WO2010053057A1 - 光増幅ガラス - Google Patents

光増幅ガラス Download PDF

Info

Publication number
WO2010053057A1
WO2010053057A1 PCT/JP2009/068694 JP2009068694W WO2010053057A1 WO 2010053057 A1 WO2010053057 A1 WO 2010053057A1 JP 2009068694 W JP2009068694 W JP 2009068694W WO 2010053057 A1 WO2010053057 A1 WO 2010053057A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
glass
wavelength
less
amplification
Prior art date
Application number
PCT/JP2009/068694
Other languages
English (en)
French (fr)
Inventor
盛輝 大原
近藤 裕己
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN200980144679.9A priority Critical patent/CN102203023B/zh
Priority to JP2010536760A priority patent/JP5516413B2/ja
Priority to EP09824757.0A priority patent/EP2354103B1/en
Publication of WO2010053057A1 publication Critical patent/WO2010053057A1/ja
Priority to US13/071,579 priority patent/US8053383B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/048Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1693Solid materials characterised by additives / sensitisers / promoters as further dopants aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass

Definitions

  • the present invention relates to an optical amplification glass suitable for amplification of light having a wavelength of 1.0 to 1.2 ⁇ m.
  • the fiber doped with Yb is generally based on quartz glass.
  • the absorption of Yb 3+ that appears in the vicinity of 975 nm of a Yb-doped single mode fiber based on quartz is generally about 0.8 to 3.5 dB / cm.
  • a sharp peak appears in the vicinity of 975 nm in the absorption of Yb 3+ in the glass, and another absorption peak appears in the vicinity of 915 nm on the shorter wavelength side (see Non-Patent Document 1).
  • As the excitation wavelength of the Yb-doped fiber generally 975 nm, 915 nm, or less than 975 nm and more than 915 nm are used.
  • the absorption of the Yb 3+ of the Yb-doped single mode fiber based on quartz is about 3.5 dB / cm at the maximum, so the fiber length necessary for light emission could not be shortened sufficiently. For this reason, when it is desired to oscillate a pulsed laser, the number of repetitions of oscillation cannot be increased sufficiently, and the effect of stimulated Brillouin scattering, which increases in proportion to the fiber length, cannot be sufficiently suppressed and stable amplification cannot be obtained. There was a fear. Further, in the Yb-doped single mode fiber based on quartz, an absorption valley is formed between peaks near 915 nm and 975 nm, and the amount of absorption decreases to half or less of the value of 915 nm.
  • An object of the present invention is to provide an optical amplification glass, an optical waveguide, and an optical fiber that can solve such problems.
  • Bi 2 O 3 is 30 to 55%, at least one of SiO 2 and B 2 O 3 or both are 25 to 50% in total, Al 2 in terms of mol% based on the following oxides Containing at least one of O 3 and Ga 2 O 3 , or a total of 12 to 27%, La 2 O 3 of 0 to 4%, Yb 2 O 3 of 0.1 to 4%, Er 2
  • An optical amplifying glass which contains substantially no O 3 and is used for amplification of light having a wavelength of 1.0 to 1.2 ⁇ m. (Hereafter, it may be called 1st optical amplification glass.) Is provided.
  • the La 2 O 3 contains 0 to 4%
  • La 2 O 3 is not essential but may be contained up to 4%, a meaning of.
  • Bi 2 O 3 is 30 to 55%, at least one of SiO 2 and B 2 O 3 , or a total of both 25 to 50%, Al 2 O 3 in terms of mol% based on the following oxides And Ga 2 O 3 , or a total of 12 to 27%, La 2 O 3 0 to 4%, Yb 2 O 3 0.1 to 4%, and Er 2 O 3 And an optical amplification glass substantially free of Tm 2 O 3 . (Hereafter, it may be called 2nd optical amplification glass.) Is provided.
  • the optical amplification glass is typically used for amplification of light having a wavelength of 1.0 to 1.2 ⁇ m.
  • the optical waveguide which uses the said optical amplification glass as a core is provided.
  • the optical fiber which uses the said optical amplification glass as a core is provided.
  • the amount of absorption by Yb is large, and it is possible to shorten the required fiber length by exhibiting strong light emission. It is possible to increase the number of repetitions of oscillation. Further, by suppressing the influence of stimulated Brillouin scattering that increases in proportion to the fiber length, stable amplification is possible.
  • the excitation wavelength can be widened.
  • the allowable range of the excitation wavelength of the semiconductor laser can be expanded.
  • the optical amplification glass of the present invention (hereinafter referred to as the glass of the present invention) is usually used as an optical waveguide having a core / cladding structure, for example, a glass fiber having the same structure or a core of a planar waveguide having the same structure.
  • the optical waveguide having such a core / cladding structure is the optical waveguide of the present invention
  • the glass fiber having the same structure is the optical fiber of the present invention.
  • the core diameter and cladding diameter in the optical fiber of the present invention are typically 2 to 10 ⁇ m and 100 to 400 ⁇ m, respectively.
  • the core diameter is preferably 10 to 25 ⁇ m.
  • the optical waveguide and the optical fiber of the present invention are suitable for amplifying light having a wavelength of 1.0 to 1.2 ⁇ m. This amplification is performed by making excitation light enter the core together with the light to be amplified (signal light), and light having a wavelength of 900 to 1000 nm is usually used as the excitation light.
  • the absorption coefficient (absorbance) of the glass of the present invention is preferably 4 dB / cm or more at any wavelength in the wavelength range of 940 to 990 nm. That is, the maximum value A (p) of the absorption coefficient in the wavelength region is preferably 4 dB / cm or more.
  • the absorption coefficient A (940) at a wavelength of 940 nm of the glass of the present invention is preferably 1 dB / cm or more. If it is less than 1 dB / cm, A (p) tends to be less than 4 dB / cm.
  • the glass transition point Tg of the glass of the present invention is preferably 400 ° C. or higher. If the Tg is less than 400 ° C., when a high intensity laser beam is used as excitation light, the glass temperature is locally increased and thermally damaged, resulting in increased light loss and insufficient light amplification. There is a risk. More preferably, it is 430 degreeC or more, Most preferably, it is 450 degreeC or more.
  • Yb 2 O 3 is essential. If Yb 2 O 3 is less than 0.1%, sufficient amplification cannot be obtained. Preferably, it is 0.15% or more, more preferably 0.3% or more, and particularly preferably 0.5% or more. If it exceeds 4%, vitrification becomes difficult. Preferably it is 3% or less, More preferably, it is 2% or less.
  • Bi 2 O 3 is an essential component. If the content is less than 30%, the absorption coefficient of Yb may be small. Preferably it is 35% or more, more preferably 40% or more. If it exceeds 55%, vitrification becomes difficult, devitrification occurs during fiber processing, or Tg becomes too low. Preferably it is 50% or less, More preferably, it is 45% or less. The devitrification referred to here is remarkable crystal precipitation, which causes fiber breakage during fiber processing or fiber breakage when used as an optical fiber.
  • SiO 2 and B 2 O 3 are network formers, and must contain at least one of them in order to suppress crystal precipitation during glass production and facilitate glass formation.
  • the total SiO 2 + B 2 O 3 of these contents is less than 25%, vitrification becomes difficult or devitrification occurs during fiber processing.
  • it is 28% or more, more preferably 30% or more. If it exceeds 50%, the emission intensity decreases.
  • it is 45% or less, More preferably, it is 40% or less, Most preferably, it is 35% or less.
  • the content is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more. Moreover, the content is preferably 45% or less, more preferably 40% or less.
  • B 2 O 3 When B 2 O 3 is contained, its content is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less. When it is desired to improve heat resistance, the content of B 2 O 3 is preferably 10% or less, and more preferably does not contain B 2 O 3 . When it is desired to improve the solubility, it is preferable that SiO 2 is 25% or more and B 2 O 3 is 0 to 10%.
  • Al 2 O 3 and Ga 2 O 3 have an effect of suppressing devitrification and must contain one of them.
  • the effect of suppressing devitrification is small.
  • it is 15% or more, More preferably, it is 18% or more, Most preferably, it is 20% or more. If it exceeds 27%, devitrification tends to occur.
  • it is 25% or less, More preferably, it is 23% or less.
  • it if it is desired to increase the emission intensity, it preferably contains Ga 2 O 3.
  • Al 2 O 3 When Al 2 O 3 is contained, its content is preferably 1% or more, more preferably 3% or more. Moreover, it is preferable that the content is 12% or less, More preferably, it is 10% or less.
  • Ga 2 O 3 When Ga 2 O 3 is contained, its content is preferably 1% or more, more preferably 5% or more, and particularly preferably 10% or more. Further, the content is preferably 25% or less, more preferably 20% or less.
  • Bi 2 O 3 is 35 to 50%
  • SiO 2 is 0 to 45%
  • B 2 O 3 is 0 to 35%
  • Al 2 O 3 is 0 to 12%
  • Ga 2 O 3 is 5 to 25%. Is preferred.
  • La 2 O 3 is not essential, but has an effect of making concentration quenching less likely to occur or an effect of increasing emission intensity, and may be contained up to 4%. If it exceeds 4%, devitrification tends to occur. More preferably, it is 3% or less.
  • the content is preferably 0.5% or more. More preferably, it is 1% or more, and particularly preferably 2% or more.
  • the glass of the present invention consists essentially of the above-mentioned components, but other components are typically contained in a total amount of 10% or less, preferably 5% or less within a range not impairing the object of the present invention. May be.
  • CeO 2 may be contained up to 1% in order to prevent Bi 2 O 3 from being precipitated as metal bismuth in the glass melt and reducing the transparency of the glass. If it exceeds 1%, the yellow or orange coloration of the glass becomes prominent and the transmittance decreases. Preferably it is 0.5% or less. When CeO 2 is contained, the content is preferably 0.1% or more. Incidentally, if you want to increase the transmittance preferably contains no CeO 2.
  • Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO, ZrO 2 , ZnO, CdO, GeO 2, TiO 2, in 2 O 3, PbO, may contain TeO 2 or the like.
  • Er 2 O 3 is not substantially contained, and the content of Er 2 O 3 is typically 0.02% or less, preferably less than 0.01%. If Er 2 O 3 is substantially contained, energy transition from an excited state of Yb 3+ to Er 3+ occurs, and light having a wavelength of 1.0 to 1.2 ⁇ m cannot be amplified. May be damaged.
  • Tm 2 O 3 there is a Tm 3+ energy level ( 3 H 5 ) between the ground level ( 2 F 5/2 ) of Yb 3+ and the upper level ( 2 F 7/2 ). Since energy may be lost to Tm 3+ and efficiency may be reduced, the first light amplification glass preferably contains no Tm 2 O 3 , and the second light amplification glass substantially contains Tm 2 O 3 .
  • the content of Tm 2 O 3 is typically 0.02% or less, preferably less than 0.01%.
  • the method for producing the glass of the present invention is not particularly limited.
  • the raw materials are prepared and mixed, placed in a gold crucible, an alumina crucible, a quartz crucible or an iridium crucible, and melted in the air at 800 to 1300 ° C.
  • the obtained melt can be manufactured by a melting method in which the melt is cast into a predetermined mold.
  • Glasses having compositions represented by mol% in the columns from Bi 2 O 3 to CeO 2 in Tables 1 to 3 were produced by a melting method in which the glass was melted at 1150 ° C. Further, glass transition temperature Tg (unit: ° C.), relative emission intensity E at a wavelength of 1064 nm, emission lifetime ⁇ at a wavelength of 1064 nm (unit: ms), absorption coefficient A (915) at a wavelength of 915 nm (unit: dB / cm) Absorption coefficient A (940) at a wavelength of 940 nm (unit: dB / cm), peak absorption coefficient A (p) at a wavelength of 940 to 990 nm (unit: dB / cm), flat absorption coefficient in a wavelength range of 915 to 940 nm
  • Tg glass transition temperature
  • relative emission intensity E at a wavelength of 1064 nm
  • emission lifetime ⁇ at a wavelength of 1064 nm
  • absorption coefficient A 95) at a
  • Examples 1 to 20 are examples, and examples 21 and 22 are comparative examples. All of the glasses of Examples 1 to 20 are thermally stable at a Tg of 430 ° C. or higher, and A (p) is 4 dB / cm or higher. In the glasses of Examples 1 to 7, the proportion of the composition excluding the Yb content is the same, and the Yb content is changed. It can be seen that as the Yb content increases, the emission intensity E and the absorption coefficient monotonously increase. In Examples 1 to 20, the emission intensity E is strong, but in Comparative Examples 21 and 22 containing Er, the emission intensity E is significantly reduced.
  • FIG. 1 shows the absorption spectrum of Example 8.
  • the vertical axis represents the absorption coefficient (unit: dB / cm), and the horizontal axis represents the wavelength (unit: nm). It can be seen that a gentle absorption spectrum is exhibited at wavelengths of 915 to 965 nm. Further, in Examples 1 to 20, since A ′ is 1.5 or less, output fluctuation can be suppressed by setting the wavelength of the excitation light to the flat wavelength band 915 to 940 nm.
  • Example 8 the glass shown in Example 8 was used as a core, and the molar percentage was 42.8 Bi 2 O 3 -34.2SiO 2 -14.3Ga 2 O 3 -7.1Al 2 O 3 -1.4La 2 O 3 -0.00.
  • a fiber having a core diameter of 5.2 ⁇ m was prepared using 2CeO 2 glass as the cladding. By using such a glass having a large amount of Yb 3+ absorption, it was confirmed that even a fiber having a length of only 19 cm oscillates at a wavelength of 1064 nm.

Abstract

 Yb3+の吸収を大きくできる光増幅ガラスの提供。  下記酸化物基準のモル%表示で、Biを30~55%、SiOおよびBの少なくともいずれか一方を、もしくは両方を合計で25~50%、AlおよびGaの少なくともいずれか一方を、もしくは両方を合計で12~27%、Laを0~4%、Ybを0.1~4%含有し、Erを実質的に含有せず、1.0~1.2μmの波長の光の増幅に用いられる光増幅ガラス。前記光増幅ガラスをコアとする光導波路。

Description

光増幅ガラス
 本発明は1.0~1.2μmの波長の光の増幅に好適な光増幅ガラスに関する。
 近年、加工用レーザーとして、固体のYAGレーザーに置き換わるYbを添加したファイバからなるファイバレーザーの開発が進められている。ファイバレーザーの特徴は、光の伝搬モードが限られるためにビーム品質が良いこと、また極細のファイバにより放熱が優れているため、冷却が不要であることが挙げられる。
 ところで、Ybを添加したファイバは、一般的に石英ガラスをベースとしたものが用いられる。石英をベースとした、Yb添加シングルモードファイバの975nm近傍にあらわれるYb3+の吸収は一般的には、0.8~3.5dB/cm程度である。また、ガラス中でのYb3+の吸収は975nm近傍に鋭いピークが現れ、それより短波長側の915nm近傍に別の吸収ピークが現れる(非特許文献1参照)。Yb添加ファイバの励起波長としては、一般的に975nmもしくは915nmまたは975nm未満915nm超が用いられる。
IEEE J. Quantum Electron., vol.33, pp.1049-1056,1997
 石英をベースとしたYb添加シングルモードファイバの前記Yb3+の吸収は最大でも3.5dB/cm程度であるので、発光に必要なファイバ長を十分には短くできなかった。そのため、パルスレーザー発振させたい場合発振の繰り返し数を十分大きくすることができず、また、ファイバ長に比例して大きくなる誘導ブリルアン散乱の影響を十分には抑制できず安定した増幅が得られないおそれがあった。
 また、石英をベースとしたYb添加シングルモードファイバでは915nm近傍と975nm近傍のピークの間に吸収の谷ができ、その吸収量は915nmの値の半分以下まで低下している。そのため、励起光として半導体レーザーを用いた場合に、波長のシフトによって励起光の吸収効率が変わり出力の変動が起こりやすいという問題があった。
  本発明はこのような問題を解決できる光増幅ガラス、光導波路および光ファイバの提供を目的とする。
 本発明は、下記酸化物基準のモル%表示で、Biを30~55%、SiOおよびBの少なくともいずれか一方を、もしくは両方を合計で25~50%、AlおよびGaの少なくともいずれか一方を、もしくは両方を合計で12~27%、Laを0~4%、Ybを0.1~4%含有し、Erを実質的に含有せず、1.0~1.2μmの波長の光の増幅に用いられる光増幅ガラス。(以下、第1の光増幅ガラスということがある。)を提供する。なお、たとえば「Laを0~4%含有する」とは、Laは必須ではないが4%まで含有してもよい、の意である。
 また、下記酸化物基準のモル%表示で、Biを30~55%、SiOおよびBの少なくともいずれか一方を、もしくは両方を合計で25~50%、AlおよびGaの少なくともいずれか一方を、もしくは両方を合計で12~27%、Laを0~4%、Ybを0.1~4%含有し、ErおよびTmを実質的に含有しない光増幅ガラス。(以下、第2の光増幅ガラスということがある。)を提供する。なお、当該光増幅ガラスは典型的には1.0~1.2μmの波長の光の増幅に用いられる。
 また、前記光増幅ガラスをコアとする光導波路を提供する。
 また、前記光増幅ガラスをコアとする光ファイバを提供する。
 本発明によれば、Ybによる吸収量が大きく、強い発光を示すことにより、必要なファイバ長を短くすることが可能となり、たとえば、パルスレーザー発振させたい場合、共振器長を短くすることにより、発振の繰り返し数を大きくすることが可能となる。また、ファイバ長に比例して大きくなる誘導ブリルアン散乱の影響を抑えることにより、安定した増幅が可能となる。
 また、吸収ピークがシャープであると励起波長により励起光の吸収される割合が変化するために厳密に励起光波長を選択する必要が生じるが、本発明の好ましい態様によれば、ブロードな吸収帯をもつことにより励起波長に幅を持たすことができ、たとえば半導体レーザーの励起波長の許容範囲を広げることができる。
本発明の光増幅ガラスの吸収スペクトルを示す図である。
 本発明の光増幅ガラス(以下、本発明のガラスという。)は通常、コア/クラッド構造の光導波路、たとえば同構造のガラスファイバまたは同構造の平面導波路のコアとして使用される。なお、このようなコア/クラッド構造の光導波路は本発明の光導波路であり、同構造のガラスファイバは本発明の光ファイバである。
  本発明の光ファイバにおけるコア径、クラッド径はそれぞれ典型的には2~10μm、100~400μmである。また、本発明の光ファイバを高出力用光ファイバに用いる場合にはコア径は10~25μmが好ましい。
 本発明の光導波路および光ファイバは1.0~1.2μmの波長の光を増幅するのに好適である。
  この増幅は、増幅されるべき光(信号光)とともに励起光をコアに入射することによって行われ、前記励起光としては通常、波長が900~1000nmの光が使用される。
 本発明のガラスの吸収係数(吸光度)は、940~990nmの波長域のいずれかの波長において4dB/cm以上であることが好ましい。すなわち、その波長域における吸収係数の最大値A(p)は4dB/cm以上であることが好ましい。
  本発明のガラスの波長940nmにおける吸収係数A(940)は1dB/cm以上であることが好ましい。1dB/cm未満ではA(p)が4dB/cm未満になりやすい。
 本発明のガラスのガラス転移点Tgは400℃以上であることが好ましい。Tgが400℃未満では、励起光として強度の大きいレーザー光を使用したときにガラスの温度が局所的に高くなって熱的に損傷し、その結果光損失が増加して光増幅が不充分となるおそれがある。より好ましくは430℃以上、特に好ましくは450℃以上である。
 次に、本発明のガラスに成分についてモル百分率表示含有量を用いて説明する。
  本発明のガラスにおいては、Yb3+5/2準位から7/2準位への誘導放出を利用して光増幅が行われ、Ybは必須である。Ybが0.1%未満では、十分な増幅が得られない。好ましくは、0.15%以上、より好ましくは0.3%以上、特に好ましくは0.5%以上である。また、4%超ではガラス化が困難になる。好ましくは3%以下、より好ましくは2%以下である。
 Biは必須成分である。その含有量が30%未満ではYbの吸収係数が小さくなるおそれがある。好ましくは35%以上、より好ましくは40%以上である。55%超では、ガラス化が困難になる、ファイバ加工時に失透する、またはTgが低くなりすぎる。好ましくは50%以下、より好ましくは45%以下である。ここでいう失透とは結晶析出の顕著なものであり、ファイバ加工時にファイバ切れを起こしたり、光ファイバとしての使用時にファイバ破壊を起こしたりするものである。
 SiOおよびBはネットワークフォーマであり、ガラス作製時の結晶析出を抑制してガラス形成を容易にするために、少なくともいずれか一方を含有しなければならない。これらの含有量の合計SiO+Bが25%未満では、ガラス化が困難になる、またはファイバ加工時に失透する。好ましくは28%以上、より好ましくは30%以上である。50%超では発光強度が低下する。好ましくは45%以下、より好ましくは40%以下、特に好ましくは35%以下である。
 SiOを含有する場合その含有量は10%以上であることが好ましく、より好ましくは20%以上、特に好ましくは30%以上である。また、その含有量は、好ましくは45%以下、より好ましくは40%以下である。
 Bを含有する場合その含有量は、好ましくは35%以下、より好ましくは30%以下、特に好ましくは20%以下である。耐熱性を向上させたい場合、Bの含有量は10%以下とすることが好ましく、Bを含有しないことがより好ましい。
  溶解性をよくしたいなどの場合、SiOが25%以上かつBが0~10%であることが好ましい。
 AlおよびGaは失透を抑制する効果があり、いずれか一方を含有しなければならない。これらの含有量の合計Al+Gaが12%未満では失透抑制の効果が小さい。好ましくは15%以上、より好ましくは18%以上、特に好ましくは20%以上である。27%超ではかえって失透しやすくなる。好ましくは25%以下、より好ましくは23%以下である。
  なお、発光強度を大きくしたい場合、Gaを含有することが好ましい。
 Alを含有する場合その含有量は好ましくは1%以上、より好ましくは3%以上である。また、その含有量は12%以下であることが好ましく、より好ましくは10%以下である。
 Gaを含有する場合その含有量は、好ましくは1%以上、より好ましくは5%以上、特に好ましくは10%以上である。また、その含有量は25%以下であることが好ましく、より好ましくは20%以下である。
  Biは35~50%、SiOは0~45%、Bは0~35%、Alは0~12%、Gaは5~25%であることが好ましい。
 Laは必須ではないが、濃度消光を起こり難くする効果または発光強度を増大させる効果を有し、4%まで含有してもよい。4%超では失透しやすくなる。より好ましくは3%以下である。Laを含有する場合、その含有量は0.5%以上であることが好ましい。より好ましくは1%以上、特に好ましくは2%以上である。
 本発明のガラスは上記成分から本質的になることが好ましいが、本発明の目的を損なわない範囲でその他の成分を典型的には合計で10%以下、好ましくは5%以下の範囲で含有してもよい。
 たとえば、Biがガラス融液中で金属ビスマスとなって析出しガラスの透明性を低下させるのを防止するためにCeOを1%まで含有してもよい。1%超ではガラスの黄色またはオレンジ色の着色が顕著になり透過率が低下する。好ましくは0.5%以下である。CeOを含有する場合、その含有量は0.1%以上であることが好ましい。なお、透過率を高めたい場合はCeOを含有しないことが好ましい。
  また、ファイバ加工時の失透を抑制するため、またはガラス化を容易にするために、LiO、NaO、KO、MgO、CaO、SrO、BaO、ZrO、ZnO、CdO、GeO、TiO、In、PbO、TeO等を含有してもよい。
 なお、Erは実質的に含有せず、Erの含有量は典型的には0.02%以下、好ましくは0.01%未満である。Erを実質的に含有するものであるとYb3+の励起状態からEr3+へのエネルギー遷移が生じて1.0~1.2μmの波長の光の増幅が行えなくなり、本発明の目的を損なうおそれがある。
  また、Tmには、Yb3+の基底準位(5/2)と上準位(7/2)の間にTm3+のエネルギー準位()が存在しエネルギーがTm3+に奪われ効率が低下するおそれがあるので、第1の光増幅ガラスにおいてはTmを含有しないことが好ましく、第2の光増幅ガラスにおいてはTmを実質的に含有せず、Tmの含有量は典型的には0.02%以下、好ましくは0.01%未満である。
 本発明のガラスの製造方法については特に制限はなく、たとえば、原料を調合して混合し、金ルツボ、アルミナルツボ、石英ルツボやイリジウムルツボ中に入れ、800~1300℃で空気中で溶解し、得られた融液を所定のモールドにキャストする溶融法によって製造できる。また、ゾルゲル法や気相蒸着法などの溶融法以外の方法で製造してもよい。
 表1~3のBiからCeOまでの欄にモル%表示で示す組成のガラスを、1150℃で溶解する溶融法により作製した。また、ガラス転移温度Tg(単位:℃)、波長1064nmにおける相対的な発光強度E、波長1064nmにおける発光寿命τ(単位:ms)、波長915nmにおける吸収係数A(915)(単位:dB/cm)、波長940nmにおける吸収係数A(940)(単位:dB/cm)、波長940~990nmにおけるピークの吸収係数A(p)(単位:dB/cm)、915~940nmの波長域における吸収係数のフラット性の指標、すなわち当該吸収係数の最大値と最小値の比A’を表に示す。
 例1~20は実施例、例21、22は比較例である。例1~20のガラスはいずれもTgが430℃以上で熱的に安定であり、A(p)が4dB/cm以上である。
  また、例1~7のガラスはYbの含有量を除いた組成の割合は同じで、Ybの含有量が変わっている。Ybの含有量が増加すると、単調に発光強度Eおよび吸収係数が増大していることがわかる。
  また、例1~20の実施例は発光強度Eが強いが、Erを含有している比較例の21、22では発光強度Eが著しく低下していることがわかる。
  また、図1に例8の吸収スペクトルを示す。縦軸は吸収係数(単位:dB/cm)、横軸は波長(単位:nm)である。波長915~965nmにおいてなだらかな吸収スペクトルを示すことがわかる。
  また、例1~20において前記A’が1.5以下であることから、励起光の波長をこのフラットな波長帯域915~940nmとすることにより出力変動を抑えることが可能になる。
 また、例8に示したガラスをコアとし、モル%で42.8Bi-34.2SiO-14.3Ga-7.1Al-1.4La-0.2CeOであるガラスをクラッドとして、コア径が5.2μmのファイバを作製した。このようなYb3+吸収量が大きいガラスを用いることにより、わずか19cmの長さのファイバにおいても、1064nmの波長でレーザー発振することを確認した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 1.0~1.2μmの波長の光の増幅に利用できる。
 なお、2008年11月6日に出願された日本特許出願2008-285527号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。

Claims (11)

  1.  下記酸化物基準のモル%表示で、Biを30~55%、SiOおよびBの少なくともいずれか一方を、もしくは両方を合計で25~50%、AlおよびGaの少なくともいずれか一方を、もしくは両方を合計で12~27%、Laを0~4%、Ybを0.1~4%含有し、Erを実質的に含有せず、1.0~1.2μmの波長の光の増幅に用いられる光増幅ガラス。
  2.  下記酸化物基準のモル%表示で、Biを30~55%、SiOおよびBの少なくともいずれか一方を、もしくは両方を合計で25~50%、AlおよびGaの少なくともいずれか一方を、もしくは両方を合計で12~27%、Laを0~4%、Ybを0.1~4%含有し、ErおよびTmを実質的に含有しない光増幅ガラス。
  3.  請求項2の光増幅ガラスであって、1.0~1.2μmの波長の光の増幅に用いられる光増幅ガラス。
  4.  Biが35~50%、SiOが0~45%、Bが0~35%、Alが0~12%、Gaが5~25%である請求項1~3のいずれかの光増幅ガラス。
  5.  SiOが25%以上、Bが0~10%である請求項1~4のいずれかの光増幅ガラス。
  6.  CeOを1%以下含有する請求項1~5のいずれかの光増幅ガラス。
  7.  波長940nmにおける吸収係数が1dB/cm以上である請求項1~6のいずれかの光増幅ガラス。
  8.  940~990nmの波長域のいずれかの波長における吸収係数が4dB/cm以上である請求項1~7のいずれかの光増幅ガラス。
  9.  ガラス転移点が400℃以上である請求項1~8のいずれかの光増幅ガラス。
  10.  請求項1~9のいずれかの光増幅ガラスをコアとする光導波路。
  11.  請求項1~9のいずれかの光増幅ガラスをコアとする光ファイバ。
PCT/JP2009/068694 2008-11-06 2009-10-30 光増幅ガラス WO2010053057A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980144679.9A CN102203023B (zh) 2008-11-06 2009-10-30 光放大玻璃
JP2010536760A JP5516413B2 (ja) 2008-11-06 2009-10-30 光増幅ガラス
EP09824757.0A EP2354103B1 (en) 2008-11-06 2009-10-30 Light-amplifying glass
US13/071,579 US8053383B2 (en) 2008-11-06 2011-03-25 Light-amplifying glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-285527 2008-11-06
JP2008285527 2008-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/071,579 Continuation US8053383B2 (en) 2008-11-06 2011-03-25 Light-amplifying glass

Publications (1)

Publication Number Publication Date
WO2010053057A1 true WO2010053057A1 (ja) 2010-05-14

Family

ID=42152867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068694 WO2010053057A1 (ja) 2008-11-06 2009-10-30 光増幅ガラス

Country Status (5)

Country Link
US (1) US8053383B2 (ja)
EP (1) EP2354103B1 (ja)
JP (1) JP5516413B2 (ja)
CN (1) CN102203023B (ja)
WO (1) WO2010053057A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120033693A1 (en) * 2010-08-05 2012-02-09 Schott North America Rear earth aluminoborosilicate glass composition
JP2018111634A (ja) * 2017-01-12 2018-07-19 株式会社オハラ ガラス及びガラスセラミックス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147660A (zh) * 2017-12-13 2018-06-12 上海应用技术大学 一种光纤放大器用铥镝共掺铋酸盐激光玻璃及其制备方法
CN108975690B (zh) * 2018-10-09 2021-06-04 盐城工学院 一种发白光玻璃及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145636A (ja) * 2000-11-06 2002-05-22 Asahi Glass Co Ltd 光増幅ガラス
JP2003183049A (ja) * 2001-10-10 2003-07-03 Asahi Glass Co Ltd 光増幅ガラスおよび光導波路
JP2008285527A (ja) 2007-05-15 2008-11-27 Noritake Itron Corp 低速電子線用蛍光体、その製造方法および蛍光表示管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275891C (zh) * 2001-09-10 2006-09-20 肖特股份有限公司 具有至少两层玻璃包层的玻璃纤维
US7341965B2 (en) * 2001-09-10 2008-03-11 Schott Ag Bismuth oxide glasses containing germanium oxide
JP4348987B2 (ja) * 2003-04-10 2009-10-21 旭硝子株式会社 光増幅ガラスおよび光導波路
US7515332B2 (en) * 2004-02-18 2009-04-07 Nippon Sheet Glass Company, Limited Glass composition that emits fluorescence in infrared wavelength region and method of amplifying signal light using the same
JP2007149766A (ja) 2005-11-24 2007-06-14 Kyoto Univ フォトニックバンドギャップファイバ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145636A (ja) * 2000-11-06 2002-05-22 Asahi Glass Co Ltd 光増幅ガラス
JP2003183049A (ja) * 2001-10-10 2003-07-03 Asahi Glass Co Ltd 光増幅ガラスおよび光導波路
JP2008285527A (ja) 2007-05-15 2008-11-27 Noritake Itron Corp 低速電子線用蛍光体、その製造方法および蛍光表示管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE J. QUANTUM ELECTRON., vol. 33, 1997, pages 1049 - 1056
See also references of EP2354103A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120033693A1 (en) * 2010-08-05 2012-02-09 Schott North America Rear earth aluminoborosilicate glass composition
JP2012036081A (ja) * 2010-08-05 2012-02-23 Schott Corp 希土類アルミノホウケイ酸ガラス組成物
EP2415723A3 (en) * 2010-08-05 2012-05-30 Schott North America, Inc. Rare earth aluminoborosilicate glass system
US8361917B2 (en) 2010-08-05 2013-01-29 Schott Corporation Rare earth aluminoborosilicate glass composition
JP2018111634A (ja) * 2017-01-12 2018-07-19 株式会社オハラ ガラス及びガラスセラミックス
JP7009064B2 (ja) 2017-01-12 2022-01-25 株式会社オハラ ガラス及びガラスセラミックス

Also Published As

Publication number Publication date
US8053383B2 (en) 2011-11-08
CN102203023A (zh) 2011-09-28
US20110172076A1 (en) 2011-07-14
CN102203023B (zh) 2014-05-14
EP2354103B1 (en) 2016-08-10
EP2354103A1 (en) 2011-08-10
JPWO2010053057A1 (ja) 2012-04-05
JP5516413B2 (ja) 2014-06-11
EP2354103A4 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US6620748B1 (en) Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
JP4240721B2 (ja) 光増幅ガラスおよびその製造方法
US6599852B2 (en) Optical amplifying glass
JP4773948B2 (ja) 酸化ビスマスガラスおよびそれを製造するプロセス
WO2004058656A1 (ja) 赤外波長域で蛍光を発するガラス組成物
US8265107B2 (en) Thulium and/or Holmium doped silicate glasses for two micron lasers
KR20130119048A (ko) 형광 효율이 우수한 이득매질용 광학유리 및 이를 이용한 광섬유
KR100848025B1 (ko) 광증폭 글래스 및 광도파로
JP5516413B2 (ja) 光増幅ガラス
JPWO2005085148A1 (ja) 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法
US20040254057A1 (en) Bismuth oxide glasses containing germanium oxide
US8467423B2 (en) Thulium and/or Holmium doped germanosilicate glasses for two micron lasers
US20020041750A1 (en) Rare earth element-doped, Bi-Sb-Al-Si glass and its use in optical amplifiers
JP4862233B2 (ja) 光増幅ガラス
US6344425B1 (en) Fluorotellurite, amplifier glasses
JP2004277252A (ja) 光増幅ガラスおよび光導波路
US20140217336A1 (en) Solar-pumped laser device, solar-pumped amplifier and light-amplifying glass
JP4250830B2 (ja) 光増幅ガラス
JP4314468B2 (ja) 光増幅ガラスおよび光導波路
JPH0826768A (ja) Ybレーザーガラス及び該ガラスを用いたレーザー装置
JP2004168578A (ja) 光増幅ガラスおよび光導波路
KR100477802B1 (ko) 툴륨 이온 첨가 규산염 유리 및 그 용도
JP4686844B2 (ja) 光増幅ガラス
JP4348987B2 (ja) 光増幅ガラスおよび光導波路
JP2002121049A (ja) 光増幅ガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144679.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536760

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009824757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009824757

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE