WO2010055735A1 - テラヘルツ波発生装置 - Google Patents

テラヘルツ波発生装置 Download PDF

Info

Publication number
WO2010055735A1
WO2010055735A1 PCT/JP2009/066757 JP2009066757W WO2010055735A1 WO 2010055735 A1 WO2010055735 A1 WO 2010055735A1 JP 2009066757 W JP2009066757 W JP 2009066757W WO 2010055735 A1 WO2010055735 A1 WO 2010055735A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
pulse
terahertz wave
diffraction grating
optical system
Prior art date
Application number
PCT/JP2009/066757
Other languages
English (en)
French (fr)
Inventor
陽一 河田
篤司 中西
敬史 安田
高橋 宏典
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP09825988.0A priority Critical patent/EP2354841B1/en
Priority to US13/128,988 priority patent/US8564875B2/en
Publication of WO2010055735A1 publication Critical patent/WO2010055735A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation

Definitions

  • the present invention relates to a terahertz wave generator.
  • the terahertz wave is an electromagnetic wave having a frequency of about 0.01 THz to 100 THz corresponding to an intermediate region between the light wave and the radio wave, and has an intermediate property between the light wave and the radio wave.
  • a technique for acquiring information on the measurement object by measuring a time waveform of the electric field amplitude of the terahertz wave transmitted or reflected by the measurement object has been studied.
  • the measurement technology for information on a measurement object using terahertz waves is as follows. That is, pulse light output from a light source (for example, a femtosecond laser light source) is bifurcated by a branching unit into pulse excitation light and pulse detection light. Among them, the pulse excitation light is input to a terahertz wave generating element (for example, a nonlinear optical crystal or a photoconductive antenna element), and thereby a pulsed terahertz wave is generated from the terahertz wave generating element.
  • a light source for example, a femtosecond laser light source
  • a branching unit for example, a branching unit into pulse excitation light and pulse detection light.
  • the pulse excitation light is input to a terahertz wave generating element (for example, a nonlinear optical crystal or a photoconductive antenna element), and thereby a pulsed terahertz wave is generated from the terahertz wave generating element.
  • the generated terahertz wave is transmitted or reflected as measurement light by the measurement target unit to acquire information (for example, absorption coefficient, refractive index) of the measurement target, and then at substantially the same timing as the pulse detection light.
  • the light is incident on a terahertz wave detecting element (for example, an electro-optic crystal or a photoconductive antenna element).
  • the correlation between the two lights is detected.
  • the terahertz wave and the pulse detection light are combined by the multiplexing unit and incident on the electro-optic crystal, and the terahertz wave is propagated in the electro-optic crystal as the terahertz wave propagates. Refraction is induced, and the polarization state of the pulse detection light changes due to the birefringence. A change in the polarization state of the pulse detection light in the electro-optic crystal is detected. As a result, the electric field amplitude of the terahertz wave is detected, and information on the measurement object is obtained.
  • terahertz wave generators that generate terahertz waves.
  • One of the terahertz wave generators causes pulsed excitation light to enter a nonlinear optical crystal and generate a terahertz wave from the nonlinear optical crystal.
  • the type of nonlinear optical crystal suitable for terahertz wave generation is determined according to the center wavelength of the pulse excitation light. For example, when pulse excitation light having a central wavelength of 800 nm is used, ZnTe crystal is widely used as the nonlinear optical crystal due to the phase matching condition between the pulse excitation light and the terahertz wave in the nonlinear optical crystal.
  • pulse excitation light having a center wavelength of 800 nm is incident on the ZnTe crystal, a pulsed terahertz wave is generated coaxially with the pulse excitation light.
  • the phase matching condition can be obtained by making the non-linear optical crystal incident on the non-linear optical crystal.
  • Non-Patent Documents 1 to 3 have the following problems.
  • the terahertz wave generators described in Non-Patent Documents 1 to 3 have the following problems.
  • the tilt angle of the pulse surface of the pulse excitation light is set so that the phase matching condition is satisfied for a certain frequency terahertz wave
  • the terahertz wave having a frequency different from the terahertz wave having the originally designed frequency is set.
  • Non-Patent Documents 1 to 3 if the tilt angle of the pulse surface of the pulse excitation light is changed, the optical path of the pulse excitation light toward the nonlinear optical crystal also changes. Realignment or redesign of the optical system is required. Therefore, in the terahertz wave generators described in Non-Patent Documents 1 to 3, it is not easy to adjust the tilt angle of the pulse surface of the pulse excitation light (that is, adjustment of the phase matching condition), and the frequency of the terahertz wave It is not easy to change.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a terahertz wave generator in which phase matching conditions can be easily adjusted.
  • the terahertz wave generator inputs (1) an excitation light source that outputs pulse excitation light, and (2) pulse excitation light output from the excitation light source, and diffracts and outputs the pulse excitation light. And a transmission type diffraction grating whose direction is variable with a straight line passing through the incident position of the chief ray of the pulse excitation light as a central axis, and (3) the pulse excitation light diffracted and output by the transmission type diffraction grating.
  • variable imaging optical system in which the magnification of the imaging is variable
  • a variable imaging optical system And a nonlinear optical crystal that is arranged at a position where the pulsed excitation light is imaged and that receives the pulsed excitation light that has passed through the variable imaging optical system and generates a terahertz wave.
  • the pulse excitation light output from the excitation light source is input to the transmission diffraction grating and is diffracted to tilt the pulse surface.
  • the pulse excitation light diffracted by the transmission diffraction grating and output with the pulse plane tilted is imaged on the nonlinear optical crystal by the variable imaging optical system. Then, in the nonlinear optical crystal arranged at the position where the pulse excitation light is imaged by the variable imaging optical system, the pulse excitation light is input and a terahertz wave is generated.
  • this terahertz wave generator uses a transmission diffraction grating as a means to tilt the pulse surface of the pulse excitation light, and adjusts the tilt angle of the pulse surface of the pulse excitation light by setting the orientation of the transmission diffraction grating.
  • the tilt angle of the pulse surface of the pulse excitation light can be further adjusted by the variable imaging optical system having a variable imaging magnification.
  • this terahertz wave generator does not change the output direction of the pulse excitation light from the transmission diffraction grating even when the tilt angle of the pulse surface of the pulse excitation light is greatly adjusted in this way. Condition adjustment or optimization is easy.
  • FIG. 1 is a diagram illustrating a configuration of a terahertz wave generator 1 of a comparative example.
  • FIG. 2 is a graph showing the relationship between the incident angle ⁇ i of the pulse excitation light incident on the reflective diffraction grating 31 and the angle ⁇ d between the incident direction and the outgoing direction in the terahertz wave generator 1 of the comparative example. It is.
  • FIG. 3 is a diagram illustrating a configuration of the terahertz wave generation device 2 according to the present embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a terahertz wave generator 1 of a comparative example.
  • FIG. 2 is a graph showing the relationship between the incident angle ⁇ i of the pulse excitation light incident on the reflective diffraction grating 31 and the angle ⁇ d between the incident direction and the outgoing direction in the terahertz wave generator 1 of the comparative example. It is.
  • FIG. 3 is a diagram illustrating a configuration of
  • FIG. 4 shows the relationship between the incident angle ⁇ i of the pulsed excitation light incident on the transmission diffraction grating 32 and the angle ⁇ d between the incident direction and the outgoing direction in the terahertz wave generator 2 of the present embodiment. It is a graph.
  • FIG. 5 shows the incident angle ⁇ i of the pulse excitation light incident on the transmission diffraction grating 32 and the pulse plane P 2 of the pulse excitation light output from the transmission diffraction grating 32 in the terahertz wave generator 2 of the present embodiment. It is a graph which shows the relationship with the inclination-angle of.
  • FIG. 5 shows the incident angle ⁇ i of the pulse excitation light incident on the transmission diffraction grating 32 and the pulse plane P 2 of the pulse excitation light output from the transmission diffraction grating 32 in the terahertz wave generator 2 of the present embodiment. It is a graph which shows the relationship with the inclination-angle of.
  • FIG. 6 shows the imaging magnification of the variable imaging optical system 61 and the inclination angle of the pulse plane P 3 of the pulse excitation light imaged by the variable imaging optical system 61 in the terahertz wave generator 2 of the present embodiment. It is a graph which shows the relationship.
  • FIG. 7 is a diagram illustrating a configuration of a modification of the terahertz wave generation device according to the present embodiment.
  • FIG. 1 is a diagram showing a configuration of a terahertz wave generator 1 of a comparative example.
  • the terahertz wave generator 1 of the comparative example shown in this figure includes an excitation light source 10, a reflective diffraction grating 31, a mirror 40, a half-wave plate 50, an imaging optical system 60, and a nonlinear optical crystal 70.
  • the excitation light source 10 outputs pulse excitation light to be incident on the nonlinear optical crystal 70 in order to generate terahertz waves.
  • the excitation light source 10 is preferably a pulse laser light source that outputs an ultrashort pulse laser beam, for example, a femtosecond laser light source.
  • the reflection type diffraction grating 31 receives the pulse excitation light output from the excitation light source 10, reflects and diffracts the pulse excitation light, and outputs it. Incidence and emission of the pulse excitation light are on the same side with respect to the reflective diffraction grating 31.
  • the mirror 40 reflects the pulse excitation light diffracted and output by the reflective diffraction grating 31 to the half-wave plate 50.
  • the half-wave plate 50 receives the pulse excitation light reflected by the mirror 40, adjusts the polarization state of the pulse excitation light, and outputs it to the imaging optical system 60.
  • the imaging optical system 60 inputs the pulse excitation light diffracted and output by the reflection type diffraction grating 31 and passed through the mirror 40, and forms an image of the pulse excitation light in the reflection type diffraction grating 31.
  • the nonlinear optical crystal 70 is disposed at a position where the pulse excitation light is imaged by the imaging optical system 60, and the pulse excitation light that has passed through the imaging optical system 60 is input to generate the terahertz wave T.
  • the nonlinear optical crystal 70 is, for example, a LiNbO 3 crystal (sLN crystal), LiTaO 3 crystal (sLT crystal), ZnTe, GaP or the like having a stoichiometric composition.
  • the pulse excitation light output from the excitation light source 10 has a pulse plane P 1 perpendicular to the principal ray before entering the reflection diffraction grating 31.
  • the reflection type diffraction grating 31 after being diffracted by the reflection type diffraction grating 31 has a pulse surface P 2 inclined with respect to a plane perpendicular to the chief ray.
  • the inclination angle of the pulse surface P 2 of the pulsed pump light diffracted by the reflection type diffraction grating 31, the wavelength of the pulsed pump light, the grating period of the reflection type diffraction grating 31, and, the pulsed pump light to the reflection type diffraction grating 31 Depends on the angle of incidence.
  • the inclination angle of the pulse surface P 3 of the pulse excitation light imaged by the imaging optical system 60 is equal to the inclination angle of the pulse surface P 2 of the pulse excitation light before entering the imaging optical system 60.
  • the inclination angle of the pulse surface P 4 of the pulse excitation light when propagating through the nonlinear optical crystal 70 is different from the inclination angle of the pulse surface P 3 of the pulse excitation light before entering the nonlinear optical crystal 70.
  • the refractive index is Depending on the refractive index.
  • the frequency of the terahertz wave, the refractive index of the nonlinear optical crystal 70 with respect to each of the pulse excitation light and the terahertz wave, the orientation of the crystal axis of the nonlinear optical crystal 70, etc. by appropriately setting the inclination angle of the pulse surface P 4 of the pulsed pump light when propagating in 70, it can be phase matching condition is satisfied.
  • the pulse excitation light having a tilted pulse plane is nonlinear.
  • the phase matching condition can be satisfied.
  • a highly efficient nonlinear optical crystal that is not suitable for use in a normal phase matching technique can be used for pulsed excitation light having a wide range of wavelengths.
  • the terahertz wave T generated in this way has a very high intensity, and can be used not only as measurement light in the conventional spectroscopic measurement but also to excite the sample by the terahertz wave T itself.
  • the tilt angle of the pulse surface of the pulse excitation light is changed by adjusting the angle of the reflection type diffraction grating 31, but at the same time, the optical path of the pulse excitation light after the diffraction is changed, so that the optical path of the pulse excitation light is readjusted or the optical system Needs to be redesigned.
  • FIG. 2 is a graph showing the relationship between the incident angle ⁇ i of the pulse excitation light incident on the reflective diffraction grating 31 and the angle ⁇ d between the incident direction and the outgoing direction in the terahertz wave generator 1 of the comparative example. It is.
  • the center wavelength of the pulse excitation light is 800 nm
  • the number of engraved lines of the reflective diffraction grating 31 is 2000 grooves / mm.
  • the optical path of the pulse excitation light emitted from the reflection type diffraction grating 31 is about It changes by 20 degrees.
  • the tilt angle of the pulse surface of the pulse excitation light can be changed, but the image of the pulse excitation light on the reflective diffraction grating 31 can be changed. Since the image must be formed on the nonlinear optical crystal 70, it is necessary to readjust the optical path or redesign the optical system.
  • the tilt angle of the pulse surface of the pulse excitation light is set so that the phase matching condition is satisfied for a certain frequency terahertz wave
  • the terahertz wave having a frequency different from the terahertz wave having the frequency originally designed is set.
  • this adjustment is not easy as described above.
  • the terahertz wave generating apparatus 1 of the comparative example when the tilt angle of the pulse surface of the pulse excitation light is changed, the optical path of the pulse excitation light toward the nonlinear optical crystal 70 also changes. Redesign of the system is required. Therefore, in the terahertz wave generator 1 of the comparative example, it is not easy to adjust the tilt angle of the pulse surface of the pulse excitation light (that is, to adjust the phase matching condition), and it is not easy to change the frequency of the terahertz wave.
  • FIG. 3 is a diagram illustrating a configuration of the terahertz wave generation device 2 according to the present embodiment.
  • the terahertz wave generator 2 of this embodiment shown in this figure includes an excitation light source 10, a transmission diffraction grating 32, a variable imaging optical system 61, and a nonlinear optical crystal 70.
  • the excitation light source 10 and the nonlinear optical crystal 70 included in the terahertz wave generator 2 of the present embodiment are the same as those included in the terahertz wave generator 1 of the comparative example.
  • the terahertz wave generator 2 of the present embodiment includes a transmissive diffraction grating 32 instead of a reflective diffraction grating.
  • the transmissive diffraction grating 32 receives the pulse excitation light output from the excitation light source 10 and diffracts and outputs the pulse excitation light. Incidence and emission of the pulse excitation light are opposite to the transmissive diffraction grating 32.
  • the transmissive diffraction grating 32 has a variable azimuth with a straight line passing through the incident position of the principal ray of the pulse excitation light and parallel to the grating as the central axis.
  • the variable imaging optical system 61 includes a convex lens 62, a concave lens 63, and a convex lens 64 in FIG. 3, but is not limited to this configuration and can take various configurations.
  • the variable imaging optical system 61 inputs the pulse excitation light diffracted and output by the transmission diffraction grating 32, forms an image of the pulse excitation light in the transmission diffraction grating 32, and the magnification of the imaging Is variable.
  • the nonlinear optical crystal 70 is disposed at a position where the pulsed excitation light is imaged by the variable imaging optical system 61, and the pulsed excitation light that has passed through the variable imaging optical system 61 is input to generate the terahertz wave T.
  • the nonlinear optical crystal 70 preferably has such a shape that the pulse excitation light is incident on a certain incident surface perpendicularly and the terahertz wave is emitted perpendicularly from the certain emission surface.
  • the pulse excitation light output from the excitation light source 10 has a pulse plane P 1 perpendicular to the principal ray before entering the transmission diffraction grating 32.
  • the transmission type diffraction grating 32 after being diffracted by the transmission type diffraction grating 32 has a pulse surface P 2 inclined with respect to a plane perpendicular to the chief ray.
  • the inclination angle of the pulse surface P 2 of the pulsed pump light diffracted by the transmission type diffraction grating 32, the wavelength of the pulsed pump light, the grating period of the transmission type diffraction grating 32, and, the pulsed pump light to the transmissive diffraction grating 32 Depends on the angle of incidence.
  • the tilt angle of the pulse surface P 3 of the pulse excitation light imaged by the variable imaging optical system 61 is variable with the tilt angle of the pulse surface P 2 of the pulse excitation light before entering the variable imaging optical system 61. It depends on the imaging magnification of the imaging optical system 61. Furthermore, the inclination angle of the pulse surface P 4 of the pulse excitation light when propagating through the nonlinear optical crystal 70 is different from the inclination angle of the pulse surface P 3 of the pulse excitation light before entering the nonlinear optical crystal 70. Depending on the refractive index.
  • the wavelength of the pulse excitation light, the frequency of the terahertz wave, the refractive index of the nonlinear optical crystal 70 with respect to each of the pulse excitation light and the terahertz wave, the orientation of the crystal axis of the nonlinear optical crystal 70, etc. the taking into account, by appropriately setting the inclination angle of the pulse surface P 4 of the pulsed pump light when propagating in the nonlinear optical crystal 70, can be phase matching condition is satisfied.
  • the pulse excitation light having a tilted pulse plane is nonlinear.
  • the phase matching condition can be satisfied.
  • a highly efficient nonlinear optical crystal that is not suitable for use in a normal phase matching technique can be used for pulsed excitation light having a wide range of wavelengths.
  • the terahertz wave T generated in this way has a very high intensity, and can be used not only as measurement light in the conventional spectroscopic measurement but also to excite the sample by the terahertz wave T itself.
  • FIG. 4 shows the relationship between the incident angle ⁇ i of the pulsed excitation light incident on the transmission diffraction grating 32 and the angle ⁇ d between the incident direction and the outgoing direction in the terahertz wave generator 2 of the present embodiment. It is a graph. As in the case of the comparative example (FIG. 2), the central wavelength of the pulsed excitation light is 800 nm, and the number of engraved lines of the transmissive diffraction grating 32 is 2000 grooves / mm.
  • the pulse excitation light from the transmission diffraction grating 32 has an incident angle ⁇ i of the pulse excitation light to the transmission diffraction grating 32 in the range of about 10 ° centered around 53 °.
  • the emission direction does not change. Therefore, even by changing the orientation of the transmission type diffraction grating 32 in this range, without changing the optical path of the pulsed pump light output from the transmission type diffraction grating 32, the pulsed excitation light inclination of pulse surface P 2 Can be changed.
  • FIG. 5 shows the incident angle ⁇ i of the pulse excitation light incident on the transmission diffraction grating 32 and the pulse plane P 2 of the pulse excitation light output from the transmission diffraction grating 32 in the terahertz wave generator 2 of the present embodiment. It is a graph which shows the relationship with the inclination-angle of. As can be seen, for example, transmission when the incident angle theta i of the pulsed excitation light incident on the diffraction grating 32 is changed to 58 ° from 48 °, the pulsed pump light output from the transmission type diffraction grating 32 the inclination angle of the pulse surface P 2 may be varied to 67 ° from 72 °.
  • FIG. 6 shows the imaging magnification of the variable imaging optical system 61 and the inclination angle of the pulse plane P 3 of the pulse excitation light imaged by the variable imaging optical system 61 in the terahertz wave generator 2 of the present embodiment. It is a graph which shows the relationship.
  • the inclination angle of the pulse surface P 2 of the pulsed pump light input to the variable imaging optics 61 was 70 °.
  • the magnification of the variable imaging optics 61 it is possible to change the inclination angle of the pulse surface P 3 of the pulsed pump light is focused by the variable imaging optics 61 it can.
  • the imaging magnification of the variable imaging optical system 61 is changed from 0.1 times to 2 times, the inclination angle of the pulse surface P 3 of the pulse excitation light is greatly changed in the range of 88 ° to 54 °. it can.
  • variable imaging optical system 61 in the terahertz wave generation device 2 of the present embodiment maintains an imaging relationship between the transmission diffraction grating 32 and the nonlinear optical crystal 70, that is, with the transmission diffraction grating 32.
  • the magnification of the image of the pulse excitation light (that is, the tilt angle of the pulse surface of the pulse excitation light) is arbitrarily changed without changing the distance from the nonlinear optical crystal 70 and without causing wavefront distortion of the pulse excitation light. It is a feature that it can be made to.
  • the pulse excitation light with the tilted pulse plane P 3 enters the nonlinear optical crystal 70 and the pulse excitation light with the tilted pulse plane P 4 propagates through the nonlinear optical crystal 70, a terahertz wave is generated in the nonlinear optical crystal 70 accordingly. Will occur.
  • the tilt angle of the pulse plane P 4 of the pulse excitation light propagating through the nonlinear optical crystal 70 is adjusted in consideration of the refractive index of the nonlinear optical crystal 70 and satisfying the phase matching condition.
  • the terahertz wave generation device 2 uses the transmission diffraction grating 32 as means for tilting the pulse surface of the pulse excitation light, and sets the orientation of the transmission diffraction grating 32 to perform pulse excitation. adjust the angle of inclination of pulse surface P 2 of the light, the inclination angle of the pulse surface P 3 of the pulsed pump light can be further increased adjusted by the variable imaging optics 61.
  • the terahertz wave generator 2 of the present embodiment can output the pulse excitation light from the transmission diffraction grating 32 even when the tilt angle of the pulse plane P 3 of the pulse excitation light is adjusted to be large. Therefore, it is easy to adjust or optimize the phase matching condition.
  • the terahertz wave when the terahertz wave is generated, the phase matching condition in the nonlinear optical crystal 70 can be continuously changed while monitoring the terahertz wave signal to optimize the phase matching condition.
  • the generation conditions corresponding to the terahertz wave having an arbitrary frequency can be easily prepared. Therefore, the frequency selectivity of the terahertz wave can be obtained.
  • FIG. 7 is a diagram illustrating a configuration of a modified example of the terahertz wave generation device according to the present embodiment.
  • the terahertz wave generation device 2A shown in this figure includes a dispersion compensation unit 20 in addition to the configuration of the terahertz wave generation device 2 shown in FIG.
  • the dispersion compensation unit 20 is provided on the optical path between the excitation light source 10 and the transmissive diffraction grating 32, and the pulse width and pulse waveform of the pulse excitation light output from the excitation light source 10 are optimal for generating a terahertz wave.
  • the pulse excitation light may be dispersed by the transmission diffraction grating 32, the variable imaging optical system 61, the nonlinear optical crystal 70, etc., and the pulse width may be extended. Therefore, by applying arbitrary dispersion to the pulse excitation light in advance by the dispersion compensation unit 20, the pulse excitation light reaching the nonlinear optical crystal 70 can be set to the optimum pulse width and pulse waveform for generating the terahertz wave.
  • the dispersion compensator 20 a prism pair, a diffraction grating pair, a waveform shaper, or the like can be used.
  • the terahertz wave generator according to the present invention is not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • an excitation light source that outputs pulse excitation light and (2) pulse excitation light output from the excitation light source is input, and the pulse excitation light is diffracted.
  • a transmissive diffraction grating whose orientation is variable about a straight line passing through the incident position of the principal ray of the pulse excitation light and parallel to the grating as a central axis, and (3) diffracted by the transmissive diffraction grating and output.
  • a variable imaging optical system in which pulse excitation light is input to form an image of the pulse excitation light in the transmission diffraction grating on a predetermined plane and the magnification of the imaging is variable; and (4) variable imaging.
  • a configuration including a nonlinear optical crystal that is arranged at a position where the pulse excitation light is imaged by the optical system and generates the terahertz wave by inputting the pulse excitation light that has passed through the variable imaging optical system is used.
  • the terahertz wave generator configured as described above further includes a dispersion compensation unit that is provided on the optical path between the excitation light source and the transmission diffraction grating and compensates for dispersion of the pulsed excitation light output from the excitation light source. Is preferred. In this case, even if the pulse width of the pulse excitation light is extended by a transmission type diffraction grating or a variable imaging optical system, nonlinear dispersion is applied to the pulse excitation light in advance by the dispersion compensation unit.
  • the pulse excitation light that reaches the crystal can be set to a pulse width and pulse waveform that are optimal for the generation of terahertz waves.
  • the present invention can be used as a terahertz wave generator that can easily adjust the phase matching condition.

Abstract

 テラヘルツ波発生装置2は、励起光源10、透過型回折格子32、可変結像光学系61および非線形光学結晶70を備える。透過型回折格子32は、励起光源10から出力されたパルス励起光を入力して、そのパルス励起光を回折して出力する。透過型回折格子32は、パルス励起光の主光線の入射位置を通り格子に平行な直線を中心軸として方位が可変である。可変結像光学系61は、透過型回折格子32により回折されて出力されたパルス励起光を入力して、透過型回折格子32におけるパルス励起光の像を結像するとともに、その結像の倍率が可変である。非線形光学結晶70は、可変結像光学系61によりパルス励起光が結像される位置に配置され、可変結像光学系61を経たパルス励起光を入力してテラヘルツ波Tを発生させる。これにより、位相整合条件の調整が容易なテラヘルツ波発生装置が実現される。

Description

テラヘルツ波発生装置
 本発明は、テラヘルツ波発生装置に関するものである。
 テラヘルツ波は、光波と電波との中間領域に相当する0.01THz~100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。このようなテラヘルツ波の応用として、測定対象物で透過または反射したテラヘルツ波の電場振幅の時間波形を測定することで該測定対象物の情報を取得する技術が研究されている。
 テラヘルツ波を用いた測定対象物の情報の測定技術は、一般に以下のようなものである。すなわち、光源(例えばフェムト秒レーザ光源)から出力されたパルス光は、分岐部により2分岐されてパルス励起光およびパルス検出光とされる。そのうちパルス励起光はテラヘルツ波発生素子(例えば非線形光学結晶や光導電アンテナ素子)に入力されて、これにより、このテラヘルツ波発生素子からパルステラヘルツ波が発生する。この発生したテラヘルツ波は、計測光として測定対象部で透過または反射されることで該測定対象物の情報(例えば、吸収係数、屈折率)を取得し、その後、パルス検出光と略同一タイミングでテラヘルツ波検出素子(例えば、電気光学結晶や光導電アンテナ素子)に入射される。
 テラヘルツ波およびパルス検出光が入力されたテラヘルツ波検出素子では、両光の間の相関が検出される。例えば、テラヘルツ波検出素子として電気光学結晶が用いられる場合、テラヘルツ波およびパルス検出光は、合波部により合波されて電気光学結晶に入射され、この電気光学結晶においてテラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりパルス検出光の偏光状態が変化する。電気光学結晶におけるパルス検出光の偏光状態の変化が検出され、ひいては、テラヘルツ波の電場振幅が検出されて、測定対象物の情報が得られる。
 テラヘルツ波を発生させるテラヘルツ波発生装置としては様々な構成のものが知られている。その1つのテラヘルツ波発生装置は、非線形光学結晶にパルス励起光を入射させて該非線形光学結晶からテラヘルツ波を発生させる。従来のこのようなテラヘルツ波発生装置では、パルス励起光の中心波長に応じてテラヘルツ波発生に適する非線形光学結晶の種類が決まっていた。例えば、中心波長800nmのパルス励起光が用いられる場合、非線形光学結晶におけるパルス励起光とテラヘルツ波との位相整合条件により、非線形光学結晶としてZnTe結晶が広く用いられている。中心波長800nmのパルス励起光がZnTe結晶に入射されると、該パルス励起光と同軸上にパルス状のテラヘルツ波が発生する。
 近年では、通常は位相整合条件が満たされない中心波長のパルス励起光と非線形光学結晶との組み合わせであっても、パルス面を傾斜させたパルス励起光を非線形光学結晶に入射させることにより位相整合条件を満たせることが明らかになった(非特許文献1~3を参照)。
J. Hebling, et al., Optics Express 10, 1161 (2002). J. Hebling, et al., Appl. Phys. B 78, 593 (2004). J. Hebling, et al., IEEE J. Selected Topics in Quantum Electron. 14, 345 (2008).
 しかし、非特許文献1~3それぞれに記載されたテラヘルツ波発生装置が以下のような問題点を有していることを本発明者は見出した。すなわち、或る1つの周波数のテラヘルツ波に対して位相整合条件が満たされるようパルス励起光のパルス面の傾斜角度が設定されるので、最初に設計した周波数のテラヘルツ波とは別の周波数のテラヘルツ波に対して位相整合条件を満たすようにするためには、パルス励起光のパルス面の傾斜角度の調整が必要である。
 ところが、非特許文献1~3それぞれに記載されたテラヘルツ波発生装置では、パルス励起光のパルス面の傾斜角度を変化させると、非線形光学結晶に向うパルス励起光の光路も変化するので、光路の再調整または光学系の再設計が必要となる。したがって、非特許文献1~3それぞれに記載されたテラヘルツ波発生装置では、パルス励起光のパルス面の傾斜角度の調整(すなわち、位相整合条件の調整)が容易でなく、また、テラヘルツ波の周波数の変更も容易ではない。
 本発明は、上記問題点を解消する為になされたものであり、位相整合条件の調整が容易なテラヘルツ波発生装置を提供することを目的とする。
 本発明に係るテラヘルツ波発生装置は、(1)パルス励起光を出力する励起光源と、(2)励起光源から出力されたパルス励起光を入力して、そのパルス励起光を回折して出力するとともに、パルス励起光の主光線の入射位置を通り格子に平行な直線を中心軸として方位が可変である透過型回折格子と、(3)透過型回折格子により回折されて出力されたパルス励起光を入力して、透過型回折格子におけるパルス励起光の像を所定平面上に結像するとともに、その結像の倍率が可変である可変結像光学系と、(4)可変結像光学系によりパルス励起光が結像される位置に配置され、可変結像光学系を経たパルス励起光を入力してテラヘルツ波を発生させる非線形光学結晶と、を備えることを特徴とする。
 このテラヘルツ波発生装置では、励起光源から出力されたパルス励起光は、透過型回折格子に入力されて回折されてパルス面が傾斜する。透過型回折格子により回折されてパルス面が傾斜されて出力されたパルス励起光は、可変結像光学系により非線形光学結晶上において結像される。そして、可変結像光学系によりパルス励起光が結像される位置に配置された非線形光学結晶では、パルス励起光が入力されてテラヘルツ波が発生する。
 特に、このテラヘルツ波発生装置では、パルス励起光のパルス面を傾斜させる手段として透過型回折格子を用い、その透過型回折格子の方位を設定することでパルス励起光のパルス面の傾斜角度を調整し、結像倍率が可変の可変結像光学系によりパルス励起光のパルス面の傾斜角度を更に大きく調整することができる。しかも、このテラヘルツ波発生装置は、このようにパルス励起光のパルス面の傾斜角度を大きく調整する場合であっても、透過型回折格子からのパルス励起光の出力方向が変化しないので、位相整合条件の調整または最適化が容易である。
 本発明によれば、位相整合条件の調整が容易なテラヘルツ波発生装置を提供することができる。
図1は、比較例のテラヘルツ波発生装置1の構成を示す図である。 図2は、比較例のテラヘルツ波発生装置1において、反射型回折格子31へ入射するパルス励起光の入射角度θと、入射方向と出射方向との間の角度θとの関係を示すグラフである。 図3は、本実施形態のテラヘルツ波発生装置2の構成を示す図である。 図4は、本実施形態のテラヘルツ波発生装置2において、透過型回折格子32へ入射するパルス励起光の入射角度θと、入射方向と出射方向との間の角度θとの関係を示すグラフである。 図5は、本実施形態のテラヘルツ波発生装置2において、透過型回折格子32へ入射するパルス励起光の入射角度θと、透過型回折格子32から出力されるパルス励起光のパルス面Pの傾斜角度との関係を示すグラフである。 図6は、本実施形態のテラヘルツ波発生装置2において、可変結像光学系61の結像倍率と、可変結像光学系61により結像されるパルス励起光のパルス面Pの傾斜角度との関係を示すグラフである。 図7は、本実施形態のテラヘルツ波発生装置の変形例の構成を示す図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、以下では、比較例のテラヘルツ波発生装置について説明した後に、本実施形態のテラヘルツ波発生装置について説明する。
 図1は、比較例のテラヘルツ波発生装置1の構成を示す図である。この図に示される比較例のテラヘルツ波発生装置1は、励起光源10、反射型回折格子31、ミラー40、2分の1波長板50、結像光学系60および非線形光学結晶70を備える。
 励起光源10は、テラヘルツ波を発生させるために非線形光学結晶70に入射されるべきパルス励起光を出力するものである。励起光源10は、好ましくは超短パルスレーザ光を出力するパルスレーザ光源であり、例えばフェムト秒レーザ光源である。反射型回折格子31は、励起光源10から出力されたパルス励起光を入力して、そのパルス励起光を反射・回折して出力する。反射型回折格子31に対しパルス励起光の入射および出射は互いに同じ側である。
 ミラー40は、反射型回折格子31により回折されて出力されたパルス励起光を2分の1波長板50へ反射させる。2分の1波長板50は、ミラー40により反射されたパルス励起光を入力し、そのパルス励起光の偏光状態を調整して結像光学系60へ出力する。結像光学系60は、反射型回折格子31により回折されて出力されミラー40を経たパルス励起光を入力して、反射型回折格子31におけるパルス励起光の像を結像する。
 非線形光学結晶70は、結像光学系60によりパルス励起光が結像される位置に配置され、結像光学系60を経たパルス励起光を入力してテラヘルツ波Tを発生させる。非線形光学結晶70は、例えば、定比組成のLiNbO結晶(sLN結晶)やLiTaO結晶(sLT結晶)、ZnTe、GaP等である。
 このように構成されるテラヘルツ波発生装置1では、励起光源10から出力されたパルス励起光は、反射型回折格子31に入射する前では主光線に垂直なパルス面Pを有しているが、反射型回折格子31により回折された後では主光線に垂直な面に対して傾斜したパルス面Pを有している。反射型回折格子31により回折されたパルス励起光のパルス面Pの傾斜角度は、パルス励起光の波長、反射型回折格子31の格子周期、および、反射型回折格子31へのパルス励起光の入射角度、に依存する。
 また、結像光学系60により結像されたパルス励起光のパルス面Pの傾斜角度は、結像光学系60に入射する前のパルス励起光のパルス面Pの傾斜角度と結像光学系60の結像の倍率とに依存する。さらに、非線形光学結晶70中を伝搬する際のパルス励起光のパルス面Pの傾斜角度は、非線形光学結晶70に入射する前のパルス励起光のパルス面Pの傾斜角度と非線形光学結晶70の屈折率とに依存する。
 したがって、パルス励起光の波長、テラヘルツ波の周波数、パルス励起光およびテラヘルツ波それぞれに対する非線形光学結晶70の屈折率、ならびに、非線形光学結晶70の結晶軸の方位等を考慮した上で、非線形光学結晶70中を伝搬する際のパルス励起光のパルス面Pの傾斜角度を適切に設定すれば、位相整合条件を満たすことができる。
 このようなテラヘルツ波発生装置1によれば、通常は位相整合条件が満たされない中心波長のパルス励起光と非線形光学結晶70との組み合わせであっても、パルス面を傾斜させたパルス励起光を非線形光学結晶70に入射させることにより位相整合条件を満たすことができる。そして、通常の位相整合の手法では使用に適さなかった効率の高い非線形光学結晶が、幅広い範囲の波長のパルス励起光に対して使用できるようになる。こうして発生したテラヘルツ波Tは、非常に高強度であり、従来の分光計測における計測光としての利用だけでなく、テラヘルツ波T自体による試料の励起も可能となる。
 ところで、パルス励起光のパルス面の傾斜角度の調整は容易ではない。反射型回折格子31の角度の調整によりパルス励起光のパルス面の傾斜角度は変化するが、同時に、回折後のパルス励起光の光路も変化するので、パルス励起光の光路の再調整または光学系の再設計が必要である。
 図2は、比較例のテラヘルツ波発生装置1において、反射型回折格子31へ入射するパルス励起光の入射角度θと、入射方向と出射方向との間の角度θとの関係を示すグラフである。ここでは、パルス励起光の中心波長を800nmとし、反射型回折格子31の刻線本数を2000 grooves/mmとした。この図から判るように、例えば、反射型回折格子31へのパルス励起光の入射角度θを48°から58°へ変化させると、反射型回折格子31から出射するパルス励起光の光路は約20°も変化する。
 また、原理的に結像光学系60の結像倍率を変化させることにより、パルス励起光のパルス面の傾斜角度を変化させることができるが、反射型回折格子31上のパルス励起光の像を非線形光学結晶70上に結像しなければならないことから、光路の再調整または光学系の再設計が必要である。
 さらに、或る1つの周波数のテラヘルツ波に対して位相整合条件が満たされるようパルス励起光のパルス面の傾斜角度が設定されるので、最初に設計した周波数のテラヘルツ波とは別の周波数のテラヘルツ波に対して位相整合条件を満たすようにするためには、パルス励起光のパルス面の傾斜角度の調整が必要である。しかし、この調整は上述のように容易でない。
 このように、比較例のテラヘルツ波発生装置1では、パルス励起光のパルス面の傾斜角度を変化させると、非線形光学結晶70に向うパルス励起光の光路も変化するので、光路の再調整または光学系の再設計が必要となる。したがって、比較例のテラヘルツ波発生装置1では、パルス励起光のパルス面の傾斜角度の調整(すなわち、位相整合条件の調整)が容易でなく、また、テラヘルツ波の周波数の変更も容易ではない。
 次に説明する本実施形態のテラヘルツ波発生装置2は、このような比較例のテラヘルツ波発生装置1が有する問題を解消し得るものである。図3は、本実施形態のテラヘルツ波発生装置2の構成を示す図である。この図に示される本実施形態のテラヘルツ波発生装置2は、励起光源10、透過型回折格子32、可変結像光学系61および非線形光学結晶70を備える。
 本実施形態のテラヘルツ波発生装置2に含まれる励起光源10および非線形光学結晶70それぞれは、比較例のテラヘルツ波発生装置1に含まれるものと同様のものである。
 本実施形態のテラヘルツ波発生装置2は、反射型回折格子ではなく、透過型回折格子32を備えている。透過型回折格子32は、励起光源10から出力されたパルス励起光を入力して、そのパルス励起光を回折して出力する。透過型回折格子32に対しパルス励起光の入射および出射は互いに反対の側である。また、透過型回折格子32は、パルス励起光の主光線の入射位置を通り格子に平行な直線を中心軸として方位が可変である。
 可変結像光学系61は、図3では凸レンズ62,凹レンズ63および凸レンズ64を含む構成となっているが、この構成に限らず様々な構成をとり得る。可変結像光学系61は、透過型回折格子32により回折されて出力されたパルス励起光を入力して、透過型回折格子32におけるパルス励起光の像を結像するとともに、その結像の倍率が可変である。
 非線形光学結晶70は、可変結像光学系61によりパルス励起光が結像される位置に配置され、可変結像光学系61を経たパルス励起光を入力してテラヘルツ波Tを発生させる。非線形光学結晶70は、パルス励起光が或る入射面に垂直に入射するとともに、テラヘルツ波が或る出射面から垂直に出射するような形状を有するのが好ましい。
 このように構成されるテラヘルツ波発生装置2では、励起光源10から出力されたパルス励起光は、透過型回折格子32に入射する前では主光線に垂直なパルス面Pを有しているが、透過型回折格子32により回折された後では主光線に垂直な面に対して傾斜したパルス面Pを有している。透過型回折格子32により回折されたパルス励起光のパルス面Pの傾斜角度は、パルス励起光の波長、透過型回折格子32の格子周期、および、透過型回折格子32へのパルス励起光の入射角度、に依存する。
 また、可変結像光学系61により結像されたパルス励起光のパルス面Pの傾斜角度は、可変結像光学系61に入射する前のパルス励起光のパルス面Pの傾斜角度と可変結像光学系61の結像の倍率とに依存する。さらに、非線形光学結晶70中を伝搬する際のパルス励起光のパルス面Pの傾斜角度は、非線形光学結晶70に入射する前のパルス励起光のパルス面Pの傾斜角度と非線形光学結晶70の屈折率とに依存する。
 したがって、このテラヘルツ波発生装置2においても、パルス励起光の波長、テラヘルツ波の周波数、パルス励起光およびテラヘルツ波それぞれに対する非線形光学結晶70の屈折率、ならびに、非線形光学結晶70の結晶軸の方位等を考慮した上で、非線形光学結晶70中を伝搬する際のパルス励起光のパルス面Pの傾斜角度を適切に設定すれば、位相整合条件を満たすことができる。
 このようなテラヘルツ波発生装置2によれば、通常は位相整合条件が満たされない中心波長のパルス励起光と非線形光学結晶70との組み合わせであっても、パルス面を傾斜させたパルス励起光を非線形光学結晶70に入射させることにより位相整合条件を満たすことができる。そして、通常の位相整合の手法では使用に適さなかった効率の高い非線形光学結晶が、幅広い範囲の波長のパルス励起光に対して使用できるようになる。こうして発生したテラヘルツ波Tは、非常に高強度であり、従来の分光計測における計測光としての利用だけでなく、テラヘルツ波T自体による試料の励起も可能となる。
 図4は、本実施形態のテラヘルツ波発生装置2において、透過型回折格子32へ入射するパルス励起光の入射角度θと、入射方向と出射方向との間の角度θとの関係を示すグラフである。比較例の場合(図2)と同様に、ここでも、パルス励起光の中心波長を800nmとし、透過型回折格子32の刻線本数を2000 grooves/mmとした。この図から判るように、透過型回折格子32へのパルス励起光の入射角度θが53°前後を中心とする10°程度の範囲に亘って、透過型回折格子32からのパルス励起光の出射方向が変化しない。よって、この範囲においては透過型回折格子32の方位を変化させても、透過型回折格子32から出力されるパルス励起光の光路を変化させることなく、パルス励起光のパルス面Pの傾斜を変化させることができる。
 図5は、本実施形態のテラヘルツ波発生装置2において、透過型回折格子32へ入射するパルス励起光の入射角度θと、透過型回折格子32から出力されるパルス励起光のパルス面Pの傾斜角度との関係を示すグラフである。この図から判るように、例えば、透過型回折格子32へ入射するパルス励起光の入射角度θを48°から58°へ変化させた場合、透過型回折格子32から出力されるパルス励起光のパルス面Pの傾斜角度は72°から67°へ変化させることができる。
 図6は、本実施形態のテラヘルツ波発生装置2において、可変結像光学系61の結像倍率と、可変結像光学系61により結像されるパルス励起光のパルス面Pの傾斜角度との関係を示すグラフである。ここでは、可変結像光学系61に入力されるパルス励起光のパルス面Pの傾斜角度を70°とした。この図から判るように、可変結像光学系61の結像倍率を変化させることにより、可変結像光学系61により結像されるパルス励起光のパルス面Pの傾斜角度を変化させることができる。例えば、可変結像光学系61の結像倍率を0.1倍から2倍へ変化させると、パルス励起光のパルス面Pの傾斜角度を88°から54°の範囲で大きく変化させることができる。
 本実施形態のテラヘルツ波発生装置2における可変結像光学系61は、透過型回折格子32上と非線形光学結晶70上との間の結像関係を維持したまま、すなわち、透過型回折格子32と非線形光学結晶70との間の距離を変えずに、パルス励起光の波面歪みを生じさせることなく、パルス励起光の像の倍率(すなわち、パルス励起光のパルス面の傾斜角度)を任意に変化させることができることが特徴である。
 パルス面Pが傾斜したパルス励起光が非線形光学結晶70に入射して、パルス面Pが傾斜したパルス励起光が非線形光学結晶70中を伝搬すると、これに伴い非線形光学結晶70においてテラヘルツ波が発生する。このとき、非線形光学結晶70中を伝搬するパルス励起光のパルス面Pの傾斜角度は、非線形光学結晶70の屈折率を考慮したものであって、位相整合条件を満たすように調整される。
 以上のように、本実施形態のテラヘルツ波発生装置2は、パルス励起光のパルス面を傾斜させる手段として透過型回折格子32を用い、その透過型回折格子32の方位を設定することでパルス励起光のパルス面Pの傾斜角度を調整し、可変結像光学系61によりパルス励起光のパルス面Pの傾斜角度を更に大きく調整することができる。
 しかも、本実施形態のテラヘルツ波発生装置2は、このようにパルス励起光のパルス面Pの傾斜角度を大きく調整する場合であっても、透過型回折格子32からのパルス励起光の出力方向が変化しないので、位相整合条件の調整または最適化が容易である。例えば、テラヘルツ波の発生に際して、テラヘルツ波信号をモニタしながら非線形光学結晶70における位相整合条件を連続的に変化させて、位相整合条件の最適化を図ることができる。また、任意の周波数のテラヘルツ波に対応した発生条件を容易に整えることができる。よって、テラヘルツ波の周波数選択性を持つことができる。
 図7は、本実施形態のテラヘルツ波発生装置の変形例の構成を示す図である。この図に示されるテラヘルツ波発生装置2Aは、図3に示されるテラヘルツ波発生装置2の構成に加えて分散補償部20を備える。分散補償部20は、励起光源10と透過型回折格子32との間の光路上に設けられ、励起光源10から出力されたパルス励起光のパルス幅をテラヘルツ波発生に最適なパルス幅およびパルス波形とする。
 パルス励起光は、透過型回折格子32、可変結像光学系61、非線形光学結晶70などにより分散を受け、パルス幅が伸張する場合がある。そこで、分散補償部20により予めパルス励起光にあらかじめ任意の分散を与えることで、非線形光学結晶70に達したパルス励起光をテラヘルツ波発生に最適なパルス幅およびパルス波形とすることができる。なお、分散補償部20としては、プリズム対、回折格子対、波形整形器などが利用され得る。
 本発明によるテラヘルツ波発生装置は、上記した実施形態及び構成例に限られるものではなく、様々な変形が可能である。
 ここで、上記実施形態によるテラヘルツ波発生装置では、(1)パルス励起光を出力する励起光源と、(2)励起光源から出力されたパルス励起光を入力して、そのパルス励起光を回折して出力するとともに、パルス励起光の主光線の入射位置を通り格子に平行な直線を中心軸として方位が可変である透過型回折格子と、(3)透過型回折格子により回折されて出力されたパルス励起光を入力して、透過型回折格子におけるパルス励起光の像を所定平面上に結像するとともに、その結像の倍率が可変である可変結像光学系と、(4)可変結像光学系によりパルス励起光が結像される位置に配置され、可変結像光学系を経たパルス励起光を入力してテラヘルツ波を発生させる非線形光学結晶と、を備える構成を用いている。
 また、上記構成のテラヘルツ波発生装置は、励起光源と透過型回折格子との間の光路上に設けられ、励起光源から出力されたパルス励起光の分散を補償する分散補償部を更に備えるのが好適である。この場合には、透過型回折格子や可変結像光学系によりパルス励起光のパルス幅が伸張する場合であっても、分散補償部により予めパルス励起光へ任意の分散を与えることで、非線形光学結晶に達したパルス励起光をテラヘルツ波発生に最適なパルス幅およびパルス波形とすることができる。
 本発明は、位相整合条件の調整が容易なテラヘルツ波発生装置として利用可能である。
 1,2,2A…テラヘルツ波発生装置、10…励起光源、20…分散補償部、31…反射型回折格子、32…透過型回折格子、40…ミラー、50…2分の1波長板、60…結像光学系、61…可変結像光学系、62~64…レンズ、70…非線形光学結晶。

Claims (2)

  1.  パルス励起光を出力する励起光源と、
     前記励起光源から出力されたパルス励起光を入力して、そのパルス励起光を回折して出力するとともに、前記パルス励起光の主光線の入射位置を通り格子に平行な直線を中心軸として方位が可変である透過型回折格子と、
     前記透過型回折格子により回折されて出力された前記パルス励起光を入力して、前記透過型回折格子における前記パルス励起光の像を所定平面上に結像するとともに、その結像の倍率が可変である可変結像光学系と、
     前記可変結像光学系により前記パルス励起光が結像される位置に配置され、前記可変結像光学系を経た前記パルス励起光を入力してテラヘルツ波を発生させる非線形光学結晶と、
     を備えることを特徴とするテラヘルツ波発生装置。
  2.  前記励起光源と前記透過型回折格子との間の光路上に設けられ、前記励起光源から出力されたパルス励起光をテラヘルツ波発生に最適なパルス幅およびパルス波形とする分散補償部を更に備えることを特徴とする請求項1に記載のテラヘルツ波発生装置。
PCT/JP2009/066757 2008-11-13 2009-09-28 テラヘルツ波発生装置 WO2010055735A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09825988.0A EP2354841B1 (en) 2008-11-13 2009-09-28 Terahertz wave generation device
US13/128,988 US8564875B2 (en) 2008-11-13 2009-09-28 Terahertz wave generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008291293A JP5216544B2 (ja) 2008-11-13 2008-11-13 テラヘルツ波発生装置
JP2008-291293 2008-11-13

Publications (1)

Publication Number Publication Date
WO2010055735A1 true WO2010055735A1 (ja) 2010-05-20

Family

ID=42169873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066757 WO2010055735A1 (ja) 2008-11-13 2009-09-28 テラヘルツ波発生装置

Country Status (4)

Country Link
US (1) US8564875B2 (ja)
EP (1) EP2354841B1 (ja)
JP (1) JP5216544B2 (ja)
WO (1) WO2010055735A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716685B1 (en) * 2012-12-27 2014-05-06 The Aerospace Corporation Systems and methods for use in generating pulsed terahertz radiation
HU231075B1 (hu) 2015-09-30 2020-05-28 Pécsi Tudományegyetem Eljárás terahertzes sugárzás keltésére, valamint terahertzes sugárforrás
JP2018091931A (ja) * 2016-11-30 2018-06-14 澁谷工業株式会社 テラヘルツ光発生装置
EP3396447B1 (en) 2017-06-25 2021-10-06 Pécsi Tudományegyetem Method and setup to generate terahertz radiation
JP6941004B2 (ja) * 2017-08-23 2021-09-29 浜松ホトニクス株式会社 トンネル電流制御装置およびトンネル電流制御方法
CN107561818B (zh) * 2017-10-19 2023-09-26 北京航空航天大学 一种基于透射光栅倾斜波前的太赫兹脉冲产生装置及方法
CN107748145A (zh) * 2017-12-05 2018-03-02 北京航空航天大学 高能量太赫兹光谱仪
CN107831132A (zh) * 2017-12-05 2018-03-23 北京航空航天大学 太赫兹成像仪
EP3608712B1 (en) 2018-08-06 2023-06-07 Pécsi Tudományegyetem Method and setup to generate terahertz radiation scalable in energy
KR20210084574A (ko) 2018-10-31 2021-07-07 페치 투도마네게템 고 에너지 테라헤르츠 펄스들을 발생시키기 위한 반사 및/또는 회절 기반 방법 및 설정
CN114142325B (zh) * 2021-11-26 2022-06-28 天津大学 一种基于碳化硅单晶的宽带强场太赫兹源

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302666A (ja) * 2002-04-09 2003-10-24 Inst Of Physical & Chemical Res テラヘルツ波発生装置とその同調方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912910A (en) 1996-05-17 1999-06-15 Sdl, Inc. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
US7177340B2 (en) * 2002-11-05 2007-02-13 Jds Uniphase Corporation Extended cavity laser device with bulk transmission grating
US6996140B2 (en) 2002-12-23 2006-02-07 Jds Uniphase Corporation Laser device for nonlinear conversion of light
JP4373736B2 (ja) * 2003-08-27 2009-11-25 株式会社ディスコ 加工装置のチャックテーブル
JP5642405B2 (ja) * 2010-03-24 2014-12-17 オリンパス株式会社 テラヘルツ波発生装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302666A (ja) * 2002-04-09 2003-10-24 Inst Of Physical & Chemical Res テラヘルツ波発生装置とその同調方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A. G. STEPANOV ET AL.: "Efficient generation of subpicosecond terahertz radiation by phase- matched optical rectification using ultrashort laser pulses with tilted pulse fronts", APPLIED PHYSICS LETTERS, vol. 83, no. 15, 13 October 2003 (2003-10-13), pages 3000 - 3002, XP012035356 *
J. HEBLING ET AL., APPL. PHYS. B, vol. 78, 2004, pages 593
J. HEBLING ET AL., IEEE J. SELECTED TOPICS IN QUANTUM ELECTRON., vol. 14, 2008, pages 345
J. HEBLING ET AL., OPTICS EXPRESS, vol. 10, 2002, pages 1161
J. HEBLING ET AL.: "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 14, no. 2, April 2008 (2008-04-01), pages 345 - 353, XP011206857 *
J. HEBLING ET AL.: "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts", APPLIED PHYSICS B, vol. 78, no. 5, March 2004 (2004-03-01), pages 593 - 599, XP055012269 *
J. HEBLING ET AL.: "Velocity matching by pulse front tilting for large-area THz-pulse generation", OPTICS EXPRESS, vol. 10, no. 21, 21 October 2002 (2002-10-21), pages 1161 - 1166, XP002664132 *
K.-L. YEH ET AL.: "Generation of high average power 1 kHz shaped THz pulses via optical rectification", OPTICS COMMUNICATIONS, vol. 281, no. 13, 1 July 2008 (2008-07-01), pages 3567 - 3570, XP022670270 *
See also references of EP2354841A4 *

Also Published As

Publication number Publication date
JP2010118546A (ja) 2010-05-27
US20110242642A1 (en) 2011-10-06
EP2354841B1 (en) 2015-01-07
EP2354841A1 (en) 2011-08-10
EP2354841A4 (en) 2012-06-06
JP5216544B2 (ja) 2013-06-19
US8564875B2 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
JP5216544B2 (ja) テラヘルツ波発生装置
US7576907B1 (en) Phase and amplitude light pulse shaping using a one-dimensional phase mask
US20130075629A1 (en) Terahertz wave generator
US8759769B2 (en) Terahertz-wave device, method of generating and detecting terahertz-waves with the device, and imaging apparatus equipped with the device
US6707021B2 (en) Transparent medium processing device
CN109314362B (zh) 色散匹配单元
JP6134773B2 (ja) 光共振装置及び共振器において一周時間を調節する方法
JP2008310191A (ja) 光波形整形装置
JP2014044365A (ja) パルスフロント傾斜光学系及びテラヘルツ波発生装置
US11705686B2 (en) Acousto-optic system having phase-shifting reflector
JP4916427B2 (ja) レーザビーム走査装置
JP4583770B2 (ja) コヒーレント光源
US8993967B2 (en) Electromagnetic wave detection device
Mazur et al. Increase of an output optical signal of an acousto-optic monochromator upon frequency modulation of a control signal
JP5555042B2 (ja) テラヘルツ波発生装置
JP4430582B2 (ja) 光制御型フェーズドアレイアンテナ装置
WO2017033974A1 (ja) 自己相関測定装置
CN107404059B (zh) 连续倾斜脉冲波面泵浦铌酸锂产生太赫兹波的方法及装置
US20090219956A1 (en) Device for Generating Narrowband Optical Radiation
US20240152022A1 (en) Passive dispersion compensation for an acousto-optic deflector
Voloshinov et al. Tunable acousto-optic filters and their applications in laser technology, optical communication, and processing of images
JP2022191808A (ja) 分光計測装置
JP2004233710A (ja) 光モジュール
Lecona et al. Fiber optic voltage sensor with optically controlled sensitivity
JP2005252145A (ja) 光パルス対生成装置及びテラヘルツ電磁波発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009825988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13128988

Country of ref document: US