WO2010055621A1 - 沸騰冷却装置 - Google Patents

沸騰冷却装置 Download PDF

Info

Publication number
WO2010055621A1
WO2010055621A1 PCT/JP2009/005796 JP2009005796W WO2010055621A1 WO 2010055621 A1 WO2010055621 A1 WO 2010055621A1 JP 2009005796 W JP2009005796 W JP 2009005796W WO 2010055621 A1 WO2010055621 A1 WO 2010055621A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
ethanol
mass
heat transfer
liquid refrigerant
Prior art date
Application number
PCT/JP2009/005796
Other languages
English (en)
French (fr)
Inventor
吉原康二
針生聡
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US13/127,356 priority Critical patent/US20110220327A1/en
Priority to CN2009801447293A priority patent/CN102209875A/zh
Priority to EP09825875A priority patent/EP2348271A4/en
Publication of WO2010055621A1 publication Critical patent/WO2010055621A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a boiling cooling device using a refrigerant.
  • a boiling cooling device is a device that cools a heating element by using a phase change from a liquid of a refrigerant to a gas.
  • the liquid refrigerant that receives heat from the heating element is often an alcohol.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-257893 (Patent Document 1) describes a mixed solution of water (100) and lower alcohol (5 to 12).
  • the refrigerant here is intended mainly for heat pipes used for cooling indoor equipment, and does not freeze at about ⁇ 10 ° C. and is nonflammable.
  • Patent Document 2 Japanese Utility Model Publication No. 62-8571
  • Patent Document 2 describes a mixture of water and alcohol.
  • the refrigerant is prevented from freezing by changing the mixing ratio of water and alcohol.
  • the limit heat flux is smaller than that of water, and burnout (film boiling) may occur for a heating element that generates a high heat flux. If the heat flux received near the heat transfer surface that transfers the heat of the heating element to the liquid refrigerant exceeds the critical heat flux of the liquid refrigerant, a burnout phenomenon occurs.
  • the refrigerant has a higher melting point (freezing point) than alcohol and easily freezes. This cannot clear the general required specification (no frost at about -30 ° C) of the boiling cooling device mounted on the vehicle.
  • the heat transfer efficiency may be reduced.
  • the heat flux heat generation density
  • the heat flux increases (for example, 1 MW / m 2 ), and a burnout is likely to occur in a mixed solution having a small critical heat flux. In a region where burnout occurs, heat transfer is not performed and cooling performance is degraded.
  • Patent Document 1 a composition liquid in which alcohol is mixed at 20% by volume or more has a problem that the decrease in latent heat is larger than that of water. Describes a method of ensuring heat transport by reducing the proportion of alcohol, such as volume%. Therefore, in the case of mixing a large amount of alcohol (20% by volume or more), there is no suggestion about the type or mixing ratio of the alcohol.
  • Patent Document 2 it is described in Table 1 that the freezing point can be set to ⁇ 29 ° C. by using a mixed solution in which 40% of alcohol is mixed with 60% of water. In order to do so, it is necessary to further increase the mixing ratio of the alcohol. However, when the mixing ratio of alcohol is increased, the amount of heat transport is reduced and burnout is likely to occur, but no countermeasure has been suggested.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a boiling cooling device that can prevent the liquid refrigerant from freezing and suppress the occurrence of burnout.
  • the boiling cooling device of the present invention is a boiling cooling device that is provided in a vehicle and includes a storage portion that stores therein a liquid refrigerant that receives heat from a heating element, and the liquid refrigerant is a mixture of water and ethanol.
  • the ethanol concentration of the mixed solution is 40% by mass or more.
  • the boiling cooling device of the present invention may further include a condensing unit that is connected to the housing unit and condenses the liquid refrigerant boiled by the heat of the heating element, and may be a sealed system.
  • the melting point becomes less than ⁇ 30 ° C., and the specifications generally required for mounting on a vehicle (for example, freezing at ⁇ 30 ° C.) are cleared. be able to. Furthermore, the limit heat flux of the liquid refrigerant becomes larger than the alcohol single component because water is contained in the mixed liquid. Thereby, the occurrence of burnout is suppressed.
  • ethanol has a greater heat of vaporization (latent heat) than other alcohols. Therefore, the limit heat flux becomes larger by using ethanol. Furthermore, ethanol has a relatively low boiling point, improves heat circulation efficiency, and is effective as a boiling cooling refrigerant. In addition, since ethanol has a boiling point that is not too low, the boiling point is generally higher than the temperature (for example, about 65 ° C.) of a refrigerant (for example, cooling water) used for condensation in the condensing unit, and is more suitable for boiling cooling.
  • a refrigerant for example, cooling water
  • the liquid refrigerant composed of water and ethanol is used, so that the liquid refrigerant is prevented from freezing and the occurrence of burnout is suppressed.
  • the ethanol concentration of the mixed solution is preferably 45% by mass or more and 75% by mass or less. Thereby, freezing is prevented more reliably and burnout is suppressed. Furthermore, the ethanol concentration of the mixed solution is preferably 45% by mass or more and 55% by mass or less.
  • the housing portion includes a heat transfer wall portion that transmits heat of the heating element to the liquid refrigerant, and an opposite wall portion that faces the heat transfer wall portion via the liquid refrigerant, and the heat transfer wall portion and the opposite wall portion. Is preferably 3 mm or less. Thereby, a heat transfer rate improves and cooling performance improves. Furthermore, the separation distance between the heat transfer wall and the opposing wall is preferably 2 mm or less. Furthermore, it is preferable that the separation distance between the heat transfer wall and the opposing wall is 0.5 mm or more and 1.5 mm or less.
  • the freezing of the liquid refrigerant can be prevented and the occurrence of burnout is suppressed.
  • FIG. 1 is a perspective view showing a boiling cooling device 1.
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a figure which shows the characteristic of each alcohol. It is a figure which shows the relationship between the ethanol density
  • FIG. 3 is a view corresponding to a cross-sectional view taken along the line AA showing the boiling cooling device 100.
  • FIG. 1 is a perspective view showing a boiling cooling device 1.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 shows the characteristics of each alcohol.
  • FIG. 4 is a graph showing the relationship between the ethanol concentration of the ethanol-water mixture and the critical heat flux.
  • FIG. 5 is a diagram illustrating the relationship between the separation distance and the heat transfer coefficient.
  • FIG. 6 is a diagram showing the relationship between the return separation distance and the heat transfer coefficient.
  • FIG. 7 is a graph showing the relationship between the ethanol concentration of the ethanol-water mixture and the heat transfer coefficient.
  • FIG. 8 is a schematic diagram for explaining film boiling.
  • FIG. 1 is a perspective view showing a boiling cooling device 1.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 shows the characteristics of each alcohol.
  • FIG. 4 is a graph showing the relationship between the ethanol concentration of the ethanol-water mixture and the critical heat flux.
  • FIG. 9 is a graph showing the relationship between the ethanol concentration of the ethanol-water mixture and the element temperature.
  • FIG. 10 is a view corresponding to a cross-sectional view taken along the line AA showing the boiling cooling device 100. 4 is quoted from “Matorir, AS, Heat transfer Soviet Research, 5-1 (1973), 85-89”.
  • the boiling cooling device 1 is composed of a container Y in which an internal space is partitioned by a partition plate 5, and includes a storage unit 2 and a condensing unit 3.
  • the accommodating part 2 is a metal container having a rectangular parallelepiped section, and stores a liquid refrigerant therein.
  • the accommodating portion 2 includes a heat receiving passage 21, a supply passage 22, and a partition plate 23.
  • the heat receiving passage 21 is roughly surrounded by a side wall surface (four surfaces) including a side wall surface including the heat transfer wall portion 21a to which the heating element Z of the housing portion 2 is attached and a partition plate 23 facing the side wall surface. It is a part.
  • the partition plate 23 forms a side surface of the heat receiving passage 21 and a side surface of the supply passage 22, and partitions the internal space of the housing portion 2 into the heat receiving passage 21 and the supply passage 22.
  • the heating element Z is, for example, a semiconductor element.
  • the heat receiving passage 21 has a substantially rectangular parallelepiped shape, and the upper portion is opened and connected to the condensing unit 3, and the lower portion is opened and connected to the supply passage 22.
  • the heat transfer wall 21a and the partition plate 23 are parallel.
  • the separation distance between the heat transfer wall portion 21a and the partition plate 23 is approximately 1 mm.
  • the heat receiving passage 21 contains liquid refrigerant inside.
  • the heat transfer wall 21a of the heat receiving passage 21 is a part that transfers the heat of the heating element Z to the liquid refrigerant.
  • the liquid refrigerant in the heat receiving passage 21 boils by receiving heat from the heating element Z, and rises in the liquid refrigerant as bubbles.
  • the supply passage 22 will be described later.
  • the condensing part 3 is located above the accommodating part 2, and the lower part is open and continues to the heat receiving passage 21 and the supply passage 22.
  • a condensing pipe 31 is provided in the condensing unit 3. Cooling water flows through the condensation pipe 31. The condensing unit 3 cools and condenses the steam rising from the heat receiving passage 21.
  • the supply passage 22 is a portion on the other side in parallel with the heat receiving passage 21 and the inside of the accommodating portion 2 partitioned from the heat receiving passage 21 by the partition plate 5.
  • the supply passage 22 is open at the top and connected to the condensing unit 3, and is opened at the bottom and is connected to the heat receiving passage 21.
  • the liquid refrigerant condensed in the condensing unit 3 is mainly dropped into the supply passage 22 as droplets.
  • the supply passage 22 receives the liquid refrigerant dripped from the condensing unit 3 and supplies the liquid refrigerant to the heat receiving passage 21 from below by a pressure difference.
  • the boiling cooling device 1 is completely sealed.
  • the liquid refrigerant is sealed in a vacuum container (boiling cooling device 1).
  • the liquid refrigerant accommodated in the accommodating portion 2 will be described.
  • the liquid refrigerant is a mixed liquid of water and ethanol.
  • the ethanol concentration of this mixed solution is approximately 50% by mass (wt%).
  • Ethanol has a relatively low boiling point of 78.6 ° C.
  • Ethanol has a low boiling temperature and is effective as a refrigerant for the boiling cooling device.
  • cooling water of approximately 65 ° C. is caused to flow through the condensation pipe 31.
  • the boiling point should be reasonably higher than 65 ° C. Also in this respect, it is effective to use ethanol for the mixed solution.
  • ethanol has a heat of evaporation (latent heat) of 855 [kJ / kg], and has a higher heat of evaporation than other alcohols. For this reason, ethanol has a large critical heat flux. That is, it is possible to increase the critical heat flux (MW / m 2 ) in the mixed solution of water and ethanol, compared to using other alcohols. Since the critical heat flux is proportional to the heat flux causing burnout, it is advantageous that the critical heat flux is large. Note that the heat of evaporation of water is greater than that of ethanol.
  • ethanol has a lower melting point ( ⁇ 114.1 ° C.) than other alcohols. For this reason, the amount of mixing required to bring the mixed liquid to the target melting point temperature (here, less than ⁇ 30 ° C.) may be smaller than that of other alcohols.
  • the evaporation heat of water is larger than that of alcohols, and the limit heat flux of the mixed liquid becomes larger as the water component is larger. Ethanol can lower the melting point even with a relatively small amount, and as a result, the water component can be increased and the critical heat flux can be increased.
  • ethanol is optimal for mixing with water.
  • HFE-7200 is used for mixing with water. As shown in FIG. 3, HFE-7200 has a lower melting point than ethanol and is effective in lowering the melting point of the mixed solution. However, since the heat of evaporation is much smaller than that of ethanol, it is difficult to ensure appropriate heat of evaporation after mixing. That is, it becomes difficult to suppress the occurrence of burnout.
  • the critical heat flux is different when the ethanol concentration is different in the mixed solution of water and ethanol.
  • the magnitude of the critical heat flux is proportional to the magnitude of the heat flux at which burnout occurs.
  • the critical heat flux is large when the ethanol concentration is about 75% by mass or less. That is, it is preferable to use a mixed solution having an ethanol concentration of about 75% by mass or less for suppressing burnout.
  • the lower the ethanol concentration the higher the melting point and the easier it is to freeze.
  • the liquid refrigerant is generally required not to freeze at about ⁇ 30 ° C.
  • the freezing experiment of the liquid mixture whose ethanol concentration is 40 mass% was conducted.
  • the mixed solution did not freeze in the ⁇ 35 ° C. atmosphere. That is, when the ethanol concentration is 40% by mass or more, the mixed solution has a melting point lower than that and does not freeze even at ⁇ 30 ° C.
  • the required specifications for on-vehicle installation can be cleared.
  • the critical heat flux is larger than that of the ethanol single component.
  • the liquid refrigerant used in the boiling cooling device of the vehicle is preferably a mixed liquid (water + ethanol) having an ethanol concentration of 40% by mass to 75% by mass. According to this, freezing is prevented and burnout is suppressed.
  • the ethanol concentration is preferably 45% by mass or more.
  • the melting point becomes lower than ⁇ 40 ° C., and the required specification in a cold region (not frozen at ⁇ 40 ° C.) can be cleared. That is, by using a mixed solution having an ethanol concentration of 45 to 75% by mass, freezing can be more reliably prevented, and the critical heat flux can be increased to suppress burnout.
  • Non-Patent Document 1 describes that heat transfer is promoted as compared to pool boiling when the distance (the gap between the heat transfer wall 21a and the partition plate 23) is reduced. For example, when the separation distance is 2 mm, 1 mm, and 0.6 mm, heat transfer is significantly promoted in the low heat flux region. The greater the heat transfer rate, the better the cooling performance.
  • the difference in the heat transfer coefficient was tested by changing the above-mentioned separation distance.
  • a mixed solution having an ethanol concentration of 60% by mass is used.
  • the heat flux of the heating element is 1 to 2 (MW / m 2 ).
  • the heat transfer coefficient is increased when the separation distance is 2 mm or less.
  • the critical bubble diameter of the mixture of water and ethanol is about 1.5 mm, and it is considered that good heat transfer is performed up to 3 mm, which is twice as much as the maximum. That is, if the separation distance is 3 mm or less, it is advantageous in terms of heat transfer.
  • the separation distance is 2 mm or less.
  • a more preferable separation distance is 0.5 mm or more and 1.5 mm or less centering on 1 mm.
  • return separation distance the separation distance between the partition plate 23 and the wall portion 22a on the supply passage 22 side.
  • a return separation distance of about 2 mm is suitable.
  • the return separation distance of this embodiment is 2 mm.
  • the heat transfer coefficient experiment was performed by changing the ethanol concentration of the mixed solution by setting the separation distance between the heat transfer wall portion 21a and the partition plate 23 to 1 mm.
  • a high heat transfer coefficient (approximately 7.8 ⁇ 10 4 [W / m 2 ⁇ K]) is obtained.
  • a high heat transfer coefficient (60% by mass: approximately 6.5 ⁇ 10 4 [W / m 2 ⁇ K], 70% by mass: approximately 6.3 ⁇ 10 4 [W / m]. 2 ⁇ K]).
  • the critical heat flux is gradually increased from 75% by mass to 30% by mass.
  • the ethanol concentration is approximately 45 mass centered on 50 to 70 mass% of the high heat transfer coefficient.
  • % To 75% by mass is suitable for mounting on a vehicle. Further, it is preferably 45% by mass or more and 55% by mass or less, centering on 50% by mass of the highest heat transfer coefficient.
  • the cause of the improvement in the heat transfer coefficient is considered to be a difference in physical properties of water vapor and ethanol vapor against boiling in a narrow gap of a separation distance of 3 mm or less.
  • the separation distance is 1 mm, and the ethanol concentration of the mixed solution is 50% by mass.
  • burnout particularly film boiling, occurs in the vicinity of the inner surface of the heat transfer wall portion 21a corresponding to the central portion (the portion having the highest temperature) of the heating element Z, as shown in FIG.
  • the liquid refrigerant cannot contact the heat transfer wall portion 21a, and heat transfer is not performed. According to this, cooling performance will fall.
  • the heat transfer is expanded to the surroundings avoiding the film boiling region. That is, the heat conduction distance becomes long. Thereby, heat resistance becomes large with respect to the heat transmitted through the heat transfer wall portion 21a, and the heat transfer performance is also deteriorated.
  • film boiling may occur in an ethanol single component liquid refrigerant.
  • the occurrence of film boiling can be suppressed by using the above-described preferred mixed liquid as a liquid refrigerant.
  • the liquid refrigerant comes into contact with the inner surface of the heat transfer wall 21a, and the expansion of heat during heat transfer is prevented.
  • the heat conduction distance is also shortened, and the cooling performance and heat transfer performance are improved.
  • the element temperature is high when the ethanol concentration is 80 to 100% by mass regardless of the heat generation density. That is, it is understood that the ethanol concentration is preferably 80% by mass or less. This result also shows that an ethanol concentration of 40 to 75% by mass is effective.
  • the separation distance is 1 mm and the ethanol concentration is 50% by mass, but these numerical values do not exclude errors. Even if there is a slight deviation in the numerical value, the above effect is exhibited. That is, the numerical values in the present embodiment have a certain range, and a slight shift due to an error or the like is included in the present embodiment.
  • the ethanol concentration is 50% by mass
  • the lower limit may be 49 to 48% by mass and the upper limit may be within the range of 51 to 52% by mass.
  • the separation distance of 1 mm may be 0.9 to 1.1 mm.
  • the boiling cooling device may have a configuration shown in FIG. FIG. 10 is a view corresponding to a cross-sectional view taken along the line AA showing the boiling cooling device 100.
  • the boiling cooling device 100 includes a condensing unit 30 and an accommodating unit 20 whose interior is partitioned by two partition plates 51 and 52.
  • the housing unit 20 includes a first heat receiving passage 201, a second heat receiving passage 202, a supply passage 203, and partition plates 51 and 52.
  • the first heat receiving passage 201 is a substantially rectangular parallelepiped, and is roughly surrounded by a side wall surface including the left partition plate 51 and a side wall surface including the heat transfer wall portions 201a and 201b to which the heating elements Z1 and Z2 are attached. It is a part.
  • the second heat receiving passage 202 is a substantially rectangular parallelepiped, and is roughly surrounded by a side wall surface including the right partition plate 52 and a side wall surface including the heat transfer wall portions 202a and 202b to which the heating elements Z3 and Z4 are attached. It is a part.
  • the heat receiving passages 201 and 202 are open at the top and connected to the condensing unit 30, and open at the bottom and connected to the supply passage 203.
  • the heat receiving passages 201 and 202 contain the liquid refrigerant described above.
  • the separation distance between the side wall surface including the heat transfer wall portions 201a and 201b and the partition plate 51 is 3 mm or less (here, approximately 1 mm).
  • the separation distance between the side wall surface including the heat transfer wall portions 202a and 202b and the partition plate 52 is also 3 mm or less (here, approximately 1 mm).
  • the supply passage 203 is a substantially rectangular parallelepiped, and is a portion sandwiched between the partition plate 51 and the partition plate 52. .
  • the separation distance between the partition plate 51 and the partition plate 52 is approximately 2 mm.
  • the condensing unit 30 is located above the heat receiving passages 201 and 202 and the supply passage 203.
  • the condensing unit 30 is provided with condensing pipes 301 and 302 through which cooling water flows.
  • the liquid refrigerant (mixed liquid) of the present embodiment accommodated in the heat receiving passages 201 and 202 receives heat from the heating elements Z1 to Z4 and boils.
  • the rising steam is condensed in the condensing unit 30.
  • the condensed liquid refrigerant is dripped mainly into the supply passage 203.
  • the supply passage 203 receives the liquid refrigerant dripped from the condensing unit 3 and supplies the liquid refrigerant to the heat receiving passages 201 and 202 from below due to a pressure difference (see arrow in FIG. 10). Also by this, the same effect as this embodiment is exhibited by using the said liquid mixture.
  • a heating element is composed of a substrate and a heating element provided on the substrate, a hole is formed in the side wall of the housing portion, and the substrate is disposed so as to close the hole.
  • the structure may be such that is directly in contact with the refrigerant.
  • the substrate is regarded as a part of the accommodating portion, and the substrate corresponds to the heat transfer wall portion.
  • coolant may be sufficient.
  • the heat exchanger is not limited to the heat exchanger in which the refrigerant is accumulated in the bottomed container, and may be a heat exchanger having a structure in which the refrigerant flows without accumulating. As mentioned above, according to this invention, even if it is these structures, the same effect as the above is exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】液体冷媒の凍結を防止し、且つ、バーンアウトの発生を抑制することができる沸騰冷却装置を提供する。 【解決手段】本発明の沸騰冷却装置1は、発熱体Zの熱を受ける液体冷媒を内部に収容する収容部2を備え、車両に搭載される沸騰冷却装置であって、液体冷媒は、水とエタノールの混合液であり、混合液のエタノール濃度は、40質量%以上であることを特徴とする。

Description

沸騰冷却装置
 本発明は、冷媒を用いた沸騰冷却装置に関するものである。
 沸騰冷却装置は、冷媒の液体から気体への相変化を利用して発熱体を冷却する装置である。ここで、密封系の沸騰冷却装置において、発熱体から受熱する液体冷媒はアルコール類であることが多い。例えば、特開平4-257693号公報(特許文献1)では、水(100)と低級アルコール(5~12)の混合液が記載されている。ここでの冷媒は、主に室内用機器の冷却に用いられるヒートパイプを対象とし、-10℃程度で凍結せずかつ不燃性となっている。
 また、実開昭62-8571号公報(特許文献2)では、水とアルコールの混合液が記載されている。ここでは、水とアルコールの混合比率を変えることで、冷媒の凍結を防止している。
 一方、沸騰冷却装置において、上記のような液体冷媒を収容する部位と、発熱体の熱を液体冷媒に伝える部位の空間構成により、熱伝達特性などがどうなるかなどの研究も行われている。例えば、第22回日本伝熱シンポジウム講演論文集(1985-5)A112「狭い間隙における核沸騰熱伝達」(非特許文献1)では、伝熱面とそれに対向する面との離間距離と、熱伝達特性との関係が記載されている。
特開平4-257693号公報 実開昭62-8571号公報 第22回日本伝熱シンポジウム講演論文集(1985-5)A112「狭い間隙における核沸騰熱伝達」
 しかしながら、冷媒としてアルコールを用いた場合、水に比べて限界熱流束は小さく、高熱流束を生じさせる発熱体に対して、バーンアウト(膜沸騰)が生じる可能性がある。発熱体の熱を液体冷媒に伝える伝熱面付近で、受熱した熱流束が、液体冷媒がもつ限界熱流束を越えると、バーンアウト現象が起きる。一方、冷媒として水を用いた場合、当該冷媒は、アルコールに比べて融点(凝固点)が高く、容易に凍結してしまう。これでは、車両に搭載される沸騰冷却装置の一般的な要求仕様(-30℃程度で凍らない)をクリアできない。また、上記のような水とアルコールの混合液であっても、アルコールの種類および混合割合によっては、上記要求仕様をクリアできず、且つ、熱伝達効率が小さくなる可能性がある。発熱体である電子機器等が小型化、高集積化されるほど、熱流束(発熱密度)が高くなり(例えば1MW/m)、限界熱流束が小さい混合液ではバーンアウトが生じやすくなる。バーンアウトが生じた領域では、熱伝達が行われず、冷却性能は低下してしまう。
 特許文献1には、従来はアルコールを20容量%以上混合した組成液では水に比べて潜熱の低下が大きくなるという課題に対して、アルコールの割合を水100容量%に対してアルコール5~12容量%というように、アルコールの割合を減らすことにより、熱輸送量を確保するという手法について述べている。そのため、アルコールを多く(20容量%以上)混合する場合において、アルコールの種類や混合割合について示唆するものではない。
 また、特許文献2では、表1において、水60%に対してアルコール40%混合した混合液を用いることで凝固点を-29℃にできることが記載されているが、-30℃でも確実に凍らないようにするには、アルコールの混合割合を更に増やす必要がある。しかし、アルコールの混合割合を増やすと熱輸送量が低下してしまい、バーンアウトが生じやすくなるが、そのことに対する対策は示唆されていない。
 本発明は、このような事情に鑑みてなされたものであり、液体冷媒の凍結を防止し、且つ、バーンアウトの発生を抑制することができる沸騰冷却装置を提供することを目的とする。
 本発明の沸騰冷却装置は、発熱体の熱を受ける液体冷媒を内部に収容する収容部を備え、車両に搭載される沸騰冷却装置であって、液体冷媒は、水とエタノールの混合液であり、混合液のエタノール濃度は、40質量%以上であることを特徴とする。
 本発明では、液体冷媒に水とエタノールの混合液を用いている。エタノールは、他のアルコール類に比べて融点が低く、水との混合液において融点を下げやすい。つまり、混合液が目標融点温度に達するために必要なエタノール量は、他のアルコールを混ぜるよりも少なくてよい。これにより、他のアルコールに比べ、混合液における水の割合を大きくすることができ、混合液の限界熱流束を大きくできる。ここで、本発明の沸騰冷却装置は、収容部に連なり発熱体の熱によって沸騰した液体冷媒を凝縮させる凝縮部をさらに備え、密封系であってもよい。
 そして、本発明によれば、エタノール濃度を40質量%以上とすることで、融点が-30℃未満となり、車両搭載に一般的に要求される仕様(例えば-30℃で凍らない)をクリアすることができる。さらに、混合液に水が含まれている分、アルコール単成分よりも、液体冷媒の限界熱流束は大きくなる。これにより、バーンアウトの発生は抑制される。
 また、エタノールは、他のアルコール類と比較して、蒸発熱(潜熱)が大きい。従って、エタノールを用いることでより限界熱流束が大きくなる。さらに、エタノールは、比較的沸点が低く、熱循環効率がよくなり、沸騰冷却の冷媒として有効である。また、エタノールは、沸点が低すぎないため、一般に凝縮部で凝縮に用いられる冷媒(例えば冷却水)の温度(例えば65℃程度)よりも沸点が大きく、より沸騰冷却に適している。
 このように、本発明の沸騰冷却装置では、水とエタノールからなる上記液体冷媒が用いられているため、液体冷媒の凍結が防止され、且つ、バーンアウトの発生が抑制される。
 ここで、本発明において、混合液のエタノール濃度は、45質量%以上75質量%以下であることが好ましい。これにより、凍結がより確実に防止され、且つ、バーンアウトが抑制される。さらに、混合液のエタノール濃度は、45質量%以上55質量%以下であることが好ましい。
 なお、収容部は、発熱体の熱を液体冷媒に伝える伝熱壁部と、液体冷媒を介して伝熱壁部に対向する対向壁部と、を有し、伝熱壁部と対向壁部との離間距離は、3mm以下であることが好ましい。これにより、熱伝達率が向上し、冷却性能は向上する。さらに、伝熱壁部と対向壁部との離間距離は、2mm以下であることが好ましい。また、さらに、伝熱壁部と対向壁部との離間距離は、0.5mm以上1.5mm以下であることが好ましい。
 本発明の沸騰冷却装置によれば、液体冷媒の凍結が防止でき、且つ、バーンアウトの発生が抑制される。
沸騰冷却装置1を示す斜視図である。 図1のA-A断面図である。 各アルコールの特性を示す図である。 エタノール-水混合液のエタノール濃度と限界熱流束との関係を示す図である。 離間距離と熱伝達率の関係を示す図である。 戻り離間距離と熱伝達率の関係を示す図である。 エタノール-水混合液のエタノール濃度と熱伝達率との関係を示す図である。 膜沸騰の説明のための模式図である。 エタノール-水混合液のエタノール濃度と素子温度の関係を示す図である。 沸騰冷却装置100を示すA-A断面図に相当する図である。
1、100:沸騰冷却装置、
2、20:収容部、
21:受熱通路、 201:第一受熱通路、 202:第二受熱通路
22、203:供給通路、 
21a、201a、201b、202a、202b:伝熱壁部、
3、30:凝縮部、 31、301、302:凝縮パイプ、
23、51、52:仕切板、
Z、Z1~Z4:発熱体
 次に、実施形態を挙げ、本発明をより詳しく説明する。
 本実施形態の沸騰冷却装置について図1~図10を参照して説明する。図1は、沸騰冷却装置1を示す斜視図である。図2は、図1のA-A断面図である。図3は、各アルコールの特性を示す図である。図4は、エタノール-水混合液のエタノール濃度と限界熱流束との関係を示す図である。図5は、離間距離と熱伝達率の関係を示す図である。図6は、戻り離間距離と熱伝達率の関係を示す図である。図7は、エタノール-水混合液のエタノール濃度と熱伝達率との関係を示す図である。図8は、膜沸騰の説明のための模式図である。図9は、エタノール-水混合液のエタノール濃度と素子温度の関係を示す図である。図10は、沸騰冷却装置100を示すA-A断面図に相当する図である。なお、図4は、「Matorir,A.S.,Heat transfer Soviet Research,5-1(1973),85~89」から引用している。
 沸騰冷却装置1は、図1および図2に示すように、仕切板5で内部空間が仕切られた容器Yからなっており、収容部2と、凝縮部3を備えている。
 収容部2は、断面が直方体形状の金属製の容器であり、内部に液体冷媒が貯留されている。収容部2は、受熱通路21と、供給通路22と、仕切板23とを備えている。受熱通路21は、およそ、収容部2の発熱体Zが取り付けられる伝熱壁部21aを含む側壁面と、当該側壁面に対向する仕切板23と、を含む側壁面(4面)で囲まれた部位である。仕切板23は、受熱通路21の側面および供給通路22の側面を形成し、収容部2の内部空間を受熱通路21と供給通路22とに仕切っている。発熱体Zは、例えば半導体素子等である。
 受熱通路21は、略直方体形状であって、上方が開口して凝縮部3に連なり、下方が開口して供給通路22に連なっている。伝熱壁部21aと仕切板23とは平行である。本実施形態において、伝熱壁部21aと仕切板23(本発明における「対向壁部」に相当する)との離間距離は、およそ1mmとなっている。
 受熱通路21は、内部に液体冷媒を収容している。受熱通路21の伝熱壁部21aは、発熱体Zの熱を液体冷媒に伝える部位である。受熱通路21内の液体冷媒は、発熱体Zの熱を受けて沸騰し、液体冷媒内を気泡となって上昇する。供給通路22については、後述する。
 凝縮部3は、収容部2の上方に位置し、下方が開口して受熱通路21および供給通路22に連なっている。凝縮部3には、凝縮パイプ31が設けられている。凝縮パイプ31には、冷却水が流れている。凝縮部3は、受熱通路21から上昇してくる蒸気を冷却し、凝縮させる。
 供給通路22は、受熱通路21と並列し、収容部2内が仕切板5で受熱通路21と仕切られたもう一方側の部位である。供給通路22は、上方が開口して凝縮部3に連なり、下方が開口して受熱通路21に連なっている。凝縮部3で凝縮された液体冷媒は、液滴となって主に供給通路22に滴下する。供給通路22は、凝縮部3から滴下する液体冷媒を受け、圧力差により下方から受熱通路21に液体冷媒を供給する。なお、沸騰冷却装置1は、完全に密封状態となっている。液体冷媒は、真空状態の容器(沸騰冷却装置1)に封入される。
 ここで、収容部2に収容される液体冷媒について説明する。液体冷媒は、水とエタノールの混合液である。本実施形態において、この混合液のエタノール濃度は、およそ50質量%(wt%)である。エタノールは、沸点は比較的低く78.6℃である。エタノールは、沸騰温度が低く沸騰冷却装置の冷媒として有効である。また、本実施形態では、凝縮パイプ31におよそ65℃の冷却水を流している。このため、沸点は65℃より適度に高いほうがよい。この点においても、混合液にエタノールを用いることは有効である。
 さらに、エタノールは、蒸発熱(潜熱)が855[kJ/kg]であり、他のアルコール類と比べて蒸発熱が大きい。このため、エタノールは、限界熱流束が大きい。つまり、他のアルコール類を用いるより、水とエタノールの混合液は限界熱流束(MW/m)を大きくすることができる。限界熱流束とバーンアウトを起こす熱流束とは比例するため、限界熱流束の大きいほうが有利である。なお、水の蒸発熱は、エタノールよりも大きい。
 さらに、エタノールは、図3に示すように、他のアルコール類に比べて、融点が低い(-114.1℃)。このため、他のアルコール類よりも、混合液を目標となる融点温度(ここでは-30℃未満)にするために必要な混合量は少なくてよい。水の蒸発熱は、アルコール類よりも大きく、混合液の限界熱流束は、水成分が多いほうが大きくなる。エタノールは、比較的少量でも融点を下げることができ、結果、水成分を多くし限界熱流束を大きくできる。このように、本実施形態において、水との混合はエタノールが最適である。
 例えば、水との混合にHFE-7200を用いた場合を考える。図3に示すように、HFE-7200は、エタノールよりも融点が低く混合液の融点を下げるには有効である。しかしながら、蒸発熱がエタノールに比べてかなり小さいため、混合後に適切な蒸発熱を確保することが困難である。つまり、バーンアウトの発生を抑制することが困難となる。
 また、例えば、水との混合に2-プロパノールを用いた場合を考える。2-プロパノールは、蒸発熱が比較的大きく、バーンアウトの発生抑制に対しては有効である。しかしながら、2-プロパノールは、エタノールよりも融点が高いため、エタノールよりも多い量で混合しないと、水-エタノール混合液と同じ融点が得られない。結局、融点を低くするために、水に対する2-プロパノールの混合比を増やす必要があり、蒸発熱は低下してしまう。さらには、2-プロパノールの蒸発熱は、エタノールよりも小さい。以上のように、凍結防止効果とバーンアウト発生抑制効果の両方を発揮させるには、水-エタノール混合が最適である。
 ここで、エタノール濃度について説明する。図4に示すように、水とエタノールの混合液においてエタノール濃度が異なると限界熱流束が異なることがわかる。上記のように、限界熱流束の大きさと、バーンアウトが起こる熱流束の大きさとは比例関係にある。図4に示すように、エタノール濃度がおよそ75質量%以下において、限界熱流束は大きくなっている。つまり、バーンアウトの抑制には、エタノール濃度がおよそ75質量%以下の混合液を用いることが好ましい。
 ただし、エタノール濃度が低くなるほど、融点が高くなり、凍り易くなってしまう。特に車両に搭載される沸騰冷却装置に用いられる液体冷媒であるため、液体冷媒は、一般におよそ-30℃において凍結しないものが要求される。そこで、エタノール濃度が40質量%の混合液の凍結実験を行った。その結果、当該混合液は、-35℃雰囲気中において、凍結しないことが確認された。つまり、混合液は、エタノール濃度が40質量%以上であれば、融点がそれ以下となり、-30℃でも凍結することはない。車両搭載への要求仕様はクリアできる。また、上記のとおり、混合液には、限界熱流束が大きい水成分が含まれるため、限界熱流束はエタノール単成分よりも大きくなる。
 このように、車両の沸騰冷却装置に用いられる液体冷媒は、エタノール濃度が40質量%以上75質量%以下である混合液(水+エタノール)が好ましい。これによれば、凍結が防がれ、且つ、バーンアウトが抑制される。
 また、さらに確実に凍結を防ぐために、エタノール濃度は45質量%以上であることが好ましい。例えば、エタノール濃度が50質量%程度であると、融点が-40℃より小さくなり、寒冷地の要求仕様(-40℃で凍らない)もクリアできる。つまり、エタノール濃度が45~75質量%の混合液を用いることで、凍結をより確実に防止でき、かつ、限界熱流束を大きくしてバーンアウトを抑制することができる。
 ここで、本実施形態では、伝熱壁部21と仕切板5との離間距離がおよそ1mmとなっている。非特許文献1には、上記離間距離(伝熱壁部21aと仕切板23との間隙)を小さくするとプール沸騰に比べて熱伝達は促進されることが記載されている。例えば、離間距離が2mm、1mm、0.6mmの場合、低熱流束域で熱伝達が著しく促進されている。熱伝達率が大きいほど、冷却性能は良好なものとなる。
 本実施形態と同構成において、上記離間距離を変更して熱伝達率の違いを実験した。この実験では、エタノール濃度60質量%の混合液を用いている。発熱体の熱流束は1~2(MW/m)である。図5に示すように、離間距離が2mm以下で熱伝達率が上昇している。ただし、水とエタノールの混合液の限界気泡径がおよそ1.5mmであり、最大でその倍にあたる3mmまでは良好な熱伝達が行われると考えられる。つまり、離間距離は3mm以下であれば、熱伝達の面で有利である。好ましくは、離間距離が2mm以下である。さらに好ましい離間距離は、1mmを中心とした0.5mm以上1.5mm以下である。
 また、仕切板23と供給通路22側の壁部22aとの離間距離(以下、戻り離間距離と称する)についても同様の実験を行った。図6に示すように、戻り離間距離は2mm付近が適していることがわかる。本実施形態の戻り離間距離は、2mmとなっている。
 続いて、本実施形態では、伝熱壁部21aと仕切板23の離間距離を1mmとして、混合液のエタノール濃度を変えて熱伝達率の実験を行った。図7に示すように、エタノール濃度が50質量%で高い熱伝達率(およそ7.8×10[W/m・K])となることがわかる。また、60質量%および70質量%でも高い熱伝達率(60質量%:およそ6.5×10[W/m・K]、70質量%:およそ6.3×10[W/m・K])となることがわかる。
 限界熱流束に関しては、図4に示すように、75質量%から30質量%に向けて徐々に大きくなっている。バーンアウト抑制(75質量%以下)、凍結防止(40質量%以上)、および、上記熱伝達率の観点から、エタノール濃度は、高い熱伝達率の50~70質量%を中心としたおよそ45質量%以上75質量%以下が車両搭載に適しているといえる。さらに、好ましくは、最も高い熱伝達率の50質量%を中心とした45質量%以上55質量%以下となる。熱伝達率向上の原因は、離間距離3mm以下という狭い間隙での沸騰に対する水蒸気とエタノール蒸気との物性の違いが考えられる。
 本実施形態では、離間距離が1mmであり、混合液のエタノール濃度が50質量%である。上記のとおり、これによれば、液体冷媒の凍結が防止でき、且つ、バーンアウトの発生が抑制される。
 なお、バーンアウトは、特に膜沸騰は、図8(上図)に示すように、発熱体Zの中心部分(最も高温となる部分)に対応する伝熱壁部21aの内面付近で発生する。膜沸騰が発生すると、その発生した領域(膜沸騰領域)では、液体冷媒が伝熱壁部21aに接触できず、熱伝達が行われない。これによれば、冷却性能は低下してしまう。また、熱の伝わりは、膜沸騰領域を避けて周囲に拡大される。つまり、熱伝導距離が長くなってしまう。これにより、伝熱壁部21aを伝わる熱に対して熱抵抗が大きくなり、伝熱性能も低下してしまう。例えば、発熱体Zの発熱密度が1MW/mを超えるものである場合、エタノール単成分の液体冷媒では膜沸騰を生じる虞がある。
 しかしながら、上記した好ましい混合液を液体冷媒として用いることで、膜沸騰の発生を抑制することができる。膜沸騰が抑制されることで、図8(下図)に示すように、伝熱壁部21a内面に液体冷媒が接触し、且つ、伝熱の際の熱の拡大が防止される。熱伝導距離も短くなり、冷却性能および伝熱性能は向上する。
 また、図9に示すように、発熱体Zの発熱密度とエタノール濃度との関係においては、発熱密度に関わらず、エタノール濃度が80~100質量%で素子温度が高くなっている。つまり、エタノール濃度は80質量%以下がよいことがわかる。この結果からも、エタノール濃度は40~75質量%が有効であることがわかる。
 なお、本実施形態では、最適な形態として、離間距離が1mmでエタノール濃度が50質量%としたが、これらの数値は誤差を除くものではない。数値に多少のずれがあっても、上記効果は発揮される。つまり、本実施形態における数値は多少の幅をもち、誤差等による若干のずれは、本実施形態に含まれる。例えば、エタノール濃度が50質量%について、下限が49~48質量%で、上限が51~52質量%の範囲内であればよい。同様に、離間距離1mmについても、0.9~1.1mmであればよい。
 また、本実施形態の変形態様として、沸騰冷却装置は、図10に示す構成であってもよい。図10は、沸騰冷却装置100を示すA-A断面図に相当する図である。図10に示すように、沸騰冷却装置100は、凝縮部30と、2つの仕切板51、52で内部が仕切られた収容部20とからなっている。収容部20は、第一受熱通路201と、第二受熱通路202と、供給通路203と、仕切板51、52とを備えている。
 第一受熱通路201は、略直方体であり、およそ、左側の仕切板51と、発熱体Z1、Z2が取り付けられた伝熱壁部201a、201bを含む側壁面と、を含む側壁面で囲まれた部位である。第二受熱通路202は、略直方体であり、およそ、右側の仕切板52と、発熱体Z3、Z4が取り付けられた伝熱壁部202a、202bを含む側壁面と、を含む側壁面で囲まれた部位である。
 受熱通路201、202は、上方が開口して凝縮部30に連なり、下方が開口して供給通路203に連なっている。受熱通路201、202は、内部に上記した液体冷媒が収容されている。伝熱壁部201a、201bを含む側壁面と仕切板51との離間距離は、3mm以下(ここでは、およそ1mm)となっている。伝熱壁部202a、202bを含む側壁面と仕切板52との離間距離も、3mm以下(ここでは、およそ1mm)となっている。
 供給通路203は、略直方体であり、仕切板51と仕切板52に挟まれた部位であり、上方が開口して凝縮部30に連なり、下方が開口して受熱通路201、202に連なっている。仕切板51と仕切板52の離間距離は、およそ2mmとなっている。
 凝縮部30は、受熱通路201、202および供給通路203の上方に位置している。凝縮部30には、内部に冷却水が流れる凝縮パイプ301、302が設けられている。受熱通路201、202に収容された本実施形態の液体冷媒(混合液)は、それぞれ発熱体Z1~Z4から熱を受け、沸騰する。上昇した蒸気は、凝縮部30で凝縮される。凝縮された液体冷媒は、主に供給通路203に滴下する。供給通路203は、凝縮部3から滴下する液体冷媒を受け、圧力差により下方から受熱通路201、202に液体冷媒を供給する(図10矢印参照)。これによっても、上記混合液が用いられることで、本実施形態同様の効果が発揮される。
 本発明の沸騰冷却装置は、発熱体が基板と基板の上に設けられた発熱素子から構成され、収容部の側壁に穴を形成するとともにその穴を閉塞するように基板を配置して、基板が冷媒に直接接するような構造であってもよい。その場合、基板は収容部の一部とみなされ、基板が伝熱壁部に該当する。また、発熱体が収容部内に配置されて、冷媒に漬かる構造であってもよい。また、熱交換器については、冷媒が有底容器内に溜まっている熱交換器に限定されず、冷媒が溜まらずに流れているような構造の熱交換器であってもよい。以上、本発明によれば、これらの構造であっても、上記同様の効果が発揮される。
 

Claims (4)

  1.  発熱体の熱を受ける液体冷媒を内部に収容する収容部を備え、車両に搭載される沸騰冷却装置であって、
     前記液体冷媒は、水とエタノールの混合液であり、
     前記混合液のエタノール濃度は、40質量%以上であることを特徴とする沸騰冷却装置。
  2. 前記収容部に連なり、前記発熱体の熱によって沸騰した前記液体冷媒を凝縮させる凝縮部を更に備え、
    前記沸騰冷却装置は密封系となっている請求項1に記載の沸騰冷却装置。
  3.  前記混合液のエタノール濃度は、45質量%以上75質量%以下である請求項1または2に記載の沸騰冷却装置。
  4.  前記混合液のエタノール濃度は、45質量%以上55質量%以下である請求項1~3の何れか一項に記載の沸騰冷却装置。
     
     
PCT/JP2009/005796 2008-11-17 2009-10-30 沸騰冷却装置 WO2010055621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/127,356 US20110220327A1 (en) 2008-11-17 2009-10-30 Ebullient cooling device
CN2009801447293A CN102209875A (zh) 2008-11-17 2009-10-30 沸腾冷却装置
EP09825875A EP2348271A4 (en) 2008-11-17 2009-10-30 BOILING COOLING APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008293254A JP4730624B2 (ja) 2008-11-17 2008-11-17 沸騰冷却装置
JP2008-293254 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010055621A1 true WO2010055621A1 (ja) 2010-05-20

Family

ID=42169767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005796 WO2010055621A1 (ja) 2008-11-17 2009-10-30 沸騰冷却装置

Country Status (6)

Country Link
US (1) US20110220327A1 (ja)
EP (1) EP2348271A4 (ja)
JP (1) JP4730624B2 (ja)
KR (1) KR20110059799A (ja)
CN (1) CN102209875A (ja)
WO (1) WO2010055621A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135142A (ja) * 2007-11-28 2009-06-18 Toyota Industries Corp 沸騰冷却装置
TW201437591A (zh) * 2013-03-26 2014-10-01 Asustek Comp Inc 熱管結構
US9763359B2 (en) * 2015-05-29 2017-09-12 Oracle International Corporation Heat pipe with near-azeotropic binary fluid
US10746474B2 (en) 2016-04-11 2020-08-18 Qualcomm Incorporated Multi-phase heat dissipating device comprising piezo structures
US10353445B2 (en) 2016-04-11 2019-07-16 Qualcomm Incorporated Multi-phase heat dissipating device for an electronic device
US9999157B2 (en) 2016-08-12 2018-06-12 Qualcomm Incorporated Multi-phase heat dissipating device embedded in an electronic device
WO2019221474A1 (ko) * 2018-05-16 2019-11-21 한온시스템 주식회사 냉각 장치
US11181323B2 (en) 2019-02-21 2021-11-23 Qualcomm Incorporated Heat-dissipating device with interfacial enhancements
EP3963625A1 (en) * 2019-04-29 2022-03-09 Qualcomm Incorporated Multi-phase heat dissipating device comprising piezo structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107149A (ja) * 1982-12-10 1984-06-21 Fuji Electric Corp Res & Dev Ltd 太陽熱集熱器
JPS628571U (ja) * 1985-06-24 1987-01-19
JP2008028122A (ja) * 2006-07-20 2008-02-07 Tokyo Univ Of Science 沸騰冷却方法、沸騰冷却装置およびその応用製品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777811A (en) * 1970-06-01 1973-12-11 Trw Inc Heat pipe with dual working fluids
US3933198A (en) * 1973-03-16 1976-01-20 Hitachi, Ltd. Heat transfer device
JP2874100B2 (ja) * 1990-10-16 1999-03-24 富士通株式会社 電子装置の冷却装置
US5441102A (en) * 1994-01-26 1995-08-15 Sun Microsystems, Inc. Heat exchanger for electronic equipment
JP3487382B2 (ja) * 1994-12-28 2004-01-19 株式会社デンソー 沸騰冷却装置
JP3608272B2 (ja) * 1995-07-05 2005-01-05 株式会社デンソー 沸騰冷却装置およびその製造方法
JP2003042672A (ja) * 2001-07-31 2003-02-13 Denso Corp 沸騰冷却装置
KR100495699B1 (ko) * 2002-10-16 2005-06-16 엘에스전선 주식회사 판형 열전달장치 및 그 제조방법
KR20070112370A (ko) * 2005-01-03 2007-11-23 노이즈 리미트 에이피에스 버블 펌프를 구비한 다중 배향 냉각 시스템
JP2009135142A (ja) * 2007-11-28 2009-06-18 Toyota Industries Corp 沸騰冷却装置
US20120273164A1 (en) * 2008-10-28 2012-11-01 Jan Vetrovec Thermal management for solid state high-power electronics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107149A (ja) * 1982-12-10 1984-06-21 Fuji Electric Corp Res & Dev Ltd 太陽熱集熱器
JPS628571U (ja) * 1985-06-24 1987-01-19
JP2008028122A (ja) * 2006-07-20 2008-02-07 Tokyo Univ Of Science 沸騰冷却方法、沸騰冷却装置およびその応用製品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATORIR, A.S., HEAT TRANSFER SOVIET RESEARCH, vol. 5-1, 1973, pages 85 - 89
See also references of EP2348271A4

Also Published As

Publication number Publication date
CN102209875A (zh) 2011-10-05
EP2348271A4 (en) 2013-02-20
US20110220327A1 (en) 2011-09-15
JP4730624B2 (ja) 2011-07-20
EP2348271A1 (en) 2011-07-27
JP2010121791A (ja) 2010-06-03
KR20110059799A (ko) 2011-06-03

Similar Documents

Publication Publication Date Title
WO2010055621A1 (ja) 沸騰冷却装置
WO2010095373A1 (ja) 沸騰冷却装置
US10209009B2 (en) Heat exchanger including passageways
US11116113B2 (en) Cooling electronic devices in a data center
JP6217835B1 (ja) 液浸冷却装置
US9951999B2 (en) Cooling device and electronic equipment
US9638471B2 (en) Balanced heat exchanger systems and methods
WO2003085345A1 (fr) Thermosiphon du type a boucle et refrigerateur a cycle de stirling
JP6285356B2 (ja) 沸騰冷却装置
EP3147617B1 (en) Heat exchanger
WO2012042695A1 (ja) 蓄熱装置およびこれを備える空気調和装置
EP3837484A1 (en) Thermal accumulator containing a pcm, and refrigerated container equiped with said thermal accumulator
JP2010010204A (ja) 沸騰冷却装置
WO2022190766A1 (ja) 冷却装置
US9007768B2 (en) System for thermally controlling an apparatus
JP2017072334A (ja) 蓄熱装置及びその装置を用いる方法
JPH0428983A (ja) 沸騰冷却装置
JP6596986B2 (ja) 冷却部品及び電子機器
US20060060329A1 (en) Heat pipe
JP7433982B2 (ja) 熱輸送装置および熱交換ユニット
US20220151098A1 (en) Cooling devices for cooling electronic components with liquid cooling components
RU2731573C2 (ru) Холодильник и/или морозильник
JP2013024456A (ja) 沸騰冷却器
JP2005009752A (ja) ヒートパイプ
WO2023081401A1 (en) Cooling device having a boiling chamber with submerged condensation and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144729.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117009558

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13127356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009825875

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE