JP5555042B2 - テラヘルツ波発生装置 - Google Patents

テラヘルツ波発生装置 Download PDF

Info

Publication number
JP5555042B2
JP5555042B2 JP2010098991A JP2010098991A JP5555042B2 JP 5555042 B2 JP5555042 B2 JP 5555042B2 JP 2010098991 A JP2010098991 A JP 2010098991A JP 2010098991 A JP2010098991 A JP 2010098991A JP 5555042 B2 JP5555042 B2 JP 5555042B2
Authority
JP
Japan
Prior art keywords
terahertz wave
crystal
pump light
light pulse
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010098991A
Other languages
English (en)
Other versions
JP2011226994A (ja
Inventor
敬史 安田
陽一 河田
篤司 中西
高一郎 秋山
宏典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2010098991A priority Critical patent/JP5555042B2/ja
Publication of JP2011226994A publication Critical patent/JP2011226994A/ja
Application granted granted Critical
Publication of JP5555042B2 publication Critical patent/JP5555042B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、テラヘルツ波発生装置に関するものである。
テラヘルツ波は、光波と電波との中間領域に相当する0.01THz〜100THz程度の周波数を有する電磁波であり、光波と電波との間の中間的な性質を有している。このようなテラヘルツ波の応用として、測定対象物で透過または反射したテラヘルツ波の電場振幅の時間波形を測定することで該測定対象物の情報を取得する技術が研究されている。
テラヘルツ波発生技術として、ポンプ光パルスを非線形光学結晶に入射させることでテラヘルツ波を発生させる技術が知られている。ポンプ光パルスは、例えばフェムト秒レーザ光源から出力される超短パルス光である。
これまでのテラヘルツ波発生技術では、ポンプ光パルスの中心波長によりテラヘルツ波発生に適する非線形光学結晶の種類が決まっていた。例えば、中心波長800nmのポンプ光パルスが用いられる場合、位相整合条件を満たすものとしてZnTe結晶が広く用いられている。位相整合条件を満たす非線形光学結晶にポンプ光パルスが入射すると、そのポンプ光パルスと同軸上にテラヘルツ波が発生する。
近年では、通常では位相整合条件を満たさない非線形光学結晶が用いられる場合であっても、ポンプ光パルスのパルス面を傾斜させて該ポンプ光パルスを非線形光学結晶に入射させることで位相整合条件が満たされることが明らかになっている(非特許文献1〜4)。
J. Hebling, et al.,Optics Express 10, 1161 (2002). J. Hebling, et al.,Appl. Phys. B 78, 593 (2004). J. Hebling, et al.,IEEE J. Selected Topics in Quantum Electron. 14, 345 (2008). L. Palfalvi, et. al.,Appl. Phys. Lett. 92, 171107 (2008).
しかしながら、ポンプ光パルスのパルス面を傾斜させて該ポンプ光パルスを非線形光学結晶に入射させてテラヘルツ波を発生させる場合、発生したテラヘルツ波の断面において強度分布が不均一になるという問題が生じる。
本発明は、上記問題点を解消する為になされたものであり、パルス面を傾斜させたポンプ光パルスを非線形光学結晶に入射させてテラヘルツ波を発生させる場合にテラヘルツ波の強度分布の不均一化を抑制することができるテラヘルツ波発生装置を提供することを目的とする。
本発明のテラヘルツ波発生装置は、ポンプ光パルスを出力する光源と、光源から出力されたポンプ光パルスのパルス面を傾斜させるパルス面傾斜部と、パルス面傾斜部から出力されたポンプ光パルスが入力されることでテラヘルツ波を発生させるテラヘルツ波発生部と、を備える。
本発明のテラヘルツ波発生装置のテラヘルツ波発生部は、(1) ポンプ光パルスが垂直入射する入射面と、テラヘルツ波が垂直出射する出射面とを有し、(2) ポンプ光パルスの主光線に平行であってパルス面に垂直な断面において、出射面からのテラヘルツ波の出射方向に平行な二辺を有する平行四辺形であってポンプ光パルスが通過する特定領域にテラヘルツ波を発生させる第1結晶を有し、特定領域以外の他の領域にテラヘルツ波を発生しない第2結晶を含み、ポンプ光パルスが第1結晶の全領域を伝搬し、(3)テラヘルツ帯において第1結晶および第2結晶それぞれの屈折率が互いに略等しいことを特徴とする。
或いは、本発明のテラヘルツ波発生装置のテラヘルツ波発生部は、(1) ポンプ光パルスが垂直入射する入射面と、テラヘルツ波が垂直出射する出射面とを有し、(2) ポンプ光パルスの主光線に平行であってパルス面に垂直な断面において、出射面からのテラヘルツ波の出射方向に平行な二辺を有する平行四辺形であってポンプ光パルスが通過する特定領域にテラヘルツ波を発生させる第1結晶を有し、特定領域以外の他の領域に上記テラヘルツ波と異なる偏光方位のテラヘルツ波を発生させる第2結晶を含み、ポンプ光パルスが第1結晶の全領域を伝搬し、(3)テラヘルツ帯において第1結晶および第2結晶それぞれの屈折率が互いに略等しく、(4) 第1結晶および第2結晶それぞれで発生して出射面から出射されたテラヘルツ波のうち第1結晶で発生したテラヘルツ波を偏光子により選択的に出力することを特徴とする。
本発明のテラヘルツ波発生装置では、テラヘルツ波発生部の断面における特定領域は、入射面に平行な一辺を有する平行四辺形であってもよいし、出射面に平行な一辺を有する平行四辺形であってもよい。
なお、平行四辺形には、菱形、長方形および正方形も含まれる。
本発明によれば、パルス面を傾斜させたポンプ光パルスを非線形光学結晶に入射させてテラヘルツ波を発生させる場合に、テラヘルツ波の強度分布の不均一化を抑制することができる。
テラヘルツ波発生装置1の構成図である。 テラヘルツ波発生部25におけるポンプ光パルスPおよびテラヘルツ波Tそれぞれの伝播の様子を示す図である。 テラヘルツ波イメージング装置2の構成図である。 本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Aの構成図である。 本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Bの構成図である。 本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Cの構成図である。 本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Dの構成図である。
以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、テラヘルツ波発生装置1の構成図である。この図に示されるテラヘルツ波発生装置1は、光源11,反射型回折格子21,ミラー22,1/2波長板23およびレンズ24およびテラヘルツ波発生部25を備える。
光源11は、テラヘルツ波を発生させるためにテラヘルツ波発生部25に入射されるべきポンプ光パルスPを出力するものである。光源11は、好ましくは超短パルスレーザ光を出力するパルスレーザ光源であり、例えばフェムト秒レーザ光源である。反射型回折格子21は、光源11から出力されたポンプ光パルスを入力して、そのポンプ光パルスを反射・回折して出力する。反射型回折格子21に対しポンプ光パルスの入射および出射は互いに同じ側である。
ミラー22は、反射型回折格子21により回折されて出力されたポンプ光パルスを1/2波長板23へ反射させる。1/2波長板23は、ミラー22により反射されたポンプ光パルスを入力し、そのポンプ光パルスの偏光状態を調整して結像光学系24へ出力する。結像光学系24は、反射型回折格子21により回折されて出力されミラー22を経たポンプ光パルスを入力して、反射型回折格子21におけるポンプ光パルスの像を結像する。
テラヘルツ波発生部25は、結像光学系24によりポンプ光パルスが結像される位置に配置され、結像光学系24を経たポンプ光パルスPを入力してテラヘルツ波Tを発生させる。テラヘルツ波発生部25は、例えば、定比組成のLiNbO結晶(sLN結晶)やLiTaO結晶(sLT結晶)、ZnTe、GaP等の非線形光学結晶からなる。
このように構成されるテラヘルツ波発生装置1では、光源11から出力されたポンプ光パルスPは、反射型回折格子21に入射する前では主光線に垂直なパルス面Sを有しているが、反射型回折格子21により回折された後では主光線に垂直な面に対して傾斜したパルス面Sを有している。反射型回折格子21により回折されたポンプ光パルスのパルス面Sの傾斜角度は、ポンプ光パルスの波長、反射型回折格子21の格子周期、および、反射型回折格子21へのポンプ光パルスの入射角度、に依存する。
また、結像光学系24により結像されたポンプ光パルスのパルス面Sの傾斜角度は、結像光学系24に入射する前のポンプ光パルスのパルス面Sの傾斜角度と結像光学系24の結像の倍率とに依存する。さらに、テラヘルツ波発生部25中を伝搬する際のポンプ光パルスのパルス面Sの傾斜角度は、テラヘルツ波発生部25に入射する前のポンプ光パルスのパルス面Sの傾斜角度とテラヘルツ波発生部25の屈折率とに依存する。
したがって、ポンプ光パルスの波長、テラヘルツ波の周波数、ポンプ光パルスおよびテラヘルツ波それぞれに対するテラヘルツ波発生部25の屈折率、ならびに、テラヘルツ波発生部25の結晶軸の方位等を考慮した上で、テラヘルツ波発生部25中を伝搬する際のポンプ光パルスのパルス面Sの傾斜角度を適切に設定すれば、位相整合条件を満たすことができる。
このようなテラヘルツ波発生装置1によれば、通常は位相整合条件が満たされない中心波長のポンプ光パルスとテラヘルツ波発生部25の結晶との組み合わせであっても、パルス面を傾斜させたポンプ光パルスをテラヘルツ波発生部25に入射させることにより位相整合条件を満たすことができる。そして、通常の位相整合の手法では使用に適さなかった効率の高い非線形光学結晶が、幅広い範囲の波長のポンプ光パルスに対してテラヘルツ波発生部25として使用できるようになる。こうして発生したテラヘルツ波Tは、非常に高強度であり、従来の分光計測における計測光としての利用だけでなく、テラヘルツ波T自体による試料の励起も可能となる。
なお、反射型回折格子21は、ポンプ光パルスPのパルス面を傾斜させるパルス面傾斜部として作用する。パルス面傾斜部は、反射型回折格子の他、透過型回折格子やプリズムなどであってもよい。
図2は、テラヘルツ波発生部25におけるポンプ光パルスPおよびテラヘルツ波Tそれぞれの伝播の様子を示す図である。この図には、ポンプ光パルスPの主光線に平行であってパルス面に垂直な断面が示されている。この断面においてテラヘルツ波発生部25中を伝播するポンプ光パルスPのパルス面Sが実線で示され、テラヘルツ波発生部25中を伝播するテラヘルツ波Tの伝播方向が点線で示され、また、テラヘルツ波発生部25の出射面25bから出射されたテラヘルツ波Tの伝播方向および強度分布が出射面25bからの複数の矢印で示されている。
テラヘルツ波発生部25は、ポンプ光パルスPが垂直入射する入射面25aと、テラヘルツ波Tが垂直出射する出射面25bとを有する。入射面25aおよび出射面25bそれぞれは平面である。入射面25aに垂直入射したポンプ光パルスPは、テラヘルツ波発生部25内を入射前と同じ方向に伝播していく。テラヘルツ波発生部25内におけるポンプ光パルスPの伝播の過程で各位置において位相が揃ったテラヘルツ波Tが発生する。そのテラヘルツ波Tは、点線で示される方向にテラヘルツ波発生部25内を伝播し、出射面25bから外部へ矢印で示される方向に出射する。出射面25bからのテラヘルツ波Tの前後でテラヘルツ波Tの伝播方向は同じである。
出射面25bの或る位置から出射する際のテラヘルツ波Tの強度は、その位置を通り出射面25bに垂直な直線のうち、ポンプ光パルスPが伝播することによりテラヘルツ波発生部25においてテラヘルツ波Tが発生する部分の長さ(同図中の点線の長さ)に依存する。同図に示されるように、テラヘルツ波発生部25の全体がテラヘルツ波を発生させ得る結晶からなる場合には、出射面25bから出射する際のテラヘルツ波Tの断面内の強度分布は不均一化する。
図3は、テラヘルツ波イメージング装置2の構成図である。この図に示されるテラヘルツ波イメージング装置2は、図1に示されたテラヘルツ波発生装置1を備える。なお、この図では、反射型回折格子21,ミラー22,1/2波長板23およびレンズ24の図示が省略されている。テラヘルツ波発生装置1が上述したようなテラヘルツ波の断面内の強度分布の不均一性を有する場合、テラヘルツ波イメージング装置2は以下のような問題点を有することとなる。
この図に示されるテラヘルツ波イメージング装置2では、光源11から出力された光パルスは、分岐部12により2分岐されてポンプ光パルスおよびプローブ光パルスとされる。分岐部12から出力されたポンプ光パルスは、ミラーM1〜M3により順次に反射されて、テラヘルツ波発生部25に入力される。テラヘルツ波発生部25では、ポンプ光パルスの入力に応じてテラヘルツ波が発生し出力される。テラヘルツ波発生部25から出力されたテラヘルツ波は、測定対象部9を透過することで測定対象物9の情報(例えば、吸収係数、屈折率)を取得し、その後、レンズL1およびレンズL2を経て、合波部41に入力される。一方、分岐部12から出力されたプローブ光パルスは、ミラーM4〜M8により順次に反射され、偏光子31により直線偏光とされ、合波部41に入力される。
合波部41に入力されたテラヘルツ波およびプローブ光パルスは、合波部41により互いに同軸となるように合波されて、略同一タイミングで電気光学結晶42に入力される。テラヘルツ波およびプローブ光パルスが入力された電気光学結晶42では、テラヘルツ波の伝搬に伴い複屈折が誘起され、その複屈折によりプローブ光パルスの偏光状態が変化する。電気光学結晶42から出力されたプローブ光パルスは、検光子43、レンズL3およびレンズL4を経て、撮像部44により撮像される。
電気光学結晶42におけるプローブ光パルスの偏光状態変化の分布は、プローブ光学系の光路上に設けられた偏光子31、電気光学結晶42の出力側に設けられた検光子43、および、この検光子43を透過したプローブ光パルスを撮像する撮像部44により、光強度分布として撮像される。このようにして、電気光学結晶42におけるプローブ光パルスの偏光状態変化の分布が検出され、ひいては、測定対象物9で透過したテラヘルツ波の像が得られる。
3個のミラーM1〜M3は光路長差調整部13を構成している。すなわち、ミラーM1およびM2が移動することで、分岐部12からテラヘルツ波発生部25に到るまでのポンプ光学系の光路長が調整される。これにより、光路長差調整部13は、分岐部12から合波部41に到るまでのポンプ光学系およびテラヘルツ波光学系の光路と、分岐部12から合波部41に到るまでのプローブ光学系の光路との間の光路長差ΔLを調整することができる。
このようなテラヘルツ波イメージング装置2において、テラヘルツ波発生部25から出力されるテラヘルツ波の断面内の強度分布の不均一性が存在すると、撮像部44による撮像に得られた画像において、測定対象物9に由来する強度分布であるのか、或いは、テラヘルツ波発生部25から出力されるテラヘルツ波の断面内の強度分布に由来するものであるのか、を区別することができない。したがって、テラヘルツ波の断面内の強度分布の不均一性は、イメージングへの応用を妨げる。
測定対象物9が存在しない場合に撮像部44により取得した画像を用いて、測定対象物9が存在する場合に撮像部44により取得した画像を信号処理により補正して、テラヘルツ波の断面内の強度分布の不均一性の影響を除去することも考えられる。しかし、図3に示されるようなテラヘルツ波イメージング装置2において使用される光源11は、例えばフェムト秒レーザ光源であるから、光パルス間の強度揺らぎが大きいので、テラヘルツ波の断面内の強度分布の不均一性の影響を除去しきれない。また、信号処理で強度分布を均一にすることも考えられるが、この場合、強度が弱い部分(ノイズレベルに近い部分)は非常にノイズが大きい信号になってしまい、実用に向かない。したがって、テラヘルツ波の発生のときに強度分布の不均一化を抑制することが重要である。
以下では、図4〜図7を用いて、本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25A〜25Dについて説明する。これらテラヘルツ波発生部25A〜25Dそれぞれは、図1に示されたテラヘルツ波発生装置1においてテラヘルツ波発生部25に替えて用いられるものである。
図4〜図7それぞれでは、ポンプ光パルスPの主光線に平行であってパルス面Sに垂直な断面が示されている。各図(a)では、テラヘルツ波発生部を構成する結晶の形状および配置が示されている。各図(b)では、テラヘルツ波発生部中を伝播するポンプ光パルスPのパルス面Sが実線で示され、テラヘルツ波発生部中を伝播するテラヘルツ波Tの伝播方向が点線で示され、また、テラヘルツ波発生部の出射面25bから出射されたテラヘルツ波Tの伝播方向および強度分布が出射面25bからの複数の矢印で示されている。
図4は、本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Aの構成図である。テラヘルツ波発生部25Aは、4個の結晶111〜114が組み合わされて構成されている。ポンプ光パルスPの主光線に平行であってパルス面Sに垂直な断面において、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺を有する平行四辺形であってポンプ光パルスPが通過する特定領域に、テラヘルツ波を発生させる第1結晶111が設けられ、この特定領域以外の他の領域に、テラヘルツ波を発生しない第2結晶112〜114が設けられている。
結晶111は、入射面25aに垂直入射し傾斜したパルス面Sを有するポンプ光パルスPに対してチェレンコフ型の位相整合条件を満たす非線形光学結晶であって、その全領域をポンプ光パルスPが伝播し、その全領域においてテラヘルツ波Tを発生させることができる。結晶111の断面は、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺と、入射面25a上の辺と、入射面25a上の辺に平行な辺と、を有する平行四辺形を呈している。結晶111は、例えば、sLN、sLT、ZnTe、GaP等である。
結晶112〜114の屈折率は、テラヘルツ帯において結晶111の屈折率と略等しい。結晶112〜114は、結晶111と同じ結晶であるが、結晶111とは光学軸の方位が異なっていて、ポンプ光パルスPに対して位相整合条件を満たさないようにしてもよい。結晶112〜114それぞれの断面は三角形を呈している。結晶112および結晶113は結晶111を挟んで設けられていて、これら3個の結晶111〜113の全体の断面が長方形を呈している。結晶114は結晶111と出射面25bとの間に設けられている。結晶111〜114の相互間の接着は、テラヘルツ波に対して吸収が少ない接着剤(例えばワックス)、オプティカルコンタクト、ダイレクトボンディングなどの何れかの方法による。このように結晶111の周囲に結晶112〜114が設けられていることにより、ポンプ光パルスPやテラヘルツ波Tの全反射が防止され得る。
このように構成されるテラヘルツ波発生部25Aは、4個の結晶111〜114のうち結晶111のみにおいてテラヘルツ波を発生させるので、ポンプ光パルスPとテラヘルツ波Tとの間の相互作用長が一定となる。したがって、出射面25bから出射されるテラヘルツ波の強度分布の不均一化が抑制され得る。
図5は、本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Bの構成図である。テラヘルツ波発生部25Bは、4個の結晶121〜124が組み合わされて構成されている。ポンプ光パルスPの主光線に平行であってパルス面Sに垂直な断面において、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺を有する平行四辺形であってポンプ光パルスPが通過する特定領域に、テラヘルツ波を発生させる第1結晶121が設けられ、この特定領域以外の他の領域に、テラヘルツ波を発生しない第2結晶122〜124が設けられている。
結晶121は、入射面25aに垂直入射し傾斜したパルス面Sを有するポンプ光パルスPに対してチェレンコフ型の位相整合条件を満たす非線形光学結晶であって、その全領域をポンプ光パルスPが伝播し、その全領域においてテラヘルツ波Tを発生させることができる。結晶121の断面は、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺と、出射面25b上の辺と、出射面25b上の辺に平行な辺と、を有する平行四辺形を呈している。結晶121は、例えば、sLN、sLT、ZnTe、GaP等である。
結晶122〜124の屈折率は、テラヘルツ帯において結晶121の屈折率と略等しい。結晶122〜124は、結晶121と同じ結晶であるが、結晶121とは光学軸の方位が異なっていて、ポンプ光パルスPに対して位相整合条件を満たさないようにしてもよい。結晶122,124それぞれの断面は三角形を呈している。結晶123の断面は四角形を呈している。結晶122および結晶123は結晶121を挟んで設けられていて、これら3個の結晶121〜123の全体の断面が平行四辺形を呈している。結晶124は結晶121と入射面25aとの間に設けられている。結晶121〜124の相互間の接着は、テラヘルツ波に対して吸収が少ない接着剤(例えばワックス)、オプティカルコンタクト、ダイレクトボンディングなどの何れかの方法による。このように結晶121の周囲に結晶122〜124が設けられていることにより、ポンプ光パルスPやテラヘルツ波Tの全反射が防止され得る。
このように構成されるテラヘルツ波発生部25Bは、4個の結晶121〜124のうち結晶121のみにおいてテラヘルツ波を発生させるので、ポンプ光パルスPとテラヘルツ波Tとの間の相互作用長が一定となる。したがって、出射面25bから出射されるテラヘルツ波の強度分布の不均一化が抑制され得る。
図6は、本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Cの構成図である。テラヘルツ波発生部25Cは、4個の結晶131〜134が組み合わされて構成されている。ポンプ光パルスPの主光線に平行であってパルス面Sに垂直な断面において、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺を有する平行四辺形であってポンプ光パルスPが通過する特定領域に、テラヘルツ波を発生させる第1結晶131が設けられ、この特定領域以外の他の領域に、第1結晶131で発生するテラヘルツ波と異なる偏光方位のテラヘルツ波を発生させる第2結晶132〜134が設けられている。
結晶131は、入射面25aに垂直入射し傾斜したパルス面Sを有するポンプ光パルスPに対してチェレンコフ型の位相整合条件を満たす非線形光学結晶であって、その全領域をポンプ光パルスPが伝播し、その全領域においてテラヘルツ波Tを発生させることができる。結晶131の断面は、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺と、入射面25a上の辺と、入射面25a上の辺に平行な辺と、を有する平行四辺形を呈している。結晶131は、例えば、sLN、sLT、ZnTe、GaP等である。
結晶132〜134の屈折率は、テラヘルツ帯において結晶131の屈折率と略等しい。結晶132〜134は、結晶131と同じ結晶であるが、結晶131とは光学軸の方位が異なっていて、第1結晶131で発生するテラヘルツ波と異なる偏光方位のテラヘルツ波を発生させる。結晶132〜134それぞれの断面は三角形を呈している。結晶132および結晶133は結晶131を挟んで設けられていて、これら3個の結晶131〜133の全体の断面が長方形を呈している。結晶134は結晶131と出射面25bとの間に設けられている。結晶131〜134の相互間の接着は、テラヘルツ波に対して吸収が少ない接着剤(例えばワックス)、オプティカルコンタクト、ダイレクトボンディングなどの何れかの方法による。このように結晶131の周囲に結晶132〜134が設けられていることにより、ポンプ光パルスPやテラヘルツ波Tの全反射が防止され得る。
このように構成されるテラヘルツ波発生部25Cは、4個の結晶131〜134の全てでテラヘルツ波を発生させるが、結晶131で発生するテラヘルツ波の偏光方位と、結晶132〜134で発生するテラヘルツ波の偏光方位とが互いに異なる。テラヘルツ波発生部25Cは、4個の結晶131〜134で発生したテラヘルツ波のうち結晶131で発生したテラヘルツ波を、偏光子26により選択的に透過させて出力することができる。したがって、出射されるテラヘルツ波の強度分布の不均一化が抑制され得る。
図7は、本実施形態のテラヘルツ波発生装置のテラヘルツ波発生部25Dの構成図である。テラヘルツ波発生部25Dは、4個の結晶141〜144が組み合わされて構成されている。ポンプ光パルスPの主光線に平行であってパルス面Sに垂直な断面において、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺を有する平行四辺形であってポンプ光パルスPが通過する特定領域に、テラヘルツ波を発生させる第1結晶141が設けられ、この特定領域以外の他の領域に、第1結晶141で発生するテラヘルツ波と異なる偏光方位のテラヘルツ波を発生させる第2結晶142〜144が設けられている。
結晶141は、入射面25aに垂直入射し傾斜したパルス面Sを有するポンプ光パルスPに対してチェレンコフ型の位相整合条件を満たす非線形光学結晶であって、その全領域をポンプ光パルスPが伝播し、その全領域においてテラヘルツ波Tを発生させることができる。結晶141の断面は、出射面25bからのテラヘルツ波Tの出射方向に平行な二辺と、出射面25b上の辺と、出射面25b上の辺に平行な辺と、を有する平行四辺形を呈している。結晶141は、例えば、sLN、sLT、ZnTe、GaP等である。
結晶142〜144の屈折率は、テラヘルツ帯において結晶141の屈折率と略等しい。結晶142〜144は、結晶141と同じ結晶であるが、結晶141とは光学軸の方位が異なっていて、第1結晶141で発生するテラヘルツ波と異なる偏光方位のテラヘルツ波を発生させる。結晶142,144それぞれの断面は三角形を呈している。結晶143の断面は四角形を呈している。結晶142および結晶143は結晶141を挟んで設けられていて、これら3個の結晶141〜143の全体の断面が平行四辺形を呈している。結晶144は結晶141と入射面25aとの間に設けられている。結晶141〜144の相互間の接着は、テラヘルツ波に対して吸収が少ない接着剤(例えばワックス)、オプティカルコンタクト、ダイレクトボンディングなどの何れかの方法による。このように結晶141の周囲に結晶142〜144が設けられていることにより、ポンプ光パルスPやテラヘルツ波Tの全反射が防止され得る。
このように構成されるテラヘルツ波発生部25Dは、4個の結晶141〜144の全てでテラヘルツ波を発生させるが、結晶141で発生するテラヘルツ波の偏光方位と、結晶142〜144で発生するテラヘルツ波の偏光方位とが互いに異なる。テラヘルツ波発生部25Dは、4個の結晶141〜144で発生したテラヘルツ波のうち結晶141で発生したテラヘルツ波を、偏光子26により選択的に透過させて出力することができる。したがって、出射されるテラヘルツ波の強度分布の不均一化が抑制され得る。
図6,図7に示されたテラヘルツ波発生部25C,25Dの具体例は以下のとおりである。第1結晶131,141としてsLN結晶が用いられる。sLN結晶は、テラヘルツ波が発生しない方位が存在しない。第1結晶131,141は、Xカットで結晶内のポンプ光パルスのパルス面Sの傾斜角が64度であるとき位相整合条件を満たす結晶方位で平行四辺形に加工される。このとき、ポンプ光パルスの偏光方位は結晶上のZ方向に平行であり、第1結晶131,141で発生するテラヘルツ波の偏光方位はポンプ光パルスの偏光方位と平行となる。
周囲に接着される第2結晶132〜134,142〜144は、第1結晶131,141で発生するテラヘルツ波の偏光方位に対して垂直な偏光方位を有するテラヘルツ波を発生させる結晶方位とされる。例えば、第2結晶132〜134,142〜144は、Yカットでポンプ光パルスの偏光方位がX方向に平行になるように加工される。このとき、第2結晶132〜134,142〜144で発生するテラヘルツ波は、ポンプ光パルスの偏光方位に対して垂直な偏光方位をもって出力される。
偏光子26としてワイヤーグリッド偏光子が用いられて、ポンプ光パルスの偏光方位に対して平行な偏光方位を有するテラヘルツ波(すなわち、第1結晶131,141で発生したテラヘルツ波)が選択的に取り出される。このようにするにより、テラヘルツ波の強度分布が均一化され得る。
図4〜図7に示されたテラヘルツ波発生部25A〜25Dにおいて、第1結晶の周囲に設けられる第2結晶は、第1結晶と同じ結晶であってもよいが、これに限られず、テラヘルツ帯において屈折率が略同じ物質で、テラヘルツ波の活性のない物、または、発生するテラヘルツ波を分離することができる物であればよい。この際、第2結晶はテラヘルツ波及びポンプ光パルスに吸収を持たない物質であることが望ましい。吸収がある場合は、吸収の度合いも加味して最終的に出力されるテラヘルツ波の強度分布が均一となるように加工形状が決定される。また、テラヘルツ波発生部25A〜25Dそれぞれにおいて第1結晶の大きさはポンプ光パルスのビーム径程度であることが望ましい。
本実施形態のテラヘルツ波発生装置は、テラヘルツ波イメージングにチェレンコフ型のテラヘルツ波発生の手法を適用することが可能になる。これにより、大出力のテラヘルツ波でイメージングをすることが可能になり、非破壊検査などへ向けた応用が広がる。
1…テラヘルツ波発生装置、2…テラヘルツ波イメージング装置、11…光源、12…分岐部、13…光路長差調整部、21…反射型回折格子、22…ミラー、23…1/2波長板、24…レンズ、25,25A〜25D…テラヘルツ波発生部、26…偏光子、31…偏光子、41…合波部、42…電気光学結晶、43…検光子、44…撮像部、111…第1結晶、112〜114…第2結晶、121…第1結晶、122〜124…第2結晶、131…第1結晶、132〜134…第2結晶、141…第1結晶、142〜144…第2結晶、L1〜L4…レンズ、M1〜M8…ミラー。

Claims (4)

  1. ポンプ光パルスを出力する光源と、
    前記光源から出力されたポンプ光パルスのパルス面を傾斜させるパルス面傾斜部と、
    前記パルス面傾斜部から出力されたポンプ光パルスが入力されることでテラヘルツ波を発生させるテラヘルツ波発生部と、
    を備え、
    前記テラヘルツ波発生部は、
    前記ポンプ光パルスが垂直入射する入射面と、前記テラヘルツ波が垂直出射する出射面とを有し、
    前記ポンプ光パルスの主光線に平行であってパルス面に垂直な断面において、前記出射面からの前記テラヘルツ波の出射方向に平行な二辺を有する平行四辺形であって前記ポンプ光パルスが通過する特定領域に前記テラヘルツ波を発生させる第1結晶を有し、前記特定領域以外の他の領域に前記テラヘルツ波を発生しない第2結晶を含み、前記ポンプ光パルスが前記第1結晶の全領域を伝搬し、
    テラヘルツ帯において前記第1結晶および前記第2結晶それぞれの屈折率が互いに略等しい、
    ことを特徴とするテラヘルツ波発生装置。
  2. ポンプ光パルスを出力する光源と、
    前記光源から出力されたポンプ光パルスのパルス面を傾斜させるパルス面傾斜部と、
    前記パルス面傾斜部から出力されたポンプ光パルスが入力されることでテラヘルツ波を発生させるテラヘルツ波発生部と、
    を備え、
    前記テラヘルツ波発生部は、
    前記ポンプ光パルスが垂直入射する入射面と、前記テラヘルツ波が垂直出射する出射面とを有し、
    前記ポンプ光パルスの主光線に平行であってパルス面に垂直な断面において、前記出射面からの前記テラヘルツ波の出射方向に平行な二辺を有する平行四辺形であって前記ポンプ光パルスが通過する特定領域に前記テラヘルツ波を発生させる第1結晶を有し、前記特定領域以外の他の領域に前記テラヘルツ波と異なる偏光方位のテラヘルツ波を発生させる第2結晶を含み、前記ポンプ光パルスが前記第1結晶の全領域を伝搬し、
    テラヘルツ帯において前記第1結晶および前記第2結晶それぞれの屈折率が互いに略等しく、
    前記第1結晶および前記第2結晶それぞれで発生して前記出射面から出射されたテラヘルツ波のうち前記第1結晶で発生したテラヘルツ波を偏光子により選択的に出力する、
    ことを特徴とするテラヘルツ波発生装置。
  3. 前記テラヘルツ波発生部の前記断面における前記特定領域が、前記入射面に平行な一辺を有する平行四辺形である、ことを特徴とする請求項1または2に記載のテラヘルツ波発生装置。
  4. 前記テラヘルツ波発生部の前記断面における前記特定領域が、前記出射面に平行な一辺を有する平行四辺形である、ことを特徴とする請求項1または2に記載のテラヘルツ波発生装置。
JP2010098991A 2010-04-22 2010-04-22 テラヘルツ波発生装置 Expired - Fee Related JP5555042B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098991A JP5555042B2 (ja) 2010-04-22 2010-04-22 テラヘルツ波発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098991A JP5555042B2 (ja) 2010-04-22 2010-04-22 テラヘルツ波発生装置

Publications (2)

Publication Number Publication Date
JP2011226994A JP2011226994A (ja) 2011-11-10
JP5555042B2 true JP5555042B2 (ja) 2014-07-23

Family

ID=45042487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098991A Expired - Fee Related JP5555042B2 (ja) 2010-04-22 2010-04-22 テラヘルツ波発生装置

Country Status (1)

Country Link
JP (1) JP5555042B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561818B (zh) * 2017-10-19 2023-09-26 北京航空航天大学 一种基于透射光栅倾斜波前的太赫兹脉冲产生装置及方法
WO2023210289A1 (ja) * 2022-04-25 2023-11-02 パナソニックIpマネジメント株式会社 判定装置および判定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609993B2 (ja) * 2004-12-08 2011-01-12 独立行政法人理化学研究所 テラヘルツ波発生方法及び装置
JP5098895B2 (ja) * 2008-08-26 2012-12-12 アイシン精機株式会社 テラヘルツ波発生装置及びテラヘルツ波発生方法
JP5353121B2 (ja) * 2008-08-26 2013-11-27 アイシン精機株式会社 テラヘルツ波発生装置およびテラヘルツ波発生方法
JP5642405B2 (ja) * 2010-03-24 2014-12-17 オリンパス株式会社 テラヘルツ波発生装置

Also Published As

Publication number Publication date
JP2011226994A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
US10331010B2 (en) Terahertz-wave generating element terahertz-wave detecting element and terahertz time-domain spectroscopy device
JP5943594B2 (ja) テラヘルツ波素子、テラヘルツ波検出装置、テラヘルツ時間領域分光システム及びトモグラフィ装置
JP4790560B2 (ja) 単発テラヘルツ波時間波形計測装置
US20150212388A1 (en) Terahertz wave generation element, terahertz wave detection element, and terahertz time domain spectroscope device
JP5216544B2 (ja) テラヘルツ波発生装置
JP6456078B2 (ja) テラヘルツ波発生素子、及び、テラヘルツ波検出素子
KR20160018768A (ko) 안정성이 향상된 cw duv 레이저
US8759769B2 (en) Terahertz-wave device, method of generating and detecting terahertz-waves with the device, and imaging apparatus equipped with the device
US8759779B2 (en) Terahertz wave generation element, terahertz wave detection element, and terahertz time domain spectral device
US20150136987A1 (en) Terahertz wave generator, terahertz wave detector, and terahertz time domain spectroscopy device
JP5098895B2 (ja) テラヘルツ波発生装置及びテラヘルツ波発生方法
JP5555042B2 (ja) テラヘルツ波発生装置
US20160274306A1 (en) Optical transmission apparatus and transmission method therefor
US20160377958A1 (en) Terahertz wave generating apparatus and information obtaining apparatus
Mantsevich et al. Examination of an acoustic field longitudinal power distribution in quasicollinear acousto-optic cells
JP5380357B2 (ja) テラヘルツ波発生装置
JP2004233710A (ja) 光モジュール
JP2003315207A (ja) 光学材料の組成比分布測定法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees