or prepolymer having two or more functions and/or a curing agent having two or more functions
  • reactant [B] in which a thermoplastic resin reacts with a thermosetting resin monomer or prepolymer having two or more functions and/or a curing agent having two or more functions
  • thermoplastic resin layer contains the constituent units of the thermosetting resin and/or the constituent units of the curing agent in the form of the reactant [B]
  • thermoplastic resin layer contains the thermoplastic resin and It is meant to include a reactant [B] whose starting material is a thermosetting resin monomer or prepolymer having two or more functions and/or a curing agent having two or more functions.
  • thermoplastic resin is modified by the thermosetting resin monomer or prepolymer and/or the curing agent.
  • additional effects such as improved heat resistance and solvent resistance and reduced water absorption can be obtained.
  • the thermoplastic resin layer comprises a thermosetting resin monomer or prepolymer and/or difunctional thermosetting resin monomer or prepolymer having two or more functionalities and/or difunctional thermosetting resin constituent units and/or curing agent constituent units. Including in the form of a functional or higher curing agent.
  • thermoplastic resin layer contains a thermosetting resin constituent unit and/or a curing agent constituent unit in the form of a bifunctional or higher thermosetting resin monomer or prepolymer and/or a bifunctional or higher curing agent.
  • “comprising of” shall mean that the thermoplastic resin layer comprises a mixture of a thermoplastic resin and a di- or higher functional thermosetting resin monomer or prepolymer and/or a di- or higher functional curing agent.
  • the bifunctional or higher thermosetting resin monomer or prepolymer and/or the bifunctional or higher curing agent may be dispersed in the thermoplastic resin or may be compatible with the thermoplastic resin. , from the viewpoint of the uniformity of thickening of the matrix resin, which will be described later, it is preferable that they are compatible with each other.
  • the bifunctional or higher thermosetting resin monomer or prepolymer and/or the bifunctional or higher curing agent is added during molding of the fiber reinforced resin molded article and/or welding with another member described later.
  • the resin flow during welding is appropriately controlled, and an integrally molded product having excellent dimensional stability during welding can be obtained. Details of each component will be described below.
  • the reinforcing fibers used in the present invention include glass fibers, carbon fibers, metal fibers, aromatic polyamide fibers, polyaramid fibers, alumina fibers, silicon carbide fibers, boron fibers, basalt fibers and the like. These may be used alone, or may be used in combination of two or more as appropriate. Carbon fibers are preferably used as the reinforcing fibers because of their low specific gravity, high strength, and high elastic modulus.
  • Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, “Torayca (registered trademark)” T700S- 24K, “Torayca (registered trademark)” T300-3K, and “Torayca (registered trademark)” T1100G-24K (manufactured by Toray Industries, Inc.).
  • Reinforcing fibers that have undergone surface treatment may be used.
  • Surface treatments include metal adhesion treatment, coupling agent treatment, sizing agent treatment, and additive adhesion treatment.
  • the term "reinforcing fiber” includes the surface treatment agent.
  • the form and arrangement of the reinforcing fibers can be appropriately selected from the form of unidirectionally arranged reinforcing fibers, a laminate of unidirectionally arranged reinforcing fibers, or the form of a woven fabric.
  • the reinforcing fibers are preferably in the form of continuous fibers such as long fibers (fiber bundles) or woven fabrics arranged in one direction.
  • a reinforcing fiber bundle may be composed of a plurality of fibers of the same form, or may be composed of a plurality of fibers of different forms.
  • the number of reinforcing fibers constituting one reinforcing fiber bundle is usually 300 to 60,000, but considering the production of the base material, it is preferably 300 to 48,000, more preferably 1,000. ⁇ 24,000.
  • the range may be a combination of any of the above upper limits and any of the above lower limits.
  • the strand tensile strength measured according to the resin-impregnated strand test method of JIS R7608 (2007) is 5.5 GPa or more, a laminate having excellent bonding strength in addition to tensile strength can be obtained. ,preferable. More preferably, the strand tensile strength is 5.8 GPa.
  • the bonding strength referred to here refers to the tensile shear bonding strength obtained in accordance with ISO4587:1995 (JIS K6850 (1994)).
  • the prepreg of the present invention preferably has a reinforcing fiber amount of 30 g/m 2 or more per unit area.
  • the amount of reinforcing fibers is 30 g/m 2 or more, handling becomes easy in the work for obtaining a fiber-reinforced resin molded article or an integrally molded article.
  • the upper limit of the amount of reinforcing fibers is not particularly limited, but if it is 2,000 g/m 2 or less, the reinforcing fibers can be easily impregnated with the matrix resin, and the lightness of the prepreg can be maintained. Become.
  • thermoplastic resin used in the present invention is not particularly limited.
  • a thermoplastic resin having a bond selected from the group consisting of carbonyl bonds can be used.
  • the thermoplastic resin may be crystalline or amorphous. Further, the thermoplastic resin may be a copolymer or a modified product of the above resins, and/or a blend of two or more kinds of resins.
  • the "melting point or glass transition temperature" of a thermoplastic resin means the melting point in the case of a thermoplastic resin having a melting point (typically a crystalline thermoplastic resin), and the melting point of a thermoplastic resin having no melting point. In the case of (typically amorphous thermoplastic resins), it means the glass transition temperature.
  • the term “melting” includes not only melting by heating a thermoplastic resin having a melting point above the melting point, but also softening by heating a thermoplastic resin without a melting point above the glass transition point. Sometimes. The melting point and glass transition temperature of the thermoplastic resin here can be measured using a differential scanning calorimeter (DSC) based on JIS K7121 (2012).
  • DSC differential scanning calorimeter
  • a sealed sample container with a volume of 50 ⁇ L is filled with 1 to 10 mg of sample, the temperature is raised at a heating rate of 10 ° C./min, and the step of the DSC curve detected in the range of 30 to 400 ° C.
  • the respective temperatures are taken as the glass transition temperature and the melting point, respectively.
  • the highest melting point is taken as the melting point of the thermoplastic resin.
  • thermosetting resin monomer or prepolymer used in the present invention is a thermosetting resin (not yet Curing) is a low molecular weight body.
  • "reacting with a functional group and/or a chemical bond” means any substance that reacts with another functional group or chemical bond to form a new covalent bond. Examples of combinations of such functional groups include epoxy groups and amino groups, epoxy groups and carboxyl groups, carboxyl groups and amino groups, amide bonds and amino groups, and the like.
  • the bifunctional or higher thermosetting resin monomer or prepolymer may be a compound that also reacts with the same type of monomer or prepolymer.
  • the term "low molecular weight” as used herein refers to compounds whose molecular weight calculated from the structural formula or weight average molecular weight measured by gel permeation chromatography is less than 10,000 g/mol.
  • the preferred range of the molecular weight or weight average molecular weight is 8,000 g/mol or less, more preferably 5,000 g/mol or less, still more preferably 3,000 g/mol or less, and particularly preferably 2,000 g/mol. mol or less.
  • the weight average molecular weight as used herein refers to the weight average molecular weight measured by gel permeation chromatography and converted to polystyrene. When the molecular weight or weight-average molecular weight is 10,000 g/mol or more, the reaction of the functional groups may be difficult to occur.
  • thermosetting resin monomer or prepolymer used in the present invention is not particularly limited as long as it is a resin that undergoes reaction with heat and at least partially forms a three-dimensional crosslinked structure.
  • thermosetting resins include epoxy resins, benzoxazine resins, bismaleimide resins, unsaturated polyester resins, vinyl ester resins, phenol resins, urea resins, melamine resins and thermosetting polyimide resins. Modified products of and blended resins of two or more types can also be used. Further, these thermosetting resins may be self-curing by heating, or may be mixed with a curing agent, a curing accelerator, or the like.
  • epoxy resin used in the present invention is not particularly limited, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A Novolak epoxy resins such as brominated epoxy resins such as diglycidyl ether, epoxy resins having a biphenyl skeleton, epoxy resins having a naphthalene skeleton, epoxy resins having a dicyclopentadiene skeleton, phenol novolac epoxy resins, and cresol novolak epoxy resins , N,N,O-triglycidyl-m-aminophenol, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N , N′,N′-tetraglycidyl-4,4′-methylenedianiline, N,N,N′,N′-t
  • the bifunctional or higher functional curing agent used in the present invention is not particularly limited as long as it is a curing agent that undergoes reaction with heat to form a covalent bond.
  • examples of such curing agents include amine compounds, acid anhydrides, polyaminoamides, organic acid hydrazides and isocyanates, which are used as curing agents for epoxy resins.
  • epoxy resins used as curing agents for benzoxazine resins and phenol compounds used as curing agents for bismaleimide resins can be used.
  • thermosetting resin monomer or prepolymer and/or the bifunctional or higher curing agent it is preferable that at least two types of compounds are included as the bifunctional or higher thermosetting resin monomer or prepolymer and/or the bifunctional or higher curing agent.
  • a combination in which the above compounds form a covalent bond by reaction is used during welding. It is preferable because the matrix resin is efficiently thickened.
  • Combinations of such bifunctional or higher thermosetting resin monomers or prepolymers and/or bifunctional or higher curing agents include epoxy resins and epoxy resin curing agents.
  • amine compounds are preferable from the viewpoint of ease of control of the reaction.
  • it is preferably an aromatic amine compound, and preferably has 1 to 4 phenyl groups in the molecule.
  • an aromatic polyamine compound in which two or more phenyl groups are phenyl groups having an amino group at the para position is preferably used, and an aromatic amine compound having a sulfur atom in the molecule is more preferable. .
  • aromatic polyamines include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, tris(3-aminophenyl)phosphine oxide, metaxylylenediamine, (p-phenylenemethylene)dianiline, and these.
  • examples include various derivatives such as alkyl-substituted products and isomers having different amino group positions.
  • 4,4'-diaminodiphenyl sulfone and 3,3' which are excellent in heat resistance and elastic modulus and have a small decrease in linear expansion coefficient and heat resistance due to moisture absorption, are obtained for aviation and spacecraft applications.
  • -Diaminodiphenyl sulfone is preferably used. These aromatic amine compounds may be used alone or in combination of two or more.
  • thermosetting resin A range of 60.0 to 99.5% by mass for the monomer or prepolymer and 0.5 to 40.0% by mass for the curing agent is preferable because the viscosity of the matrix resin is appropriately increased during welding.
  • thermosetting resin monomer or prepolymer and the curing agent are compatible with the thermoplastic resin.
  • thermoplastic resin layer when impregnating the reinforcing fibers with the matrix resin, part of the thermoplastic resin reacts with a part of the bifunctional or higher thermosetting resin monomer or prepolymer and a part of the bifunctional or higher curing agent.
  • part of the thermoplastic resin when impregnating the reinforcing fibers with the matrix resin, part of the thermoplastic resin reacts with a part of the bifunctional or higher thermosetting resin monomer or prepolymer and a part of the bifunctional or higher curing agent. may contain reactants produced in
  • the reactant [A] used in the present invention is a reaction product of the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent, and It is a compound in which the group and the functional group of the curing agent have reacted.
  • the functional group reacted means that a new covalent bond was formed. Examples of combinations of such functional groups include an epoxy group and an amino group, a phenolic hydroxyl group and an epoxy group generated by ring-opening of a benzoxazine ring, and a maleimide group and an amino group.
  • the reactant [A] may be used alone, or two or more reactants may be used in combination.
  • a thermosetting resin having one functional group in one molecule the glass transition temperature of the reaction product with the curing agent is lowered, which may adversely affect the heat resistance of the matrix resin.
  • the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent used as raw materials for the reactant [A] are not particularly limited, but the above bifunctional or higher thermosetting resin monomer or prepolymer
  • the compounds exemplified in the description of the polymer and the bifunctional or higher functional curing agent can be mentioned.
  • a measurement sample is obtained by extracting a resin composition from a predetermined amount of prepreg using hexafluoroisopropanol. This is done by judging whether or not there is an increase in area. If the thermoplastic resin does not dissolve in hexafluoroisopropanol, other eluent may be used for the measurement. If there is no solvent that dissolves the thermoplastic resin, a predetermined amount of the matrix resin sampled from the prepreg may be used as a measurement sample, and a known analysis method such as solid NMR may be combined.
  • GPC gel permeation chromatography
  • the reactant [A] is compatible with the thermoplastic resin.
  • a reaction may occur between the reactant [A] and the thermoplastic resin, ie the thermoplastic resin layer may further contain the reactant of the thermoplastic resin and the reactant [A].
  • the thermoplastic resin and the reactant [A] are compatible with the thermoplastic resin.
  • Judgment of compatibility between the thermoplastic resin and each reactant is performed by thinly sectioning the prepared prepreg, dyeing it, and using a transmission electron microscope (manufactured by Hitachi, Ltd., H-7100) at an acceleration voltage of 100 kV.
  • the presence or absence of a phase separation structure is confirmed by obtaining a transmission electron image at an appropriate magnification.
  • a case where a phase separation structure is not confirmed is judged to be "compatible”
  • a case where a phase separation structure is confirmed is judged to be "phase separation”.
  • As the staining agent OsO 4 and RuO 4 can be selectively used according to the resin composition so that the morphology has sufficient contrast.
  • the appropriate magnification is 50,000 times when the structure period is 1 nm or more and less than 10 nm, 20,000 times when the structure period is 10 nm or more and less than 100 nm, and when the structure period is 100 nm or more and less than 1,000 nm 2,000 times, and 1,000 times when the structural period is 1,000 nm or more.
  • the reactant [A] preferably forms a semi-IPN structure or an IPN structure with the thermoplastic resin.
  • IPN is an abbreviation for interpenetrating polymer network, and is a type of polymer blend. It means that the blend component polymer is a crosslinked polymer, and different crosslinked polymers are partially or wholly entangled with each other to form a multiple network structure.
  • a semi-IPN is one in which a heavy network structure is formed by a cross-linked polymer and a linear polymer.
  • the reactant [A] is a constituent unit of the thermosetting resin and a constituent unit of the curing agent. It is preferable to contain 60.0 to 99.5% by mass of thermosetting resin structural units and 0.5 to 40.0% by mass of curing agent structural units with respect to the total amount of 100% by mass.
  • the "constitutional unit of the thermosetting resin” and the “constituent unit of the curing agent” refer to the thermosetting resin monomer or prepolymer which is the raw material of the reaction product [A] and the curing It refers to the moieties that correspond to the chemical structure of the agent.
  • the reactant [B] used in the present invention is a reaction product of a bifunctional or higher thermosetting resin monomer or prepolymer and/or a bifunctional or higher curing agent and a thermoplastic resin. It is a compound obtained by reacting a functional group of a group and/or a curing agent with a functional group of a thermoplastic resin.
  • the functional group reacted means that a new covalent bond was formed by reacting with another functional group or chemical bond.
  • examples of combinations of such functional groups include epoxy groups and amino groups, epoxy groups and carboxyl groups, carboxyl groups and amino groups, amide bonds and amino groups, and the like.
  • the reactant [B] may be used alone, or two or more reactants may be used in combination. In the case of a thermosetting resin having one functional group in one molecule, thickening of the reactant [B] may be insufficient compared to the thermoplastic resin that is the raw material of the reactant [B]. .
  • the bifunctional or higher thermosetting resin monomer or prepolymer used in the present invention is not particularly limited, but the resins exemplified above such as bifunctional or higher epoxy resins, benzoxazine resins and bismaleimide resins can be mentioned. can.
  • the bifunctional or more functional curing agent used in the present invention is not particularly limited, but includes bifunctional or more functional amine compounds, epoxy resins used as curing agents for benzoxazine resins, and phenol compounds used as curing agents for bismaleimide resins. can be mentioned.
  • Confirmation of the presence of the reactant [B] in the prepreg can be performed in the same manner as the confirmation of the presence of the reactant [A] in the prepreg.
  • Gel permeation chromatography (GPC) using hexafluoroisopropanol as an eluent is used.
  • a measurement sample is obtained by extracting a resin composition from a predetermined amount of prepreg using hexafluoroisopropanol. This is done by judging whether or not there is an increase in area.
  • another eluent may be used as appropriate for the measurement. If there is no solvent for dissolving the reactant [B], a predetermined amount of the matrix resin taken from the prepreg may be used as a measurement sample, and a known analysis technique such as solid NMR may be combined.
  • the reactant [B] is soluble in a solvent.
  • the reactant [B] is soluble in a solvent means that a uniform solution can be obtained by mixing the reactant [B] in the solvent.
  • homogeneous solution refers to a state in which no separation is visually observed. When a solution is obtained with no visible separation when stirred and mixed at °C, the case is defined as “soluble”, and the other case is defined as “insoluble”.
  • the reactant [B] has a crosslinked structure.
  • “having a crosslinked structure” means that the molecular chains of the reactant [B] have a network-like three-dimensional structure.
  • the existence of a crosslinked structure can be confirmed by various analyses. Specific examples include FT-IR, solid-state NMR, and X-ray photoelectron spectroscopy.
  • the thermoplastic resin layer in the prepreg of the present invention may contain the reactant [A] together with the reactant [B]. Thereby, the reactant [B] can be efficiently thickened.
  • the reactant [A] may be used alone, or two or more reactants may be used in combination.
  • the reactant [A] is compatible with the reactant [B]. Judgment of compatibility between reactant [A] and reactant [B] can be carried out by the same method as for judgment of compatibility between reactant [A] and the thermoplastic resin described above.
  • the reactant [B] contains the constituent units of the thermosetting resin and the constituent units of the curing agent. It is preferable to contain 60.0 to 99.5% by mass of thermosetting resin structural units and 0.5 to 40.0% by mass of curing agent structural units with respect to the total amount of 100% by mass.
  • thermosetting resin structural unit and “curing agent structural unit” refer to the chemical structures of the thermosetting resin and the curing agent that are the raw materials of the reactant [B] in the reactant [B]. It refers to the part corresponding to each.
  • the basis weight of the thermoplastic resin layer in the prepreg of the present invention is preferably 10 g/m 2 or more.
  • the basis weight of the thermoplastic resin layer is 10 g/m 2 or more, a sufficient thickness for exhibiting excellent bonding strength can be obtained, and a sufficient layer thickness for integration with other members can be obtained. Therefore, it is preferable. It is more preferably 20 g/m 2 or more, still more preferably 50 g/m 2 or more.
  • the upper limit is not particularly limited, it is preferably 1000 g/m 2 or less because the amount of the thermoplastic resin is not too large compared to the reinforcing fiber, and a fiber-reinforced resin base material having excellent specific strength and specific elastic modulus can be obtained.
  • the basis weight refers to the mass (g) of the thermoplastic resin contained per 1 m 2 of the fiber-reinforced resin substrate.
  • the prepreg of the present invention includes the above-described thermoplastic resin layer (hereinafter referred to as "first thermoplastic resin layer” in the description of this embodiment), and in addition, a second A thermoplastic resin layer containing at least one thermoplastic resin having a structural unit of a thermoplastic resin different from the thermoplastic resin contained in the thermoplastic resin layer of 1 (hereinafter, in the description of this embodiment, a “second thermal (hereinafter referred to as "plastic resin layer”).
  • first thermoplastic resin layer it may have a thermosetting resin layer containing at least one or more thermosetting resins, which is bonded to the thermoplastic resin layer by forming an interface with the thermoplastic resin layer.
  • composite prepreg such an aspect is collectively referred to as "composite prepreg”.
  • the second thermoplastic resin layer or thermosetting resin layer and the first thermoplastic resin layer are adjacent to each other in a layered manner.
  • Adjacent in layers means, for example, as shown in FIG. 2, in a cross section obtained by cutting perpendicular to the plane direction of the prepreg, the thermoplastic resin layer 3 and the thermosetting resin layer that are continuous in the plane direction 4 is a state in which the interfaces 5 are formed and are in close contact with each other.
  • the thermoplastic resin is not in a layered and continuous state, but in the form of particles, fibers, non-woven fabric, etc., the proportion of the area where the epoxy resin is exposed on the surface increases, and the thermoplastic resin on the outermost surface increases. Since the coverage of the coating decreases, the weldability tends to decrease.
  • the thermoplastic resin contained in the second thermoplastic resin layer has a thermoplastic resin structure different from that of the thermoplastic resin contained in the first thermoplastic resin layer (or a constituent unit of the thermoplastic resin). have units.
  • the difference in resin species is determined by the structural identity that characterizes the thermoplastic resin.
  • a polyamide resin is a resin having a repeating unit containing an amide bond
  • a polycarbonate resin is a resin having a repeating unit containing a carbonate bond. I judge.
  • These composite prepregs have a first thermoplastic resin layer on at least one surface, and the first thermoplastic resin layer contains continuous reinforcing fibers. It is preferable that the reinforcing fibers are distributed in an area of 80% or more of the thickness of each of the first thermoplastic resin layer and the second thermoplastic resin layer or the thermosetting resin layer.
  • the composite prepreg of the present invention can be obtained by observing the state of the resin layer at the interface in a cross section obtained by cutting perpendicularly to the plane direction of the fiber reinforced resin substrate, and Adhesion can be evaluated at the same time. Specifically, in a plan view of the composite prepreg, from a direction at an angle different by 45 degrees regardless of whether it is clockwise or counterclockwise with respect to the fiber direction of arbitrary continuous reinforcing fibers contained in the first thermoplastic resin layer , a cross section perpendicular to the plane of the fiber-reinforced resin substrate containing the continuous reinforcing fibers may be observed.
  • the roughness average length RSm defined in JIS B0601 (2001) of the cross-sectional curve formed by the interface between the two resin layers is 100 ⁇ m or less, and the roughness average height Rc is 3.0 ⁇ m. It is preferably 5 ⁇ m or more.
  • RSm is 100 ⁇ m or less, not only chemical and/or physical bonding strength but also mechanical bonding strength called “interpenetration” is added, making it difficult to separate the two resin layers.
  • the lower limit of RSm is not particularly limited, it is preferably 15 ⁇ m or more from the viewpoint of avoiding a decrease in mechanical bonding strength due to stress concentration.
  • Rc of the cross-sectional curve when the Rc of the cross-sectional curve is 3.5 ⁇ m or more, not only the mechanical bonding force due to entanglement is exhibited, but also the continuous reinforcing fibers existing on the interface are chemically and/or physically bonded to the both resin layers. By the direct bonding, the adhesiveness between the two resin layers is improved.
  • a preferable range of Rc is 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, in which the continuous reinforcing fibers are easily contained in both the resin layers and the adhesion is further improved.
  • the upper limit of Rc is not particularly limited, it is preferably 100 ⁇ m or less from the viewpoint of avoiding a decrease in mechanical bonding strength due to stress concentration.
  • a method for measuring the roughness average height Rc and the roughness average length RSm of the cross-sectional curve a known method can be used. For example, a method of measuring from a cross-sectional image obtained using X-ray CT, a method of measuring from an elemental analysis mapping image by an energy dispersive X-ray spectrometer (EDS), or an optical microscope or scanning electron microscope (SEM) or transmission type A method of measuring from a cross-sectional observation image by an electron microscope (TEM) can be mentioned. In observation, both resin layers may be dyed to adjust the contrast.
  • EDS energy dispersive X-ray spectrometer
  • SEM optical microscope or scanning electron microscope
  • TEM electron microscope
  • the roughness average height Rc and the roughness average length RSm of the cross-sectional curve are measured in a range of 500 ⁇ m ⁇ 500 ⁇ m. Calculation of Rc and RSm from the cross-sectional observation image can be performed by the method described in Examples described later.
  • the pressure time is increased by increasing the number of nip rolls to be pressed.
  • the viscosity of the thermoplastic resin can be lowered by increasing the pressure to be applied or by setting the surface temperature of a member such as a nip roll to be heated and pressed to be high.
  • the prepreg of the present invention can be used alone or laminated with a metal member, a prepreg using a thermosetting resin as the matrix resin, a prepreg using a thermoplastic resin as the matrix resin, or the like to form a preform.
  • the fiber-reinforced resin molded article of the present invention can be produced by molding a preform containing the prepreg of the present invention described above, and is typically produced by laminating a plurality of the prepregs and then applying heat and pressure. can be done.
  • a method for applying heat and pressure for example, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like is employed.
  • the prepreg or composite prepreg of the present invention described above is laminated alone or together with other prepregs, and press molding, autoclave molding, A method of molding by bagging molding method, wrapping tape method, internal pressure molding method, etc., hand lay-up method, filament winding method, using the composite prepreg of the present invention and other fiber reinforced resin base material, fiber base material, A method of molding by a pultrusion method, a resin injection molding method, a resin transfer molding method, or the like can be mentioned.
  • the fiber-reinforced resin molded article of the present invention can be produced as an integrally molded product with good productivity by heat-sealing another member (adherend) via the thermoplastic resin layer.
  • the adherend is not particularly limited as long as it is a member that can be thermally welded to the thermoplastic resin layer. Examples include a microfabricated member into which resin is inserted.
  • the adherend may also be the fiber-reinforced resin molding of the present invention. That is, it is also possible to join the thermoplastic resin layers of the fiber-reinforced resin molded article of the present invention to form an integrated molded article.
  • the strength of joints in an integrally molded product can be evaluated based on ISO4587:1995 (JIS K6850 (1994)) and ASTM D7291-07.
  • the tensile shear bond strength measured based on ISO4587:1995 is preferably 20 MPa or higher, more preferably 25 MPa or higher, and still more preferably 28 MPa or higher when the test environment temperature is 23°C.
  • T800S “Torayca (registered trademark)” T800SC-24000 (24,000 fibers, tensile strength 5.9 GPa, tensile modulus 294 GPa, tensile elongation 2.0% carbon fiber, manufactured by Toray Industries, Inc.)
  • T700S “Torayca (registered trademark)” cloth CK6273C (“Torayca (registered trademark)” T700SC-12000 (12,000 fibers, tensile strength 4.9 GPa, tensile modulus 230 GPa, tensile elongation 2.1% Carbon fiber, plain weave, basis weight 192 g/m 2 , manufactured by Toray Industries, Inc.).
  • CM4000 Terpolymerized polyamide resin, melting point 155°C, manufactured by Toray Industries, Inc.
  • CM1007 polyamide 6, melting point 225°C, manufactured by Toray Industries, Inc.
  • Thermoplastic resin “Amilan (registered trademark)” CM1007 and bifunctional or higher thermosetting A resin monomer or prepolymer "jER (registered trademark)” 828 was mixed at a mass ratio of 90:10, melt-kneaded at 260°C for 30 minutes, and formed into a film.
  • thermoplastic resin used for the second thermoplastic resin layer > - "KEPSTAN (registered trademark)" 7002 (polyether ketone ketone, melting point 331°C, glass transition temperature 162°C, manufactured by Arkema).
  • thermosetting resin monomer or prepolymer > ⁇ “jER (registered trademark)” 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation: epoxy equivalent 184 to 194 g / eq, weight average molecular weight about 370 g / mol) ⁇ “Sumiepoxy (registered trademark)” ELM434 (tetraglycididiaminodiphenylmethane, manufactured by Sumitomo Chemical Co., Ltd.: epoxy equivalent 120 g / eq, molecular weight 423 g / mol) ⁇ Fa (Bisphenol F-aniline type benzoxazine resin, manufactured by Shikoku Chemical Industry Co., Ltd.: epoxy equivalent 184 to 194 g / eq, molecular weight 434.52 g / mol) ⁇ "Compimide (registered trademark)” MDAB (4,4'-bismaleimide-diphenylmethane, manufactured by Evonik Industries AG:
  • ⁇ Bifunctional or higher functional curing agent> ⁇ Seikacure-S (4,4'-diaminodiphenyl sulfone, manufactured by Wakayama Seika Kogyo Co., Ltd.: active hydrogen equivalent 62 g / eq, molecular weight 248 g / mol, used as a curing agent for epoxy resin) ⁇ Tris(3-aminophenyl)phosphine oxide (manufactured by Katayama Chemical Industry Co., Ltd.: active hydrogen equivalent 54 g/eq, molecular weight 323 g/mol, used as a curing agent for epoxy resin) ⁇ DICY7 (dicyandiamide, manufactured by Mitsubishi Chemical Corporation, molecular weight 84 g/mol, used as curing agent for epoxy resin) - "Araldite (registered trademark)" MY0610 (triglycidyl-meta-aminophenol type epoxy resin, manufactured by Huntsman Corporation: epoxy equivalent 114 g/eq
  • thermosetting resin composition ⁇ Other materials used in the thermosetting resin composition> ⁇ “Sumika Excel (registered trademark)” PES5003P (polyethersulfone, manufactured by Sumitomo Chemical Co., Ltd.) ⁇ "Virantage (registered trademark)” VW10700RFP (polyethersulfone, manufactured by Solvay SA) - "Matrimid (registered trademark)” 9725 (polyimide, manufactured by Huntsman Advanced Materials) - EPTS (ethyl p-toluenesulfonate, manufactured by Tokyo Chemical Industry Co., Ltd.).
  • thermosetting resin monomer or prepolymer and bifunctional or higher curing agent > ⁇ Reactants (A-1 to A-7) prepared by the following method A bifunctional or higher thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent are charged into a kneading device at the ratio shown in Table 1, and heat kneaded at 180 ° C. for 5 minutes to obtain a bifunctional or higher epoxy. Reaction products A-1 to A-4, A-6 and A-7 of resin and amine compound were obtained.
  • thermosetting resin monomer or prepolymer having a functionality of two or more and/or a curing agent having a functionality of two or more and polyamide 6.
  • "Amilan (registered trademark)" CM1007 and a bifunctional or higher thermosetting resin monomer or prepolymer are put into a kneading device at the ratio shown in Table 5, and heated and kneaded at 260 ° C. for 30 minutes.
  • Add a bifunctional or higher curing agent, heat knead at 260 ° C. for 30 minutes, and bifunctional or higher thermosetting resin monomer or prepolymer and / or bifunctional or higher curing agent and polyamide 6 reaction product B- 5-B-10 and B-12 were obtained.
  • ⁇ Thermosetting prepreg> In a kneader, add "jER (registered trademark)” 828, “Sumiepoxy (registered trademark)” ELM434 and “Sumika Excel (registered trademark)” PES5003P with the composition and ratio shown in Table 3, and knead at 150 ° C. or higher. and stirred for 1 hour to dissolve "Sumika Excel (registered trademark)" PES5003P to obtain a transparent viscous liquid. After cooling the liquid to 100° C. or less while kneading, Seikacure-S was added and further kneaded to obtain a thermosetting resin composition.
  • thermosetting resin composition using benzoxazine resin was prepared by the following method. "Araldite (registered trademark)" MY0610 and “Virantage (registered trademark)” VW10700RFP are kneaded in a kneader, heated to 150°C or higher, and stirred for 1 hour to dissolve "Virantage (registered trademark)" VW10700RFP. to obtain a transparent viscous liquid. After the liquid was cooled to 100° C. or less while being kneaded, a benzoxazine resin was added and further kneaded until completely dissolved to obtain a thermosetting resin composition.
  • thermosetting resin composition using bismaleimide resin was prepared by the following method.
  • "Compimide (registered trademark)” TM124 and “Matrimid (registered trademark)” 9725 are kneaded in a kneader, heated to 120°C or higher, and stirred for 1 hour to dissolve "Matrimid (registered trademark)" 9725. to obtain a transparent viscous liquid.
  • a mixture of “Compimide (registered trademark)” MDAB and “Compimide (registered trademark)” TDAB preheated to 140° C. is added and further kneaded, A thermosetting resin composition was obtained.
  • thermosetting resin composition was coated on release paper with a resin basis weight of 50 g/m 2 using a knife coater to prepare a resin film.
  • This resin film is superimposed on both sides of a reinforcing fiber sheet (basis weight: 190 g/m 2 ) in which the reinforcing fibers of the reinforcing fibers [A] are aligned in one direction, and a heat roll is used to heat and press the thermosetting resin composition.
  • the material was impregnated to obtain a thermoset prepreg.
  • thermoplastic resin The melting point and glass transition temperature of thermoplastic resins were measured using a differential scanning calorimeter (DSC) based on JIS K7121 (2012). A sealed sample container with a volume of 50 ⁇ L is filled with 1 to 10 mg of sample, the temperature is raised at a heating rate of 10 ° C./min, and the step of the DSC curve detected in the range of 30 to 400 ° C. The respective temperatures were taken as the glass transition temperature and the melting point, respectively. When multiple melting points or glass transition temperatures were observed in a mixture or the like, the highest melting point was adopted as the melting point of the thermoplastic resin.
  • DSC differential scanning calorimeter
  • the prepared fiber-reinforced resin molded body was cut into two pieces having a width of 250 mm and a length of 92.5 mm with the 0° direction as the longitudinal direction of the test piece, and dried in a vacuum oven for 24 hours. After that, the two panels are superimposed so that the 0° direction is the length direction and the range of 12.5 mm in length from the end of the two panels becomes the joint surface.
  • Tables 2-4 and Tables 6-11 The overlapping surfaces are welded by applying a pressure of 1 MPa at the described welding temperature (the melting point of the thermoplastic resin + 25 ° C., the glass transition temperature + 100 ° C. if the melting point is not shown) and holding for 6 minutes, An integrally molded product for tensile shear bond strength evaluation was obtained.
  • the average thicknesses of the two fiber-reinforced resin molded bodies before welding are T1 and T2, respectively, and the integral molded product after welding is measured.
  • the average thickness was T3
  • the rate of change in thickness before and after welding was calculated as (T1+T2-T3)/(T1+T2) ⁇ 100, and the results were evaluated as follows.
  • the results are shown in Tables 2 to 4 and Tables 6 to 11, with "compatible" when no phase separation structure was confirmed and "phase separation” when the phase separation structure was confirmed.
  • the staining agent OsO 4 and RuO 4 were selectively used according to the resin composition so as to provide sufficient contrast in the morphology.
  • the appropriate magnification is 50,000 times when the structure period is 1 nm or more and less than 10 nm, 20,000 times when the structure period is 10 nm or more and less than 100 nm, and when the structure period is 100 nm or more and less than 1,000 nm 2,000 times, and 1,000 times when the structural period is 1,000 nm or more.
  • Example 1 Using carbon fiber T800S as the reinforcing fiber, "Amilan (registered trademark)" CM1007 as the thermoplastic resin, and A-1 shown in Table 1 as the reactant [A], a prepreg was produced as follows.
  • thermoplastic resin and the reactant A-1 were put into a kneading device at the ratio shown in Table 2, and heat-kneaded at 260° C. for 5 minutes to obtain a mixture of the thermoplastic resin and the reactant [A]. rice field.
  • the mass % of the thermoplastic resin corresponds to the mass % of the structural unit of the thermoplastic resin with respect to 100 mass % of the total amount of the structural unit of the thermoplastic resin, the structural unit of the thermosetting resin and the structural unit of the curing agent.
  • the mass% of the reactant [A] is the composition of the thermosetting resin structural unit and the curing agent relative to the total amount of 100% by mass of the thermoplastic resin structural unit, the thermosetting resin structural unit and the curing agent structural unit It corresponds to the total mass % of the unit.
  • a reinforcing fiber sheet (weight per unit area of 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, an aqueous dispersion of the freeze-ground mixture is applied (weight per unit area of the freeze-ground mixture is 100 g/m 2 ), and dried. After that, the continuous reinforcing fiber sheet was impregnated with the mixture while applying heat and pressure to obtain a prepreg.
  • Example 2 A prepreg, a fiber-reinforced resin molding, and an integrated molding were produced in the same manner as in Example 1, except that the kneading time of the thermoplastic resin and the reactant A-1 was changed from 5 minutes to 30 minutes. Table 2 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded product, and the integrally molded product.
  • Example 3 A prepreg, a fiber-reinforced resin molding, and an integrated molding were produced in the same manner as in Example 1, except that A-2 to A-5 listed in Table 1 were used as the reactant [A].
  • Table 2 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded product, and the integrally molded product.
  • T800S as a reinforcing fiber
  • CM1007 as a thermoplastic resin
  • jER registered trademark
  • 828 as a bifunctional or higher thermosetting resin monomer or prepolymer
  • a bifunctional or higher curing agent Seikacure-S was used to prepare a prepreg as follows.
  • thermoplastic resin, a bifunctional or higher thermosetting resin monomer or prepolymer, and a bifunctional or higher curing agent are put into a kneading device in the proportions shown in Table 3, and heat-kneaded at 260° C. for 5 minutes. A mixture of plastic resin and reactant [A] was obtained.
  • a reinforcing fiber sheet (weight per unit area of 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, an aqueous dispersion of the freeze-ground mixture is applied (weight per unit area of the freeze-ground mixture is 100 g/m 2 ), and dried. After that, the continuous reinforcing fiber sheet was impregnated with the mixture while applying heat and pressure to obtain a prepreg.
  • Example 8 Prepreg and fiber reinforced resin molding in the same manner as in Example 7 except that "jER (registered trademark)" 828 and “Sumiepoxy (registered trademark)” ELM434 were used as bifunctional or higher thermosetting resin monomers or prepolymers. A body and an integrally molded product were produced. Table 3 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded product, and the integrally molded product.
  • Example 9 and 10 With respect to the total amount of 100% by mass of the thermoplastic resin and the reactant [A], the ratio of the thermoplastic resin and the reactant [A] was set to be the mass% described in Table 3.
  • a prepreg, a fiber-reinforced resin molded article, and an integrally molded article were produced in the same manner.
  • Table 3 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded product, and the integrally molded product.
  • Example 11 and 12 A prepreg, a fiber-reinforced resin molding, and an integrated molding were produced in the same manner as in Example 1, except that A-6 to A-7 listed in Table 1 were used as the reactant [A].
  • Table 3 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded product, and the integrally molded product.
  • a reinforcing fiber sheet (weight per unit area: 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and a thermoplastic resin film (weight per unit area: 50 g/m 2 ) used for the second thermoplastic resin layer is applied to one side of the continuous fiber sheet. is placed on the surface of the, heated with an IR heater to melt the thermoplastic resin used for the second thermoplastic resin layer, attached to the entire surface of one side of the continuous reinforcing fiber sheet, and the thermoplastic used for the second thermoplastic resin layer It was pressed with three pairs of nip rolls kept at a temperature 100° C. lower than the melting point of the resin, impregnated with the reinforcing fiber sheet, and a semi-preg with the fiber reinforced sheet exposed on the other side was obtained.
  • thermoplastic resin and the reactant A-4 are put into a kneading device at the ratio shown in Table 4, and heat-kneaded at 260 ° C. for 5 minutes to obtain the thermoplastic resin and the reactant [A].
  • a mixture was obtained.
  • An aqueous dispersion of the freeze-pulverized mixture is applied to the other surface of the obtained semi-preg (weight per unit area of the freeze-pulverized mixture is 100 g/m 2 ), and heat roll is performed at a temperature of 25°C + the melting point of the thermoplastic resin.
  • a composite prepreg was obtained by impregnating a continuous reinforcing fiber sheet with the mixture while heating and pressurizing.
  • a composite prepreg was produced as follows using the composition of
  • thermoplastic resin and the reactant A-4 were put into a kneading apparatus at the ratio shown in Table 4, and heat-kneaded at 260° C. for 5 minutes to obtain a mixture of the thermoplastic resin and the reactant [A]. rice field.
  • a reinforcing fiber sheet (weight per unit area of 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and the freeze-ground mixture is sprinkled on one side of the reinforcing fiber sheet (weight of the frozen-ground mixture: 100 g/m 2 ), followed by an IR heater.
  • thermosetting resin composition (basis weight: 50 g/m 2 ) is superimposed on the other surface of the obtained semi-preg, heat rolled, and heated and pressurized to remove the uncured film.
  • a composite prepreg was obtained by impregnating a continuous reinforcing fiber sheet with a film made of a thermosetting resin composition.
  • thermosetting prepreg prepared by the above method cut to a similar shape
  • the axial direction of the reinforcing fiber was set to 0. °
  • the direction perpendicular to the axis is defined as 90 °
  • the structure is [0 ° / 90 °] 2S (the symbol S indicates mirror symmetry)
  • the outermost layer is the composite prepreg of the two sheets (the thermoplastic resin layer is The prepreg was laminated so that the thermosetting prepreg was used as the outermost surface) and the inner layer.
  • a fiber reinforced resin molded body was produced by applying a pressure of 1 MPa to the laminated prepreg with a press and heating at 230 ° C. for 12 minutes to produce a fiber reinforced resin molded body. , 1 MPa and held at 250° C. for 6 minutes to weld the overlapped surfaces to obtain an integrally molded product for tensile shear bonding strength evaluation.
  • Table 4 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 15 and 17 A composite prepreg, a fiber-reinforced resin molding, and an integrated molding were produced in the same manner as in Example 13, except that A-6 and A-7 shown in Table 1 were used as the reactant [A].
  • Table 4 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 16 Using A-6 described in Table 1 as the reactant [A], apply a pressure of 1 MPa to the laminated prepreg with a press, heat at 180 ° C. for 1 hour, and then heat at 230 ° C. for 1 hour.
  • a composite prepreg, a fiber-reinforced resin molded article, and an integrally molded product were produced in the same manner as in Example 14, except that a fiber-reinforced resin molded article was produced.
  • Table 4 shows the evaluation results of the physical properties of the composite prepreg, fiber-reinforced resin molded product, and integrally molded product.
  • Example 18 Using A-7 described in Table 1 as the reactant [A], the laminated prepreg was pressed with a press at a pressure of 1 MPa, heated at 140 ° C. for 1 hour, then heated at 180 ° C. for 1 hour, A composite prepreg, a fiber-reinforced resin molded article, and an integrally molded product were produced in the same manner as in Example 14, except that a fiber-reinforced resin molded article was produced by further heating at 230° C. for 1 hour.
  • Table 4 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • a reinforcing fiber sheet (weight per unit area of 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, an aqueous dispersion of freeze-pulverized thermoplastic resin is applied (weight per unit area of the freeze-pulverized reactant is 100 g/m 2 ), and dried. After that, the continuous reinforcing fiber sheet was impregnated with the thermoplastic resin while being heated and pressurized by heat rolling at a temperature of +25° C., the melting point of the thermoplastic resin, to obtain a prepreg.
  • thermoplastic resin and the reactant [A] With respect to the total amount of 100% by mass of the thermoplastic resin and the reactant [A], the ratio of the thermoplastic resin and the reactant [A] was set to be the mass% described in Table 3.
  • a prepreg, a fiber-reinforced resin molded article, and an integrally molded article were produced in the same manner.
  • Table 3 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded product, and the integrally molded product.
  • thermoplastic resin layer is in the form of the reactant [A], and the total amount of the thermoplastic resin structural units, the thermosetting resin structural units and the curing agent structural units Contain 65.0 to 99.5% by mass of thermoplastic resin structural units with respect to 100% by mass, and contain 0.5 to 35.0% by mass of thermosetting resin structural units and curing agent structural units in total.
  • the dimensional stability during welding and the tensile shear bond strength at 23 ° C. are excellent in balance, but if the reactant [A] is not included or the content of each structural unit is outside the above range, It can be seen that either the tensile shear bond strength at 23° C. or the dimensional stability during welding fails.
  • the composite prepreg containing the reactant [A] in the thermoplastic resin layer and having the content of each structural unit satisfying the above range has dimensional stability during welding and tensile shear at 23 ° C. It can be seen that the bonding strength is well balanced.
  • a reinforcing fiber sheet (basis weight 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, an aqueous dispersion of freeze-pulverized B-1 is applied (a basis weight of the freeze-pulverized reaction product is 100 g/m 2 ), and dried. After that, the continuous reinforcing fiber sheet was impregnated with the reactant while applying heat and pressure to obtain a prepreg.
  • Example 20 to 24 A prepreg, a fiber-reinforced resin molding, and an integrated molding were produced in the same manner as in Example 19, except that B-2 to B-6 shown in Table 5 were used as the reactant [B].
  • Table 6 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent are put into a kneading device, and heated and kneaded at 260 ° C. for 5 minutes.
  • a reaction product [A] of a thermosetting resin monomer or prepolymer having a functionality of 2 or more and a curing agent having a functionality of 2 or more was obtained.
  • a reinforcing fiber sheet (weight per unit area of 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, an aqueous dispersion of the freeze-ground mixture is applied (weight per unit area of the freeze-ground mixture is 100 g/m 2 ), and dried.
  • a prepreg was obtained by heat-rolling at a temperature of 25°C + the melting point of the thermoplastic resin that is the raw material of B-1, and impregnating the continuous reinforcing fiber sheet with the mixture while heating and pressurizing. Further, according to the above (2), A pressure of 1 MPa was applied to the laminated prepregs by a press and the laminate was heated at 260° C.
  • Examples 26-29 A prepreg, a fiber-reinforced resin molded article, and an integrated product were prepared in the same manner as in Example 19, except that B-7, B-8, B-11 and B-12 listed in Table 5 were used as the reactant [B]. A molded article was produced. Table 7 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Table 7 shows the evaluation results of the physical properties of the prepreg, fiber-reinforced resin molded product, and integrally molded product.
  • Example 30 Using carbon fiber T800S as the reinforcing fiber, B-5 described in Table 5 as the reactant [B], and "KEPSTAN (registered trademark)" 7002 as the thermoplastic resin used in the second thermoplastic resin layer, A composite prepreg was produced as follows.
  • a reinforcing fiber sheet (weight per unit area: 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and a thermoplastic resin film (weight per unit area: 50 g/m 2 ) used for the second thermoplastic resin layer is applied to one side of the continuous fiber sheet. is placed on the surface of the, heated with an IR heater to melt the thermoplastic resin used for the second thermoplastic resin layer, attached to the entire surface of one side of the continuous reinforcing fiber sheet, and the thermoplastic used for the second thermoplastic resin layer It was pressed with three pairs of nip rolls kept at a temperature 100° C. lower than the melting point of the resin, impregnated with the reinforcing fiber sheet, and a semi-preg with the fiber reinforced sheet exposed on the other side was obtained.
  • an aqueous dispersion of the freeze-pulverized reaction product [B] is applied to the other surface of the obtained semi-preg (weight per unit area of the freeze-pulverized mixture: 100 g/m 2 ), and the thermoplastic material that is the raw material of B-5 is applied.
  • a composite prepreg was obtained by impregnating the continuous reinforcing fiber sheet with the mixture while heat-rolling at a temperature of +25° C. to the melting point of the resin and applying heat and pressure.
  • Example 31 Using carbon fiber T800S as the reinforcing fiber, B-5 shown in Table 5 as the reactant [B], and the composition shown in Table 8 as the thermosetting resin composition, a composite prepreg was prepared as follows. made.
  • a reinforcing fiber sheet (weight per unit area of 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and the freeze-ground mixture is sprinkled on one side of the reinforcing fiber sheet (weight of the frozen-ground mixture: 100 g/m 2 ), followed by an IR heater. to melt the mixture, attach it to the entire surface of one side of the continuous reinforcing fiber sheet, and use three pairs of nip rolls maintained at a temperature 100 ° C. lower than the melting point or glass transition temperature of the thermoplastic resin that is the raw material of B-5. Pressurized and impregnated into the reinforcing fiber sheet to obtain a semi-preg with the fiber reinforcing sheet exposed on the other side.
  • thermosetting resin composition (basis weight: 50 g/m 2 ) is superimposed on the other surface of the obtained semi-preg, heat rolled, and heated and pressurized to remove the uncured film.
  • a composite prepreg was obtained by impregnating a continuous reinforcing fiber sheet with a film made of a thermosetting resin composition.
  • thermosetting prepreg prepared by the above method cut to a similar shape
  • the axial direction of the reinforcing fiber was set to 0. °, and the direction orthogonal to the axis is defined as 90°
  • the structure is [0°/90°] 2S (the symbol S indicates mirror symmetry)
  • the outermost layer is the composite prepreg (reactant [B] The layer containing is the outermost surface), and the prepreg was laminated so that the inner layer was the thermosetting prepreg.
  • a fiber reinforced resin molded body was produced by applying a pressure of 1 MPa to the laminated prepreg with a press and heating at 230 ° C. for 12 minutes to produce a fiber reinforced resin molded body. , 1 MPa and held at 250° C. for 6 minutes to weld the overlapped surfaces to obtain an integrally molded product for tensile shear bonding strength evaluation.
  • Table 8 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 32 and 34 A composite prepreg, a fiber-reinforced resin molded article, and an integrated molded article were produced in the same manner as in Example 30, except that B-11 and B-12 shown in Table 5 were used as the reactant [B].
  • Table 8 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 33 Using B-11 described in Table 5 as the reactant [B], the laminated prepreg is pressed with a press at a pressure of 1 MPa, heated at 180 ° C. for 1 hour, and then heated at 230 ° C. for 1 hour.
  • a composite prepreg, a fiber-reinforced resin molded article, and an integrally molded product were produced in the same manner as in Example 31, except that a fiber-reinforced resin molded article was produced.
  • Table 8 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 35 Using B-12 described in Table 5 as the reactant [B], the laminated prepreg was pressed with a press at a pressure of 1 MPa, heated at 140 ° C. for 1 hour, then heated at 180 ° C. for 1 hour, A composite prepreg, a fiber-reinforced resin molded article, and an integrally molded product were produced in the same manner as in Example 31, except that a fiber-reinforced resin molded article was produced by further heating at 230° C. for 1 hour.
  • Table 8 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin layer contained the constituent units of the thermoplastic resin, the constituent units of the thermosetting resin and the curing agent in the form of the reactant [B].
  • the thermoplastic resin layer contained the constituent units of the thermoplastic resin, the constituent units of the thermosetting resin and the curing agent in the form of the reactant [B].
  • the reactant [B] is not included, or the content of each structural unit is outside the above range. In some cases, either the tensile shear bond strength at 23°C or the dimensional stability during welding is found to fail.
  • the composite prepreg containing the reactant [B] in the thermoplastic resin layer and having the content of each structural unit satisfying the above range has dimensional stability during welding and tensile shear at 23 ° C. It can be seen that the bonding strength is well balanced.
  • Example 36 Using carbon fiber T800S as a reinforcing fiber, "Amilan (registered trademark)” CM1007 as a thermoplastic resin, and “jER (registered trademark)” 828 as a thermosetting resin monomer or prepolymer having two or more functions, the following A prepreg was prepared as follows.
  • thermosetting resin monomers or prepolymers or when using one or more types of bifunctional or higher thermosetting resin monomers or prepolymers and other components, a kneader is used in advance.
  • a bifunctional or higher thermosetting resin monomer or prepolymer, and other components are added into the mixture, heated and kneaded at 50 ° C. to obtain a mixture, and then the mixture is obtained using a coater. was applied onto a film made of a thermoplastic resin.
  • thermosetting resin monomer or prepolymer having two or more functionalities was powder, it was put into a kneader together with a thermosetting resin monomer or prepolymer having two or more functionalities and kneaded. At this time, 90.0% by mass of the thermoplastic resin and the bifunctional or higher thermosetting resin monomer or prepolymer based on the total amount of 100% by mass of the thermoplastic resin and the bifunctional or higher thermosetting resin monomer or prepolymer was made to contain 10.0% by mass.
  • a reinforcing fiber sheet (basis weight: 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and the bifunctional or higher thermosetting resin monomer or prepolymer of the film is applied to both surfaces of the continuous reinforcing fiber sheet.
  • the coated surfaces were superimposed and heat-rolled at a temperature of +25° C., the melting point of the thermoplastic resin, and the continuous reinforcing fiber sheet was impregnated with the film under heat and pressure to obtain a prepreg.
  • Example 37 A prepreg was prepared in the same manner as in Example 36, except that EPTS was used in an amount of 0.1% by mass with respect to 100% by mass of the total amount of the thermoplastic resin and the bifunctional or higher thermosetting resin monomer or prepolymer as other components. , a fiber-reinforced resin molded body, and an integrally molded product were produced. Table 9 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 38 A reinforcing fiber sheet (basis weight: 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and the above-mentioned thermoplastic resin and a bifunctional or higher thermosetting resin monomer or prepolymer are coated on both sides of the continuous reinforcing fiber sheet.
  • a film containing a reaction product (basis weight: 50 g/m 2 ) was superimposed, heat rolled at a temperature of +25°C melting point of the thermoplastic resin, and the continuous reinforcing fiber sheet was impregnated with the film while being heated and pressurized.
  • a prepreg, a fiber-reinforced resin molding, and an integrally molded product were produced in the same manner as in Example 36.
  • Table 9 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin and the bifunctional or higher thermosetting resin monomer or prepolymer The ratio of the thermoplastic resin and the bifunctional or higher thermosetting resin monomer or prepolymer to the total amount of 100% by mass of the thermoplastic resin and the bifunctional or higher thermosetting resin monomer or prepolymer is shown in Table 9.
  • a prepreg, a fiber-reinforced resin molded article, and an integrally molded article were produced in the same manner as in Example 36, except that the weight percentage was adjusted to be % by mass.
  • Table 9 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • T800S as a reinforcing fiber
  • CM1007 as a thermoplastic resin
  • jER registered trademark
  • a prepreg was prepared in the same manner as in Example 36 using Seikacure-S.
  • thermoplastic resin 65.0% by mass of the thermoplastic resin, with respect to the total amount of 100% by mass of the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the bifunctional or higher curing agent, and the bifunctional or higher heat It was made to contain 25.9% by mass of a curable resin monomer or prepolymer and 9.1% by mass of a difunctional or higher curing agent. Further, the ratio of the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent to the total amount of 100% by mass of the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent is It was made to become 74 mass % and 26 mass %, respectively.
  • Example 40 Thermoplastic resin, bifunctional or higher thermosetting resin monomer or prepolymer, and 2 A prepreg, a fiber-reinforced resin molded article, and an integrated molded product were produced in the same manner as in Example 39, except that the ratio of the functional or higher curing agent was set to the mass % shown in Table 9.
  • Table 9 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resins "Amilan (registered trademark)” CM1007 and “Sumika Excel (registered trademark)” PES5003P are used, and a thermoplastic resin, a bifunctional or higher thermosetting resin monomer or prepolymer, and a bifunctional or higher curing agent are used. With respect to the total amount of 100% by mass, the ratio of the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the bifunctional or higher curing agent is set to the mass% shown in Table 9. In the same manner as in Example 39, a prepreg, a fiber-reinforced resin molding, and an integrated molding were produced. Table 9 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 43 Diluted with isopropyl alcohol, a mixture of a bifunctional or higher thermosetting resin monomer or prepolymer is applied to a film made of a thermoplastic resin, and then the isopropyl alcohol is removed by drying to obtain a bifunctional or higher thermosetting resin monomer. Alternatively, a film coated with a prepolymer was obtained. At that time, the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or The proportions of the prepolymer and the bifunctional or higher functional curing agent were adjusted so as to be the mass % shown in Table 9. A prepreg, a fiber-reinforced resin molded article, and an integrally molded product were produced in the same manner as in Example 39 except for the above. Table 9 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermosetting resin monomers or prepolymers thermoplastic resins, bifunctional or higher thermosetting resin monomers or prepolymers
  • thermoplastic resins thermoplastic resins, bifunctional or higher thermosetting resin monomers or prepolymers
  • ratio of the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent to the total amount of 100% by mass of the bifunctional or higher curing agent is the mass% described in Table 10.
  • a prepreg, a fiber-reinforced resin molded article, and an integrally molded product were produced in the same manner as in Example 42, except that the Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin Using DICY7 as a bifunctional or higher curing agent, the thermoplastic resin, the bifunctional thermoplastic resin, the bifunctional thermosetting resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the total amount of 100% by mass of the bifunctional or higher curing agent.
  • Prepregs and fiber-reinforced resin moldings were prepared in the same manner as in Example 41, except that the proportions of the above thermosetting resin monomers or prepolymers and the bifunctional or higher curing agent were set to the mass % shown in Table 10. , to produce an integrally molded product.
  • Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin a thermoplastic resin, a bifunctional or higher thermosetting resin monomer with respect to 100% by mass of the total amount of a thermoplastic resin, a bifunctional or higher thermosetting resin monomer or prepolymer, and a bifunctional or higher curing agent
  • a prepreg, a fiber-reinforced resin molded article, and an integrally molded article were produced in the same manner as in Example 39, except that the proportions of the prepolymer and the bifunctional or higher-functional curing agent were set to the mass % shown in Table 10. bottom.
  • Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin similar (registered trademark)" CM1007 as a thermoplastic resin
  • Compimide (registered trademark)” MDAB and “Compimide (registered trademark)” TDAB bifunctional or higher thermosetting resin monomers or prepolymers
  • TM124 thermoplastic
  • the total amount of 100% by mass of the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the bifunctional or higher curing agent is thermoplastic
  • Prepregs and fibers were prepared in the same manner as in Example 39, except that the proportions of the resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the bifunctional or higher curing agent were adjusted to the mass % shown in Table 10.
  • Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 48 Prepreg, A fiber-reinforced resin molded article and an integrally molded article were produced. Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 49 Prepreg, A fiber-reinforced resin molded article and an integrally molded article were produced. Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 50 A prepreg, A fiber-reinforced resin molded article and an integrally molded article were produced. Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 51 A prepreg was obtained in the same manner as in Example 41, except that continuous E-glass fiber was used as the reinforcing fiber instead of the carbon fiber T800S.
  • Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Example 52 A prepreg was obtained in the same manner as in Example 41, except that carbon fiber fabric "Torayca (registered trademark)" cloth CK6273C was used as reinforcing fibers instead of a reinforcing fiber sheet in which reinforcing fibers were aligned in one direction.
  • Table 10 shows the evaluation results of the physical properties of the prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • a reinforcing fiber sheet (weight per unit area: 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and a thermoplastic resin film (weight per unit area: 50 g/m 2 ) used for the second thermoplastic resin layer is applied to one side of the continuous fiber sheet. is placed on the surface of the, heated with an IR heater to melt the thermoplastic resin used for the second thermoplastic resin layer, attached to the entire surface of one side of the continuous reinforcing fiber sheet, and the thermoplastic used for the second thermoplastic resin layer It was pressed with three pairs of nip rolls kept at a temperature 100° C. lower than the melting point of the resin, impregnated with the reinforcing fiber sheet, and a semi-preg with the fiber reinforced sheet exposed on the other side was obtained.
  • thermoplastic resin film (100 g/m 2 basis weight) was coated with a bifunctional or higher thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent.
  • the total amount of 100% by mass of the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the bifunctional or higher curing agent is 95.0% by mass, and the bifunctional or higher heat It was made to contain 3.7% by mass of curable resin monomer or prepolymer and 1.3% by mass of bifunctional or higher curing agent.
  • the ratio of the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent to the total amount of 100% by mass of the bifunctional or higher thermosetting resin monomer or prepolymer and the bifunctional or higher curing agent is It was made to become 74 mass % and 26 mass %, respectively.
  • thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent is superimposed on the other surface of the obtained semi-preg, and the melting point of the thermoplastic resin + 25 ° C.
  • a composite prepreg was obtained by impregnating the continuous reinforcing fiber sheet with the film while heat-rolling at a temperature and applying heat and pressure. Furthermore, according to the above (2), a pressure of 1 MPa was applied to the laminated prepregs by a pressing machine, and the fiber-reinforced resin molding was produced by heating at 366° C. for 12 minutes.
  • Example 54 Carbon fiber T800S as reinforcing fiber, "Amilan (registered trademark)” CM1007 as thermoplastic resin, “jER (registered trademark)” 828 as bifunctional or higher thermosetting resin monomer or prepolymer, bifunctional or higher curing Seikacure-S was used as the agent, and the composition shown in Table 11 was used as the thermosetting resin composition.
  • a reinforcing fiber sheet (basis weight: 190 g/m 2 ) in which reinforcing fibers are aligned in one direction is pulled out, and a bifunctional or higher thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent are prepared in the same manner as in Example 36. was applied. At this time, the ratio of each component was adjusted as shown in Table 11.
  • thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent is placed on one surface of a continuous fiber sheet and heated with an IR heater to form the film. It is melted, adhered to the entire surface of one side of the continuous reinforcing fiber sheet, pressed by three pairs of nip rolls maintained at a temperature 100° C. lower than the melting point or glass transition temperature of the thermoplastic resin, and impregnated into the reinforcing fiber sheet to form a fiber reinforced sheet. A semi-preg exposed on the other side was obtained.
  • a film made of an uncured thermosetting resin composition (basis weight: 50 g/m 2 ) is superimposed on the other surface of the obtained semi-preg, heat-rolled, and the uncured thermosetting resin composition is heated and pressurized.
  • a composite prepreg was obtained by impregnating a continuous reinforcing fiber sheet with a film made of a resin composition.
  • thermosetting prepreg Two sheets of the composite prepreg obtained were cut into a predetermined size, and six sheets of the thermosetting prepreg prepared as described above were cut into a similar shape.
  • the direction perpendicular to the axis is defined as 90°, and the structure is [0°/90°] 2S (the symbol S indicates mirror symmetry), and the outermost layer is the two composite prepregs (the layer containing the thermoplastic resin is The prepreg was laminated so that the thermosetting prepreg was used as the outermost surface) and the inner layer.
  • a fiber reinforced resin molded body was produced by applying a pressure of 1 MPa to the laminated prepreg with a press and heating at 230 ° C. for 12 minutes to produce a fiber reinforced resin molded body. , 1 MPa and held at 250° C. for 6 minutes to weld the overlapped surfaces to obtain an integrally molded product for tensile shear bonding strength evaluation.
  • Table 11 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin a thermoplastic resin
  • bifunctional or higher thermosetting resin monomer with respect to 100% by mass of the total amount of a thermoplastic resin, a bifunctional or higher thermosetting resin monomer or prepolymer, and a bifunctional or higher curing agent
  • a composite prepreg, a fiber-reinforced resin molded article, and an integrally molded article were produced in the same manner as in Example 53, except that the proportions of the prepolymer and the bifunctional or higher-functional curing agent were set to the mass % shown in Table 11. made.
  • Table 11 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin the bifunctional or higher thermosetting resin monomer or prepolymer relative to the total amount of 100% by mass of the thermoplastic resin, the bifunctional or higher thermosetting resin monomer or prepolymer, and the bifunctional or higher curing agent.
  • the proportions of the polymer and the di- or higher-functional curing agent were adjusted to the mass % shown in Table 11.
  • Table 11 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • Table 11 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molding, and the integrated molding.
  • Example 58 "Amilan (registered trademark)" CM1007 as a thermoplastic resin, "Compimide (registered trademark)” MDAB and “Compimide (registered trademark)” TDAB as bifunctional or higher thermosetting resin monomers or prepolymers, "Compimide (registered trademark)” TM124 was used as the curing agent, and the composition shown in Table 11 was used as the thermosetting resin composition.
  • the composite prepreg and fiber-reinforced resin molding were performed in the same manner as in Example 54, except that the fiber-reinforced resin molding was produced by heating at 180 ° C. for 1 hour and further heating at 230 ° C. for 1 hour. A body and an integrally molded product were produced. Table 11 shows the evaluation results of the physical properties of the composite prepreg, the fiber-reinforced resin molded article, and the integrally molded article.
  • thermoplastic resin layer is a bifunctional or higher thermosetting resin monomer or prepolymer and a bifunctional or higher curing
  • a total of 35 constituent units of the thermosetting resin and the constituent units of the curing agent based on the total amount of 100% by mass of the constituent units of the thermoplastic resin, the constituent units of the thermosetting resin and the constituent units of the curing agent.
  • the content exceeds 0.0% by mass, the dimensional stability during welding is good to particularly good, but the tensile shear joint strength at 23°C fails.
  • thermoplastic resin layer is a bifunctional or higher thermosetting resin monomer or prepolymer and a bifunctional or higher curing
  • the total amount of the thermosetting resin monomer or prepolymer and the constituent units of the curing agent with respect to the total amount of 100% by mass of the constituent units of the thermoplastic resin, the constituent units of the thermosetting resin and the constituent units of the curing agent When the content is less than 0.5% by mass, the tensile shear joint strength at 23° C. is particularly good, but the dimensional stability during welding fails.
  • thermoplastic resin layer was a bifunctional or higher thermosetting resin monomer or prepolymer.
  • thermosetting resin monomer or prepolymer and a curing It can be seen that when the composition unit of the agent is less than 0.5% by mass in total, the tensile shear bond strength at 23°C is good to particularly good, but the dimensional stability during welding fails. .
  • the thermoplastic resin layer contains a bifunctional or higher thermosetting resin monomer or prepolymer and a bifunctional or higher curing agent, and the constituent units of the thermoplastic resin, the constitution of the thermosetting resin Containing 65.0 to 99.5% by mass of thermoplastic resin structural units with respect to the total amount of 100% by mass of the units and the structural units of the curing agent, and the total amount of the structural units of the thermosetting resin and the structural units of the curing agent is 0 It can be seen that the composite prepreg containing 0.5 to 35.0% by mass has an excellent balance between dimensional stability during welding and tensile shear joint strength at 23°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

他の部材との接合強度に優れるとともに、溶着時の樹脂フローが適切に制御され、溶着時の寸法安定性に優れるプリプレグおよび繊維強化樹脂成形体を提供することを目的とする。 強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂層を有するプリプレグであって、該熱可塑性樹脂層が、プリプレグの少なくとも一方の表面に存在し、前記熱可塑性樹脂層は、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含むプリプレグ。

Description

プリプレグ、繊維強化樹脂成形体、および一体化成形品
 本発明は、熱可塑性樹脂層を有するプリプレグ、該プリプレグを成形してなる繊維強化樹脂成形体、および該繊維強化樹脂成形体を他部材と接合してなる一体化成形品に関する。
 熱硬化性樹脂または熱可塑性樹脂をマトリックス樹脂として用い、炭素繊維やガラス繊維などの強化繊維と組み合わせた繊維強化複合材料は、軽量でありながら、強度や剛性などの力学特性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されている。しかしながら、これらの繊維強化複合材料は、複雑な形状を有する部品や構造体を単一の成形工程で製造するには不向きであり、そのような用途においては、繊維強化複合材料からなる部材を作製し、次いで、別の部材と一体化する工程が必要である。このとき、必要に応じて異なる特性を有する樹脂を組み合わせることもある。
 繊維強化複合材料と別の部材を一体化する手法として、ボルト、リベット、ビスなどの機械的接合を使用する接合方法や、接着剤を使用する接合方法が用いられている。機械的接合方法では、穴あけなど接合部分をあらかじめ加工する工程を必要とするため、製造工程の長時間化および製造コストの増加につながり、また、穴をあけるため、材料強度が低下するという問題があった。接着剤を使用する接合方法では、接着剤の準備や接着剤の塗布作業を含む接着工程および硬化工程を必要とするため、製造工程の長時間化につながり、接着強度においても、信頼性に十分な満足が得られないという課題があった。
 熱可塑性樹脂をマトリックス樹脂に用いた繊維強化複合材料は、上記の手法に加え、熱溶着法により部材間を接合する方法を適用することができるため、部材間の接合に要する時間を短縮できる可能性がある。
 ここで、特許文献1には、所定方向に引き揃えられた補強繊維シート層に異なる熱可塑性樹脂からなる複数の樹脂領域が形成されたプリプレグシート材が示されている。特許文献2には、強化繊維から構成される不織布に複数の異なる熱可塑性樹脂が含浸された繊維強化樹脂シートが示されている。
特開2012-246442号公報 国際公開第2014/103658号
 しかし、このような熱可塑性樹脂をマトリックス樹脂に用いた繊維強化複合材料間の熱溶着においては、近年になって製品に求められる形状が複雑化し、さらに要求特性に応じた様々な部材を一体化させる必要が生じるようになった。このような成形品の製造において、溶着時に熱可塑性樹脂がフローし、溶着時の部材の寸法安定性が不十分となり、該フローが抑制されるような条件では十分な接合強度が得られなかった。そこで、本発明の目的は、他の部材との接合強度に優れるとともに、溶着時の樹脂フローが適切に制御され、溶着時の寸法安定性に優れるプリプレグおよび繊維強化樹脂成形体を提供することにある。
 本発明は、強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂層を有するプリプレグであって、該熱可塑性樹脂層が、プリプレグの少なくとも一方の表面に存在し、前記熱可塑性樹脂層は、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含むプリプレグである。
 本発明のプリプレグを含むプリフォームを成形してなる繊維強化樹脂成形体を用いることで、接合強度に優れるとともに、溶着時の寸法安定性に優れる一体化成形品を製造することが可能となる。
図1は、後述する複合プリプレグの模式図であり、複合プリプレグの粗さ平均長さRSmおよび平均高さRcの測定方法の説明を助けるものである。 図2は、後述する複合プリプレグの平面に垂直な断面の模式図であり、複合プリプレグの粗さ平均長さRSmおよび粗さ平均高さRcの測定方法の説明を助けるものである。
 以下、本発明にかかるプリプレグについて説明する。以降の説明では、「~」は、その両端の数値を含む範囲を表すものとする。また、プリプレグにおける強化繊維以外の領域を占める樹脂組成物、すなわち、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位を含む組成物を指して、あるいは、繊維強化樹脂成形体における強化繊維以外の領域を占める樹脂組成物を総称して、マトリックス樹脂と記す場合がある。また、単に「熱可塑性樹脂層」という場合には、強化繊維、熱可塑性樹脂、後述の反応物[A]および反応物[B]を含む熱可塑性樹脂層(すなわち、後述する複合プリプレグの場合においては第1の熱可塑性樹脂層)を指すものとする。
 本発明のプリプレグは、強化繊維と熱可塑性樹脂とを含み、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含む熱可塑性樹脂層が、プリプレグの少なくとも一方の表面に存在する。この時、熱硬化性樹脂の構成単位または硬化剤の構成単位のいずれかが、0質量%であってもよい。
 ここで、「熱可塑性樹脂の構成単位」、「熱硬化性樹脂の構成単位」および「硬化剤の構成単位」とは、熱可塑性樹脂層中において、熱可塑性樹脂、熱硬化性樹脂および硬化剤の化学構造にそれぞれ相当する部分のことを指す。すなわち、「構成単位の質量%」で含有量を表したとき、各成分が単に混合した状態から、一部反応して反応物が生成されても、全体の質量が保存されていれば、構成単位の質量%は変化しない。熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の質量%は、溶液または固体NMR、質量分析等の公知の分析手法、またはそれらの組み合わせにより測定することができる。
 かかる構成を採ることにより、マトリックス樹脂が純粋な熱可塑性樹脂の時と比較して、マトリックス樹脂が適度に増粘され、接合強度に優れるとともに、溶着時の樹脂フローが適切に制御され、溶着時の寸法安定性に優れた一体化成形品が得られる。
 熱可塑性樹脂の構成単位が65.0質量%未満、または熱硬化性樹脂の構成単位および硬化剤の構成単位が35.0質量%より多くなると、得られる一体化成形品の接合強度が不足する場合がある。また、熱硬化性樹脂の構成単位および硬化剤の構成単位が0.5質量%未満、または熱可塑性樹脂の構成単位が99.5質量%より多くなると、樹脂フローが過多となり、溶着時の寸法安定性が不十分となる場合がある。
 本発明のプリプレグは、上述の通り強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂層を有するプリプレグであるが、以下の第1~第3の好ましい実施態様を有する。
 第1の好ましい実施態様では、前記熱可塑性樹脂層は、前記熱硬化性樹脂の構成単位および/または前記硬化剤の構成単位を、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤との反応物[A]の形態で含む。以降、「2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤との反応物[A]」を単に「反応物[A]」と記す場合がある。
 ここで、「熱可塑性樹脂層は、熱硬化性樹脂の構成単位および/または硬化剤の構成単位を、反応物[A]の形態で含む」とは、熱可塑性樹脂層が、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤を原料とする反応物[A]と熱可塑性樹脂を含むことを意味するものとする。ここで、「モノマー」とは、プレポリマーやポリマーを構成する最小の単位のことをいい、熱可塑性樹脂、熱硬化性樹脂および硬化剤の構成単位となる。また、「プレポリマー」とは、モノマーの重合または縮合反応を適当な所で止めた中間生成物のことをいう。
 かかる構成を採ることにより、前述の溶着時の寸法安定性に優れた一体化成形品が得られるだけでなく、熱可塑性樹脂が熱硬化性樹脂モノマーもしくはプレポリマーと硬化剤を原料とする反応物[A]によって変性されることで、熱硬化性樹脂モノマーもしくはプレポリマーと硬化剤の種類に応じて、耐熱性や耐溶剤性の向上、吸水率の低減等の付加的な効果が得られる。このとき、熱可塑性樹脂は、反応物[A]と単に混合されているだけでもよく、熱可塑性樹脂の一部が、反応物[A]の一部と反応していてもよい。
 第2の好ましい実施態様では、前記熱可塑性樹脂層は、前記熱硬化性樹脂の構成単位および/または前記硬化剤の構成単位を、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と熱可塑性樹脂が反応した反応物[B]の形態で含む。以降、「熱可塑性樹脂が2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と反応した反応物[B]」を単に「反応物[B]」と記す場合がある。
 ここで、「熱可塑性樹脂層は、熱硬化性樹脂の構成単位および/または硬化剤の構成単位を、反応物[B]の形態で含む」とは、熱可塑性樹脂層が、熱可塑性樹脂と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤を原料とする反応物[B]を含むことを意味するものとする。
 かかる構成を採ることにより、前述の溶着時の寸法安定性に優れた一体化成形品が得られるだけでなく、熱可塑性樹脂が熱硬化性樹脂モノマーもしくはプレポリマーおよび/または硬化剤によって変性されることで、熱硬化性樹脂モノマーもしくはプレポリマーおよび/または硬化剤の種類に応じて、耐熱性や耐溶剤性の向上、吸水率の低減等の付加的な効果が得られる。
 第3の好ましい実施態様では、前記熱可塑性樹脂層は、前記熱硬化性樹脂の構成単位および/または前記硬化剤の構成単位を、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の形態で含む。
 ここで、「熱可塑性樹脂層は、熱硬化性樹脂の構成単位および/または硬化剤の構成単位を、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の形態で含む」とは、熱可塑性樹脂層が、熱可塑性樹脂と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の混合物を含むことを意味するものとする。このとき、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤は、熱可塑性樹脂中に分散していてもよく、熱可塑性樹脂と相溶していてもよいが、後述のマトリックス樹脂増粘の均一性から、相溶していることが好ましい。
 かかる構成を採ることにより、繊維強化樹脂成形体の成形時および/または後述する別の部材との溶着時に、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤が、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤のいずれか、またはそれらの複数と反応することで、マトリックス樹脂が適度に増粘し、接合強度に優れるとともに、溶着時の樹脂フローが適切に制御され、溶着時の寸法安定性に優れた一体化成形品が得られる。
以下、各成分について、詳細を説明する。
 <強化繊維>
 本発明で用いる強化繊維としては、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維などがある。これらは、単独で用いてもよいし、適宜2種以上併用して用いてもよい。強化繊維としては、炭素繊維が、比重が小さく、高強度、高弾性率であることから、好ましく使用される。炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T700S-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T1100G-24K(以上、東レ(株)製)などが挙げられる。
 強化繊維は、表面処理が施されているものを用いてもよい。表面処理としては、金属の被着処理、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。なお、本明細書においては、表面処理剤が付着している強化繊維の場合、表面処理剤を含めて強化繊維と呼称するものとする。
 強化繊維の形態や配列については、強化繊維が一方向に配列されているか、一方向に配列されたものの積層物か、または織物の形態等から適宜選択できる。軽量で耐久性がより高い水準にある積層体を得るためには、各プリプレグにおいて、強化繊維が一方向に配列された長繊維(繊維束)または織物等連続繊維の形態であることが好ましい。
 強化繊維束は、同一の形態の複数本の繊維から構成されていても、あるいは、異なる形態の複数本の繊維から構成されていてもよい。一つの強化繊維束を構成する強化繊維数は、通常、300~60,000であるが、基材の製造を考慮すると、好ましくは、300~48,000であり、より好ましくは、1,000~24,000である。上記の上限のいずれかと下限のいずれかとの組み合わせによる範囲であってもよい。
 強化繊維について、JIS R7608(2007)の樹脂含浸ストランド試験法に準拠して測定したストランド引張強度が5.5GPa以上であると、引張強度に加え、優れた接合強度を有する積層体が得られるため、好ましい。当該ストランド引張強度が5.8GPaであると、さらに好ましい。ここで言う接合強度とは、ISO4587:1995(JIS K6850(1994))に準拠して求められる、引張せん断接合強度を指す。
 本発明のプリプレグは、単位面積あたりの強化繊維量が30g/m以上であることが好ましい。かかる強化繊維量が30g/m以上であると、繊維強化樹脂成形体や一体化成形品を得るための作業において取り扱いが容易になる。強化繊維量の上限は、特に限定はないが、2,000g/m以下であれば、マトリックス樹脂を強化繊維に容易に含浸させることができ、かつプリプレグの軽量性を維持することが可能となる。
 <熱可塑性樹脂>
 本発明で用いる熱可塑性樹脂の種類としては特に限定はないが、例えば主鎖に炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれる結合を有する熱可塑性樹脂を用いることができる。熱可塑性樹脂は、結晶性を有していても非晶性であってもよい。また、熱可塑性樹脂は、上述の樹脂の共重合体や変性体、および/または2種類以上ブレンドした樹脂などであってもよい。
 これらの中でも、成形加工性と耐熱性や力学特性とのバランスから、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリアリーレンサルファイド、ポリエーテルケトンケトンおよびポリアリーレンエーテルケトンからなる群より選ばれる少なくとも1種の熱可塑性樹脂であることが好ましい。
 本明細書において、熱可塑性樹脂の「融点またはガラス転移温度」とは、融点を有する熱可塑性樹脂(典型的には結晶性の熱可塑性樹脂)の場合は融点を、融点を有しない熱可塑性樹脂(典型的には非晶性の熱可塑性樹脂)の場合にはガラス転移温度を意味するものとする。また、融点を有する熱可塑性樹脂を当該融点以上に加熱することによる溶融だけでなく、融点を有しない熱可塑性樹脂をガラス移転点以上に加熱することによる軟化も含めて、「溶融」と表現する場合がある。なお、ここでの熱可塑性樹脂の融点およびガラス転移温度は、JIS K7121(2012)に基づいて、示差走査熱量計(DSC)を用いて測定することができる。容積50μLの密閉型サンプル容器に1~10mgのサンプルを詰め、昇温速度10℃/分で昇温し、30~400℃の範囲で検出されるDSC曲線の段差をガラス転移温度、吸熱ピークを融点の指標とし、それぞれの温度をガラス転移温度および融点とする。混合物などで融点またはガラス転移温度が複数観測される場合は、最も高い融点をその熱可塑性樹脂の融点とする。
 <2官能以上の熱硬化性樹脂モノマーもしくはプレポリマー>
 本発明で用いる2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーは、熱可塑性樹脂および/または硬化剤の官能基および/または化学結合と反応する官能基を2つ以上有する熱硬化性樹脂(未硬化)の低分子量体である。ここでいう「官能基および/または化学結合と反応する」とは、他の官能基や化学結合と反応して新たな共有結合を形成するものであればよい。そのような官能基の組み合わせの例としては、エポキシ基とアミノ基、エポキシ基とカルボキシル基、カルボキシル基とアミノ基、アミド結合とアミノ基等が挙げられる。2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーは、同種のモノマーもしくはプレポリマーとも反応する化合物であっても良い。
 さらに、ここでいう「低分子量体」とは、構造式から計算される分子量、またはゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が、10,000g/mol未満である化合物のことをいう。前記分子量または重量平均分子量の好ましい範囲は8,000g/mol以下であり、より好ましくは5,000g/mol以下であり、さらに好ましくは3,000g/mol以下であり、特に好ましくは2,000g/mol以下である。ここでいう重量平均分子量とは、ゲルパーミエーションクロマトグラフィーで測定し、ポリスチレンで換算した重量平均分子量を指す。前記分子量または重量平均分子量が、10,000g/mol以上であると、上記官能基の反応が起こりにくくなる場合がある。
 本発明で用いる2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーは、熱により反応が進行して、少なくとも部分的に三次元架橋構造を形成する樹脂であれば特に限定されない。かかる熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾオキサジン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂および熱硬化性ポリイミド樹脂等が挙げられ、これらの変性体および2種類以上ブレンドした樹脂なども用いることができる。また、これらの熱硬化性樹脂は、加熱により自己硬化するものであっても良いし、硬化剤や硬化促進剤などを配合するものであっても良い。
 本発明で用いられるエポキシ樹脂としては、特に限定されないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、テトラブロモビスフェノールAジグリシジルエーテルなどの臭素化エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジンなどのグリシジルアミン型エポキシ樹脂、レゾルシンジグリシジルエーテル、トリグリシジルイソシアヌレートなどを挙げることができる。
 <2官能以上の硬化剤>
本発明で用いる2官能以上の硬化剤は、熱により反応が進行して、共有結合を形成する硬化剤であれば特に限定されない。かかる硬化剤としては、例えば、エポキシ樹脂の硬化剤として用いられるアミン化合物、酸無水物、ポリアミノアミド、有機酸ヒドラジドおよびイソシアネート等が挙げられる。また、ベンゾオキサジン樹脂の硬化剤として用いられるエポキシ樹脂やビスマレイミド樹脂の硬化剤として用いられるフェノール化合物などを挙げることができる。
 また、前記2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤として、少なくとも2種類の化合物を含むことが好ましい。この時、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と熱可塑性樹脂との反応以外に、前記化合物同士が反応により共有結合を形成する組み合わせは、溶着時にマトリックス樹脂が効率よく増粘されることから好ましい。このような2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の組み合わせとしては、エポキシ樹脂とエポキシ樹脂の硬化剤等が挙げられる。
 前記エポキシ樹脂の硬化剤のうち、反応の制御のしやすさの観点から、アミン化合物が好ましい。また、耐熱性および力学特性の観点から、芳香族アミン化合物であることが好ましく、分子内に1~4個のフェニル基を有することが好ましい。耐熱性の観点から、2個以上のフェニル基がパラ位にアミノ基を有するフェニル基である芳香族ポリアミン化合物が好ましく用いられ、分子内に硫黄原子を有する芳香族アミン化合物であることがより好ましい。このような芳香族ポリアミン類の具体例を挙げると、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、トリス(3-アミノフェニル)ホスフィンオキサイド、メタキシリレンジアミン、(p-フェニレンメチレン)ジアニリンやこれらのアルキル置換体などの各種誘導体やアミノ基の位置の異なる異性体などが挙げられる。中でも、航空、宇宙機用途などの場合、耐熱性、弾性率に優れ、さらに線膨張係数および吸湿による耐熱性の低下が小さい反応物が得られる4,4’-ジアミノジフェニルスルホンおよび3,3’-ジアミノジフェニルスルホンが用いることが好ましい。これらの芳香族アミン化合物は単独で用いてもよいし、2種以上を併用してもよい。
 2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤の総量100質量%に対する各成分の割合は、使用する化合物の種類により適宜調整する必要があるが、前記熱硬化性樹脂モノマーもしくはプレポリマーを60.0~99.5質量%、前記硬化剤を0.5~40.0質量%の範囲とすると、溶着時にマトリックス樹脂が適切に増粘されることから好ましい。
 また、マトリックス樹脂の均一性の観点から、前記熱硬化性樹脂モノマーもしくはプレポリマーおよび前記硬化剤の少なくとも一部、より好ましくは全部が、熱可塑性樹脂と相溶していることが好ましい。
 熱可塑性樹脂層は、マトリックス樹脂を強化繊維に含浸させる際に、熱可塑性樹脂の一部と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の一部が反応することで生成される反応物を含んでいてもよい。
 <2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤との反応物[A]>
 本発明で用いる反応物[A]は、前記2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと前記2官能以上の硬化剤との反応物であって、熱硬化性樹脂モノマーもしくはプレポリマーの官能基と硬化剤の官能基が反応した化合物である。ここでいう「官能基が反応した」とは、新たな共有結合を形成したことをいう。そのような官能基の組み合わせの例としては、エポキシ基とアミノ基、ベンゾオキサジン環の開環により生成されるフェノール性水酸基とエポキシ基、マレイミド基とアミノ基等が挙げられる。
 反応物[A]は単独で用いてもよいし、2種以上の反応物を組み合わせて用いてもよい。1分子中に官能基が1個の熱硬化性樹脂の場合、硬化剤との反応物のガラス転移温度が低くなり、マトリックス樹脂の耐熱性に悪影響を及ぼす場合がある。反応物[A]の原料として用いられる2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤としては、特に限定されないが、上記の2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよびの2官能以上の硬化剤に関する説明で例示した化合物が挙げられる。
 プリプレグ中の反応物[A]の存在確認は、溶離液として、ヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)を用いる。ヘキサフルオロイソプロパノールを用いて所定量のプリプレグから樹脂組成物を抽出したものを測定試料とし、混練前の各原料の混合物と前記抽出物のクロマトグラムを比較し、反応物由来のピークについて、そのピーク面積の増加の有無を判断することで行う。熱可塑性樹脂が、ヘキサフルオロイソプロパノールに溶解しない場合は、適宜他の溶離液を用いて測定を行えばよい。熱可塑性樹脂が溶解する溶媒がない場合は、プリプレグから所定量のマトリックス樹脂を採取したものを測定試料とし、固体NMR等の公知の分析手法を組み合わせてもよい。
 マトリックス樹脂の均一性、および効率的にマトリックス樹脂を増粘させる観点から、反応物[A]が、熱可塑性樹脂と相溶していることが好ましい。反応物[A]と熱可塑性樹脂の間で反応が生じても良く、すなわち熱可塑性樹脂層にはさらに前記熱可塑性樹脂と反応物[A]の反応物が含まれていてもよい。マトリックス樹脂の均一性の観点から、熱可塑性樹脂と反応物[A]の反応物が、熱可塑性樹脂と相溶していることが好ましい。
 熱可塑性樹脂と各反応物との相溶性の判断は、作製したプリプレグを薄切片化した後に染色し、透過型電子顕微鏡(日立(株)製、H-7100)を用い、加速電圧100kVで適切な倍率にて透過電子像を取得し、相分離構造の有無を確認することで行う。ここで、相分離構造が確認されなかったものを「相溶」、相分離構造が確認されたものを「相分離」と判断する。染色剤は、モルホロジーに充分なコントラストが付くよう、OsOとRuOを樹脂組成に応じて使い分けることができる。また、適切な倍率とは、構造周期が1nm以上10nm未満の場合は50,000倍、構造周期が10nm以上100nm未満の場合は20,000倍、構造周期が100nm以上1,000nm未満の場合は2,000倍、構造周期が1,000nm以上の場合は1,000倍である。
 熱可塑性樹脂層において、反応物[A]が、熱可塑性樹脂とセミIPN構造またはIPN構造を形成していることが好ましい。ここで、IPNとは相互侵入高分子網目構造体(Interpenetrating Polymer Network)の略称で、ポリマーブレンドの一種である。ブレンド成分ポリマーが橋架けポリマーであって、それぞれの異種橋架けポリマーが部分的あるいは全体的に相互に絡み合って多重網目構造を形成しているものをいう。セミIPNとは、橋架けポリマーと直鎖状ポリマーによる重網目構造が形成されたものである。反応物[A]で熱可塑性樹脂がセミIPN化したマトリックス樹脂を用いることにより、優れた耐熱性と耐衝撃性を繊維強化樹脂成形体に付与することができる。
 熱可塑性樹脂層において、熱可塑性樹脂を適度に増粘させ、上記付加的な効果を効率よく付与する観点から、反応物[A]は、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱硬化性樹脂の構成単位を60.0~99.5質量%、硬化剤の構成単位を0.5~40.0質量%含むことが、好ましい。ここで、「熱硬化性樹脂の構成単位」および「硬化剤の構成単位」とは、反応物[A]中において、反応物[A]の原料である熱硬化性樹脂モノマーもしくはプレポリマーおよび硬化剤の化学構造にそれぞれ相当する部分のことを指す。
 <2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と熱可塑性樹脂が反応した反応物[B]>
 本発明で用いる反応物[B]は、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と、熱可塑性樹脂の反応物であって、熱硬化性樹脂の官能基および/または硬化剤の官能基と熱可塑性樹脂の官能基が反応した化合物である。
 ここでいう「官能基が反応した」とは、他の官能基や化学結合と反応して新たな共有結合を形成したことをいう。そのような官能基の組み合わせの例としては、エポキシ基とアミノ基、エポキシ基とカルボキシル基、カルボキシル基とアミノ基、アミド結合とアミノ基等が挙げられる。
 反応物[B]は単独で用いてもよいし、2種以上の反応物を組み合わせて用いてもよい。1分子中に官能基が1個の熱硬化性樹脂の場合、反応物[B]の原料である熱可塑性樹脂と比較して、反応物[B]の増粘が不十分となる場合がある。本発明で用いられる2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとしては、特に限定されないが、2官能以上のエポキシ樹脂、ベンゾオキサジン樹脂およびビスマレイミド樹脂など、上記で例示した樹脂を挙げることができる。
 1分子中に官能基が1個の硬化剤の場合、反応物[B]の原料である熱可塑性樹脂と比較して、反応物[B]の増粘が不十分となる場合がある。本発明で用いられる2官能以上の硬化剤としては、特に限定されないが、2官能以上のアミン化合物、ベンゾオキサジン樹脂の硬化剤として用いられるエポキシ樹脂およびビスマレイミド樹脂の硬化剤として用いられるフェノール化合物などを挙げることができる。
 プリプレグ中の反応物[B]の存在確認は、上記のプリプレグ中の反応物[A]の存在確認と同様の方法で実施することができる。溶離液として、ヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)を用いる。ヘキサフルオロイソプロパノールを用いて所定量のプリプレグから樹脂組成物を抽出したものを測定試料とし、混練前の各原料の混合物と前記抽出物のクロマトグラムを比較し、反応物由来のピークについて、そのピーク面積の増加の有無を判断することで行う。反応物[B]が、ヘキサフルオロイソプロパノールに溶解しない場合は、適宜他の溶離液を用いて測定を行えばよい。反応物[B]が溶解する溶媒がない場合は、プリプレグから所定量のマトリックス樹脂を採取したものを測定試料とし、固体NMR等の公知の分析手法を組み合わせてもよい。
 本発明のプリプレグのある態様においては、前記反応物[B]が溶媒に可溶である。ここで、「反応物[B]が溶媒に可溶である」とは、反応物[B]を溶媒に混合することで均一な溶液が得られることを指す。「均一な溶液」とは、目視で分離のない状態が得られることを指し、具体的には、少なくとも1種類以上の溶媒に対し、反応物[B]を0.5質量%添加し、30℃にて撹拌混合したとき、目視で分離のない溶液が得られる場合を「可溶」、それ以外を「不溶」とする。
 また、本発明のプリプレグの別の態様においては、前記反応物[B]が架橋構造を有する。ここで、「架橋構造を有する」とは、反応物[B]の分子鎖が網目状の三次元構造をとることを意味する。架橋構造の存在は、種々の分析により確認できる。具体的には、FT-IR、固体NMR、X線光電子分光測定などが挙げられる。
 本発明のプリプレグにおける熱可塑性樹脂層は、反応物[B]とともに反応物[A]を含んでいてもよい。これにより、反応物[B]を効率よく増粘させることができる。
反応物[A]は単独で用いてもよいし、2種以上の反応物を組み合わせて用いてもよい。
 マトリックス樹脂の均一性、および効率的にマトリックス樹脂を増粘させる観点から、反応物[A]が、反応物[B]と相溶していることが好ましい。反応物[A]と反応物[B]との相溶性の判断は、前述の反応物[A]と熱可塑性樹脂の相溶性の判断と同様の方法で実施することができる。
 熱可塑性樹脂層において、熱可塑性樹脂を適度に増粘させ、上記付加的な効果を効率よく付与する観点から、反応物[B]は、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱硬化性樹脂の構成単位を60.0~99.5質量%、硬化剤の構成単位を0.5~40.0質量%含むことが、好ましい。ここで、「熱硬化性樹脂の構成単位」および「硬化剤の構成単位」とは、反応物[B]中において、反応物[B]の原料である熱硬化性樹脂および硬化剤の化学構造にそれぞれ相当する部分のことを指す。
 本発明のプリプレグにおける熱可塑性樹脂層の目付は、10g/m以上であると好ましい。熱可塑性樹脂層の目付が10g/m以上であると、優れた接合強度を発現するための十分な厚みが得られ、他の部材との一体化するための十分な層の厚みを得られるため好ましい。より好ましくは20g/m以上であり、さらに好ましくは50g/m以上である。上限値は特に限定されないが、熱可塑性樹脂の量が強化繊維対比多くなりすぎず、比強度と比弾性率に優れる繊維強化樹脂基材が得られるため、好ましくは1000g/m以下である。ここで目付とは、繊維強化樹脂基材1mあたりに含まれる熱可塑性樹脂の質量(g)を指す。
 <複合プリプレグ>
 本発明のプリプレグは、前述の熱可塑性樹脂層(以下、本態様の説明において「第1の熱可塑性樹脂層」という)に加え、該熱可塑性樹脂層と界面を形成して互いに接合した、第1の熱可塑樹脂層に含まれる熱可塑性樹脂とは異なる熱可塑性樹脂の構成単位を有する少なくとも1種以上の熱可塑性樹脂を含む熱可塑性樹脂層(以下、本態様の説明において「第2の熱可塑性樹脂層」という)を有していてもよい。また、第1の熱可塑性樹脂層に加え、該熱可塑性樹脂層と界面を形成して互いに接合した、少なくとも1種以上の熱硬化性樹脂を含む熱硬化性樹脂層を有していてもよい。以下、このような態様を総称して「複合プリプレグ」と呼ぶ。
 特に、本発明のプリプレグにおいては、第2の熱可塑性樹脂層または熱硬化性樹脂層と、第1の熱可塑性樹脂層とが、それぞれ層状をなして隣接していることが好ましい。層状をなして隣接しているとは、例えば図2に示すように、プリプレグ平面方向に対し垂直にカットして得られる断面において、面方向に連続した熱可塑性樹脂層3と熱硬化性樹脂層4とが、界面5を形成しつつ密着して存在する状態である。熱可塑性樹脂が層状で連続した状態ではなく、粒子状、繊維状、不織布状等で存在している場合、表面においてエポキシ樹脂が露出している面積の割合が増加し、最表面における熱可塑性樹脂の被覆率が低下するため、溶着性が低下する傾向にある。
 本発明において、第2の熱可塑性樹脂層に含まれる熱可塑性樹脂は、第1の熱可塑性樹脂層に含まれる熱可塑性樹脂(または、熱可塑性樹脂の構成単位)とは異なる熱可塑性樹脂の構成単位を有する。樹脂種の異同は、熱可塑性樹脂を特徴付ける構造の同一性で判断する。例えば、ポリアミド樹脂であればアミド結合を含む繰り返し単位を有する樹脂であり、ポリカーボネート樹脂であればカーボネート結合を含む繰り返し単位を有する樹脂であり、これらは異なる結合の繰り返し単位を有する樹脂であるため異なると判断する。
 これらの複合プリプレグは、少なくとも一方の表面に第1の熱可塑性樹脂層が存在し、前記第1の熱可塑性樹脂層には連続した強化繊維を含み、面方向に対し垂直な断面において、前記第1の熱可塑性樹脂層および前記第2の熱可塑性樹脂層または前記熱硬化性樹脂層の各層の厚みの80%以上の領域に強化繊維が分布していることが好ましい。
 本発明の複合プリプレグは、繊維強化樹脂基材平面方向に対し垂直にカットするなどして得られる断面において、界面における樹脂層の態様を観察することで、繊維軸方向およびこれと直交する方向の密着力を同時に評価することが出来る。具体的には、複合プリプレグの平面視において、前記第1の熱可塑性樹脂層に含まれる任意の連続強化繊維の繊維方向に対し時計回りか反時計回りかを問わず45度異なる角度の方向から、前記連続強化繊維を含む繊維強化樹脂基材平面に垂直な断面を観察すればよい。
 本発明の複合プリプレグは、前記両樹脂層の界面が形成する断面曲線の、JIS B0601(2001)で定義される粗さ平均長さRSmが100μm以下であり、粗さ平均高さRcが3.5μm以上であることが好ましい。RSmが100μm以下であると、化学的または/および物理的な結合力のみならず、交絡(interpenetration)という機械的な結合力も加わり、前記両樹脂層間が剥離しにくくなる。RSmの下限値は特に限定されないが、応力集中による機械的な結合力の低下を忌避するという観点から、好ましくは15μm以上である。また、断面曲線のRcが3.5μm以上であることにより、交絡による機械的な結合力の発現のみならず、界面上に存在する連続強化繊維が、前記両樹脂層と化学的または/および物理的に結合することによって、前記両樹脂層との密着力が向上する。Rcの好ましい範囲としては、連続強化繊維が前記両樹脂層に含まれやすくなり密着力がより向上する10μm以上であり、特に好ましくは20μm以上である。Rcの上限値は特に限定されないが、応力集中による機械的な結合力の低下を忌避するという観点から、好ましくは100μm以下である。
 ここで、断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmの測定方法としては、公知の手法を用いることが出来る。例えば、X線CTを用いて取得した断面画像から測定する方法、エネルギー分散型X線分光器(EDS)による元素分析マッピング画像から測定する方法、あるいは光学顕微鏡あるいは走査電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による断面観察画像から測定する方法が挙げられる。観察において、両樹脂層を、コントラストを調整するために染色しても良い。上記のいずれかの手法により得られる画像において、500μm×500μmの範囲において、断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmを測定する。断面観察画像からのRcおよびRSmの算出は、後述する実施例に記載の方法で行うことができる。
 断面曲線の粗さ平均高さRcおよび粗さ平均長さRSmを好ましい範囲とする方法として、連続強化繊維に熱可塑性樹脂を含浸する工程において、加圧するニップロールを増やすなどして加圧する時間を長くする方法がある。また、加圧する圧力を高くする、ニップロールなどの加熱および加圧する部材の表面温度を高く設定するなどして熱可塑性樹脂の粘度を下げることなどを挙げることが出来る。
 <プリフォーム>
 本発明のプリプレグは、単独で、あるいは金属部材、マトリックス樹脂に熱硬化性樹脂を用いたプリプレグ、マトリックス樹脂に熱可塑性樹脂を用いたプリプレグなどと積層してプリフォームとすることができる。
 <繊維強化樹脂成形体>
 本発明の繊維強化樹脂成形体は、前述した本発明のプリプレグを含むプリフォームを成形して製造することができ、典型的には該プリプレグを複数枚積層した後加熱加圧することにより製造することができる。加熱加圧する方法としては、例えば、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が採用される。
 本発明の繊維強化樹脂成形体を成形するより具体的な方法としては、前述した本発明のプリプレグまたは複合プリプレグを、単独で、または他のプリプレグと共に積層して、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などにより成形する方法、本発明の複合プリプレグと他の繊維強化樹脂基材、繊維基材とを用いて、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法、レジン・インジェクション・モールディング法、レジン・トランスファー・モールディング法などにより成形する方法が挙げられる。
 <一体化成形品>
 本発明の繊維強化樹脂成形体は、別の部材(被着材)を、前記熱可塑性樹脂層を介して熱溶着することで、生産性よく一体化成形品を作製することができる。被着材としては、前記熱可塑性樹脂層と熱溶着が可能な部材であれば特に制限はなく、熱可塑性樹脂を含む部材、熱可塑性樹脂が表面に配置された金属部材や、表面に熱可塑性樹脂が嵌入する微細加工が施された部材などが挙げられる。また、被着材もまた本発明の繊維強化樹脂成形体であってもよい。すなわち、本発明の繊維強化樹脂成形体の熱可塑性樹脂層同士を接合して一体化成形品とすることも可能である。繊維強化樹脂成形体と被着材とを熱溶着する手段は特に制限はなく、例えば、振動溶着、超音波溶着、レーザー溶着、抵抗溶着、誘導溶着、インサート射出成形、アウトサート射出成形などを挙げることができる。
 一体化成形体における接合部の強度は、ISO4587:1995(JIS K6850(1994))およびASTM D7291-07に基づいて評価できる。ISO4587:1995に基づき測定した引張せん断接合強度が、試験環境温度が23℃のとき、20MPa以上であれば好ましく、より好ましくは、25MPa以上、さらに好ましくは、28MPa以上である。
 以下、本発明を実施例により詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものではない。また、各種特性の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。
 <実施例および比較例で用いた材料>
 それぞれの実施例および比較例で用いた材料は、表1~11に示すとおりである。
 <強化繊維>
 ・T800S:“トレカ(登録商標)”T800SC-24000(繊維数24,000本、引張強度5.9GPa、引張弾性率294GPa、引張伸度2.0%の炭素繊維、東レ(株)製)
 ・T700S:“トレカ(登録商標)”クロス CK6273C(“トレカ(登録商標)” T700SC-12000(繊維数12,000本、引張強度4.9GPa、引張弾性率230GPa、引張伸度2.1%の炭素繊維、平織、目付192g/m、東レ(株)製)。
 ・集束処理を施した総単糸数1,600本の連続した連続E-ガラス繊維。特性は次に示す通り。
 単繊維径:13μm
 引張強度:3400MPa
 引張弾性率:72GPa
 引張伸度:3%
 密度:2.6g/cm
 <熱可塑性樹脂>
 ・“アミラン(登録商標)”CM4000(3元共重合ポリアミド樹脂、融点155℃、東レ(株)製)
 ・“アミラン(登録商標)”CM1007(ポリアミド6、融点225℃、東レ(株)製)
 ・以下の方法で作製された熱可塑性樹脂と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの反応物を含むフィルム
 熱可塑性樹脂の“アミラン(登録商標)”CM1007と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの“jER(登録商標)”828を、90:10の質量比で混合し、260℃で30分間溶融混練した後、フィルム化した。
 ・“スミカエクセル(登録商標)”PES5003P(ポリエーテルスルホン、重量平均分子量47,000g/mol、ガラス転移温度225℃、住友化学(株)製)
 ・“トレリナ(登録商標)”A670T05(ポリフェニレンスルフィド、融点278℃、ガラス転移温度90℃、東レ(株)社製)
 ・“KEPSTAN(登録商標)”7002(ポリエーテルケトンケトン、融点331℃、ガラス転移温度162℃、アルケマ社製)。
 <第2の熱可塑性樹脂層に用いた熱可塑性樹脂>
 ・“KEPSTAN(登録商標)”7002(ポリエーテルケトンケトン、融点331℃、ガラス転移温度162℃、アルケマ社製)。
 <2官能以上の熱硬化性樹脂モノマーもしくはプレポリマー>
 ・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製:エポキシ当量184~194g/eq、重量平均分子量約370g/mol)
 ・“スミエポキシ(登録商標)”ELM434(テトラグリシジジアミノジフェニルメタン、住友化学(株)製:エポキシ当量120g/eq、分子量423g/mol)
 ・F-a(ビスフェノールF-アニリン型ベンゾオキサジン樹脂、四国化成工業(株)製:エポキシ当量184~194g/eq、分子量434.52g/mol)
 ・“Compimide(登録商標)”MDAB(4,4’-ビスマレイミド-ジフェニルメタン、Evonik Industries AG社製:分子量358.35g/mol)
 ・“Compimide(登録商標)”TDAB(2,4-ビスマレイミド-トルエン、Evonik Industries AG製:分子量282.25g/mol)。
 <2官能以上の硬化剤>
 ・セイカキュア-S(4,4’-ジアミノジフェニルスルホン、和歌山精化工業(株)製:活性水素当量62g/eq、分子量248g/mol、エポキシ樹脂の硬化剤として使用)
 ・トリス(3-アミノフェニル)ホスフィンオキサイド(片山化学工業(株)製:活性水素当量54g/eq、分子量323g/mol、エポキシ樹脂の硬化剤として使用)
 ・DICY7(ジシアンジアミド、三菱ケミカル(株)製、分子量84g/mol、エポキシ樹脂の硬化剤として使用)
 ・“Araldite(登録商標)”MY0610(トリグリシジル-メタ-アミノフェノール型エポキシ樹脂、Huntsman Corporation製:エポキシ当量114g/eq、分子量277.31g/mol、ベンゾオキサジン樹脂の硬化剤として使用)
 ・“Compimide(登録商標)”TM124(2,2’-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン、Evonik Industries AG製:分子量308.41g/mol、ビスマレイミド樹脂の硬化剤として使用)。
 <熱硬化性樹脂組成物に用いたその他の材料>
 ・“スミカエクセル(登録商標)”PES5003P(ポリエーテルスルホン、住友化学(株)製)
 ・“Virantage(登録商標)”VW10700RFP(ポリエーテルスルホン、Solvay SA製)
 ・“Matrimid(登録商標)”9725(ポリイミド、HuntsmanAdvancedMaterials製)
 ・EPTS(p-トルエンスルホン酸エチル、東京化成工業(株)製)。
 <2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤との反応物[A]>
 ・下記方法で作製した反応物(A-1~A-7)
 表1に記載の割合で、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を混練装置中に投入し、180℃で5分間加熱混練を行い、2官能以上のエポキシ樹脂とアミン化合物 の反応物A-1~A-4、A-6およびA-7を得た。また、表1に記載の割合で、“jER(登録商標)”828およびセイカキュア-Sを混練装置中に投入し、50℃で加熱混練を行った。得られた混合物を、180℃のオーブン中で30分間加熱し、2官能以上のエポキシ樹脂とアミン化合物 の反応物A-5を得た。
 <2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と、熱可塑性樹脂の反応物[B]>
 ・下記方法で作製した反応物(B-1~B-12)
 表5に記載の割合で、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤を混練装置中に投入し、260℃で30分間加熱混練を行い、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤とポリアミド6の反応物B-1~B-4およびB-11を得た。また、表5に記載の割合で、“アミラン(登録商標)”CM1007と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーを混練装置中に投入し、260℃で30分間加熱混練を行った後、2官能以上の硬化剤を投入し、260℃で30分間加熱混練を行い、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤とポリアミド6の反応物B-5~B-10およびB-12を得た。
 <熱硬化プリプレグ>
 ニーダー中に、表3に記載の組成と割合の“jER(登録商標)”828、“スミエポキシ(登録商標)”ELM434および“スミカエクセル(登録商標)”PES5003Pを添加し、混練しながら150℃以上に昇温し、そのまま1時間撹拌することで、“スミカエクセル(登録商標)”PES5003Pを溶解させて透明な粘調液を得た。この液を混練しながら100℃以下に降温した後、セイカキュア-Sを添加してさらに混練し、熱硬化性樹脂組成物を得た。
 ベンゾオキサジン樹脂を用いた熱硬化性樹脂組成物は次の方法によって調製した。“Araldite(登録商標)”MY0610と“Virantage(登録商標)”VW10700RFPをニーダー中で混練しながら150℃以上に昇温し、そのまま1時間撹拌することで、“Virantage(登録商標)”VW10700RFPを溶解させて透明な粘調液を得た。この液を混練しながら100℃以下に降温した後、ベンゾオキサジン樹脂を添加して完全に溶解するまでさらに混練し、熱硬化性樹脂組成物を得た。
 ビスマレイミド樹脂を用いた熱硬化性樹脂組成物は次の方法によって調製した。“Compimide(登録商標)”TM124と“Matrimid(登録商標)”9725をニーダー中で混練しながら120℃以上に昇温し、そのまま1時間撹拌することで、“Matrimid(登録商標)”9725を溶解させて透明な粘調液を得た。この液を混練しながら100℃以下に降温した後、予め140℃に加熱しておいた“Compimide(登録商標)”MDABと“Compimide(登録商標)”TDABの混合物を添加してさらに混練し、熱硬化性樹脂組成物を得た。
 得られた熱硬化性樹脂組成物を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、強化繊維[A]の強化繊維を一方向に整列させた強化繊維シート(目付190g/m)の両面に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂組成物を含浸させ、熱硬化プリプレグを得た。
 <評価・測定方法>
 (1)熱可塑性樹脂の融点およびガラス転移温度の測定方法
 熱可塑性樹脂の融点およびガラス転移温度は、JIS K7121(2012)に基づいて、示差走査熱量計(DSC)を用いて測定した。容積50μLの密閉型サンプル容器に1~10mgのサンプルを詰め、昇温速度10℃/分で昇温し、30~400℃の範囲で検出されるDSC曲線の段差をガラス転移温度、吸熱ピークを融点の指標とし、それぞれの温度をガラス転移温度および融点とした。混合物などで融点またはガラス転移温度が複数観測される場合は、最も高い融点をその熱可塑性樹脂の融点として採用した。
 (2)引張せん断接合強度測定用の一体化成形品の作製方法
 所定の大きさにカットしたプリプレグを8枚準備し、強化繊維の軸方向を0°、軸直交方向を90°と定義して、[0°/90°]2S(記号Sは、鏡面対称を示す)の構成で積層した。この積層体を熱可塑性樹脂の融点またはガラス転移温度+35℃に加熱したプレス成形金型にセットし、この形状を維持させたまま、プレス機で1MPaの圧力をかけ、12分間加温することで、繊維強化樹脂成形体を得た。作製した繊維強化樹脂成形体を、0°方向を試験片の長さ方向として、幅250mm、長さ92.5mmの形状に2枚カットし、真空オーブン中で24時間乾燥させた。その後、2枚のパネルを、0°方向を長さ方向として、2パネルの端部から長さ12.5mmの範囲が接合面となるように重ね合わせ、表2~4および表6~11に記載の溶着温度(熱可塑性樹脂の融点+25℃、融点を示さない場合はガラス転移温度+100℃)にて、1MPaの圧力をかけて、6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
 (3)引張せん断接合強度の測定方法
 上記(2)で作製した一体化成形品に、ISO4587:1995(JIS K6850(1994))に準拠してタブを接着し、幅25mmでカットすることで、目的の試験片を得た。得られた試験片を、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に基づき、環境温度23℃における引張せん断接合強度を測定し、測定結果に基づいて以下のように評価した。
28MPa以上:A
25MPa以上28MPa未満:B
20MPa以上25MPa未満:C
20MPa未満:D(不合格)。
 (4)溶着時の寸法安定性の評価方法
 溶着時の寸法安定性は、溶着前の2枚の繊維強化樹脂成形体の平均厚みを、それぞれT1およびT2とし、溶着後の一体化成形品の平均厚みをT3とした時、(T1+T2-T3)/(T1+T2)×100で求められる溶着前後の厚みの変化率を算出し、算出結果に基づいて以下のように評価した。
5%以下:A
5%超8%以下:B
8%超10%以下:C
10%超:D(不合格)
 ここでは、溶着前後の接合面に相当する、長さ12.5mm、幅250mmの領域において、マイクロメーターを用いて幅方向に等間隔で厚みを10点測定し、その平均値を平均厚みとした。
 (5)複合プリプレグの粗さ平均長さRSmおよび粗さ平均高さRc
 作製した複合プリプレグを用い、図1に示すように第1の熱可塑性樹脂層3および第2の熱可塑性樹脂層4または熱硬化性樹脂層4に含まれる強化繊維2の繊維方向6に対し、複合プリプレグの平面視における45度の角度にて複合プリプレグ平面方向に対し垂直にカットし、観察断面7を有する試験片を得た。得られた試験片をエポキシ樹脂で包埋し、観察断面を研磨した。得られた観察断面において、光学顕微鏡を用いて、1000倍の画像を10か所撮影した。得られた画像中の任意の500μm×500μmの観察範囲の様子は図2の模式図のようになる。この観察画面7において、第1の熱可塑性樹脂層3と、第2の熱可塑性樹脂層4または熱硬化性樹脂層4は界面5を形成している。ここで、樹脂層4側の端部を基準線8として、樹脂層4から樹脂層3に向かって垂基線9を5μm間隔で描く。基準線8から描かれる垂基線9が初めて第1の熱可塑性樹脂層3と交わる点をプロットし、プロットされた点を結んだ線を断面曲線10とする。得られた断面曲線10につき、JIS B0601(2001)に基づくフィルタリング処理を行い、断面曲線10の粗さ平均高さRcおよび粗さ平均長さRSmを算出した。得られた10か所の画像から同様に粗さ平均高さRcおよび粗さ平均長さRSmを算出し、平均値を各値とした。
 (6)熱可塑性樹脂層中の各構成単位の質量%の算出
 プリプレグから所定量の熱可塑性樹脂層を採取したものを測定試料とし、固体NMR(Bruker社製 AVANCE III 400)測定を行い、熱可塑性樹脂、熱硬化性樹脂および硬化剤の各構成単位の質量比を算出した。
 (7)プリプレグの電子顕微鏡観察
・熱可塑性樹脂と反応物[A]の相溶性の確認および熱可塑性樹脂と反応物[A]の混合物の構造の観察
・反応物[A]と反応物[B]の相溶性の確認
・熱可塑性樹脂と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の相溶性の確認
 作製したプリプレグを薄切片化した後に染色し、透過型電子顕微鏡(日立(株)製、H-7100)を用い、加速電圧100kVで適切な倍率にて透過電子像を取得し、相分離構造の有無を確認することで、相溶性の確認を行った。ここで、相分離構造が確認されなかったものを「相溶」、相分離構造が確認されたものを「相分離」として、表2~4および表6~11に結果を示した。染色剤は、モルホロジーに充分なコントラストが付くよう、OsOとRuOを樹脂組成に応じて使い分けた。また、適切な倍率とは、構造周期が1nm以上10nm未満の場合は50,000倍、構造周期が10nm以上100nm未満の場合は20,000倍、構造周期が100nm以上1,000nm未満の場合は2,000倍、構造周期が1,000nm以上の場合は1,000倍とした。
 (8)プリプレグ中の反応物[A]および[B]の存在確認
  溶離液として、ヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)を用いて、プリプレグ中の反応物[A]および[B]の存在確認を行った。ヘキサフルオロイソプロパノールを用いて所定量のプリプレグから樹脂組成物を抽出したものを測定試料とし、混練前の各原料の混合物と前記抽出物のクロマトグラムを比較し、反応物由来のピークについて、そのピーク面積の増加の有無を判断することで行った。
 (9)溶媒への溶解性評価
 反応物[B]100mgを、30℃にて、20gのヘキサフルオロイソプロパノールと撹拌混合し、得られた溶液の外観を目視で確認した。目視で分離のない溶液が得られた場合を「可溶」、分離が確認された場合を「不溶」として、表5に結果を示した。
 (10)架橋構造の確認
 100mgの反応物[B]の各原料および反応物[B]を、30℃にて、それぞれ20gのヘキサフルオロイソプロパノールと撹拌混合し、得られた溶液の外観を目視で確認した。前記各原料の溶液について、目視で分離がなく、反応物[B]の溶液について、目視で分離が確認された場合を架橋構造「あり」、目視で分離がない場合を架橋構造「なし」として、表5に結果を示した。
 <実施例・比較例>
 [実施例1]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、反応物[A]として、表1に記載のA-1を用いて、以下のようにプリプレグを作製した。
 表2に記載の割合で、熱可塑性樹脂および前記反応物A-1を混練装置中に投入し、260℃で5分間加熱混練を行い、熱可塑性樹脂および反応物[A]からなる混合物を得た。ここで、熱可塑性樹脂の質量%は、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対する熱可塑性樹脂の構成単位の質量%に相当する。また、反応物[A]の質量%は、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対する熱硬化性樹脂の構成単位および硬化剤の構成単位の質量%の合計に相当する。
 次に、強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕した前記混合物の水分散液を塗布(凍結粉砕した混合物の目付100g/m)、乾燥した後、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記混合物を連続強化繊維シートに含浸させてプリプレグを得た。
 さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表2に示す。
 [実施例2]
 熱可塑性樹脂および前記反応物A-1の混練時間を5分間から30分間に変更した以外は、実施例1と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表2に示す。
 [実施例3~6]
 反応物[A]として、表1に記載のA-2~A-5を用いた以外は、実施例1と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表2に示す。
 [実施例7]
 強化繊維として、T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828、2官能以上の硬化剤として、セイカキュア-Sを用いて、以下のようにプリプレグを作製した。
 表3に記載の割合で、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を混練装置中に投入し、260℃で5分間加熱混練を行い、熱可塑性樹脂および反応物[A]からなる混合物を得た。
 次に、強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕した前記混合物の水分散液を塗布(凍結粉砕した混合物の目付100g/m)、乾燥した後、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記混合物を連続強化繊維シートに含浸させてプリプレグを得た。
 さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表3に示す。
 [実施例8]
 2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828および“スミエポキシ(登録商標)”ELM434を用いた以外は、実施例7と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表3に示す。
 [実施例9、10]
 熱可塑性樹脂および反応物[A]の総量100質量%に対して、熱可塑性樹脂および反応物[A]の割合が、表3に記載の質量%となるようにした以外は、実施例3と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表3に示す。
 [実施例11、12]
 反応物[A]として、表1に記載のA-6~A-7を用いた以外は、実施例1と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表3に示す。
 [実施例13]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、第2の熱可塑性樹脂層に用いる熱可塑性樹脂として、“KEPSTAN(登録商標)”7002、反応物[A]として、表1に記載のA-4を用いて、以下のように複合プリプレグを作製した。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、第2の熱可塑性樹脂層に用いる熱可塑性樹脂からなるフィルム(目付50g/m)を連続繊維シートの一方の表面に配置して、IRヒーターで加熱して第2の熱可塑性樹脂層に用いる熱可塑性樹脂を溶融させ、連続強化繊維シート片面全面に付着させ、第2の熱可塑性樹脂層に用いる熱可塑性樹脂の融点より100℃低い温度に保たれた3対のニップロールで加圧し、強化繊維シートに含浸させ、繊維強化シートが他方の面に露出したセミプレグを得た。
 次に、表4に記載の割合で、熱可塑性樹脂および前記反応物A-4を混練装置中に投入し、260℃で5分間加熱混練を行い、熱可塑性樹脂および反応物[A]からなる混合物を得た。凍結粉砕した前記混合物の水分散液を、得られたセミプレグの他方の面に塗布し(凍結粉砕した混合物の目付100g/m)、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記混合物を連続強化繊維シートに含浸させて複合プリプレグを得た。
 さらに、上記(2)に従い、積層した複合プリプレグをプレス機で1MPaの圧力をかけ、366℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表4に示す。
 [実施例14]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、反応物[A]として、表1に記載のA-4、熱硬化性樹脂組成物として、表4に記載の組成物を用いて、以下のように複合プリプレグを作製した。
 表4に記載の割合で、熱可塑性樹脂および前記反応物A-4を混練装置中に投入し、260℃で5分間加熱混練を行い、熱可塑性樹脂および反応物[A]からなる混合物を得た。強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕した前記混合物を強化繊維シート片面に散布し(凍結粉砕した混合物の目付100g/m)、IRヒーターで加熱して該混合物を溶融させ、連続強化繊維シート片面全面に付着させ、熱可塑性樹脂の融点またはガラス転移温度より100℃低い温度に保たれた3対のニップロールで加圧し、強化繊維シートに含浸させ、繊維強化シートが他方の面に露出したセミプレグを得た。
 次に、未硬化の熱硬化性樹脂組成物からなるフィルム(目付50g/m)を、得られたセミプレグの他方の面に重ね合わせて、ヒートロールを行い、加熱加圧しながら前記未硬化の熱硬化性樹脂組成物からなるフィルムを連続強化繊維シートに含浸させて複合プリプレグを得た。
 さらに、得られた複合プリプレグを所定の大きさにカットしたものを2枚、上記の方法で作製した熱硬化プリプレグを同様の形状にカットしたものを6枚準備し、強化繊維の軸方向を0°、軸直交方向を90°と定義して、[0°/90°]2S(記号Sは、鏡面対称を示す)の構成で、最外層が前記2枚の複合プリプレグ(熱可塑性樹脂層が最外面)、内層が前記熱硬化プリプレグとなるようにプリプレグを積層した。
 積層したプリプレグをプレス機で1MPaの圧力をかけ、230℃で12分間加温することで、繊維強化樹脂成形体を作製した以外は、上記(2)に従い、得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表4に示す。
 [実施例15、17]
 反応物[A]として、表1に記載のA-6およびA-7を用いた以外は、実施例13と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表4に示す。
 [実施例16]
 反応物[A]として、表1に記載のA-6を用い、積層したプリプレグをプレス機で1MPaの圧力をかけ、180℃で1時間加温した後、230℃で1時間加温することで、繊維強化樹脂成形体を作製した以外は、実施例14と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
 複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表4に示す。
 [実施例18]
 反応物[A]として、表1に記載のA-7を用い、積層したプリプレグをプレス機で1MPaの圧力をかけ、140℃で1時間加温した後、180℃で1時間加温し、さらに230℃で1時間加温することで、繊維強化樹脂成形体を作製した以外は、実施例14と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表4に示す。
 [比較例1]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007を用いて、以下のようにプリプレグを作製した。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕した熱可塑性樹脂の水分散液を塗布(凍結粉砕した反応物の目付100g/m)、乾燥させた後、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記熱可塑性樹脂を連続強化繊維シートに含浸させてプリプレグを得た。
 さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表2に示す。
 [比較例2、3]
 熱可塑性樹脂および反応物[A]の総量100質量%に対して、熱可塑性樹脂および反応物[A]の割合が、表3に記載の質量%となるようにした以外は、実施例3と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表3に示す。
 実施例1~10と比較例1の対比により、熱可塑性樹脂層が、反応物[A]の形態で、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含む場合には、溶着時の寸法安定性と23℃での引張せん断接合強度のバランスに優れるが、反応物[A]を含まない、または各構成単位の含有量が上記範囲外の場合には、23℃での引張せん断接合強度または溶着時の寸法安定性のいずれかが不合格となることがわかる。
 実施例11~16の結果より、反応物[A]を熱可塑性樹脂層に含み、各構成単位の含有量が上記範囲を満たす複合プリプレグは、溶着時の寸法安定性と23℃での引張せん断接合強度のバランスに優れることがわかる。
 [実施例19]
 強化繊維として、炭素繊維T800S、反応物[B]として、表5に記載のB-1を用いて、以下のようにプリプレグを作製した。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕したB-1の水分散液を塗布(凍結粉砕した反応物の目付100g/m)、乾燥させた後、B-1の原料である熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記反応物を連続強化繊維シートに含浸させてプリプレグを得た。
 さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表6に示す。
 [実施例20~24]
 反応物[B]として、表5に記載のB-2~B-6を用いた以外は、実施例19と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表6に示す。
 [実施例25]
 強化繊維として、炭素繊維T800S、反応物[B]として、表5に記載のB-1、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828、2官能以上の硬化剤として、セイカキュア-Sを用いて、以下のようにプリプレグを作製した。
 表6に記載の割合で、B-1、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を混練装置中に投入し、260℃で5分間加熱混練を行い、B-1と、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤の反応物[A]からなる混合物を得た。強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕した前記混合物の水分散液を塗布(凍結粉砕した混合物の目付100g/m)、乾燥した後、B-1の原料である熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記混合物を連続強化繊維シートに含浸させてプリプレグを得た
 さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表6に示す。
 [実施例26~29]
 反応物[B]として、表5に記載のB-7、B-8、B-11およびB-12を用いた以外は、実施例19と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表7に示す。
 [比較例4、5]
 反応物[B]として、表5に記載のB-9およびB-10を用いた以外は、実施例19と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
 プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表7に示す。
 [実施例30]
 強化繊維として、炭素繊維T800S、反応物[B]として、表5に記載のB-5、第2の熱可塑性樹脂層に用いる熱可塑性樹脂として、“KEPSTAN(登録商標)”7002を用いて、以下のように複合プリプレグを作製した。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、第2の熱可塑性樹脂層に用いる熱可塑性樹脂からなるフィルム(目付50g/m)を連続繊維シートの一方の表面に配置して、IRヒーターで加熱して第2の熱可塑性樹脂層に用いる熱可塑性樹脂を溶融させ、連続強化繊維シート片面全面に付着させ、第2の熱可塑性樹脂層に用いる熱可塑性樹脂の融点より100℃低い温度に保たれた3対のニップロールで加圧し、強化繊維シートに含浸させ、繊維強化シートが他方の面に露出したセミプレグを得た。
 次に、凍結粉砕した反応物[B]の水分散液を、得られたセミプレグの他方の面に塗布し(凍結粉砕した混合物の目付100g/m)、B-5の原料である熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記混合物を連続強化繊維シートに含浸させて複合プリプレグを得た。
 さらに、上記(2)に従い、積層した複合プリプレグをプレス機で1MPaの圧力をかけ、366℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表8に示す。
 [実施例31]
 強化繊維として、炭素繊維T800S、反応物[B]として、表5に記載のB-5、熱硬化性樹脂組成物として、表8に記載の組成物を用いて、以下のように複合プリプレグを作製した。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、凍結粉砕した前記混合物を強化繊維シート片面に散布し(凍結粉砕した混合物の目付100g/m)、IRヒーターで加熱して該混合物を溶融させ、連続強化繊維シート片面全面に付着させ、B-5の原料である熱可塑性樹脂の融点またはガラス転移温度より100℃低い温度に保たれた3対のニップロールで加圧し、強化繊維シートに含浸させ、繊維強化シートが他方の面に露出したセミプレグを得た。
 次に、未硬化の熱硬化性樹脂組成物からなるフィルム(目付50g/m)を、得られたセミプレグの他方の面に重ね合わせて、ヒートロールを行い、加熱加圧しながら前記未硬化の熱硬化性樹脂組成物からなるフィルムを連続強化繊維シートに含浸させて複合プリプレグを得た。
 さらに、得られた複合プリプレグを所定の大きさにカットしたものを2枚、上記の方法で作製した熱硬化プリプレグを同様の形状にカットしたものを6枚準備し、強化繊維の軸方向を0°、軸直交方向を90°と定義して、[0°/90°]2S(記号Sは、鏡面対称を示す)の構成で、最外層が前記2枚の複合プリプレグ(反応物[B]を含む層が最外面)、内層が前記熱硬化プリプレグとなるようにプリプレグを積層した。
 積層したプリプレグをプレス機で1MPaの圧力をかけ、230℃で12分間加温することで、繊維強化樹脂成形体を作製した以外は、上記(2)に従い、得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表8に示す。
 [実施例32、34]
 反応物[B]として、表5に記載のB-11およびB-12を用いた以外は、実施例30と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表8に示す。
 [実施例33]
 反応物[B]として、表5に記載のB-11を用い、積層したプリプレグをプレス機で1MPaの圧力をかけ、180℃で1時間加温した後、230℃で1時間加温することで、繊維強化樹脂成形体を作製した以外は、実施例31と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表8に示す。
 [実施例35]
 反応物[B]として、表5に記載のB-12を用い、積層したプリプレグをプレス機で1MPaの圧力をかけ、140℃で1時間加温した後、180℃で1時間加温し、さらに230℃で1時間加温することで、繊維強化樹脂成形体を作製した以外は、実施例31と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表8に示す。
 実施例19~29と比較例1、4および5の対比により、熱可塑性樹脂層が、反応物[B]の形態で、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含む場合には、溶着時の寸法安定性と23℃での引張せん断接合強度のバランスに優れるが、反応物[B]を含まない、または各構成単位の含有量が上記範囲外の場合には、23℃での引張せん断接合強度または溶着時の寸法安定性のいずれかが不合格となることがわかる。
 実施例30~35の結果より、反応物[B]を熱可塑性樹脂層に含み、各構成単位の含有量が上記範囲を満たす複合プリプレグは、溶着時の寸法安定性と23℃での引張せん断接合強度のバランスに優れることがわかる。
 [実施例36]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828を用いて、以下のようにプリプレグを作製した。
 “jER(登録商標)”828を50℃に加温し、コーターを用いて“アミラン(登録商標)”CM1007からなるフィルム(50g/m)上に塗布した。2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーを2種類以上使用する場合、または1種類以上の2官能以上の熱硬化性樹脂モノマーもしくはプレポリマー、およびその他の成分を使用する場合は、予めニーダー中に、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマー、およびその他の成分(使用する場合のみ)を投入し、50℃で加熱混練することで混合物を得た後、コーターを用いて該混合物を熱可塑性樹脂からなるフィルム上に塗布した。また、実施例42および44で使用した“スミカエクセル(登録商標)”PES5003Pについては、粉体であるため、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとともにニーダーに投入して混練した。この時、熱可塑性樹脂および2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの総量100質量%に対して、熱可塑性樹脂を90.0質量%、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーを10.0質量%含むようにした。
 次に、強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、該連続強化繊維シートの両面に、前記フィルムの2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーが塗布された面を重ね合わせて、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記フィルムを連続強化繊維シートに含浸させてプリプレグを得た。
 さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例37]
 その他の成分として、熱可塑性樹脂および2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの総量100質量%に対して0.1質量%のEPTSを用いた以外は、実施例36と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例38]
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、該連続強化繊維シートの両面に、前述の熱可塑性樹脂と2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの反応物を含むフィルム(目付50g/m)を重ね合わせて、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記フィルムを連続強化繊維シートに含浸させた以外は、実施例36と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [比較例6]
 熱可塑性樹脂および2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの総量100質量%に対して、熱可塑性樹脂および2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの割合が、表9に記載の質量%となるようにした以外は、実施例36と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例39]
 強化繊維として、T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828、2官能以上の硬化剤として、セイカキュア-Sを用いて、実施例36と同様にしてプリプレグを作製した。この時、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂を65.0質量%、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーを25.9質量%、2官能以上の硬化剤を9.1質量%含むようにした。また、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対する2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合は、それぞれ74質量%と26質量%となるようにした。さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、260℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例40、41]
 熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表9に記載の質量%となるようにした以外は、実施例39と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例42]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007および“スミカエクセル(登録商標)”PES5003Pを用い、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表9に記載の質量%となるようにした以外は、実施例39と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例43]
 イソプロピルアルコールで希釈した2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーの混合物を熱可塑性樹脂からなるフィルム状に塗布し、その後イソプロピルアルコールを乾燥除去することで、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーが塗布されたフィルムを得た。その際に、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表9に記載の質量%となるように調整した。それ以外は、実施例39と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [比較例7]
 熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表9に記載の質量%となるようにした以外は、実施例39と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [比較例8]
 熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表9に記載の質量%となるようにした以外は、実施例43と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表9に示す。
 [実施例44]
 2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828および“スミエポキシ(登録商標)”ELM434を用い、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例42と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例45]
 2官能以上の硬化剤として、DICY7を用い、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例41と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例46]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、ベンゾオキサジン樹脂F-a、2官能以上の硬化剤として、“Araldite(登録商標)”MY0610を用いて、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例39と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例47]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“Compimide(登録商標)”MDABおよび“Compimide(登録商標)”TDAB、2官能以上の硬化剤として、“Compimide(登録商標)”TM124を用いて、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例39と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例48]
 熱可塑性樹脂として、“アミラン(登録商標)”CM4000を用い、190℃で繊維強化樹脂成形体を作製し、180℃で一体化成形品を作製した以外は、実施例41と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [比較例9]
 熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例48と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例49]
 熱可塑性樹脂として、“トレリナ(登録商標)”A670T05を用い、313℃で繊維強化樹脂成形体を作製し、303℃で一体化成形品を作製した以外は、実施例41と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [比較例10]
 熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例49と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例50]
 熱可塑性樹脂として、“KEPSTAN(登録商標)”7002を用い、366℃で繊維強化樹脂成形体を作製し、356℃で一体化成形品を作製した以外は、実施例41と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [比較例11]
 熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表10に記載の質量%となるようにした以外は、実施例50と同様にしてプリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例51]
 強化繊維として、炭素繊維T800Sの代わりに、連続E-ガラス繊維を用いた以外は、実施例41と同様にしてプリプレグを得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例52]
 強化繊維として、強化繊維を一方向に整列させた強化繊維シートの代わりに、炭素繊維織物“トレカ(登録商標)”クロスCK6273Cを用いた以外は、実施例41と同様にしてプリプレグを得た。
プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表10に示す。
 [実施例53]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、第2の熱可塑性樹脂層に用いる熱可塑性樹脂として、“KEPSTAN(登録商標)”7002、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828、2官能以上の硬化剤として、セイカキュア-Sを用いて、以下のように複合プリプレグを作製した。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、第2の熱可塑性樹脂層に用いる熱可塑性樹脂からなるフィルム(目付50g/m)を連続繊維シートの一方の表面に配置して、IRヒーターで加熱して第2の熱可塑性樹脂層に用いる熱可塑性樹脂を溶融させ、連続強化繊維シート片面全面に付着させ、第2の熱可塑性樹脂層に用いる熱可塑性樹脂の融点より100℃低い温度に保たれた3対のニップロールで加圧し、強化繊維シートに含浸させ、繊維強化シートが他方の面に露出したセミプレグを得た。
 実施例36と同様の方法で、熱可塑性樹脂からなるフィルム(目付100g/m)に2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を塗布した。この時、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂を95.0質量%、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーを3.7質量%、2官能以上の硬化剤を1.3質量%含むようにした。また、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対する2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合は、それぞれ74質量%と26質量%となるようにした。
 該フィルムの2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤が塗布された面を、得られたセミプレグの他方の面に重ね合わせて、熱可塑性樹脂の融点+25℃の温度にてヒートロールを行い、加熱加圧しながら前記フィルムを連続強化繊維シートに含浸させて複合プリプレグを得た。さらに、上記(2)に従い、積層したプリプレグをプレス機で1MPaの圧力をかけ、366℃で12分間加温することで、繊維強化樹脂成形体を作製した。得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表11に示す。
 [実施例54]
 強化繊維として、炭素繊維T800S、熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“jER(登録商標)”828、2官能以上の硬化剤として、セイカキュア-S、熱硬化性樹脂組成物として、表11に記載の組成物を用いた。
 強化繊維を一方向に整列させた強化繊維シート(目付190g/m)を引き出し、実施例36と同様の方法で、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を塗布した。この時、各成分の割合が、表11に記載の通りになるようにした。
 該フィルムの2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤が塗布された面を、連続繊維シートの一方の表面に配置して、IRヒーターで加熱して該フィルムを溶融させ、連続強化繊維シート片面全面に付着させ、熱可塑性樹脂の融点またはガラス転移温度より100℃低い温度に保たれた3対のニップロールで加圧し、強化繊維シートに含浸させ、繊維強化シートが他方の面に露出したセミプレグを得た。未硬化の熱硬化性樹脂組成物からなるフィルム(目付50g/m)を、得られたセミプレグの他方の面に重ね合わせて、ヒートロールを行い、加熱加圧しながら前記未硬化の熱硬化性樹脂組成物からなるフィルムを連続強化繊維シートに含浸させて複合プリプレグを得た。
 得られた複合プリプレグを所定の大きさにカットしたものを2枚、前述のように作製した熱硬化プリプレグを同様の形状にカットしたものを6枚準備し、強化繊維の軸方向を0°、軸直交方向を90°と定義して、[0°/90°]2S(記号Sは、鏡面対称を示す)の構成で、最外層が前記2枚の複合プリプレグ(熱可塑性樹脂を含む層が最外面)、内層が前記熱硬化プリプレグとなるようにプリプレグを積層した。
 積層したプリプレグをプレス機で1MPaの圧力をかけ、230℃で12分間加温することで、繊維強化樹脂成形体を作製した以外は、上記(2)に従い、得られた繊維強化樹脂成形体に、1MPaの圧力をかけて、250℃で6分間保持することで、重ね合わせた面を溶着し、引張せん断接合強度評価用の一体化成形品を得た。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表11に示す。
 [実施例55]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、ベンゾオキサジン樹脂F-a、2官能以上の硬化剤として、“Araldite(登録商標)”MY0610を用いて、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表11に記載の質量%となるようにした以外は、実施例53と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表11に示す。
 [実施例56]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、ベンゾオキサジン樹脂F-a、2官能以上の硬化剤として、“Araldite(登録商標)”MY0610、熱硬化性樹脂組成物として、表11に記載の組成物を用い、積層したプリプレグをプレス機で1MPaの圧力をかけ、180℃で1時間加温した後、230℃で1時間加温することで、繊維強化樹脂成形体を作製した以外は、実施例54と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。この際、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表11に記載の質量%となるようにした。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表11に示す。
 [実施例57]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“Compimide(登録商標)”MDABおよび“Compimide(登録商標)”TDAB、2官能以上の硬化剤として、“Compimide(登録商標)”TM124を用いて、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の総量100質量%に対して、熱可塑性樹脂、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の割合が、表11に記載の質量%となるようにした以外は、実施例53と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
 複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表11に示す。
 [実施例58]
 熱可塑性樹脂として、“アミラン(登録商標)”CM1007、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーとして、“Compimide(登録商標)”MDABおよび“Compimide(登録商標)”TDAB、2官能以上の硬化剤として、“Compimide(登録商標)”TM124、熱硬化性樹脂組成物として、表11に記載の組成物を用い、積層したプリプレグをプレス機で1MPaの圧力をかけ、140℃で1時間加温した後、180℃で1時間加温し、さらに230℃で1時間加温することで、繊維強化樹脂成形体を作製した以外は、実施例54と同様にして複合プリプレグ、繊維強化樹脂成形体、一体化成形品を作製した。
複合プリプレグ、繊維強化樹脂成形体、一体化成形品の物性等の評価結果を表11に示す。
 実施例36~38と比較例6の対比、および実施例39~43と比較例7の対比により、熱可塑性樹脂層が、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の形態で、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計35.0質量%超含む場合には、溶着時の寸法安定性は良好~特に良好であるが、23℃での引張せん断接合強度が不合格となることがわかる。
 実施例36~38と比較例1の対比、および実施例39~43と比較例8の対比により、熱可塑性樹脂層が、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の形態で、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱硬化性樹脂モノマーもしくはプレポリマーおよび硬化剤の構成単位を合計0.5質量%未満しか含まない場合には、23℃での引張せん断接合強度は特に良好であるが、溶着時の寸法安定性が不合格となることがわかる。
 実施例36~38と実施例39~43の対比により、反応により共有結合を形成しうる2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を含むプリプレグにおいては、溶着時の寸法安定性に優れることがわかる。
 実施例48と比較例9の対比、実施例49と比較例10の対比、および実施例50と比較例11の対比により、熱可塑性樹脂層が、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤の形態で、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱硬化性樹脂モノマーもしくはプレポリマーおよび硬化剤の構成単位を合計0.5質量%未満しか含まない場合には、23℃での引張せん断接合強度は良好~特に良好であるが、溶着時の寸法安定性が不合格となることがわかる。
 実施例53~58の結果より、熱可塑性樹脂層が、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび2官能以上の硬化剤を含み、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含む複合プリプレグは、溶着時の寸法安定性と23℃での引張せん断接合強度のバランスに優れることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
1:複合プリプレグ
2:強化繊維
3:第1の熱可塑性樹脂層
4:第2の熱可塑性樹脂層または熱硬化性樹脂層
5:界面
6:強化繊維の繊維方向
7:観察断面
8:基準線
9:垂基線
10:断面曲線

Claims (29)

  1. 強化繊維と熱可塑性樹脂とを含む熱可塑性樹脂層を有するプリプレグであって、該熱可塑性樹脂層が、プリプレグの少なくとも一方の表面に存在し、前記熱可塑性樹脂層は、熱可塑性樹脂の構成単位、熱硬化性樹脂の構成単位および硬化剤の構成単位の総量100質量%に対して、熱可塑性樹脂の構成単位を65.0~99.5質量%含み、熱硬化性樹脂の構成単位および硬化剤の構成単位を合計0.5~35.0質量%含むプリプレグ。
  2. 前記熱可塑性樹脂層は、前記熱硬化性樹脂の構成単位および/または前記硬化剤の構成単位を、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤との反応物[A]の形態で含む、請求項1に記載のプリプレグ。
  3. 前記反応物[A]が、前記熱可塑性樹脂と相溶している、請求項2に記載のプリプレグ。
  4. 前記反応物[A]が、前記熱可塑性樹脂とセミIPN構造またはIPN構造を形成している、請求項2に記載のプリプレグ。
  5. 前記熱可塑性樹脂層は、前記熱硬化性樹脂の構成単位および/または前記硬化剤の構成単位を、前記熱可塑性樹脂が2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤と反応した反応物[B]の形態で含む、請求項1に記載のプリプレグ。
  6. 前記反応物[B]が溶媒に可溶である、請求項5に記載のプリプレグ。
  7. 前記反応物[B]が架橋構造を有する、請求項5に記載のプリプレグ。
  8. 前記熱可塑性樹脂層は、前記熱硬化性樹脂の構成単位および/または前記硬化剤の構成単位を、2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の形態で含む、請求項1に記載のプリプレグ。
  9. 前記2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤が、前記熱可塑性樹脂と相溶している、請求項8に記載のプリプレグ。
  10. 前記2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーおよび/または2官能以上の硬化剤の構造式から計算される分子量、またはゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が、3,000g/mol以下である、請求項8に記載のプリプレグ。
  11. 2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーと2官能以上の硬化剤の反応によって、前記熱可塑性樹脂が増粘する、請求項8に記載のプリプレグ。
  12. 前記熱可塑性樹脂の増粘が、プリプレグの加熱により生じる、請求項11に記載のプリプレグ。
  13. 前記熱可塑性樹脂の増粘が、繊維強化樹脂成形体の成形中に生じる、請求項12のプリプレグ。
  14. 前記熱可塑性樹脂の増粘が、一体化成形品の作製中に生じる、請求項12のプリプレグ。
  15. 前記熱可塑性樹脂の融点+25℃(融点を示さない場合は、ガラス転移温度+100℃)の温度において、前記増粘後の熱可塑性樹脂の粘度が、増粘前の熱可塑性樹脂の粘度の2~2000倍である、請求項11のプリプレグ。
  16. 前記熱可塑性樹脂が、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリアリーレンサルファイド、ポリエーテルケトンケトンおよびポリアリーレンエーテルケトンからなる群より選択される樹脂である、請求項1、2、5または8に記載のプリプレグ。
  17. プリプレグの厚み方向全域が、前記熱可塑性樹脂層からなる、請求項1、2、5または8に記載のプリプレグ。
  18. 前記強化繊維が、炭素繊維である、請求項1、2、5または8に記載のプリプレグ。
  19. 前記熱硬化性樹脂の構成単位および前記硬化剤の構成単位の総量100質量%に対して、熱硬化性樹脂の構成単位を60.0~99.5質量%、硬化剤の構成単位を0.5~40.0質量%含む、請求項1、2、5または8に記載のプリプレグ。
  20. 前記2官能以上の熱硬化性樹脂モノマーもしくはプレポリマーが、少なくとも1種以上のエポキシ樹脂モノマーもしくはプレポリマーである、請求項2、5または8に記載のプリプレグ。
  21. 前記2官能以上の硬化剤が、2官能以上のアミン化合物である、請求項2、5または8に記載のプリプレグ。
  22. 前記2官能以上のアミン化合物が、芳香族ポリアミン化合物である、請求項21に記載のプリプレグ。
  23. 前記熱可塑性樹脂層と、
    該熱可塑性樹脂層と界面を形成して互いに接合した、
    (1)強化繊維と、前記熱可塑性樹脂とは異なる熱可塑性樹脂の構成単位を有する少なくとも1種以上の熱可塑性樹脂とを含む第2の熱可塑性樹脂層、または、
    (2)強化繊維と、少なくとも1種以上の熱硬化性樹脂および/または硬化剤を含む熱硬化性樹脂層、
    のいずれかの層と、を有する、請求項1、2、5または8に記載のプリプレグ。
  24. 厚み方向の断面において、前記界面が形成する断面曲線の、JIS B0601(2001)で定義される粗さ平均長さRSmが100μm以下であり、粗さ平均高さRcが3.5μm以上である、請求項23に記載のプリプレグ。
  25. 前記熱硬化性樹脂層が、前記2官能以上のエポキシ樹脂モノマーもしくはプレポリマーおよび前記2官能以上のアミン化合物を主成分とする層である、請求項24に記載のプリプレグ。
  26. 請求項1、2、5または8に記載のプリプレグを含むプリフォームを成形してなる繊維強化樹脂成形体。
  27. 請求項23に記載のプリプレグを含むプリフォームを成形してなる繊維強化樹脂成形体。
  28. 前記熱可塑性樹脂の融点+25℃(融点を示さない場合は、ガラス転移温度+100℃)の温度にて、1MPaの圧力をかけて、6分間保持して溶着したときの寸法安定性が10%以下である、請求項27に記載の繊維強化樹脂成形体。
    (ここで、溶着時の寸法安定性とは、溶着前の2枚の繊維強化樹脂成形体の平均厚みを、それぞれT1およびT2とし、溶着後の一体化成形品の平均厚みをT3とした時、(T1+T2-T3)/(T1+T2)×100で求められる溶着前後の厚みの変化率を示す。)
  29. 請求項26~28のいずれかに記載の繊維強化樹脂成形体が、前記熱可塑性樹脂層を介して他部材と溶着されてなる一体化成形品。
PCT/JP2022/036401 2021-10-06 2022-09-29 プリプレグ、繊維強化樹脂成形体、および一体化成形品 WO2023058546A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280065102.4A CN118019784A (zh) 2021-10-06 2022-09-29 预浸料坯、纤维增强树脂成型体及一体化成型品
JP2022561434A JP7334867B1 (ja) 2021-10-06 2022-09-29 プリプレグ、繊維強化樹脂成形体、および一体化成形品

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021164558 2021-10-06
JP2021-164558 2021-10-06
JP2021-164556 2021-10-06
JP2021-164557 2021-10-06
JP2021164557 2021-10-06
JP2021164556 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058546A1 true WO2023058546A1 (ja) 2023-04-13

Family

ID=85803440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036401 WO2023058546A1 (ja) 2021-10-06 2022-09-29 プリプレグ、繊維強化樹脂成形体、および一体化成形品

Country Status (3)

Country Link
JP (1) JP7334867B1 (ja)
TW (1) TW202330276A (ja)
WO (1) WO2023058546A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055811A1 (ja) * 2008-11-13 2010-05-20 東邦テナックス株式会社 熱硬化性樹脂組成物とそれを用いたプリプレグ
JP2012246442A (ja) 2011-05-30 2012-12-13 Fukui Prefecture プリプレグシート材及びその製造方法
WO2014007288A1 (ja) * 2012-07-05 2014-01-09 東レ株式会社 プリフォーム用バインダー樹脂組成物、バインダー粒子、プリフォームおよび繊維強化複合材料
JP2019077763A (ja) * 2017-10-24 2019-05-23 東レ株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2019089951A (ja) * 2017-11-15 2019-06-13 三菱ケミカル株式会社 トウプリプレグ、繊維強化複合材料及び複合材料補強圧力容器とその製造方法
WO2020003662A1 (ja) * 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
JP2020164671A (ja) * 2019-03-29 2020-10-08 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法
JP2020164672A (ja) * 2019-03-29 2020-10-08 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055811A1 (ja) * 2008-11-13 2010-05-20 東邦テナックス株式会社 熱硬化性樹脂組成物とそれを用いたプリプレグ
JP2012246442A (ja) 2011-05-30 2012-12-13 Fukui Prefecture プリプレグシート材及びその製造方法
WO2014007288A1 (ja) * 2012-07-05 2014-01-09 東レ株式会社 プリフォーム用バインダー樹脂組成物、バインダー粒子、プリフォームおよび繊維強化複合材料
JP2019077763A (ja) * 2017-10-24 2019-05-23 東レ株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2019089951A (ja) * 2017-11-15 2019-06-13 三菱ケミカル株式会社 トウプリプレグ、繊維強化複合材料及び複合材料補強圧力容器とその製造方法
WO2020003662A1 (ja) * 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
JP2020164671A (ja) * 2019-03-29 2020-10-08 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法
JP2020164672A (ja) * 2019-03-29 2020-10-08 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法

Also Published As

Publication number Publication date
JPWO2023058546A1 (ja) 2023-04-13
TW202330276A (zh) 2023-08-01
JP7334867B1 (ja) 2023-08-29

Similar Documents

Publication Publication Date Title
KR20140007815A (ko) 프리프레그 및 구조 부재 이용분야에 사용되는 불용성 및 부분 용해성 또는 팽창성 강인화 입자를 함유하는 에폭시 수지계
US11878478B2 (en) Prepreg, laminate, and molding
CN113840706B (zh) 预浸料坯、层叠体及成型品
WO2015155362A1 (en) Composite materials
WO2020235484A1 (ja) プリプレグ、積層体および成形品
WO2020235485A1 (ja) プリプレグ、積層体および成形品
JP7334867B1 (ja) プリプレグ、繊維強化樹脂成形体、および一体化成形品
WO2020235486A1 (ja) プリプレグ、積層体および成形品
CN118019784A (zh) 预浸料坯、纤维增强树脂成型体及一体化成型品
JP7180790B2 (ja) プリプレグ、繊維強化樹脂成形体および一体化成形品
WO2021117460A1 (ja) プリプレグ、積層体および一体化成形品
JP7088320B2 (ja) プリプレグ、積層体および一体化成形品
WO2021117461A1 (ja) プリプレグ、積層体および一体化成形品
WO2022107563A1 (ja) 繊維強化樹脂および一体化成形品
WO2021199906A1 (ja) 繊維強化樹脂、一体化成形品および繊維強化樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561434

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022878416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022878416

Country of ref document: EP

Effective date: 20240506