WO2010050571A1 - 光ピックアップ装置およびそれを備える光ディスク装置 - Google Patents
光ピックアップ装置およびそれを備える光ディスク装置 Download PDFInfo
- Publication number
- WO2010050571A1 WO2010050571A1 PCT/JP2009/068621 JP2009068621W WO2010050571A1 WO 2010050571 A1 WO2010050571 A1 WO 2010050571A1 JP 2009068621 W JP2009068621 W JP 2009068621W WO 2010050571 A1 WO2010050571 A1 WO 2010050571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light receiving
- sub
- light
- receiving unit
- main
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1353—Diffractive elements, e.g. holograms or gratings
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/13—Optical detectors therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B2007/0003—Recording, reproducing or erasing systems characterised by the structure or type of the carrier
- G11B2007/0006—Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/123—Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/125—Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
- G11B7/127—Lasers; Multiple laser arrays
- G11B7/1275—Two or more lasers having different wavelengths
Definitions
- the present invention relates to an optical pickup device and an optical disk device including the same.
- An optical disc is inserted into an optical disc device (not shown) provided with an optical pickup device.
- An optical disk placed in an optical disk device (not shown) is formed in a substantially disk shape.
- CD-ROM compact disc
- DVD-ROM digital versatile disc
- BD-ROM digital versatile disc
- Data write-once optical disks such as “DVD-R”, “DVD + R”, “HD DVD-R”, “BD-R”, “CD-RW”, “DVD-RW”, “DVD + RW”, “DVD-R”
- RAM random access memory
- HD DVD-RW DVD-rewritable optical disks
- CD Compact Disc
- DVD Digital Versa
- HD DVD High Definition DVD
- Blu-ray “Blu-ray” of “Disc” means a blue-violet laser used to realize high-density recording, compared to the red laser used for reading and writing of conventional signals.
- HD DVD is compatible with the conventional DVD series and has a larger storage capacity than the conventional DVD series disks. In the conventional CD, an infrared laser is used.
- a red laser is used for a conventional DVD.
- data / information / signal recorded on a “Blu-ray Disc” or “HD DVD” optical disk is read out, or when data / information / signal is recorded on a “Blu-ray Disc” or “HD DVD” optical disk.
- a blue-violet laser is used.
- “RO” of “CD-ROM”, “DVD-ROM” and “HD DVD-ROM” “M” is an abbreviation for “Read Only Memory”.
- “BD-R “OM” is an abbreviation of “Blu-ray Disc-ROM”.
- CD-ROM ”,“ DVD-ROM ”,“ HD DVD-ROM ”and“ BD-ROM ” It is intended for reading information only.
- CD-R”, “DVD-R”, “DVD + “R” in “R” and “HD DVD-R” is an abbreviation for “Recordable”.
- “BD-R” is an abbreviation for “Blu-ray Disc-R”.
- CD-R “CD-R”, “DVD-R”, “DVD + R”, “HD DVD-R” and “BD-R”
- CD-RW “DVD” “RW” of “RW”, “DVD + RW” and “HD DVD-RW”
- BD-RE is a “Blu-ray Disc”.
- -RE “is an abbreviation.
- CD-RW”, “DVD-RW”, “DVD + RW”, “HD DVD-RW” and “BD-RE” can rewrite data / information.
- the “RAM” of “DVD-RAM” and “HD DVD-RAM” is “ It is an abbreviation for “Random Access Memory”.
- DVD-RAM The “HD DVD-RAM” is capable of reading / writing / erasing data / information.
- a groove (not shown) for storing data / information / signal is provided in a signal layer which is a signal recording surface of the optical disc. ing.
- the groove means, for example, an elongated dent.
- the groove is formed in a substantially spiral shape.
- the groove has a spiral shape. Since the groove is very small, the groove is not visible.
- the optical pickup device controls the position of the objective lens and optically detects an error signal such as a focus error signal and a tracking error signal so as to appropriately irradiate a focused spot on a predetermined recording track in the optical disk.
- an error signal such as a focus error signal and a tracking error signal
- Focus means, for example, focus or focus. Focusing means, for example, focusing or focusing. What is tracking? For example, light is used to trace and observe minute pits (holes, dents), grooves (grooves), wobbles (meanders), etc. provided in the signal layer of an optical disk, the signal layer of an optical disk, etc. It means to determine the position of the drawn orbit.
- the pit means, for example, a hole or a dent.
- the wobble means meandering of a track on which a data signal such as information is recorded.
- a detection method based on a differential astigmatism method can be cited.
- the differential astigmatism method is, for example, a method of detecting the displacement of a focused spot by detecting a point image distortion formed by an optical system having astigmatism.
- a detection method based on a differential push-pull method may be used as a tracking detection method of the light spot of the optical disc in the optical pickup device.
- the differential push-pull method is, for example, a method for detecting the displacement of the focused spot by using a main beam for reading and writing data and two sub beams for detecting a positional deviation correction signal.
- the track pitch is 1.
- CD standard CD-ROM, CD-R, CD-R
- CD-R 6 ⁇ m (micron / micrometer)
- a tracking error signal is detected by an optical pickup device for an optical disc such as W
- three light beams are used as a tracking error signal detection method.
- a DVD standard DVD-ROM, DVD-R, D, with a track pitch of 0.74 ⁇ m
- an “in-line method” in which at least three light beams are used as a tracking error signal detection method is mainly used.
- the name of each detection method of the tracking error signal here is a name for convenience.
- the track pitch of the version 1 DVD-RAM having a land / groove structure is approximately 0.74 ⁇ m, whereas the Vers having a land / groove structure is used.
- the track pitch of DVD-RAMs of ion 2.0 and 2.1 is approximately 0.615 ⁇ m.
- a DVD-ROM having a different structure from the land / groove structure Whereas the track pitch of DVD-R, DVD-RW, etc. is about 0.74 ⁇ m
- the track pitch of Version 2.0 and 2.1 DVD-RAMs having a land / groove structure is approximately 0.615 ⁇ m.
- Versio with land / groove structure such as VD-ROM, DVD-R, DVD-RW, etc.
- the n-2.0 and 2.1 DVD-RAMs have different track pitches.
- a CD diffraction grating 320 is disposed on the optical path between the semiconductor laser element 210 and the polarization beam splitter 230.
- the CD diffraction grating 320 has linear grating grooves engraved at regular intervals with a constant period, and the laser beam emitted from the semiconductor laser element 210 is converted into a main beam (0th order light) and two sub beams ( ⁇ 1st-order diffracted light beam) has a function of diffracting and branching into at least three beams.
- the main spot 100 corresponding to the main beam and 2 on the signal layer Da of the optical disc D are shown in FIG.
- Sub-spots 101 and 102 respectively corresponding to the two sub-beams are formed.
- a track D100 for recording signals is periodically provided on the signal layer Da of the optical disc D, and the distance ⁇ in the disc radial direction between the main spot 100 and the sub-spots 101 and 102 is defined as a diffraction grating for CD.
- the reflected light 102 reaches the objective lens 250, the collimator lens 240, and the polarization beam splitter 230 again, and a part of the amount of light passes through the polarization beam splitter 230 and then enters the photodetector 270 through the detection lens 260. .
- the photodetector 270 is provided with light receiving surfaces 200a, 200b, and 200c corresponding to the reflected light of the main spot 100 and the sub-spots 101 and 102, respectively.
- the main detection light spot 200 corresponding to the main spot 100 and the sub-detection corresponding to the sub-spots 101 and 102, respectively.
- Light spots 201 and 202 are formed, respectively.
- the main spot 100 when the main spot 100 is accurately scanning the track D100, the light amounts of the sub detection light spots 201 and 202 are the same. However, the main spot 10 When the scan of 0 deviates from the track D100, a difference occurs in the light amount between the sub detection light spots 201 and 202. Therefore, for example, by subtracting the light amounts of the sub detection light spots 201 and 202 by the subtractor 400 or the like, a tracking error signal indicating a tracking scanning deviation is generated.
- an in-line optical system basically, a tracking error signal can be detected based on substantially the same optical system as the three-beam system.
- the grating groove formed in one half plane 341 has a phase of the periodic structure of the grating groove formed in the other half plane 342. The difference is that the diffraction grating for DVD 340 shifted by about 180 degrees with respect to the phase of the periodic structure is used.
- the DVD diffraction grating 340 is provided in place of the CD diffraction grating 320 at substantially the same position as the CD diffraction grating 320 shown in FIG. Further, in order to correspond to the in-line method, as shown on the left side of FIG. 28, the DVD is so arranged that the main spot 100 and the sub-spots 101 and 102 irradiated to the signal layer Da of the optical disc D irradiate the same track D100. It is assumed that the arrangement positions of the diffraction grating 340 for use and the condensing optical system are adjusted.
- the subtractor 500a connected to the light receiving surface 200a has a difference between output signals from the light receiving surface 200a. Is generated, for example, as a main push-pull signal Sa.
- the first sub beam for DVD forming the sub detection light spot 201 is the photodetector 2.
- the subtractor 500b connected to the light receiving surface 200b when irradiated to the 70 light receiving surface 200b. Calculates the difference between the output signals from the light receiving surface 200b, for example, the preceding sub push-pull signal Sb Generate as
- the second sub beam for DVD forming the sub detection light spot 202 is the photodetector 2.
- the subtractor 500c connected to the light receiving surface 200c when irradiated to the 70 light receiving surface 200c. Calculates the difference of the output signals from the light receiving surface 200c, for example, a slow sub push-pull signal Sc Generate as
- the push-pull signals Sb and Sc detected from Nos. 1 and 202 are output in opposite phases as in the three-beam method. Thereafter, the push-pull signals Sb and Sc are added by the adder 510. Are added, and the added signal is subtracted from the push-pull signal Sa by the subtractor 530, thereby generating a tracking error signal in which the offset components of the push-pull signals Sa, Sb, Sc are canceled. Is possible.
- the infrared wavelength band 76 suitable for the CD standard is intended to reduce the cost by simplifying the optical system.
- a semiconductor laser element for CD emitting a first laser beam having a first wavelength of 5 nm to 805 nm (nanometer) and a second laser beam having a second wavelength of 645 nm to 675 nm suitable for the DVD standard.
- a multi-laser unit equipped with a semiconductor laser element for DVD is used.
- the CD standard 3 A two-wavelength diffraction grating corresponding to both the beam method and the in-line method of the DVD standard is used (see, for example, Patent Document 1 shown below).
- the one plane has a CD diffraction grating 320.
- a DVD diffraction grating 340 is fixed to the other plane.
- a two-wavelength compatible diffraction grating 300B having the structure shown in FIG. 30 has been proposed (see, for example, Patent Document 2 shown below).
- a CD diffraction grating 320 and a DVD diffraction grating 340 configured to include a liquid crystal material or the like are overlapped and fixed, and then two optical glass plates 361 and 362 are combined. It is constituted by being sandwiched between and fixed.
- the two-wavelength compatible diffraction grating 300A or 300B that combines the CD diffraction grating 320 and the DVD diffraction grating 340 as described above is used, for example, the CD standard first laser beam is used as the CD diffraction grating 320.
- CD diffraction grating 320 when incident on the CD
- the first laser beam is diffracted and branched into three beams of a main beam (0th order light) and two sub beams ( ⁇ 1st order diffracted light beams).
- the three beams are further diffracted by the DVD diffraction grating 340 and branched.
- the first laser light or the second laser light emitted from the multi-laser unit passes through both the CD diffraction grating 320 and the DVD diffraction grating 340 of the two-wavelength compatible diffraction grating 300A or 300B.
- Diffraction gratings 320 and 3 for CD and DVD Since diffraction branching is performed at 40, unnecessary diffracted light is generated. As a result, there has been a problem that the accuracy of detecting an error signal such as a tracking error signal is deteriorated.
- the generation of unnecessary diffracted light reduces the transmittance of the 0th order light and ⁇ 1st order diffracted light in the diffraction gratings 320 and 340, and as a result, the utilization efficiency of the emitted light emitted from the multi-laser unit is reduced. There was also a problem.
- DVD-ROM, DVD-R, DVD-RW, DVD-RAM (Vers a plurality of types of optical disks D having different track pitches Dtp, such as ion1, 2.0, 2.1)
- Dtp track pitches
- advanced optical pickup devices that are easily controlled such as tracking control
- optical disk devices that are equipped with advanced optical pickup devices that are easily controlled such as tracking control. It is requested from.
- an optical pickup device that does not deteriorate the amplitude of an error signal such as a tracking error signal accompanying displacement of the objective lens 250 or an error signal such as a tracking error signal when recording / reproducing data of a plurality of types of optical disks D having different track pitches Dtp. Therefore, there is a demand from the market for an optical pickup device that does not leave an offset.
- an error signal such as a tracking error signal accompanying displacement of the objective lens 250 or an error signal such as a tracking error signal when recording / reproducing data of a plurality of types of optical disks D having different track pitches Dtp. Therefore, there is a demand from the market for an optical pickup device that does not leave an offset.
- an optical pickup device is a first invention.
- a light-emitting element capable of emitting at least wavelength light and second wavelength light; dividing the first wavelength light into at least a first main beam and a first sub beam; and A diffraction grating that divides into a second sub-beam, and the first main beam and the first sub-beam when the first main beam and the first sub-beam are irradiated onto a first medium corresponding to the first wavelength light, and
- the interval between the first sub-beam and the first sub-beam is determined as Yp1, and the second main beam and the second sub-beam when the second medium corresponding to the second wavelength light is irradiated with the second main beam and the second sub-beam.
- the following equation (1) is satisfied when the distance between and is defined as Yp2.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy.
- the first wavelength light emitted from the light emitting element is divided into at least a first main beam and a first sub beam by the diffraction grating, so that the first When the main beam and the first sub beam are irradiated onto the first medium, the first main beam and the first sub beam are irradiated onto the first medium with high accuracy.
- the second wavelength light emitted from the light emitting element is divided into at least a second main beam and a second sub beam by the diffraction grating, and the second main beam and the second sub beam are irradiated to the second medium.
- the second The main beam and the second sub beam irradiate the second medium with high accuracy.
- An optical pickup device divides the first wavelength light into at least a first main beam and a first sub beam, a light emitting element capable of emitting at least a first wavelength light and a second wavelength light, and A diffraction grating that divides the second wavelength light into at least a second main beam and a second sub beam; and the first main beam and the first sub beam are provided on a first medium corresponding to the first wavelength light.
- a light efficiency ratio of the light intensity of the first main beam to the sum of the light intensity of the first main beam and the light intensity of the first sub beam when irradiated is defined as A1
- the efficiency ratio of the intensity of the light of the light of the second main beam to the sum when defined as A2 which satisfies the following formula (2) and the following expression (3), characterized by.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy is configured.
- the first wavelength light emitted from the light emitting element is divided into at least a first main beam and a first sub beam by the diffraction grating, so that the first When the main beam and the first sub beam are irradiated onto the first medium, the first main beam and the first sub beam are reliably irradiated onto the first medium.
- the second wavelength light emitted from the light emitting element is divided into at least a second main beam and a second sub beam by the diffraction grating, and the second main beam and the second sub beam are irradiated to the second medium.
- the second main beam and the second sub beam are reliably irradiated to the second medium.
- the optical pickup device includes at least a light emitting element capable of emitting first wavelength light and second wavelength light, and a diffraction grating corresponding to the second wavelength light, and the light emitting element includes: Corresponding to the difference between the light emission position of the first wavelength light and the light emission position of the second wavelength light, the condensing position of the first wavelength light on the first medium corresponding to the first wavelength light and the first light 2 The condensing position of the second wavelength light on the second medium corresponding to the wavelength light is different.
- an optical pickup device that reliably collects the first wavelength light on the first medium and reliably collects the second wavelength light on the second medium is configured.
- An optical pickup device is the optical pickup device according to the third aspect, wherein the optical pickup device has a substantially disc shape rather than a condensing position of the first wavelength light on the first medium having a substantially disc shape.
- the condensing position of the second wavelength light on the second medium is on the inner peripheral side of the substantially disk-shaped medium.
- an optical pickup device that reliably collects the first wavelength light on the first medium and reliably collects the second wavelength light on the second medium is configured.
- An optical pickup device is characterized in that the optical pickup device according to the first aspect is combined with the optical pickup device according to the second aspect.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy.
- the first wavelength light emitted from the light emitting element is divided into at least a first main beam and a first sub beam by the diffraction grating, so that the first When the main beam and the first sub beam are irradiated onto the first medium, the first main beam and the first sub beam are reliably irradiated onto the first medium with high accuracy.
- the second wavelength light emitted from the light emitting element is divided into at least a second main beam and a second sub beam by the diffraction grating, and the second main beam and the second sub beam are irradiated to the second medium.
- the second main beam and the second sub beam irradiate the second medium accurately and reliably.
- An optical pickup device is characterized in that the optical pickup device according to the first aspect is combined with the optical pickup device according to the third aspect.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy.
- the first wavelength light emitted from the light emitting element is divided into at least a first main beam and a first sub beam by the diffraction grating, so that the first When the main beam and the first sub beam are irradiated onto the first medium, the first main beam and the first sub beam are irradiated onto the first medium with high accuracy.
- the second wavelength light emitted from the light emitting element is divided into at least a second main beam and a second sub beam by the diffraction grating, and the second main beam and the second sub beam are irradiated to the second medium.
- the second The main beam and the second sub beam irradiate the second medium with high accuracy.
- An optical pickup device is provided that reliably collects the first wavelength light on the first medium and reliably collects the second wavelength light on the second medium.
- An optical pickup device is characterized in that the optical pickup device according to the second aspect and the optical pickup device according to the third aspect are combined.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy.
- the first wavelength light emitted from the light emitting element is divided into at least a first main beam and a first sub beam by the diffraction grating, so that the first When the main beam and the first sub beam are irradiated onto the first medium, the first main beam and the first sub beam are reliably irradiated onto the first medium.
- the second wavelength light emitted from the light emitting element is divided into at least a second main beam and a second sub beam by the diffraction grating, and the second main beam and the second sub beam are irradiated to the second medium.
- the second main beam and the second sub beam are reliably irradiated to the second medium.
- An optical pickup device is provided that reliably collects the first wavelength light on the first medium and reliably collects the second wavelength light on the second medium.
- An optical pickup device is obtained by combining the optical pickup device according to the first aspect, the optical pickup device according to the second aspect, and the optical pickup device according to the third aspect.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy.
- the first wavelength light emitted from the light emitting element is divided into at least a first main beam and a first sub beam by the diffraction grating, so that the first When the main beam and the first sub beam are irradiated onto the first medium, the first main beam and the first sub beam are reliably irradiated onto the first medium with high accuracy.
- the second wavelength light emitted from the light emitting element is divided into at least a second main beam and a second sub beam by the diffraction grating, and the second main beam and the second sub beam are irradiated to the second medium.
- the second main beam and the second sub beam irradiate the second medium accurately and reliably.
- An optical pickup device is provided that reliably collects the first wavelength light on the first medium and reliably collects the second wavelength light on the second medium.
- the optical pickup device divides the first wavelength light into at least a first main beam and a first sub beam, divides the second wavelength light into at least a second main beam and a second sub beam, and the second wavelength.
- a diffraction grating having a diffractive surface corresponding to light, a first main light receiving unit irradiated with the first main beam, a first sub light receiving unit irradiated with the first sub beam, and irradiation with the second main beam.
- a first main light receiving unit and a first sub light receiving unit which are standardized and include at least a photodetector having a second main light receiving unit to be irradiated and a second sub light receiving unit irradiated with the second sub beam. The distance between the first main light receiving unit and the first sub light receiving unit is changed with respect to the distance between the first main light receiving unit and the first sub light receiving unit.
- an optical pickup device that suppresses generation of unnecessary light.
- a diffraction grating having a diffraction surface corresponding to the second wavelength light is provided in the optical pickup device, and when the first wavelength light is transmitted through the diffraction surface of the diffraction grating corresponding to the second wavelength light, the first wavelength light is at least If the first main beam and the first sub beam are divided, it is substantially prevented that unnecessary light is generated when the first wavelength light passes through the diffraction grating. Further, when the second wavelength light is transmitted through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light, unnecessary light is not substantially generated, and the second wavelength light includes at least the second main beam and the second sub beam. It is divided into.
- the distance between the first main light receiving unit and the first sub light receiving unit is changed with respect to the standardized distance between the first main light receiving unit and the first sub light receiving unit.
- the first sub-beam of the first wavelength light divided by the diffraction surface portion of the diffraction grating corresponding to the second wavelength light is Generation
- the normalization in the present invention is used for the sake of convenience, for example, when describing a conventional one that has been widely spread.
- the first sub-beam of the first wavelength light that is divided without substantially generating unnecessary light by transmitting the first wavelength light through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light is the first main beam of the photodetector.
- the light is irradiated to the first sub light receiving unit whose distance is changed with respect to the light receiving unit.
- the first main beam of the first wavelength light that has been separated without substantially generating unnecessary light by transmitting the first wavelength light through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light is The first main light receiving unit is irradiated.
- the second sub-beam of the second wavelength light that is divided without substantially generating unnecessary light by transmitting the second wavelength light through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light is the second sub-beam of the photodetector. 2
- the sub light receiving unit is irradiated.
- the second main beam of the second wavelength light that is divided without substantially generating unnecessary light by transmitting the second wavelength light through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light is The second main light receiving unit is irradiated.
- the optical pickup device is the optical pickup device according to claim 9, wherein the changed distance between the first main light receiving unit and the first sub light receiving unit is the normalized. Being set longer than the distance between the first main light receiving unit and the first sub light receiving unit; It is characterized by.
- an optical pickup device with improved signal detection accuracy is configured. It is easy to avoid that the first main beam generated by dividing the first wavelength light by the diffraction surface portion of the diffraction grating adversely affects the first sub-light-receiving portion of the photodetector. In addition, it is easy to avoid that the first sub beam generated by dividing the first wavelength light by the diffraction surface portion of the diffraction grating adversely affects the first main light receiving portion of the photodetector. For example, the changed distance between the first main light receiving unit and the first sub light receiving unit is set to be shorter than the standardized distance between the first main light receiving unit and the first sub light receiving unit.
- the first main beam interferes with the first sub-light-receiving portion of the photodetector.
- the changed distance between the first main light receiving unit and the first sub light receiving unit is set to be shorter than the standardized distance between the first main light receiving unit and the first sub light receiving unit.
- the first sub beam interferes with the first main light receiving portion of the photodetector.
- the distance between the changed first main light receiving unit and the first sub light receiving unit is set to be longer than the distance between the standardized first main light receiving unit and the first sub light receiving unit.
- the distance between the changed first main light receiving unit and the first sub light receiving unit is set to be longer than the distance between the standardized first main light receiving unit and the first sub light receiving unit. Therefore, when the first sub-light receiving unit is irradiated with the first sub-beam, it is easy to avoid the first sub-beam from interfering with the first main light-receiving unit.
- An optical pickup device is the optical pickup device according to the ninth aspect, wherein a value of the distance between the standardized first main light receiving portion and the first sub light receiving portion is 100%.
- the changed value of the distance between the first main light-receiving unit and the first sub-light-receiving unit is determined between the normalized first main light-receiving unit and the first sub-light-receiving unit. It is characterized by being set to a value of approximately 111% with respect to the value of the distance between them.
- an optical pickup device with improved signal detection accuracy is configured. It is avoided that the first main beam generated by dividing the first wavelength light by the diffraction surface portion of the diffraction grating adversely affects the first sub-light-receiving portion of the photodetector. Further, it is avoided that the first sub beam generated by dividing the first wavelength light by the diffraction surface portion of the diffraction grating adversely affects the first main light receiving portion of the photodetector.
- the changed distance between the first main light receiving unit and the first sub light receiving unit is set to be shorter than the standardized distance between the first main light receiving unit and the first sub light receiving unit.
- the changed distance between the first main light receiving unit and the first sub light receiving unit is set to be shorter than the standardized distance between the first main light receiving unit and the first sub light receiving unit. Then, there is a concern that the first sub beam interferes with the first main light receiving portion of the photodetector.
- the standardized distance between the first main light receiving unit and the first sub light receiving unit is determined to be 100%, the changed first main light receiving unit and first sub light receiving unit are changed.
- the first main beam is prevented from interfering with the first sub light receiving unit.
- the standardized distance between the first main light receiving unit and the first sub light receiving unit is determined to be 100%, the changed first main light receiving unit and first sub light receiving unit are changed.
- the first sub light receiving unit is irradiated with the first sub beam, the first sub light beam is prevented from interfering with the first main light receiving unit.
- An optical pickup device is the optical pickup device according to the ninth aspect, wherein a value of the distance between the standardized second main light receiving portion and the second sub light receiving portion is 100%.
- the value of the distance between the second main light receiving unit and the second sub light receiving unit is a distance between the normalized second main light receiving unit and the second sub light receiving unit. It is characterized by being set to a value of approximately 100% with respect to the value of.
- an optical pickup device with improved signal detection accuracy is configured. It is avoided that the second main beam generated by dividing the second wavelength light by the diffraction surface portion of the diffraction grating adversely affects the second sub light receiving portion of the photodetector. Further, it is avoided that the second sub beam generated by dividing the second wavelength light by the diffraction surface portion of the diffraction grating adversely affects the second main light receiving portion of the photodetector.
- the distance between the second main light receiving unit and the second sub light receiving unit is set shorter than the normalized distance between the second main light receiving unit and the second sub light receiving unit, There is a concern that the two main beams interfere with the second sub-light-receiving portion of the photodetector. Further, for example, when the distance between the second main light receiving unit and the second sub light receiving unit is set shorter than the standardized distance between the second main light receiving unit and the second sub light receiving unit. The second There is a concern that the sub-beam interferes with the second main light receiving portion of the photodetector.
- the distance between the second main light receiving unit and the second sub light receiving unit is set. Is set to a value that is approximately 100% of the normalized distance value between the second main light-receiving unit and the second sub-light-receiving unit.
- the second main beam is irradiated to the light receiving unit, the second It is avoided that the main beam interferes with the second sub light receiving unit.
- the standardized distance between the second main light receiving unit and the second sub light receiving unit is determined to be 100%, the distance between the second main light receiving unit and the second sub light receiving unit is determined.
- the optical pickup device divides the first wavelength light into at least a first main beam and a first sub beam, divides the second wavelength light into at least a second main beam and a second sub beam, and the second wavelength.
- a diffraction grating having a diffractive surface corresponding to the light, a first main light receiving unit irradiated with the first main beam, a first sub light receiving unit irradiated with the first sub beam,
- a light detector including at least a second main light receiving unit irradiated with the second main beam and a second sub light receiving unit irradiated with the second sub beam;
- a pair of the first sub light-receiving units whose positions are changed are arranged on the front side, the first sub-light-receiving unit on the front side, the first main light-receiving unit in the center, and the first sub-light-receiving unit on the rear side.
- the spectral ratios of the first sub-light-receiving part on the front side, the first main light-receiving part in the center, and the first sub-light-receiving part on the rear side are standardized on the front side.
- the spectral ratio of the one sub light receiving unit, the central first main light receiving unit, and the rear first sub light receiving unit is changed.
- an optical pickup device that suppresses generation of unnecessary light.
- a diffraction grating having a diffraction surface corresponding to the second wavelength light is provided in the optical pickup device, and when the first wavelength light is transmitted through the diffraction surface of the diffraction grating corresponding to the second wavelength light, the first wavelength light is at least If the first main beam and the first sub beam are divided, it is substantially prevented that unnecessary light is generated when the first wavelength light passes through the diffraction grating. Further, when the second wavelength light is transmitted through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light, unnecessary light is not substantially generated, and the second wavelength light includes at least the second main beam and the second sub beam. It is divided into.
- the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- the first wavelength light is transmitted through a diffraction grating having a diffractive surface corresponding to the second wavelength light, and the first wavelength light is transmitted to the front first sub beam, the central first main beam, and the rear first sub beam.
- the spectral ratio of the rear first sub light receiving unit irradiated with the first sub beam is normalized, the front first sub light receiving unit, the central first main light receiving unit, and the rear first sub light receiving unit. If the spectral ratio is changed with respect to the light receiving unit, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device is the optical pickup device according to the thirteenth aspect, wherein a pair of the first sub light-receiving portions whose positions are changed around the first main light-receiving portion are arranged, When the first sub light receiving unit, the first main light receiving unit in the center, and the first sub light receiving unit on the rear side are arranged side by side, the first sub light receiving unit on the front side and the first sub light receiving unit on the center side
- the spectral ratio between one main light receiving unit and the first sub light receiving unit on the rear side is approximately 1: (20 to 26): 1.
- the detection of the first main beam and the detection of the first sub beam are accurately performed by the photodetector whose setting has been changed.
- the first diffractive surface portion corresponding to the first wavelength light and the second The first wavelength light is transmitted through a conventional diffraction grating having a second diffractive surface portion corresponding to the wavelength light, and the first wavelength light is transmitted to the front first sub beam, the center first main beam, and the rear side.
- the spectral ratio with the rear first sub-light receiving unit irradiated with the rear first sub-beam is, for example, approximately 1: 16: 1.
- the first main beam detection and the first Sub-beam detection was performed with high accuracy.
- the diffractive surface portion corresponding to the first wavelength light is omitted, the first wavelength light is transmitted through the diffraction grating having the diffractive surface portion corresponding to the second wavelength light, and the first wavelength light is transmitted to the front first sub-beam.
- a front first sub light receiving unit irradiated with the front first sub beam, and a central first main beam.
- a central first main light receiving unit irradiated with The spectral ratio with the rear first sub-light receiving unit irradiated with the rear first sub-beam is, for example, approximately 1: When the ratio is set to 16: 1, there is a concern that the conventional standardized photodetector cannot accurately detect the first main beam and the first sub beam.
- the first wavelength light is transmitted through the diffraction grating having the diffractive surface corresponding to the second wavelength light, and the first wavelength light is transmitted to the front side first sub beam, the center first main beam, and the rear side.
- the spectral ratio with the rear first sub-light receiving unit irradiated with the rear first sub-beam is approximately 1: (20 to 26): 1. If it is set to, the detection of the first main beam and the detection of the first sub beam are accurately performed by the photodetector whose setting has been changed.
- the spectral ratio with the first sub light receiving unit on the rear side irradiated with the sub beam is, for example, less than about 1: 20: 1. If this is the case, or if this spectral ratio is, for example, more than about 1: 26: 1, there is a concern that the detection of the first main beam and the detection of the first sub-beam will not be performed accurately.
- the spectral ratio is set to approximately 1: (20 to 26): 1, preferably approximately 1: (21 to 25): 1, so that the detection of the first main beam and the detection of the first sub beam can be performed with high accuracy. Done.
- An optical pickup device is the optical pickup device according to the thirteenth aspect, wherein a pair of the second sub light receiving portions are arranged around the second main light receiving portion, and the second sub light receiving portion on the front side is arranged. Part, the second main light receiving part at the center, and the second sub light receiving part at the rear side, and the second sub light receiving part at the front side and the second main light receiving part at the center side
- the spectral ratio of the second sub light receiving unit on the rear side is approximately 1: (12 to 18): 1.
- the second wavelength light is transmitted through a diffraction grating having a diffractive surface corresponding to the second wavelength light, and the second wavelength light includes a front second sub beam, a central second main beam, and a rear second light beam.
- the spectral ratio with the rear second sub-light receiving unit irradiated with the rear second sub-beam is approximately 1: (12 18) If set to 1, the detection of the second main beam and the detection of the second sub-beam are performed with high accuracy by the photodetector.
- the spectral ratio of the second sub light receiving unit is, for example, less than about 1: 12: 1, or when the spectral ratio is, for example, more than about 1: 18: 1, the second main beam is detected.
- the spectral ratio is set to approximately 1: (12 to 18): 1, preferably approximately 1: (14 to 18): 1.
- the detection of the second main beam and the detection of the second sub beam are performed with high accuracy.
- the optical pickup device divides the first wavelength light into at least a first main beam and a first sub beam, divides the second wavelength light into at least a second main beam and a second sub beam, and the second wavelength.
- a diffraction grating having a diffractive surface corresponding to the light, a first main light receiving unit irradiated with the first main beam, a first sub light receiving unit irradiated with the first sub beam,
- a standardized first main light receiving unit including at least a photodetector having a second main light receiving unit irradiated with the second main beam and a second sub light receiving unit irradiated with the second sub beam.
- the light receiving sensitivity value of the first main light receiving unit is changed or the same as the light receiving sensitivity value of the first main light receiving unit, and the light receiving sensitivity value of the first sub light receiving unit is standardized. The value of the light receiving sensitivity is changed.
- an optical pickup device that suppresses generation of unnecessary light.
- a diffraction grating having a diffraction surface corresponding to the second wavelength light is provided in the optical pickup device, and when the first wavelength light is transmitted through the diffraction surface of the diffraction grating corresponding to the second wavelength light, the first wavelength light is at least If the first main beam and the first sub beam are divided, it is substantially prevented that unnecessary light is generated when the first wavelength light passes through the diffraction grating. Further, when the second wavelength light is transmitted through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light, unnecessary light is not substantially generated, and the second wavelength light includes at least the second main beam and the second sub beam. It is divided into.
- the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- the light receiving sensitivity value of the first main light receiving unit is changed or the same as the standardized light receiving sensitivity value of the first main light receiving unit.
- the optical pickup device is the optical pickup device according to claim 16, wherein the standardized light receiving sensitivity value of the first main light receiving unit is set to a value of 100%.
- the light receiving sensitivity value of the first main light receiving unit changed or the same as the light receiving sensitivity value of the first main light receiving unit is set to a low value of about 100% or about 100% or less,
- the normalized light receiving sensitivity value of the first sub light receiving unit is determined to be 100%
- the changed first light receiving sensitivity value of the first sub light receiving unit is changed.
- the value of the light receiving sensitivity of one sub light receiving unit is set to a high value of approximately 100% or more.
- the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- the standardized light receiving sensitivity value of the first main light receiving unit is 100%
- the light receiving sensitivity value of the first main light receiving unit changed or the same is approximately 100% or approximately 100% or less. Is set to a low value and the standardized light receiving sensitivity value of the first sub light receiving unit is 100%, whereas the changed light receiving sensitivity value of the first sub light receiving unit is approximately 100% or more. Is set to a high value, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- the optical pickup device is the optical pickup device according to claim 16, wherein the standardized light receiving sensitivity value of the first main light receiving unit is determined to be 100%.
- the light receiving sensitivity value of the first main light receiving section changed or the same as the light receiving sensitivity value of the first main light receiving section is set to a value of about 95 to 100% and normalized.
- the first sub light receiving unit changed with respect to the normalized light receiving sensitivity value of the first sub light receiving unit.
- the light receiving sensitivity value is set to a value of about 120 to 160%.
- the standardized light receiving sensitivity value of the first main light receiving unit is 10
- the light sensitivity of the first main light-receiving unit, which is changed or the same as that of 0%, is set to a value of approximately 95 to 100%, and the light sensitivity of the first sub-light-receiving unit is standardized. Value of 100 %,
- the light receiving sensitivity value of the changed first sub light receiving unit is approximately 120 to 160.
- the optical pickup device is the optical pickup device according to claim 16, wherein the normalized light receiving sensitivity value of the second main light receiving unit is determined to be 100%.
- the light receiving sensitivity value of the second main light receiving unit is set to a value of approximately 100% with respect to the light receiving sensitivity value of the second main light receiving unit, and the light receiving sensitivity value of the normalized second sub light receiving unit is set.
- the light receiving sensitivity value of the second sub light receiving unit is approximately 100% of the normalized light receiving sensitivity value of the second sub light receiving unit. It is characterized by being set.
- the standardized light receiving sensitivity value of the second main light receiving unit is set to 100%, whereas the light receiving sensitivity value of the second main light receiving unit is set to a value of approximately 100%, and the standardized first The value of the light receiving sensitivity of the second sub light receiving unit is set to 100%, whereas the value of the light receiving sensitivity of the second sub light receiving unit is set to a value of approximately 100%.
- the detection of the two main beams and the detection of the second sub beam are performed with high accuracy.
- the optical pickup device divides the first wavelength light into at least a first main beam and a first sub beam, divides the second wavelength light into at least a second main beam and a second sub beam, and the second wavelength.
- a diffraction grating having a diffractive surface corresponding to the light, a first main light receiving unit irradiated with the first main beam, a first sub light receiving unit irradiated with the first sub beam,
- a standardized first main light receiving unit including at least a photodetector having a second main light receiving unit irradiated with the second main beam and a second sub light receiving unit irradiated with the second sub beam.
- the value of the signal output from the first main light receiving unit is changed or the same as the value of the signal output from the unit, and the value of the signal output from the standardized first sub light receiving unit is The value of the signal output from the first sub light receiving unit is changed.
- an optical pickup device that suppresses generation of unnecessary light.
- a diffraction grating having a diffraction surface corresponding to the second wavelength light is provided in the optical pickup device, and when the first wavelength light is transmitted through the diffraction surface of the diffraction grating corresponding to the second wavelength light, the first wavelength light is at least If the first main beam and the first sub beam are divided, it is substantially prevented that unnecessary light is generated when the first wavelength light passes through the diffraction grating. Further, when the second wavelength light is transmitted through the diffraction surface portion of the diffraction grating corresponding to the second wavelength light, unnecessary light is not substantially generated, and the second wavelength light includes at least the second main beam and the second sub beam. It is divided into.
- the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy.
- the value of the signal output from the first main light receiving unit is changed or the same as the value of the signal output from the standardized first main light receiving unit, and is output from the standardized first sub light receiving unit.
- An optical pickup device is the optical pickup device according to the twentieth aspect, wherein a value of a signal output from the standardized first main light receiving unit is determined to be 100%.
- the value of the signal output from the first main light receiving unit changed or the same as the value of the signal output from the standardized first main light receiving unit is approximately 100% or approximately 100% or less.
- the value of the signal output from the changed first sub-light-receiving unit with respect to the value of It is characterized by being set to a high value of 0% or more.
- the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy. While the value of the signal output from the standardized first main light receiving unit is 100%, the value of the signal output from the first main light receiving unit that is changed or the same is approximately 1. The value of the signal output from the standardized first sub light receiving unit is set to a low value of 00% or approximately 100% or less, whereas the value of the signal output from the first sub light receiving unit is 100%. By setting the value of the output signal to a high value of about 100% or more, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy.
- the optical pickup device is the optical pickup device according to claim 20, wherein when the value of the signal output from the standardized first main light receiving unit is determined to be 100%, The value of the signal output from the first main light receiving unit changed or the same as the value of the signal output from the standardized first main light receiving unit is approximately 95 to 100%. When the value of the signal output from the standardized first sub light receiving unit is determined to be 100%, the signal output from the standardized first sub light receiving unit The value of the signal output from the first sub-light-receiving unit that has been changed with respect to the value of is set to a value of approximately 120 to 160%.
- the value of the signal output from the standardized first main light receiving unit is 100%, whereas the value of the signal output from the first main light receiving unit that is changed or the same is approximately 95 to 1.
- the value of the signal output from the standardized first sub-light receiving unit is set to a value of 00% and 100%
- the value of the signal output from the changed first sub light receiving unit is approximately 120 to By setting the value to 160%, the detection of the first main beam and the detection of the first sub beam are performed with high accuracy.
- the optical pickup device is the optical pickup device according to claim 20, wherein the value of the signal output from the standardized second main light receiving unit is determined to be 100%. With respect to the value of the signal output from the standardized second main light receiving unit, the second The value of the signal output from the main light receiving unit is set to a value of approximately 100%, and the standardized second When the value of the signal output from the sub light receiving unit is determined to be 100%, the value output from the second sub light receiving unit is output from the standardized second sub light receiving unit. The value of the signal to be performed is set to a value of approximately 100%.
- the detection of the second main beam and the detection of the second sub beam are accurately performed by the photodetector.
- the value of the signal output from the standardized second main light receiving unit is 100%, whereas the value of the signal output from the second main light receiving unit is set to a value of approximately 100%.
- the value of the signal output from the second sub light receiving unit is set to 100%, whereas the value of the signal output from the second sub light receiving unit is set to a value of approximately 100%.
- the detection of the second main beam and the detection of the second sub beam are accurately performed by the photodetector.
- An optical pickup device is characterized in that the optical pickup device according to the ninth aspect is combined with the optical pickup device according to the thirteenth aspect.
- an optical pickup device that suppresses generation of unnecessary light is configured. Further, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device is characterized in that the optical pickup device according to the ninth aspect is combined with the optical pickup device according to the sixteenth aspect.
- an optical pickup device that suppresses generation of unnecessary light is configured. Further, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device is characterized in that the optical pickup device according to the ninth aspect and the optical pickup device according to the twentieth aspect are combined.
- the above configuration constitutes an optical pickup device that suppresses generation of unnecessary light.
- An optical pickup device is the optical pickup device according to the thirteenth aspect, The optical pickup device according to claim 16 is combined.
- an optical pickup device that suppresses generation of unnecessary light is configured. Further, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device according to claim 28 and an optical pickup device according to claim 13 The optical pickup device according to claim 20 is combined.
- an optical pickup device that suppresses generation of unnecessary light is configured. Further, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device is obtained by combining the optical pickup device according to the ninth aspect, the optical pickup device according to the thirteenth aspect, and the optical pickup device according to the sixteenth aspect.
- an optical pickup device that suppresses generation of unnecessary light is configured. Further, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device is obtained by combining the optical pickup device according to the ninth aspect, the optical pickup device according to the thirteenth aspect, and the optical pickup device according to the twentieth aspect.
- an optical pickup device that suppresses generation of unnecessary light is configured. Further, the detection of the first main beam and the detection of the first sub beam are easily performed with high accuracy by the photodetector whose setting has been changed.
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or twoth aspect.
- the diffraction surface portion of the diffraction grating includes a diffraction surface portion that divides the first wavelength light into at least the first main beam and the first sub beam, and the second wavelength. It also serves as a diffractive surface portion that divides light into at least the second main beam and the second sub beam.
- an optical pickup device is configured in which generation of unnecessary diffracted light in the diffraction grating can be suppressed, a decrease in light efficiency can be prevented, and the price can be kept low.
- the diffraction surface portion of the diffraction grating includes a diffraction surface portion that divides the first wavelength light into at least a first main beam and a first sub beam, and a diffraction surface portion that divides the second wavelength light into at least a second main beam and a second sub beam. If they are also formed, the first wavelength light is unnecessarily diffracted and the efficiency of the first wavelength light is lowered, or the second wavelength light is unnecessarily diffracted and the efficiency of the second wavelength light is lowered.
- An optical pickup device is the first, second, third, ninth, thirteen, sixteen, or two.
- the optical pickup device according to any one of 0, wherein the diffraction grating is divided into a plurality of region portions.
- the detection of the error signal of the optical pickup device with respect to the medium is easily performed satisfactorily.
- the tracking of the optical pickup device with respect to the media is easily performed favorably.
- Media means media that records and mediates information and media that records and transmits information.
- tracking in the optical pickup device means an operation in which a spot always exists on a target track following the radial shake of the medium. Since the diffraction grating is divided into a plurality of regions, the medium is irradiated with at least three independent spots. Since at least three spots are independently irradiated on the medium, it is easy to avoid a decrease in the accuracy of detection of error signals such as tracking error signals when recording / reproducing two or more types of media. Become.
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or second aspect.
- the optical pickup device according to any one of 0, wherein the diffraction grating is divided into an even number of region portions.
- the spot formed on the medium is formed as an accurate spot.
- the diffraction grating is evenly divided into one region portion and the other region portion, when the optical pickup device is equipped with a diffraction grating, the light applied to the diffraction grating is separated from one region portion of the diffraction grating. It becomes easy to be applied to the other region portion of the diffraction grating in a substantially half-divided state.
- the diffraction grating can be easily provided to the optical pickup device with high accuracy by making it easy for light to be applied to one of the regions of the diffraction grating and the other region of the diffraction grating. Become. Therefore, it becomes easy to form spots on the medium with high accuracy. Accordingly, the accuracy of error signal detection at the time of recording / playback of two or more types of media is improved.
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or second aspect.
- the optical pickup device according to any one of 0, wherein the diffraction grating includes a first region portion, It is characterized by being divided into at least four of a second region portion, a third region portion, and a fourth region portion.
- the detection of the error signal of the optical pickup device with respect to the medium is performed satisfactorily.
- the tracking of the optical pickup device with respect to the media is performed well. Since the diffraction grating is divided into four regions, the medium is irradiated with at least three independent spots. Since at least three spots are independently irradiated on the medium, it is avoided that the detection accuracy of an error signal such as a tracking error signal is lowered at the time of recording / playback of two or more kinds of media. .
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or second aspect.
- the optical pickup device according to any one of 0, comprising a light emitting element capable of emitting a plurality of types of wavelength light.
- the light-emitting element is configured as a light-emitting element that emits a plurality of types of wavelength light that can emit at least two types of wavelength light, for example, a first wavelength light and a second wavelength light. It becomes possible to deal with media.
- the light emitting element capable of emitting at least the first wavelength light and the light emitting element capable of emitting the second wavelength light are combined as one light emitting element, so that the number of parts of the optical pickup device can be reduced.
- the price of the optical pickup device can be kept low. Therefore, it is possible to provide an optical pickup device in which the parts are reduced and the price is reduced.
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or second aspect.
- the wavelength of the first wavelength light is approximately 76. 5 to 840 nm
- the wavelength of the second wavelength light is approximately 630 to 685 nm. It is characterized by.
- unnecessary light is substantially prevented from being generated when the first wavelength light having a wavelength of about 765 to 840 nm passes through the diffraction grating. Further, it is substantially prevented that unnecessary light is generated when the second wavelength light having a wavelength of about 630 to 685 nm is transmitted through the diffraction grating.
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or second aspect.
- the wavelength of the first wavelength light is approximately 63. 0 to 685 nm
- the wavelength of the second wavelength light is approximately 340 to 450 nm. It is characterized by.
- unnecessary light is substantially prevented from being generated when the first wavelength light having a wavelength of about 630 to 685 nm is transmitted through the diffraction grating. Further, it is substantially prevented that unnecessary light is generated when the second wavelength light having a wavelength of about 340 to 450 nm is transmitted through the diffraction grating.
- An optical pickup device is the first, second, third, ninth, thirteenth, sixteenth, or second aspect.
- the optical pickup device described in any one of 0 is characterized in that it can cope with a medium having a plurality of signal surface portions.
- the signal and information of the optical pickup device with respect to the medium having a plurality of signal surface portions are read and / or the signal and information of the optical pickup device with respect to the medium having the plurality of signal surface portions are satisfactorily performed. .
- the above configuration provides an optical pickup device that can cope with two or more types of laser beams having different wavelengths and suppress unnecessary diffracted light to improve error signal detection accuracy.
- An optical disk apparatus is characterized by comprising at least the optical pickup apparatus according to any one of the first, second, third, ninth, thirteenth, sixteenth, or twentieth aspects.
- an optical disc apparatus including at least an optical pickup device capable of solving at least one of the various problems is configured.
- an optical pickup device that reliably corresponds to the first wavelength light and the second wavelength light and has improved error signal detection accuracy.
- an optical pickup device that reliably collects the first wavelength light on the first medium and reliably collects the second wavelength light on the second medium.
- the first main beam is detected and the first light is detected by the photodetector whose setting is changed. It is possible to easily detect the sub-beam with high accuracy.
- an optical pickup device that can cope with two or more types of laser beams having different wavelengths and suppress unnecessary diffracted light to improve error signal detection accuracy.
- an optical disc device including at least an optical pickup device that can solve at least one of the various problems.
- FIG. 1 is an optical layout diagram of an optical pickup device according to an embodiment of the present invention. It is explanatory drawing of the optical pick-up apparatus which concerns on one Embodiment of this invention. It is explanatory drawing of the optical pick-up apparatus which concerns on one Embodiment of this invention. It is a figure for demonstrating the diffraction grating which concerns on one Embodiment of this invention. It is a figure for demonstrating the outline
- FIG. 1 is an optical layout diagram of an optical pickup device according to an embodiment of the present invention
- FIGS. 2 and 3 are explanatory diagrams of the optical pickup device according to an embodiment of the present invention.
- the optical pickup device is a CD standard (CD-ROM, CD-R, CD-RW, etc.) Or DVD standard (DVD-ROM, DVD-RAM (Version 1, 2.0, 2.1 ), DVD-R, DVD + R, DVD-RW, DVD + RW, etc.).
- Media means media that records and mediates information and media that records and transmits information.
- the medium here means a disk on which data, information, signals, and the like are stored.
- One track is formed in a substantially spiral shape from the inner peripheral side D84 to the outer peripheral side D88 of the optical disc D having a substantially disc shape.
- examples of the disk include the various optical disks described above.
- “CBHD (China Blue High-De) which is an optical disc based on a standard established in China.
- optical discs (not shown) such as “standard” (for example, the old name “CH-DVD” standard) Also mentioned.
- examples of the disc include an optical disc D in which signal surfaces are provided on both sides of the disc and data can be written / erased or rewritten.
- examples of the disk include an optical disk D provided with a two-layer signal surface and capable of data writing / erasing and data rewriting.
- an optical disc for “HD DVD” (not shown) provided with a three-layer signal surface and capable of data writing / erasing, data rewriting and the like. And so on.
- a “Blu-ray Disc” optical disc (not shown) provided with a four-layer signal surface and capable of data writing / erasing, data rewriting, and the like is also included.
- an optical disc D or the like on which the label surface side of the disc can be irradiated with laser light and various writing on the label or the like can be performed.
- the signal layer Da of the optical disc D is formed of, for example, a metal layer such as a metal thin film. Information, data, and the like are recorded on the signal layer Da formed of a metal thin film or the like.
- An optical disk device provided with an optical pickup device can handle, for example, the various disks described above.
- An optical disk device including an optical pickup device is used to reproduce data such as information recorded on various optical disks.
- an optical disk device including an optical pickup device is used to record data such as information on various optical disks.
- the focusing detection method of the focused spot of the optical disc D in this optical pickup device is, for example, a detection method based on the astigmatism method.
- the astigmatism method is, for example, a method of detecting the displacement of a focused spot by detecting a point image distortion formed by an optical system having astigmatism.
- a focusing detection method for example, a detection method based on a differential astigmatism method and the like can be cited.
- the differential astigmatism method is, for example, a method of detecting the displacement of the focused spot by detecting a point image distortion formed by an optical system having astigmatism.
- the differential astigmatism method is a method of generating a focus error signal by subtracting a focus error signal generated at a sub spot multiplied by a predetermined coefficient from a focus error signal generated at a main spot, for example. And push-pull leakage is kept small.
- the focusing spot focusing detection method in this optical pickup device is, for example, a detection method based on an astigmatism method, a differential astigmatism method, or the like. More specifically, this optical pickup device is an optical pickup device including an optical system based on a differential astigmatism method.
- the focusing detection method for example, other detection methods such as Foucault method and knife edge method may be used or used together.
- Each optical disk D Each focusing detection method such as a differential astigmatism method, for example, is automatically selected as appropriate depending on the type of the lens.
- the tracking detection method of the condensing spot of the optical disk D in this optical pickup device is, for example, a detection method based on a differential push-pull method, a phase difference method, or the like.
- the differential push-pull method is, for example, a method of detecting the displacement of the focused spot by using a main beam for reading and writing data and two sub beams for detecting a positional deviation correction signal.
- a tracking detection method for example, a DPD (Dif including a phase difference method)
- a detection method based on a fertile phase detection method may be used.
- a tracking detection method for example, a four-divided photodetector 7
- a phase difference method based on the phase difference signal detected by 3A.
- a detection method based on the DPP method, DPD method, phase difference method, heterodyne detection method, or the like is used or used in combination.
- each tracking detection method such as a phase difference method, It is automatically selected as appropriate.
- the light detection device 73A of the optical pickup device is configured as a light detector 73A, for example.
- the laser unit 61 has a first infrared wavelength band of about 765 nm to 840 nm suitable for the CD standard.
- a first light source 62 that emits a first laser beam having a wavelength of (for example, 782 nm), and a second laser beam that has a second wavelength (for example, 655 nm) in a red wavelength band of approximately 630 to 685 nm suitable for the DVD standard.
- This is a multi-laser unit having the second light source 63 on the same light emitting surface 61a.
- the laser unit 61 has two types of wavelengths: a first laser beam and a second laser beam having a wavelength different from that of the first laser beam and a shorter wavelength than the first laser beam.
- the laser unit 61 is a light emitting element 61 capable of emitting laser beams having a plurality of types of wavelengths.
- the first light source 62 and the second light source 63 constitute a semiconductor laser element.
- Laser light having an output value of 0.2 mW or more and 500 mW (milliwatts) or less, specifically, 2 mW or more and 400 mW or less is emitted from the first light source 62 and / or the second light source 63 constituting the laser unit 61.
- the laser beam has an output value of less than 0.2 mW, the amount of laser beam that is reflected after reaching the optical disc D and reaches the photodetector 73A is insufficient.
- a laser beam having an output value of several to several tens of mW such as 0.2 mW or more, preferably 0.5 mW or more, more preferably 2 mW or more and 20 mW or less is sufficient.
- a laser beam having an output value of several tens to several hundreds mW is required.
- a pulse laser beam having a high output value of 400 mW or 500 mW may be required.
- the laser unit 61 is configured as, for example, a substantially cylindrical or substantially cylindrical CAN package type laser diode having excellent heat dissipation.
- a substantially plate-like lead frame package type laser diode (not shown) that can be used for miniaturization or the like may be used.
- the first laser light and the second laser light emitted from the first light source 62 and the second light source 63, respectively, are main beams (0th order light) by a plurality of divided diffraction gratings 64A such as four parts. And two sub-beams ( ⁇ first-order diffracted light beams) are diffracted to generate at least three beams, and then the divergence angle is adjusted by, for example, a coupling lens 65i, so that the plate-type polarizing beam splitter 66 has a polarizing filter surface. Reflected.
- the laser beam reflected by the polarization beam splitter 66 is formed into parallel light by a collimator lens 67, which is an optical lens, and then passes through a quarter-wave plate 68 to be converted into circularly polarized light.
- Objective lens 7 whose optical axis is bent by 69 to be an optical lens 0 is incident, converged by the objective lens 70 and irradiated onto the optical disc D.
- the objective lens 70 is arranged in the optical axis direction (P-axis) of the objective lens 70 in order to be compatible with the optical disc D having a plurality of layers DL0 and DL1 of the first layer DL0 (FIG. 2) and the second layer DL1.
- the optical pickup device is provided so as to be movable substantially along the direction.
- Objective lens 7 By providing the optical pickup device in a state where the objective lens 70 is movable substantially along the optical axis direction (P-axis direction) of 0, an optical pickup device compatible with the optical disc D having a plurality of signal layers Da is provided. Composed.
- the objective lens 70 is provided in the optical pickup device so as to be able to move substantially along the disc radial direction (R-axis direction) in order to accurately follow the track of the signal layer Da of the optical disc D.
- the collimator lens 67 is made to be compatible with the optical disc D having a plurality of layers DL0 and DL1 of the first layer DL0 (FIG. 2) and the second layer DL1.
- the optical pickup device is provided so as to be movable substantially along the optical axis direction.
- the collimator lens 6 is substantially along the optical axis direction of the collimator lens 67.
- the objective lens 70 and the diffraction grating 64A collect the main beam and the two sub beams branched by the diffraction grating 64A, and are substantially parallel or obliquely inclined with respect to the elongated track on the track of the optical disc D. A main spot corresponding to the main beam and two sub spots corresponding to the two sub beams are irradiated in a line.
- a coupling lens (65i ) May be omitted without being equipped.
- the collimator lens 6 Although an example of the optical arrangement of the optical pickup device in which the quarter wavelength plate 68 is positioned between 7 and the reflection mirror 69 is shown, depending on the design / specifications of the optical pickup device, for example, the collimator lens (67) and the reflection mirror The quarter-wave plate (68) is not provided between the polarization beam splitter (66) and the collimator lens (67) without being equipped with the quarter-wave plate (68). An optical pickup device in which is located can also be used.
- the parentheses () attached to the reference numerals in the present application are used for the sake of convenience to explain what is slightly different from those shown in the drawings.
- the light receiving element 65ii that monitors the laser light emitted from the laser unit 61 and applies feedback for controlling the laser unit 61 includes, for example, a polarization beam splitter 66. Equipped in the vicinity of
- a diffraction grating 64A that diffracts each laser beam having a wavelength suitable for various optical discs D in accordance with the respective optical characteristics is formed on the incident surface in a substantially annular shape around the optical axis, for example.
- the three beams diffracted and branched by the grating are designed so as to have a condensing function by correcting spherical aberration for each optical disc D.
- the objective lens 70 is moved in a focusing direction (P-axis direction shown in FIG. 1) and a tracking direction (a direction perpendicular to the Q-axis indicating the track formation direction shown in FIG. 1 and perpendicular to the P-axis.
- the laser beam is focused on the signal layer Da of the optical disc D, and the laser beam is made to follow a predetermined track of the optical disc D.
- Laser light is irradiated from the objective lens 70 toward the optical disc D.
- the laser light modulated and reflected by the signal layer Da of the optical disk D returns to the objective lens 70 and reaches the polarization beam splitter 66 via a return path that is substantially the same optical path as the forward path.
- the signal layer Da of the optical disc D is irradiated with, for example, a right-turn laser beam
- the reflected laser light is, for example, circularly polarized light that is inverted to a left-turn laser beam.
- laser light that has been, for example, S-polarized light on the forward path to the optical disc D is emitted from the quarter-wave plate 68 as, for example, P-polarized laser light on the return path, and the P-polarized laser light is emitted from the polarization beam splitter 66. Is incident on.
- the P-polarized laser beam on the return path is substantially transmitted through the polarization beam splitter 66.
- the laser light returned to the polarization beam splitter 66 passes through a first parallel plate 71 that is disposed to be tilted so as to correct astigmatism when passing through the polarization beam splitter 66, for example.
- astigmatism that becomes a focus error component of the laser light irradiated to the optical disc D for example, by transmitting the laser light that has passed through the first parallel flat plate 71 through the second parallel flat plate 72 that is tilted.
- the coma aberration generated by the polarization beam splitter 66 and the first parallel plate 71 is corrected, and the laser beam is guided to the photodetector 73A.
- the photodetector 73A generates a tracking error signal, a focus error signal, and the like based on the laser light guided from the second parallel plate 72.
- the first parallel plate 71 and the second parallel plate 72 are, for example, astigmatism elements 71 and 72.
- the first astigmatism element 71 and the second astigmatism element 72 are also examples of the condensing optical system of the optical pickup device.
- astigmatism is detected in the focused spot 80 generated by irradiating the signal layer Da of the optical disc D by generating astigmatism of laser light.
- a sensor lens such as an anamorphic lens (not shown) that enables detection based on the aberration method / differential astigmatism method or the like may be used as the astigmatism element.
- the photodetector 73A receives the laser beam reflected from the optical disk D, changes the signal into an electrical signal such as a tracking error signal or a focus error signal, and a lens holder (with an objective lens 70) constituting the optical pickup device (
- the servo mechanism (not shown) such as (not shown) is operated.
- the servo means for example, a mechanism that automatically corrects and controls by measuring the state of the object to be controlled and comparing it with a predetermined reference value.
- the photodetector 73A receives laser light reflected from the optical disc D, converts the signal into an electrical signal, and detects data / information / signals recorded on the optical disc D. .
- the installation position of the first light source 62 in the laser unit 61 and the installation position of the second light source 63 in the laser unit 61 are different. Therefore, for example, when the optical pickup device is located on the innermost circumferential side D84 of the optical disc D, when the optical pickup device is located on the outermost circumferential side D88 of the optical disc D, or when the optical pickup device is located on the innermost circumferential side of the optical disc D.
- Side D When located at any position from 84 to the outermost peripheral side D88, it corresponds to the first wavelength light and corresponds to the disc radial direction (R of the first wavelength light on the signal surface portion Da of the optical disc D based on the CD standard.
- the main spot 80 formation position substantially along the axial direction) and DV corresponding to the second wavelength light The main spot 80 formation position along the disc radial direction (R-axis direction) of the second wavelength light on the signal surface portion Da of the optical disc D based on the D standard is substantially in the disc radial direction (R-axis direction). It differs by several ⁇ m to several tens of ⁇ m on the line along.
- the CD The condensing position of the CD laser light in the disc radial direction with respect to the optical disc D based on the standard is different from the condensing position of the DVD laser light in the disc radial direction with respect to the optical disc D based on the DVD standard.
- the optical pickup device when the optical pickup device is located on the innermost circumferential side D84 of the optical disc D, when the optical pickup device is located on the outermost circumferential side D88 of the optical disc D, or when the optical pickup device is located on the innermost circumferential side of the optical disc D.
- the first wavelength light that corresponds to the first wavelength light and is projected onto the signal surface portion Da of the substantially disc-shaped optical disc D based on the CD standard when located anywhere from D84 to the outermost peripheral side D88.
- the irradiation position substantially along the radial direction (R-axis direction) exists on the inner peripheral side D84 of the optical disk D having a substantially disk shape of about several ⁇ m to several tens of ⁇ m.
- the optical pickup device when the optical pickup device is located on the innermost peripheral side D84 of the optical disc D, when the optical pickup device is located on the outermost peripheral side D88 of the optical disc D, The pickup device is the innermost D8 of the optical disk D. 4 corresponds to the first wavelength light when located anywhere from 4 to the outermost peripheral side D88.
- the irradiation position substantially along the disc radial direction (R axis direction) of the main spot 80 of the first wavelength light projected on the signal surface portion Da of the substantially disc-shaped optical disc D based on the D standard is the second.
- the optical pickup device may be configured so as to exist on the inner peripheral side D84 of the optical disk D having a substantially disk shape of about several ⁇ m to several tens of ⁇ m.
- the pits on the signal surface portion Da of the optical disk D corresponding to the second wavelength light, rather than the size of the pits on the signal surface portion Da of the optical disk D based on the CD standard corresponding to the first wavelength light Etc. are smaller. Further, it corresponds to the second wavelength light and based on the DVD standard rather than the size of the light spot 80 irradiated / formed on the signal surface portion Da of the optical disc D corresponding to the first wavelength light and based on the CD standard. The size of the light spot 80 irradiated / formed on the signal surface portion Da of the optical disc D is smaller. Because of this, CD The optical pickup device is configured such that the second wavelength light based on the DVD standard, which has a shorter wavelength than the first wavelength light based on the standard, is positioned approximately on the optical system central axis of the optical pickup device.
- FIG. 4 is a diagram for explaining a diffraction grating according to an embodiment of the present invention
- FIG. 5 is a diagram of a condensing spot arrangement on an optical disc and a tracking error signal detection system in an inline system according to an embodiment of the present invention. It is a figure for demonstrating an outline
- the optical pickup device has an optical disc D of either CD standard or DVD standard. It corresponds to.
- the track pitch Dtp of a CD standard optical disc D such as CD-ROM, CD-R, CD-RW, etc., and DVD-ROM, DVD-R, DVD + R, DVD -RW, DVD + RW optical disc D track pitch Dtp and DVD-RAM (Ve region 1) optical disc D track pitch Dtp and DVD-RAM (Versi On 2.0, 2.1), the optical disk D is different from the track pitch Dtp, but in the drawings, the various optical disks D are drawn together for convenience.
- optical disc D The shapes / arrangements / forms, etc. of the respective light spots 80, 81, 82 irradiated / formed on the signal surface portion Da are set to the drawn shapes / arrangements / forms for convenience.
- the diffraction grating 64A (FIG. 4) is an inexpensive in-line diffraction grating 64A having substantially the same configuration as the DVD diffraction grating 20.
- the diffraction grating 64A is a 3-beam CD This is composed only of the diffraction grating for DVD 20 corresponding to the inline method without using the diffraction grating for operation.
- the diffraction grating in the present application means, for example, a member on which a diffraction surface portion that diffracts light is formed, and is called, for example, an inline grating.
- the illustrated diffraction grating and the like in the present application are drawn for the sake of convenience in order to make each detailed portion easy to understand.
- the light incident on the diffraction grating 64A corresponding to the inline method is reflected by the diffraction grating 64A corresponding to the inline method.
- the light is split into one first main beam and at least two
- the first wavelength incident on the diffraction grating 64A corresponding to the inline method is a wavelength of the CD standard
- the second wavelength incident on the diffraction grating 64A corresponding to the inline method is a wavelength of the DVD standard.
- the first wavelength is defined as the CD standard wavelength ⁇ (cd).
- the first wavelength ⁇ (cd) is approximately 765 nm to 840 nm.
- the second wavelength is D
- the wavelength ⁇ (dvd) of the VD standard is defined.
- the second wavelength ⁇ (dvd) is approximately 630 nm to 68. 5 nm.
- the first optical disc D corresponding to the first wavelength light is irradiated with one first main beam and at least two first sub-beams, a substantially central portion of the spot 80 of the first main beam, The irradiation point Oa and the irradiation point Xb which is the approximate center of the spot 81 of the first sub beam Is defined as Yp1.
- the first optical disc D corresponding to the first wavelength light is irradiated with one first main beam and at least two first sub-beams, a substantially central portion of the spot 80 of the first main beam, The irradiation point Oa and the irradiation point Xc which is the approximate center of the spot 82 of the first sub-beam Is defined as Yp1.
- the second optical disc D corresponding to the second wavelength light is irradiated with one second main beam and at least two second sub-beams, a substantially central portion of the spot 80 of the second main beam, The irradiation point Oa and the irradiation point Xb which is the approximate center of the spot 81 of the second sub beam Is defined as Yp2.
- the second optical disc D corresponding to the second wavelength light is irradiated with one second main beam and at least two second sub-beams, a substantially central portion of the spot 80 of the second main beam, The irradiation point Oa and the irradiation point Xc which is substantially the center of the spot 82 of the second sub-beam Is defined as Yp2.
- the wavelength (first wavelength) ⁇ (cd) of the CD standard is, for example, approximately 765 nm, 765 is substituted into ⁇ (cd) in Equation (4).
- DVD standard wavelength (second wavelength) Assuming that ⁇ (dvd) is, for example, approximately 685 nm, 685 is substituted into ⁇ (dvd) in equation (4). Then, a value is calculated
- an optical pickup device that can emit the first wavelength ⁇ (cd) that is the wavelength of the CD standard and the second wavelength ⁇ (dvd) that is the wavelength of the DVD standard is, for example, the following formula ( The optical pickup device satisfies 7).
- the first wavelength incident on the diffraction grating 64A corresponding to the inline method is a wavelength of DVD standard
- the second wavelength incident on the diffraction grating 64A corresponding to the inline method is a wavelength of BD standard.
- the first wavelength is the wavelength ⁇ (dvd) of the DVD standard.
- the first wavelength ⁇ (dvd) is approximately 630 nm to 685 nm.
- the second wavelength is the wavelength ⁇ (bd) of the BD standard.
- the second wavelength ⁇ (bd) is approximately 340 nm to 4 50 nm. In this case, for example, the following equation (8) is assumed.
- an optical pickup device that can emit the first wavelength ⁇ (dvd) that is the wavelength of the DVD standard and the second wavelength ⁇ (bd) that is the wavelength of the BD standard is, for example, the following formula ( 11) The optical pickup device satisfies the above.
- the first wavelength incident on the diffraction grating 64A corresponding to the in-line method is a wavelength of the CD standard
- the second wavelength incident on the diffraction grating 64A compatible with the in-line method is a wavelength of the BD standard.
- the first wavelength is the CD standard wavelength ⁇ (cd).
- the first wavelength ⁇ (cd) is approximately 765 nm to 840 nm.
- the second wavelength is BD Assume a standard wavelength ⁇ (bd).
- the second wavelength ⁇ (bd) is approximately 340 nm to 450 nm. It is said. In this case, for example, the following equation (12) is assumed.
- an optical pickup device that can emit the first wavelength ⁇ (cd) that is the wavelength of the CD standard and the second wavelength ⁇ (bd) that is the wavelength of the BD standard is, for example, the following formula ( The optical pickup device satisfies 15).
- the efficiency of the light intensity of the main spot 80 with respect to the spectral ratio of the spots 80, 81, 82 irradiated to the optical disk D and the total light intensity of the spots 80, 81, 82 irradiated to the optical disk D Ratio >>
- the spectral ratio which is the light intensity ratio of each of the spots 80, 81, and 82 irradiated onto the optical disc D, and the light efficiency ratios A1 and A2 of the main spot 80 will be described.
- the optical disc D when an optical disc D based on the CD standard is irradiated with one main beam of first wavelength light and at least two sub-beams of first wavelength light, the optical disc is driven by one main beam of first wavelength light.
- the light intensity ratio of the main spot 80 that is transferred to the optical disc D by the main beam of the first wavelength light is defined as the light efficiency ratio A1.
- the optical disc D based on the DVD standard is irradiated with one main beam of the second wavelength light and at least two sub-beams of the second wavelength light
- the optical disc is driven by one main beam of the second wavelength light.
- the light intensity of the main spot 80 projected to the optical disc D by the single main beam of the second wavelength light is defined as the light efficiency ratio A2 with respect to the sum of the two light intensities.
- the intensity and spectral ratio of light irradiated on the optical disc D based on the DVD standard will be described.
- a preceding sub spot 81 on the track D80 of the optical disc D based on the DVD standard a main spot 80 on the track D80 of the optical disc D based on the DVD standard
- the spectral ratio of the optical disk D based on the DVD standard to the subsequent subspot 82 on the track D80 is approximately 1: (16 ⁇ 1.6): 1.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the DVD standard A main spot 80 on the track D80 of the optical disc D based on the DVD standard, and DV
- the spectral ratio of the optical disk D based on the D standard to the trailing sub-spot 82 on the track D80 is It is about 1: 14.4: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disk D based on the DVD standard is approximately 1/16. Of the entire light intensity irradiated to the optical disk D based on the DVD standard. 4 In this case, the light intensity at the main spot 80 on the optical disk D based on the DVD standard is approximately 14 of the entire light intensity irradiated on the optical disk D based on the DVD standard. . 4 / 16.4. That is, the light efficiency ratio A2 of the main spot 80 on the optical disc D based on the DVD standard in this case is 0.87805.
- a preceding sub-spot 81 on the track D80 of the optical disc D based on the DVD standard, a main spot 80 on the track D80 of the optical disc D based on the DVD standard, and a subsequent on the track D80 of the optical disc D based on the DVD standard The spectral ratio with the sub-spot 82 is approximately 1: 17.6: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disc D based on the DVD standard is approximately 1/19. 6
- the light intensity at the main spot 80 on the optical disk D based on the DVD standard is approximately 17 of the entire light intensity irradiated to the optical disk D based on the DVD standard. . 6 / 19.6. That is, the light efficiency ratio A2 of the main spot 80 on the optical disc D based on the DVD standard in this case is 0.89796.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the DVD standard the main spot 80 on the track D80 of the optical disc D based on the DVD standard, and the track D80 of the optical disc D based on the DVD standard.
- the spectral ratio with the upper subspot 82 is approximately 1: 16: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disk D based on the DVD standard is approximately 1/18 of the total light intensity irradiated to the optical disk D based on the DVD standard.
- the intensity of light at the main spot 80 on the optical disc D based on the DVD standard is approximately 16/1 of the entire intensity of light irradiated on the optical disc D based on the DVD standard. 8 That is, the main spot 8 on the optical disc D based on the DVD standard in this case
- the efficiency ratio A2 of 0 light is 0.88889.
- the preceding sub-spot 81 on the track D80 of the optical disk D based on the DVD standard the main spot 80 on the track D80 of the optical disk D based on the DVD standard, and the optical disk based on the DVD standard D track D
- the spectral ratio with the succeeding sub-spot 82 on 80 is approximately 1: 15: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disk D based on the DVD standard is approximately 1/17 of the entire light intensity irradiated on the optical disk D based on the DVD standard.
- the light intensity at the main spot 80 on the optical disc D based on the DVD standard is approximately 15/1 of the entire light intensity irradiated on the optical disc D based on the DVD standard. 7 That is, the main spot 8 on the optical disc D based on the DVD standard in this case
- the efficiency ratio A2 of 0 light is 0.88235.
- the spectral ratio of the laser light applied to the optical disc D based on the inline DVD standard shown in FIG. 5 is substantially the same as the spectral ratio of the laser light applied to the optical disc D based on the inline DVD standard shown in FIG. Is done.
- the spectral ratio of the subsequent subspot 102 on the track D100 of the optical disc D based on the DVD standard is approximately 1: 15: 1.
- the light intensity at the sub-spot 101 or 102 on the optical disc D based on the DVD standard is approximately 1/1 of the total light intensity irradiated to the optical disc D based on the DVD standard.
- the main spot 100 on the optical disc D based on the DVD standard in this case The light intensity at 1 is approximately 1 of the entire light intensity irradiated to the optical disc D based on the DVD standard. 5/17. That is, the light efficiency ratio A2 of the main spot 100 on the optical disc D based on the DVD standard in this case is 0.88235.
- the intensity, spectral ratio, and the like of light irradiated on the optical disc D based on the CD standard shown in FIG. 5 will be described.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard and the main spot 8 on the track D80 of the optical disc D based on the CD standard are approximately 1: (23 ⁇ 2.3): 1.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard the main spot 80 on the track D80 of the optical disc D based on the CD standard, and the subsequent sub spot on the track D80 of the optical disc D based on the CD standard
- the spectral ratio with respect to 82 is approximately 1: 20.7: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disc D based on the CD standard is approximately 1 / 22.7 of the entire light intensity irradiated to the optical disc D based on the CD standard.
- the light intensity at the main spot 80 on the optical disc D based on the CD standard is approximately 20.7 / 2 of the entire light intensity irradiated on the optical disc D based on the CD standard. 2.7. That is, the light efficiency ratio A1 of the main spot 80 on the optical disc D based on the CD standard in this case is 0.91189.
- a preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard a main spot 80 on the track D80 of the optical disc D based on the CD standard
- C The spectral ratio of the optical disk D based on the D standard to the trailing sub-spot 82 on the track D80 is It is approximately 1: 25.3: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disk D based on the CD standard is approximately 1 / 27.3 of the entire light intensity irradiated to the optical disk D based on the CD standard.
- the intensity of light at the main spot 80 on the optical disc D based on the CD standard is approximately 25.3 / 2 of the total intensity of light irradiated on the optical disc D based on the CD standard. 7.3.
- the light efficiency ratio A1 of the main spot 80 on the optical disc D based on the CD standard in this case is 0.92674.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard the main spot 80 on the track D80 of the optical disc D based on the CD standard, and the track D80 of the optical disc D based on the CD standard.
- Upper trailing subspot 82 Is approximately 1: 23: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disc D based on the CD standard is approximately 1/25 of the entire light intensity irradiated on the optical disc D based on the CD standard.
- the light intensity at the main spot 80 on the optical disc D based on the CD standard is approximately 23/25 of the entire light intensity irradiated on the optical disc D based on the CD standard. That is, the light efficiency ratio A1 of the main spot 80 on the optical disc D based on the CD standard in this case is 0.92000.
- the spectral ratio of the laser light applied to the optical disc D based on the inline CD standard shown in FIG. 5 is different from the spectral ratio of the laser light applied to the optical disc D based on the three-beam CD standard shown in FIG.
- the preceding sub-spot 10 on the track D100 of the optical disc D based on the CD standard 1 and a main spot 100 on the track D100 of the optical disc D based on the CD standard The spectral ratio of the optical disc D based on the CD standard to the subsequent subspot 102 on the track D100 is approximately 1: 16: 1.
- the light intensity at the sub-spot 101 or 102 on the optical disc D based on the CD standard is approximately 1/18 of the total light intensity irradiated on the optical disc D based on the CD standard.
- the intensity of light at the main spot 100 on the optical disc D based on the CD standard is approximately 16/18 of the entire intensity of light irradiated on the optical disc D based on the CD standard. It becomes. That is, the main spot 100 on the optical disc D based on the CD standard in this case
- the light efficiency ratio A1 is 0.88889.
- each CD laser beam that has passed through the diffraction grating 64A is irradiated onto the optical disc D based on the CD standard. Then, the spectral ratio of each laser beam applied to the optical disc D based on the CD standard is changed from the conventional one.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard the main spot 80 on the track D80 of the optical disc D based on the CD standard, and the CD standard.
- Track D of optical disc D based The spectral ratio with the subsequent subspot 82 on 80 may be approximately 1: 23.5: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disc D based on the CD standard is approximately 1 / 25.5 of the entire light intensity irradiated to the optical disc D based on the CD standard.
- the intensity of light at the main spot 80 on the optical disc D based on the CD standard is approximately 23.5 / 2 of the entire intensity of light irradiated on the optical disc D based on the CD standard. 5.5. That is, the light efficiency ratio A1 of the main spot 80 on the optical disc D based on the CD standard in this case is 0.92157.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard the main spot 80 on the track D80 of the optical disc D based on the CD standard, and the CD standard.
- Track D of optical disc D based The spectral ratio with the subsequent subspot 82 on 80 may be approximately 1: 20: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disk D based on the CD standard is approximately 1/22 of the entire light intensity irradiated to the optical disk D based on the CD standard.
- the light intensity at the main spot 80 on the optical disc D based on the CD standard is approximately 20/22 of the entire light intensity irradiated on the optical disc D based on the CD standard. That is, the light efficiency ratio A1 of the main spot 80 on the optical disc D based on the CD standard in this case is 0.90909.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard the main spot 80 on the track D80 of the optical disc D based on the CD standard, and the CD standard.
- Track D of optical disc D based The spectral ratio with the subsequent subspot 82 on 80 may be approximately 1: 26: 1.
- the light intensity at the sub-spot 81 or 82 on the optical disc D based on the CD standard is approximately 1/28 of the entire light intensity irradiated to the optical disc D based on the CD standard.
- the light intensity at the main spot 80 on the optical disc D based on the CD standard is approximately 26/28 of the entire light intensity irradiated on the optical disc D based on the CD standard. That is, the light efficiency ratio A1 of the main spot 80 on the optical disc D based on the CD standard in this case is 0.92857.
- the first conforming to the CD standard is used.
- Laser beam or a second laser beam compliant with the DVD standard is used for the CD diffraction grating section 320 and the DV.
- the diffraction grating 64A (FIG. 4). Is configured only with the diffraction grating portion 20 for one-wavelength light conforming to the DVD standard.
- the diffraction grating 64 ⁇ / b> A has a periodic structure of the grating grooves formed in the other half plane 22 with the phase of the periodic structure of the grating grooves formed in the other half plane 21.
- the diffraction grating member 20 for DVD is shifted by about 180 degrees with respect to the phase.
- the diffraction grating 64A As shown in FIG. 5, the optical arrangement of the main spot 80 and the first or second laser based on the main beam of the first or second laser beam irradiated onto the optical disc D is shown in FIG.
- the sub-spots 81 and 82 based on the light sub-beams are adjusted so as to irradiate substantially the same row on the same track D80 while being inclined substantially parallel or obliquely.
- the diffraction grating 64A which is only the diffraction grating member 20 for DVD as described above, as described above, unnecessary diffracted light is suppressed and a tracking error signal based on the inline method is used.
- SE1 and SE2 can be appropriately detected. More specifically, as shown in FIG. 5, in the case of the second laser beam compliant with the DVD standard, the tracking error signal SE2 is detected as follows.
- the tracking error signal SE2 is detected as follows.
- the DVD main beam forming the main detection light spot 80 corresponding to the DVD standard is reflected from the signal layer Da of the optical disc D, and the second light receiving area 75 of the photodetector 73A, for example, the main light receiving section 75A in the DVD light receiving area 75.
- the subtractor connected to the main light receiving unit 75A calculates a difference between output signals from the main light receiving unit 75A and generates, for example, a main push-pull signal SA2.
- a first DVD for the first sub detection light spot 81 corresponding to the DVD standard is formed.
- the subtractor connected to the second sub light receiving unit 75B of the second sub light receiving unit 75B For example, the preceding sub push-pull signal SB 2 is generated.
- the second DVD detection light spot 82 corresponding to the DVD standard is formed. Is reflected from the signal layer Da of the optical disc D, and is irradiated as the second sub detection light spot 92ii to the other second sub light receiving portion 75C in the DVD light receiving region 75 of the photodetector 73A.
- the subtractor connected to the second sub light receiving unit 75C of the other The difference between the output signals from the sub light receiving unit 75C is calculated, for example, the delayed sub push-pull signal SC 2 is generated.
- the push-pull signals SB2 and SC2 detected from ii and 92ii are output in mutually opposite phases. After that, push-pull signals SB2 and SC2 are added by the adder 78C, The added signal SD2 is amplified by the amplifier 78B and then subtracted from the push-pull signal SA2 by the subtractor 78A, whereby the push-pull signal SA2, Accurate tracking error signal SE in which offset components of SB2 and SC2 are canceled 2 can be generated.
- the tracking error signal SE1 is detected as follows.
- the main beam for CD forming the main detection light spot 80 corresponding to the CD standard is reflected from the signal layer Da of the optical disc D, and the first light receiving region 74 of the photodetector 73A, for example, CD
- the subtractor connected to the main light receiving unit 74A calculates a difference between output signals from the main light receiving unit 74A, for example, main push-pull. Generated as signal SA1.
- the first sub beam for CD forming the first sub detection light spot 81 corresponding to the CD standard is reflected from the signal layer Da of the optical disc D, and the CD light receiving region 7 of the photodetector 73A. 4, when one of the first sub light receiving portions 74B is irradiated as the first sub detection light spot 91i, the subtractor connected to one of the first sub light receiving portions 74B The difference between the output signals from the light receiving unit 74B is calculated and generated as, for example, the preceding sub push-pull signal SB1.
- the second sub beam for CD forming the second sub detection light spot 82 corresponding to the CD standard is reflected from the signal layer Da of the optical disc D, and the CD light receiving region 7 of the photodetector 73A. 4, when the other first sub light receiving portion 74C is irradiated as the second sub detection light spot 92i, the subtractor connected to the other first sub light receiving portion 74C is connected to the other first sub light receiving portion 74C.
- the difference between the output signals from the light receiving unit 74C is calculated and generated as, for example, a delayed sub push-pull signal SC1.
- the push-pull signals SB1 and SC1 detected from i and 92i are output in mutually opposite phases. After that, the push-pull signals SB1 and SC1 are added by the adder 78C, The added signal SD1 is amplified by the amplifier 78B and then subtracted from the push-pull signal SA1 by the subtractor 78A, whereby the push-pull signal SA1, Tracking error signal SE with high accuracy in which offset components of SB1 and SC1 are canceled 1 can be generated.
- the signal generated by the optical detector 73A of the optical pickup device is sent to, for example, an arithmetic unit 76A of a substrate (not shown) of the optical disk device connected to the optical pickup device so as to be energized.
- a signal generated by the calculation unit 76A of the substrate is sent to the objective lens driving unit 79 of the optical pickup device.
- the objective lens 70 of the optical pickup device is moved.
- the tracking error signals SE1 and SE2 generated by the calculation unit 76A are sent to the objective lens driving unit 79, and the tracking adjustment of the objective lens 70 with respect to the track D80 of the optical disc D is automatically performed.
- the diffraction grating 64A for example, is configured only by the diffraction grating member 20 for DVD corresponding to the second wavelength, which is the second laser beam compliant with the DVD standard, and the first compliant with the CD standard. It does not correspond to the first wavelength used as laser light. Therefore, the main detection light spot 9 in which the first laser beam compliant with the CD standard is diffracted and branched by the diffraction grating 64A.
- the distance between 0i and the sub detection light spots 91i, 92i (hereinafter referred to as main-sub pitch). ) Has a length inversely proportional to the wavelength corresponding to the diffraction grating 64A, so that the CD to be originally used.
- the second main light receiving unit 75A that receives the main detection light spot 90ii and one second sub light reception unit that receives the one sub detection light spot 91ii.
- Light reception interval Ys (cd between the first sub light receiving portion 74C ) Must be set appropriately so as to match the main-sub pitch corresponding to each laser beam.
- Photodetector 73A and Calculation Unit 76A >> Hereinafter, the photodetector 73A and the calculation unit 76A will be described with reference to FIGS.
- FIG. 6 is an arithmetic processing circuit diagram showing an example of the entire configuration of the arithmetic unit 76A that generates the tracking error signal SE1 based on the light reception result of the photodetector 73A.
- the optical pickup device includes one first main light receiving unit 74A irradiated with one first main beam, two first sub light receiving units 74B and 74C irradiated with two first sub beams, A first light receiving region 74 including one second main light receiving unit 75A irradiated with one second main beam, and two second sub light receiving units 75B irradiated with two second sub beams, 75C And a second light receiving region 75 provided with a photodetector 73A.
- a first light receiving area 74 used for recording / reproducing the CD standard optical disk D for example, a CD light receiving area 74
- a second used for recording / reproducing the DVD standard optical disk D The light receiving areas 75, for example, the DVD light receiving areas 75 are arranged side by side.
- main light receiving portions 74A for CD and sub light receiving portions 74B and 74C are arranged in a vertical arrangement.
- a CD light receiving region 74 is formed in the photodetector 73A.
- An optical disc D based on the CD standard is provided in the main light receiving portion 74A for CD and the sub light receiving portions 74B and 74C. The reflected laser beams of the 0th-order diffracted laser beam, the + 1st-order diffracted laser beam, and the ⁇ 1st-order diffracted laser beam reflected by the laser beam are received.
- Laser light based on the CD standard to which astigmatism is given by, for example, an astigmatism generation optical system is received in the CD light receiving region 74 of the photodetector 73A.
- the dividing lines 74Ax and 74Ay of the CD main light receiving unit 74A of the photodetector 73A and the dividing lines 74Bx, 74By and 74Cx and 74Cy of the sub light receiving units 74B and 74C are directions in which astigmatism of the received laser light occurs. Are set to have an angle of approximately 45 °.
- three main light-receiving units 75A and sub-light-receiving units 75B and 75C for DVD that are divided into four substantially in a cross shape by two dividing lines that are orthogonal to each other and that each include four light detection surface portions are arranged vertically, for example.
- the DVD light receiving area 75 is formed in the photodetector 73A. Reflected laser beams of 0th-order diffracted laser light, + 1st-order diffracted laser light, and -1st-order diffracted laser light reflected by the optical disc D based on the DVD standard on the DVD main light-receiving unit 75A and sub-light-receiving units 75B and 75C, respectively. Is received.
- Laser light based on the DVD standard to which astigmatism is given by, for example, an astigmatism generation optical system is received in the DVD light receiving region 75 of the photodetector 73A.
- Split lines 75Ax and 75Ay of the DVD main light receiving part 75A of the photodetector 73A The dividing lines 75Bx, 75By and 75Cx, 7 of the sub light receiving portions 75B and 75C, respectively. 5Cy is set to have an angle of approximately 45 ° with respect to the direction of astigmatism of the received laser light.
- the arithmetic unit 76A of the optical disc apparatus includes, for example, seven adders 77D, 77E, 77F, 7 7G, 77H, 77I, 78C, four subtractors 77A, 77B, 77C, 78A, 1 And two amplifiers 78B.
- the adders 77D and 77E and the subtractor 77A are included in the calculation unit 76A as a component of the calculation unit 76A in order to generate the signal SA1 corresponding to the light amount of the 0th-order reflected light that is the basis of the tracking error signal SE1. It has been.
- the adders 77F and 77G and the subtractor 77B constitute the calculation unit 76A in order to generate the signal SB1 corresponding to the light amount of the + 1st order reflected light that is the basis of the tracking error signal SE1.
- the adders 77H and 77I and the subtractor 77C constitute the calculation unit 76A as a component of the calculation unit 76A in order to generate the signal SC1 corresponding to the light amount of the ⁇ 1st order reflected light that is the basis of the tracking error signal SE1. It is provided within.
- Subtractor 7 7A, 77B, 77C, 78A are, for example, differential amplifiers 77A, 77B, 77C, 78A.
- the amplifier 78B is, for example, an amplification amplifier 78B.
- the photodetector 73A that constitutes the optical pickup device is connected to the arithmetic unit 76A of the substrate that constitutes the optical disc device so as to be energized.
- a signal generated by the photodetector 73A of the optical pickup device is transmitted to the arithmetic unit 76A of the optical disc device via a connector, a flexible circuit board (not shown), and the like.
- the photodetector 73A and the like that constitute the optical pickup device and the arithmetic unit 76A and the like that constitute the substrate of the optical disc device are a flexible printed circuit body (FPC) that is a circuit board.
- FPC flexible printed circuit body
- the base of the FPC is formed using a heat-resistant synthetic polymer such as a polyimide resin having excellent heat resistance.
- a heat-resistant synthetic polymer such as a polyimide resin having excellent heat resistance.
- polyimide is abbreviated as “PI”.
- PI polyimide
- a plurality of circuit conductor portions are printed on an insulating sheet made of an aromatic heat-resistant resin such as a wholly aromatic polyimide resin, and a metal foil such as a copper foil is juxtaposed on the insulating sheet.
- a transparent or translucent protective layer made of an aromatic heat-resistant resin such as a wholly aromatic polyimide resin is provided on the top.
- the FPC is formed, for example, as a flexible thin sheet having a substantially band shape.
- FPC having an insulating sheet made of an aromatic heat-resistant resin such as a wholly aromatic polyimide resin and / or a protective layer
- an aromatic heat-resistant resin such as a wholly aromatic polyimide resin and / or a protective layer
- soldering between the FPCs is performed well.
- various electronic components, various electrical components, etc. are soldered to the FPC satisfactorily.
- F The PC is, for example, a standardized FPC that can be used in common with other optical pickup devices, for example. Configured as
- the first laser beam compliant with the CD standard is diffracted and branched by the diffraction grating 64A, specifically, the main beam (0th order light).
- two sub beams ( ⁇ first-order diffracted light beams) arranged before and after the main beam, respectively, the first main light receiving unit 74A and the two first sub light receiving units 74B and 74C. And are formed.
- the definitions of “front” and “rear” in the present application are definitions for convenience.
- the first main light receiving unit 74A and the first sub light receiving units 74B and 74C are Each of them is divided into four and is constituted by four light detection surface portions.
- the first main light receiving portion 74 in the center of the CD light receiving region 74 having a substantially rectangular shape.
- A is divided into four by two substantially orthogonal dividing lines 74Ax and 74Ay, and four substantially rectangular photodetecting surface portions 74Aa, 74Ab, 74Ac, and 74Ad, so-called segments 74Aa. , 74Ab, 74Ac, 74Ad.
- a segment means one of a part, a fragment, or the like that is divided into several parts.
- the first main light receiving portion 74A in the center of the CD light receiving region 74 having a substantially rectangular shape includes a first main segment 74Aa having a substantially rectangular shape and a second shape having a substantially rectangular shape adjacent to the first main segment 74Aa.
- a fourth main segment 74Ad having a substantially rectangular shape adjacent to the fourth main segment 74Ad.
- the first main segment 74Aa is adjacent to the main segment 74Ad.
- CD The first main light receiving portion 74A in the center of the light receiving region 74 is configured in a substantially square shape.
- the CD light receiving area 74 of the photodetector 73A includes a light receiving output signal UAa1, UAb1, UAc1, UAd1 from the central main light receiving part 74A and the segments 74Aa, 74Ab, 74Ac, 74Ad of the central main light receiving part 74A.
- Current / voltage conversion amplifiers 77DL1, 77DR1, 77EL1, 7 for converting and amplifying the current signal to the voltage signal 7ER1 and current / voltage conversion amplifiers 77DL1, 77DR1, 77EL1, 77ER1
- Each post-stage amplifier 7 for further amplifying each of the signals converted and amplified by the 7DL2, 77DR2, 77EL2, and 77ER2.
- the subtractor 77A constituting the calculation unit 76A is, for example, a pair of upper and lower segments 74Aa and 74A constituting the first main light receiving unit 74A in the center in the CD light receiving region 74 of the photodetector 73A.
- b and the difference between output signals from 74Ac and 74Ad ⁇ (TAa1 + TAb1) ⁇ (TA c1 + TAd1) ⁇ , that is, (TAab1-TAcd1) is calculated and generated as the main push-pull signal SA1.
- the front side first sub light receiving portion 74B having a substantially rectangular shape in the CD light receiving region 74 is divided into four by two substantially perpendicular dividing lines 74Bx and 74By, and has four substantially rectangular light detection surface portions. 74Ba, 74Bb, 74Bc, 74Bd so-called segments 74Ba, 74Bb, 7 4Bc and 74Bd.
- the first sub light receiving portion 74B on the front side of the CD light receiving region 74 having a substantially rectangular shape includes a first sub segment 74Ba having a substantially rectangular shape and a second shape having a substantially rectangular shape adjacent to the first sub segment 74Ba.
- the first sub-segment 74Ba is adjacent to the fourth sub-segment 74Bd.
- the first sub light receiving portion 74B on the front side of the CD light receiving region 74 is formed in a substantially square shape.
- the CD light receiving region 74 of the photodetector 73A includes the light receiving output signals UBa1, UBb1, UBc1, UBd1 from the front sub light receiving portion 74B and the segments 74Ba, 74Bb, 74Bc, 74Bd of the front sub light receiving portion 74B.
- Current / voltage conversion amplifiers 77FL1, 77FR1, 77GL1, 77G for converting and amplifying the current signal to the voltage signal R1 and each post-stage amplifier 77F that further amplifies each signal that has been converted to a voltage signal by each current / voltage conversion amplifier 77FL1, 77FR1, 77GL1, 77GR1, and amplified L2, 77FR2, 77GL2, and 77GR2.
- the subtractor 77B that constitutes the calculation unit 76A includes, for example, a pair of upper and lower segments 74Ba and 74Bb that constitute the front-side first sub light receiving unit 74B in the CD light receiving region 74 of the photodetector 73A.
- And difference between output signals from 74Bc and 74Bd ⁇ (TBa1 + TBb1) ⁇ (TBc 1 + TBd1) ⁇ , that is, (TBab1-TBcd1) is calculated and generated as the preceding sub push-pull signal SB1.
- the first sub light receiving portion 74C on the rear side of the CD light receiving region 74 having a substantially rectangular shape is divided into four by two substantially perpendicular dividing lines 74Cx and 74Cy, and the light detection has four substantially rectangular shapes.
- Surface portions 74Ca, 74Cb, 74Cc, 74Cd so-called segments 74Ca, 74Cb, 7 4Cc and 74Cd.
- the first sub light receiving portion 74C on the rear side of the CD light receiving region 74 having a substantially rectangular shape has a first sub segment 74Ca having a substantially rectangular shape and a first rectangular shape having a substantially rectangular shape adjacent to the first sub segment 74Ca.
- the first sub-segment 74Ca is adjacent to the fourth sub-segment 74Cd.
- the first sub light receiving portion 74C on the rear side of the CD light receiving region 74 is formed in a substantially square shape.
- the CD light receiving region 74 of the photodetector 73A includes light receiving output signals UCa1, UCb1, UCc1 from the rear sub light receiving portion 74C and the segments 74Ca, 74Cb, 74Cc, 74Cd of the rear sub light receiving portion 74C.
- UCd1 converts each current signal into a voltage signal and amplifies each current / voltage conversion amplifier 77HL1, 77HR1, 77IL1, 77I R1 and each subsequent stage amplifier 77H for further amplifying each of the signals converted and amplified by the current / voltage conversion amplifiers 77HL1, 77HR1, 77IL1, and 77IR1. L2, 77HR2, 77IL2, and 77IR2.
- the subtractor 77C constituting the calculation unit 76A is, for example, a pair of upper and lower segments 74Ca and 74Cb constituting the rear first sub light receiving unit 74C in the CD light receiving region 74 of the photodetector 73A.
- the difference between output signals from 74Cc and 74Cd ⁇ (TCa1 + TCb1) ⁇ (TCc 1 + TCd1) ⁇ , that is, (TCab1-TCcd1) is calculated and generated as a delayed sub push-pull signal SC1.
- a preceding sub push-pull signal SB1 which is an output signal of the subtractor 77B
- a delayed sub push-pull signal SC1 that is an output signal of the subtractor 77C
- the adder 78C calculates the addition (SB1 + SC1) of these signals, and adds the sub push-pull signal S. Let D1.
- An addition sub push-pull signal SD1 that is an output signal of the adder 78C is input to the amplifier 78B.
- the amplifier 78B amplifies the added sub push-pull signal SD1 to a signal level equivalent to that of the main push-pull signal SA1 with an amplification factor K, for example.
- the subtractor 78A The output signal of the subtractor 77A and the output signal of the amplifier 78B are input.
- the subtractor 78A The difference between the main push-pull signal SA1 and the signal obtained by amplifying the added sub push-pull signal SD1 is calculated and output as a tracking error signal SE1.
- the tracking error signal SE1 generated by the calculation unit 76A is converted into an objective lens driving unit 79 (FIG. 2). , FIG. 3) and the objective lens 70 (for the track D80 (FIG. 5) of the optical disc D
- the tracking adjustment shown in FIGS. 2 and 3) is automatically performed.
- Main information signal, focus error signal and tracking error signal S E1 is obtained.
- LSI large scale integration
- IC semiconductor integrated circuit
- the FPC that connects the LSI of the substrate constituting the optical disk device and the LD of the optical pickup device so as to be energized is bent or extended so that the FPC is routed, for example.
- a structure in which a high-frequency pulse signal is flowed through the FPC may be disadvantageous in terms of unnecessary radiation.
- Each light receiving output signal UAa1, UAb1, UAc1, UAd1, UBa1, UBb1, UB c1, UBd1, UCa1, UCb1, UCc1, UCd1 are each converted from a current signal to a voltage signal and amplified, and each current / voltage conversion amplifier 77DL1, 77DR1, 77E L1, 77ER1, 77FL1, 77FR1, 77GL1, 77GR1, 77HL1, 7 7HR1, 77IL1, 77IR1, and current / voltage conversion amplifiers 77DL1, 77D R1, 77EL1, 77ER1, 77FL1, 77FR1, 77GL1, 77GR1, 7 7HL1, 77HR1, 77IL1, 77IR1, 77IR1, 77IR1, 77IR2, and 77IR2, 77EL2, 77EL2, and 7EL2, respectively.
- c1, UBd1, UCa1, UCb1, UCc1, UCd1 are, for example, photoelectrically converted signals TAa1, TAb1, TAc1, TAd1, TBa1, TBb1, TBc1, TBd1, TCa1, TCb1, TCc1, and TCd1 are output from the photodetector 73A.
- a current / voltage conversion amplifier (7 7DL1, 77DR1, 77EL1, 77ER1, 77FL1, 77GL1 , 77GR1, 77HL1, 77HR1, 77IL1, 77IR1) are normal preamplifier amplifiers (77DL1, 77DR1, 77EL1, 77ER1, 77FL1, 77FR1, 77GL1, 77GR1, 77HL1, 77HR 1, 77IL1, 77IR1).
- a current / voltage conversion amplifier (7 7DL1, 77DR1, 77EL1, 77ER1, 77FL1, 77FR1, 77GL1 , 77GR1, 77HL1, 77HR1, 77IL1, 77IR1) are amplifier amplifiers (7 7DL2, 77DR2, 77EL2, 77ER2, 77FL2, 77FR2, 77GL2 , 77GR2, 77HL2, 77HR2, 77IL2, and 77IR2) may be located downstream of the signal flow.
- the first optical disc D conforming to the CD standard is a first laser beam conforming to the CD standard.
- the tracking error signal SE1 is detected as follows.
- the adder 77D of the calculation unit 76A has a photoelectric conversion signal TAa corresponding to a part of the zero-order reflected light received by the first segment 74Aa of the main light receiving unit 74A of the photodetector 73A. 1 and the photoelectric conversion signal TAb1 corresponding to the light amount of a part of the 0th-order reflected light received by the second segment 74Ab of the main light receiving unit 74A of the photodetector 73A, are added together, and the photoelectric conversion signal TA is added. ab1 is generated.
- the adder 77E of the calculation unit 76A is a photoelectric conversion signal TAc corresponding to a part of the light amount of the zero-order reflected light received by the third segment 74Ac of the main light receiving unit 74A of the photodetector 73A. 1 and the photoelectric conversion signal TAd1 corresponding to the light quantity of a part of the 0th-order reflected light received by the fourth segment 74Ad of the main light receiving unit 74A of the photodetector 73A, are added together, and the photoelectric conversion signal TA is added. Generate cd1.
- the subtractor 77A of the calculation unit 76A is configured to add the addition result (photoelectric conversion signal TAa
- the addition result (photoelectric conversion signal TAc1 + photoelectric conversion signal TAd1) of the adder 77E is subtracted from (1 + photoelectric conversion signal TAb1) to generate the main push-pull signal SA1.
- the subtractor 77A is a signal ⁇ (photoelectric conversion signal TAa1 + photoelectric conversion signal TAb1) ⁇ (photoelectric conversion signal TAc1 + photoelectric conversion signal TAd1) ⁇ corresponding to the light amount of the 0th-order reflected light that is the basis of the tracking error signal SE1, that is, the main push The pull signal SA1 is output.
- the main beam for CD forming the main detection light spot 80 corresponding to the CD standard is reflected from the signal layer Da of the optical disc D, and the main detection light spot 90i in the main light receiving portion 74A in the CD light receiving region 74 of the photodetector 73A.
- the subtractor 77A connected to 4A calculates a difference between output signals from the main light receiving unit 74A and generates, for example, a main push-pull signal SA1.
- the adder 77F of the calculation unit 76A is a first sub-light receiving unit 74B of the photodetector 73A.
- a photoelectric conversion signal T corresponding to the amount of light of the first-order reflected light received at the segment 74Ba.
- Ba1 is added to the photoelectric conversion signal TBb1 corresponding to the amount of light of the first-order reflected light received by the second segment 74Bb of the front sub-light receiving unit 74B of the photodetector 73A to generate a photoelectric conversion signal TBab1.
- the adder 77G of the calculation unit 76A is the third of the front side sub light receiving unit 74B of the photodetector 73A.
- a photoelectric conversion signal T corresponding to the amount of light of the first-order reflected light received at the segment 74Bc.
- Bc1 is added to the photoelectric conversion signal TBd1 corresponding to the amount of light of a part of the first-order reflected light received by the fourth segment 74Bd of the front sub-light-receiving unit 74B of the photodetector 73A to generate a photoelectric conversion signal TBcd1. .
- the subtractor 77B of the calculation unit 76A is configured to add the addition result of the adder 77F (photoelectric conversion signal TBa).
- the sub push-pull signal SB1 is generated by subtracting the addition result (photoelectric conversion signal TBc1 + photoelectric conversion signal TBd1) of the adder 77G from (1 + photoelectric conversion signal TBb1).
- the first sub beam for CD forming the first sub detection light spot 81 corresponding to the CD standard is reflected from the signal layer Da of the optical disc D, and the first first beam on the front side in the CD light receiving region 74 of the photodetector 73A is reflected.
- the subtractor 77B connected to the front first sub light receiving unit 74B outputs from the front first sub light receiving unit 74B.
- the signal difference is calculated and generated as, for example, the preceding sub push-pull signal SB1.
- the adder 77H of the calculation unit 76A is a first sub-light receiving unit 74C of the rear side sub light receiving unit 74C.
- a photoelectric conversion signal T corresponding to a part of the amount of the primary reflected light received at the segment 74Ca.
- Ca1 is added to the photoelectric conversion signal TCb1 corresponding to the amount of light of the first-order reflected light received by the second segment 74Cb of the rear sub-light-receiving unit 74C of the photodetector 73A, and the photoelectric conversion signal TCab1 is added.
- the adder 77I of the calculation unit 76A is the third of the rear side sub light receiving unit 74C of the photodetector 73A.
- Cc1 is added to the photoelectric conversion signal TCd1 corresponding to the light amount of a part of the ⁇ 1st order reflected light received by the fourth segment 74Cd of the rear side sub light receiving portion 74C of the photodetector 73A, and the photoelectric conversion signal TCcd1 is added.
- the subtractor 77C of the arithmetic unit 76A is configured to add the addition result of the adder 77H (photoelectric conversion signal TCa).
- the sub push-pull signal SC1 is generated by subtracting the addition result (photoelectric conversion signal TCc1 + photoelectric conversion signal TCd1) of the adder 77I from (1 + photoelectric conversion signal TCb1).
- the second sub beam for CD that forms the second sub detection light spot 82 corresponding to the CD standard is reflected from the signal layer Da of the optical disc D, and the rear first light beam in the CD light receiving region 74 of the photodetector 73A.
- the subtractor 77C connected to the rear first sub light receiving portion 74C when the sub light receiving portion 74C is irradiated as the second sub detection light spot 92i, the rear first sub light receiving portion 74C.
- the difference between the output signals from is calculated and generated, for example, as a delayed sub push-pull signal SC1.
- the adder 78C of the calculation unit 76A obtains the subtraction result ⁇ (photoelectric conversion signal TBa1 ++) of the subtractor 77B.
- Photoelectric conversion signal TBb1) ⁇ (photoelectric conversion signal TBc1 + photoelectric conversion signal TBd1) ⁇
- subtraction result ⁇ (photoelectric conversion signal TCa1 + photoelectric conversion signal TCb1)
- photoelectric conversion signal TCc1 + photoelectric conversion signal TCd1 ⁇
- the amplifier 78B of the arithmetic unit 76A is connected to the addition result of the adder 78C [ ⁇ (photoelectric conversion signal TBa1 + Photoelectric conversion signal TBb1) ⁇ (photoelectric conversion signal TBc1 + photoelectric conversion signal TBd1) ⁇ + ⁇ ( Photoelectric conversion signal TCa1 + photoelectric conversion signal TCb1) ⁇ (photoelectric conversion signal TCc1 + photoelectric conversion signal TCd1) ⁇ ], that is, the added sub push-pull signal SD1 is amplified at an amplification factor K.
- the amplification factor K is a value determined to adjust the difference in light intensity between the 0th order light and the ⁇ 1st order diffracted light, for example, due to the diffraction efficiency of the diffraction grating 64A.
- the subtractor 78A of the arithmetic unit 76A is configured to output the subtraction result of the subtractor 77A [(photoelectric conversion signal TAa1 + From the photoelectric conversion signal TAb1) ⁇ (photoelectric conversion signal TAc1 + photoelectric conversion signal TAd1)], the amplification result [K ⁇ [ ⁇ (photoelectric conversion signal TBa1 + photoelectric conversion signal TBb1) ⁇ ( The tracking error signal SE1 is generated by subtracting the photoelectric conversion signal TBc1 + photoelectric conversion signal TBd1) ⁇ + ⁇ (photoelectric conversion signal TCa1 + photoelectric conversion signal TCb1) ⁇ (photoelectric conversion signal TCc1 + photoelectric conversion signal TCd1) ⁇ ]].
- This tracking error signal S E1 is [[(photoelectric conversion signal TAa1 + photoelectric conversion signal TAb1) ⁇ (photoelectric conversion signal TAc1. 1 + photoelectric conversion signal TAd1)] ⁇ K ⁇ [[ ⁇ (photoelectric conversion signal TBa1 + photoelectric conversion signal TB b1) ⁇ (photoelectric conversion signal TBc1 + photoelectric conversion signal TBd1) ⁇ + ⁇ (photoelectric conversion signal TCa 1 + photoelectric conversion signal TCb1) ⁇ (photoelectric conversion signal TCc1 + photoelectric conversion signal TCd1) ⁇ ]] ].
- each sub push-pull signal SB 1 and SC1 are output in mutually opposite phases. Thereafter, the sub push-pull signals SB1 and SC1 are added by the adder 78C, and the added sub push-pull signal SD1 generated by the addition is amplified by the amplifier 78B and then subtracted by the subtractor 78A from the main push-pull signal SA1. By performing the subtraction process, push-pull signals SA1, SB1, SC It is possible to generate a tracking error signal SE1 with high accuracy in which each offset component of 1 is canceled.
- the DVD light receiving region 75 of the photodetector 73A constituting the optical pickup device three beams obtained by diffracting and branching the second laser beam compliant with the DVD standard by the diffraction grating 64A, specifically, Main beam (0th order light) and two sub-beams ( ⁇ A second main light receiving portion 75A and two second sub light receiving portions 75B and 75C are formed corresponding to each of the first order diffracted light flux).
- the second main light receiving unit 75A and the second sub light receiving units 75B and 75C are each divided into four and configured by four segments.
- 5A is configured to include four segments 75Aa, 75Ab, 75Ac, and 75Ad that are divided into four by two substantially orthogonal dividing lines 75Ax and 75Ay and have a substantially rectangular shape.
- the second main light receiving portion 75A in the center of the D light receiving region 75 having a substantially rectangular shape includes a second main segment 75Aa having a substantially rectangular shape and a second shape having a substantially rectangular shape adjacent to the second main segment 75Aa.
- Main segment 75Ab a third main segment 75Ac having a substantially rectangular shape adjacent to the second main segment 75Ab, a fourth main segment 75Ad having a substantially rectangular shape adjacent to the third main segment 75Ac,
- the second main segment 75Aa is adjacent to the fourth main segment 75Ad.
- DVD The second main light receiving portion 75A at the center of the light receiving region 75 is formed in a substantially square shape.
- the front side second sub light receiving portion 75B having a substantially rectangular shape in the DVD light receiving region 75 is divided into four by two substantially perpendicular dividing lines 75Bx and 75By, and four segments 75Ba having a substantially rectangular shape, 75Bb, 75Bc, 75Bd.
- DVD light receiving area 75 The front side second sub light receiving portion 75B having a substantially rectangular shape includes a second sub segment 75Ba having a substantially rectangular shape and a second sub segment 75Bb having a substantially rectangular shape adjacent to the second sub segment 75Ba.
- the second subsegment 75Ba is adjacent to the fourth subsegment 75Bd.
- the second sub light receiving portion 75B on the front side of the DVD light receiving region 75 is formed in a substantially square shape.
- the second sub light receiving portion 75C on the rear side of the DVD light receiving region 75 having a substantially rectangular shape is divided into four by two substantially perpendicular dividing lines 75Cx and 75Cy, and four segments 75Ca having a substantially rectangular shape. , 75Cb, 75Cc, and 75DVD. DVD light receiving area 7
- the second sub light receiving portion 75C on the rear side having a substantially rectangular shape 5 includes a second sub segment 75Ca having a substantially rectangular shape and a second sub segment having a substantially rectangular shape adjacent to the second sub segment 75Ca.
- the second sub-segment 75Ca is adjacent to the fourth sub-segment 75DVD.
- the second sub light receiving portion 75C on the rear side of the DVD light receiving region 75 is formed in a substantially square shape.
- the DVD light receiving region 75 of the photodetector 73A includes, for example, each current / voltage conversion amplifier and each subsequent amplifier approximate to the circuit shown in FIG. 6, but detailed description thereof is omitted here.
- the arithmetic unit 76A includes, for example, each adder, subtracter, and amplifier that approximates the circuit shown in FIG. 6 and calculates a DVD signal. Although it is connected to the region 75, a detailed description thereof is omitted here.
- a main information signal, a focus error signal, and a tracking error signal SE2 are obtained.
- the tracking error signal SE2 is detected as follows.
- the main beam for DVD forming the main detection light spot 80 corresponding to the DVD standard is reflected from the signal layer Da of the optical disc D, and the main detection light spot 90ii on the main light receiving portion 75A in the DVD light receiving region 75 of the photodetector 73A.
- the subtractor connected to the main light receiving unit 75A calculates the difference between the output signals from the main light receiving unit 75A and generates, for example, a main push-pull signal SA2.
- the second DVD detection light spot 81 corresponding to the DVD standard is formed. Are reflected from the signal layer Da of the optical disc D and irradiated to the front side second sub light receiving portion 75B in the DVD light receiving region 75 of the photodetector 73A as the second sub detection light spot 91ii.
- the subtractor connected to the second sub light receiving unit 75B of the second sub light receiving unit 75B For example, the preceding sub push-pull signal SB 2 is generated.
- the second DVD detection light spot 82 corresponding to the DVD standard is formed. Is reflected from the signal layer Da of the optical disc D and is irradiated as the second sub detection light spot 92ii to the second sub light receiving portion 75C on the rear side in the DVD light receiving region 75 of the photodetector 73A.
- the subtractor connected to the second sub light receiving unit 75C on the rear side The difference between the output signals from the sub light receiving unit 75C is calculated, for example, the delayed sub push-pull signal SC 2 is generated.
- each sub push-pull signal SB 2 and SC2 are output in opposite phases. Thereafter, the sub push-pull signals SB2 and SC2 are added by the adder 78C, and the added sub push-pull signal SD2 generated by the addition is amplified by the amplifier 78B and then subtracted by the subtractor 78A from the main push-pull signal SA2. By performing the subtraction process, push-pull signals SA2, SB2, SC Therefore, it is possible to generate a tracking error signal SE2 with high accuracy in which each offset component 2 is canceled.
- FIG. 7 is a diagram for explaining a light receiving region of a photodetector according to an embodiment of the present invention
- FIG. It is a figure for demonstrating the derivation
- a DVD light receiving area 75 used for recording / reproducing of the DVD standard optical disk D and a CD light receiving area 74 used for recording / reproducing of the CD standard optical disk D are arranged. Is formed.
- the DVD light receiving region 75 three beams obtained by diffracting and branching the second laser beam compliant with the DVD standard by the diffraction grating 64A, specifically, the main beam (0th order light) and the front and rear of the main beam are arranged.
- a second main light receiving unit 75A and second sub light receiving units 75B and 75C are formed corresponding to each of the two sub beams ( ⁇ first-order diffracted light beams).
- the second main light receiving unit 75A and the second sub light receiving units 75B and 75C are divided into four parts, each of which includes four segments.
- Recording of the DVD standard optical disc D is performed by performing a predetermined calculation on each light receiving output obtained from each segment constituting the second main light receiving unit 75A, the second sub light receiving unit 75B, and the second sub light receiving unit 75C.
- a main information signal, a focus error signal, and a tracking error signal SE2 are obtained during reproduction or the like.
- the second main light receiving unit 75 A and the second sub light receiving portions 75B and 75C are not limited to four divisions, and may be, for example, two divisions. Further, the second sub light receiving portions 75b and 75c may not be divided, for example.
- the first laser beam conforming to the CD standard is diffracted and branched by the diffraction grating 64A, specifically, the three beams, specifically, the main beam (0th order light) and the front and rear of the main beam.
- the first main light receiving unit 74A and the two first sub light receiving units 74B and 74C are formed corresponding to each of the two sub beams ( ⁇ first-order diffracted light beams).
- the first main light receiving unit 74A and the first sub light receiving units 74B and 74C are each divided into four and configured by four segments.
- First main light receiving portion 74A, first sub light receiving portions 74B, 74C By performing a predetermined calculation on each light receiving output obtained from each segment constituting the above, a main information signal, a focus error signal, and a tracking error signal SE1 are obtained at the time of recording / reproducing of the CD standard optical disc D.
- the first main light receiving unit 74A and the first sub light receiving units 74B and 74C are not limited to four divisions, and may be, for example, two divisions. In addition, the first sub light receiving portions 74b and 74c may not be divided, for example.
- Second main light receiving portion 75A and second sub light receiving portions 75B, 7 in DVD light receiving region 75 The light receiving interval Ys (dvd) between 5C and the light receiving interval Ys (cd) between the first main light receiving unit 74A and the first sub light receiving units 74B and 74C in the CD light receiving region 74 is as follows: Is derived as follows.
- the diffraction angle ⁇ is obtained by an approximate expression based on the Bragg condition according to the following expression (16) based on the lattice interval d with one period extending from the recess S11 (see FIG. 8). Note that the lattice spacing d is, for example, about several ⁇ m to several hundred ⁇ m.
- the recess S11 includes a bottom surface Si, and both side surfaces Siii, Siv substantially orthogonal to the bottom surface Si, It is configured with.
- the concave surface S21 constituting the concave portion S11 is also configured to include a bottom surface Si and both side surfaces Siii and Siv substantially orthogonal to the bottom surface Si.
- the convex portion S12 includes an outer surface Sii substantially parallel to the bottom surface Si, and both side surfaces Sii substantially orthogonal to the bottom surface Si and the outer surface Sii. i and Siv.
- the convex surface S21 constituting the convex portion S12 is also an outer surface Sii substantially parallel to the bottom surface Si, and both side surfaces Siii, Si substantially orthogonal to the bottom surface Si and the outer surface Sii.
- the diffraction angle ⁇ means that the diffracted light is a substantially smooth surface S of the diffraction grating 64A. Means the angle formed with the normal line N of the bottom surface Si of the concave surface S21 and the outer surface Sii of the convex surface S22 constituting the diffractive surface portion 20a on the back side.
- the virtual light emission point X is set to be approximately a pair with the normal line N as the central axis. Note that the explanatory diagram shown in FIG. FIG.
- the 1st or 2nd light source 62, 63 contained in the light emission surface 61a of the laser unit 61 is shown.
- the concave surface S21 on the back side of the substantially smooth surface S of the diffraction grating 64A from the first light emitting point O indicating the actual position of the diffraction grating 64A.
- the second light emitting point X indicating the apparent position of the first or second light source 62, 63 with respect to the sub beam on the light emitting surface 61a of the laser unit 61.
- the light emitting surface 61a of the laser unit 61 is perpendicular to the normal line N of the substantially smooth surface S of the diffraction grating 64A, and the bottom surface Si constituting the concave surface S21 on the back side of the surface S and the outer surface Sii constituting the convex surface S22. It is a plane located at a position away from the normal distance L by a substantially normal distance L. And the distance Yr from the 1st light emission point O on the light emission surface 61a of the laser unit 61 to the 2nd light emission point X is calculated
- the first or second light emitted virtually from the first light emitting point O is used.
- the first or second light that is virtually emitted from the first irradiation point Oa which is substantially the center of the main spot 80 on the signal layer Da of the optical disc D corresponding to the laser light, and the second light emission point X.
- the second irradiation point Xb / Xc which is the substantially central portion of the sub-spot 81/82 on the signal layer Da of the optical disc D corresponding to the laser beam, is obtained.
- the distance Yp between the first irradiation point Oa and the second irradiation point Xb or Xc on the signal layer Da of the optical disc D is equal to the distance Yr from the light emission point O to the light emission point X and the collimator lens 67.
- the focal length f2 and the focal length f1 of the objective lens 70 for example, the following equation (18) is obtained.
- the wavelength of the first or second laser beam is ⁇
- the grating interval of the diffraction grating 64A is d
- the concave surface S21 on the back side from the light emitting surface 61a of the laser unit 61 to the surface S of the diffraction grating 64A is formed.
- the focal length of the objective lens 70 is f1
- the focal length of the collimator lens 67 is f2
- the signal of the optical disc D The distance Yp between the first irradiation point Oa and the second irradiation point Xb or Xc on the layer Da is obtained based on the following equation (19).
- the distance Yp represents each main-sub pitch on the signal layer Da of the optical disc D when the first or second laser light is diffracted and branched by the diffraction grating 64A.
- the first main light receiving unit 74A and the first sub light receiving unit 74B in the photodetector 73A. , 74C and the method of setting the light receiving interval Ys (dvd) between the second main light receiving unit 75A and the second sub light receiving units 75B and 75C will be described.
- a virtual light source interval Yr (cd) corresponding to the emitted light for CD and an actual light receiving interval Ys (cd) corresponding to the reflected light for CD Are substantially equal.
- Ys (cd) L ⁇ tan ⁇ sin ⁇ 1 (785 / d) ⁇ (26)
- the numerical value of the predetermined normal distance L and the numerical value of the predetermined lattice spacing d are expressed by the following equation (26). Is substituted into the light receiving interval Ys (cd in the CD light receiving region 74 of the photodetector 73A. ) Is required.
- the predetermined numerical value of the normal distance L and the predetermined numerical value of the lattice spacing d are both constant values, it corresponds to the reflected DVD light derived based on the equation (23).
- the actual light receiving interval Ys (dvd) is compared with the actual light receiving interval Ys (cd) corresponding to the reflected light for CD derived based on the equation (26), the light receiving interval is larger than the light receiving interval Ys (dvd). Ys (cd) is clearly longer.
- the light reception interval Ys (cd) between 4B and 74C is a distance Ys (c determined by the equation (26). It is set based on d).
- the light receiving interval Ys (dvd) between the second main light receiving unit 75A and the second sub light receiving units 75B and 75C in the photodetector 73A is based on the distance Ys (dvd) obtained by the equation (23). Is set.
- the distance Ys (cd) between the center of the four segments in the first main light receiving unit 74A and the center of the four segments of the first sub light receiving units 74B and 74C is obtained by Expression (26).
- Distance Ys (cd) Further, a distance Ys (dvd) between the center of the four segments in the second main light receiving unit 75A and the center of the four segments of the second sub light receiving units 75B and 75C is a distance Ys obtained by Expression (23). Set to (dvd).
- the photodetector 73A can appropriately cope with each main-sub pitch when the first or second laser light is diffracted and branched by the diffraction grating 64A.
- Each spot 90i, 91i, 92i / 90ii, 91ii irradiated to the photodetector 73A , 92ii spectral ratio, photodetection sensitivity of photodetector 73A >>
- each spot 90i, 91i, 92i / 90ii, 91ii, 92 will be described with reference to FIG.
- the spectral ratio, etc., which is the intensity ratio of light ii, will be described.
- the preceding sub spot 81 on the track D80 of the optical disc D based on the DVD standard Sub-detection light spot 91ii corresponding to, and track D of optical disc D based on the DVD standard
- the spectral ratio between the main detection light spot 90ii corresponding to the main spot 80 on 80 and the sub detection light spot 92ii corresponding to the subsequent subspot 82 on the track D80 of the optical disc D based on the DVD standard is approximately 1:15. : 1.
- the light intensity in the sub detection light spot 91ii or 92ii is determined by the photodetector 73. This is approximately 1/17 of the intensity of the light irradiated to the DVD light receiving area 75 of A. In this case, the intensity of the light in the main detection light spot 90ii is the DVD light receiving area 7 of the photodetector 73A. 5 is approximately 15/17 of the entire intensity of light irradiated to the lens 5.
- the spectral ratio of the laser light irradiated to the DVD light receiving region 75 of the inline type photodetector 73A shown in FIG. 5 is equal to the spectral ratio of the laser light irradiated to the inline type DVD photodetector 270 shown in FIG. It is almost the same.
- the preceding sub spot 1 on the track D100 of the optical disc D based on the DVD standard Sub detection light spot 201 corresponding to 01, main detection light spot 200 corresponding to main spot 100 on track D100 of optical disk D based on the DVD standard, and DVD
- the spectral ratio with the sub detection light spot 202 corresponding to the subsequent sub spot 102 on the track D100 of the optical disc D based on the standard is approximately 1: 15: 1.
- the intensity of light in the sub detection light spot 201 or 202 is determined by the photodetector 27. This is approximately 1/17 of the entire light intensity irradiated to zero. In this case, the intensity of light in the main detection light spot 200 is approximately 15/17 of the entire intensity of light irradiated on the photodetector 270. It becomes.
- the sub detection light spot 91i corresponding to the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard, and the track D80 of the optical disc D based on the CD standard A main detection light spot 90i corresponding to the upper main spot 80 and a sub detection light spot 9 corresponding to the subsequent subspot 82 on the track D80 of the optical disc D based on the CD standard.
- the spectral ratio with 2i is approximately 1: 23: 1.
- the intensity of light in the sub detection light spot 91i or 92i is determined by the photodetector 73. This is approximately 1/25 of the intensity of the light irradiated to the CD light receiving area 74 of A. In this case, the intensity of light at the main detection light spot 90i is approximately 23/25 of the entire intensity of light irradiated to the CD light receiving region 74 of the photodetector 73A.
- the spectral ratio of the laser light irradiated to the CD light receiving region 74 of the in-line photodetector 73A shown in FIG. 5 is the spectral ratio of the laser light irradiated to the three-beam CD photodetector 270 shown in FIG. And different.
- the spectral ratio between the main detection light spot 200 corresponding to the main spot 100 on 100 and the sub detection light spot 202 corresponding to the subsequent sub spot 102 on the track D100 of the optical disc D based on the CD standard is approximately 1:16. : 1.
- the intensity of light in the sub detection light spot 201 or 202 is determined by the photodetector 27. This is approximately 1/18 of the total light intensity irradiated to zero. In this case, the intensity of light in the main detection light spot 200 is approximately 16/18 of the entire intensity of light irradiated on the photodetector 270. It becomes.
- each CD laser beam transmitted through the diffraction grating 64A is detected by the photodetector 7.
- the CD light receiving area 74 of 3A is irradiated, the spectral ratio of each laser beam irradiated to the CD light receiving area 74 is changed from the conventional one.
- the main light receiving part 74A and the sub light receiving parts 74B, 74C in the CD light receiving area 74 of the photodetector 73A are changed with the change in the spectral ratio of each laser beam irradiated to the CD light receiving area 74 compared to the conventional one.
- the light reception sensitivity of is changed.
- the change magnification of the light receiving sensitivity of the sub light receiving portions 74B and 74C irradiated with the sub detection light spots 91i and 92i is obtained by the following equation (27).
- the light receiving sensitivity (mV / ⁇ W) (millivolt per microwatt) of C is set to a value of approximately 139% with respect to the conventional one, for example, when the conventional one is 100%.
- the change magnification of the light receiving sensitivity of the main light receiving unit 74A irradiated with the main detection light spot 90i is obtained by the following equation (28).
- the light receiving sensitivity (mV / ⁇ W) of the main light receiving unit 74A in the CD light receiving region 74 of the photodetector 73A is about 9 compared to the conventional one when the conventional one is 100%. A value of 7% will be set.
- a sub detection light spot 91ii corresponding to the preceding sub spot 81 on the track D80 of the optical disc D based on the DVD standard A main detection light spot 90ii corresponding to the main spot 80 on the track D80 of the optical disk D based on the DVD standard and a sub detection light spot 92ii corresponding to the subsequent subspot 82 on the track D80 of the optical disk D based on the DVD standard Spectral ratio is approximately 1: 16: 1 It may be said.
- the light intensity in the sub detection light spot 91ii or 92ii is determined by the photodetector 73. This is approximately 1/18 of the entire intensity of light irradiated onto the DVD light receiving area 75 of A. In this case, the intensity of the light in the main detection light spot 90ii is the DVD light receiving area 7 of the photodetector 73A. 5 is approximately 16/18 of the total intensity of the light irradiated to 5.
- the sub detection light spot 91i corresponding to the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard.
- the intensity of light in the sub detection light spot 91i or 92i is determined by the photodetector 73. This is approximately 1 / 25.5 of the entire intensity of light irradiated to the CD light receiving area 74 of A. In this case, the intensity of light at the main detection light spot 90i is equal to the CD light receiving area 7 of the photodetector 73A. 4 is approximately 23.5 / 25.5 of the entire intensity of light irradiated to 4.
- the change magnification of the light receiving sensitivity of the sub light receiving portions 74B and 74C irradiated with the sub detection light spots 91i and 92i is obtained by the following equation (29).
- the sub light receiving portion 74B or 74 in the CD light receiving region 74 of the photodetector 73A is set to 100%, the light receiving sensitivity (mV / ⁇ W) is set to a value of approximately 142% with respect to the conventional one.
- the main light receiving unit 74 irradiated with the main detection light spot 90i the main light receiving unit 74 irradiated with the main detection light spot 90i.
- the change rate of the light receiving sensitivity of A is obtained by the following equation (30).
- the light receiving sensitivity (mV / ⁇ W) of the main light receiving unit 74A in the CD light receiving region 74 of the photodetector 73A is about 9 compared to the conventional one when the conventional one is 100%. A value of 6% will be set.
- the sub detection light spot 91i corresponding to the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard.
- the intensity of light in the sub detection light spot 91i or 92i is determined by the photodetector 73. This is approximately 1/22 of the total intensity of light applied to the CD light receiving area 74 of A. In this case, the intensity of light at the main detection light spot 90i is approximately 20/22 of the entire intensity of light irradiated to the CD light receiving region 74 of the photodetector 73A.
- the change magnification of the light receiving sensitivity of the sub light receiving portions 74B and 74C irradiated with the sub detection light spots 91i and 92i is obtained by the following equation (31).
- the sub light receiving portion 74B or 74 in the CD light receiving region 74 of the photodetector 73A is set to a value of approximately 122% with respect to the conventional one.
- the main light receiving unit 74 irradiated with the main detection light spot 90i the main light receiving unit 74 irradiated with the main detection light spot 90i.
- the change rate of the light receiving sensitivity of A is obtained by the following equation (32).
- the light receiving sensitivity (mV / ⁇ W) of the main light receiving unit 74A in the CD light receiving region 74 of the photodetector 73A is about 9 compared to the conventional one when the conventional one is 100%. A value of 8% will be set.
- the sub detection light spot 91i corresponding to the preceding sub spot 81 on the track D80 of the optical disc D based on the CD standard.
- the intensity of light in the sub detection light spot 91i or 92i is determined by the photodetector 73. This is approximately 1/28 of the total intensity of light applied to the CD light receiving area 74 of A. In this case, the intensity of light at the main detection light spot 90i is approximately 26/28 of the entire intensity of light irradiated to the CD light receiving region 74 of the photodetector 73A.
- the change magnification of the light receiving sensitivity of the sub light receiving portions 74B and 74C irradiated with the sub detection light spots 91i and 92i is obtained by the following equation (33).
- the sub light receiving portion 74B or 74 in the CD light receiving region 74 of the photodetector 73A is set to a value of approximately 156% with respect to the conventional one.
- the main light receiving unit 74 irradiated with the main detection light spot 90i the main light receiving unit 74 irradiated with the main detection light spot 90i.
- the change rate of the light receiving sensitivity of A is obtained by the following equation (34).
- the light receiving sensitivity (mV / ⁇ W) of the main light receiving unit 74A in the CD light receiving region 74 of the photodetector 73A is about 9 compared to the conventional one when the conventional one is 100%. A value of 6% will be set.
- the photodetector 73A diffracts and branches the second laser beam compliant with the DVD standard by the diffraction grating 64A.
- Sub-pitch and spectral ratio can also be handled, and tracking error signal SE The accuracy of detecting error signals such as 1 and SE2 can be improved.
- the light receiving interval Ys (dvd) in the DVD light receiving region 75 of the photodetector 73A is DV. Since the grating interval d of the D diffraction grating member 20 or the DVD diffraction grating 64A is used as a reference, for example, the signal layer Da of the DVD standard optical disk D is composed of the first layer DL0 and the second layer DL. When the first layer DL0 is reproduced, the reflected light from the second layer DL1 is not only the second main light receiving unit 75A but also one of the second sub light receiving units 75B and the other. It is possible to prevent the second sub light receiving unit 75C from receiving light.
- FIG. 9 is a schematic plan view showing a first embodiment of a diffraction grating equipped in an optical pickup device;
- FIG. 10 is a diagram showing the relationship between the optical disc radial direction and the phase difference in the diffraction grating of FIG.
- the optical pickup device includes the light emitting element 61 having the first light source 62 and the second light source 63, the diffraction grating 64A, and the polarization beam splitter 6. 6, the collimator lens 67, the quarter-wave plate 68, the reflection mirror 69, The objective lens 70, the first parallel plate 71, the second parallel plate 72, the photodetector 73A, the objective lens driving unit 79, the flexible circuit board (not shown), And the connector.
- the optical pickup device further includes the coupling lens 65i and the light receiving element 65ii as necessary.
- the optical pickup device may further include, for example, the arithmetic unit 76A (FIGS. 2 and 3).
- the optical pickup device includes at least a first laser wavelength light and a second laser wavelength light that is a laser wavelength light different from the first laser wavelength light and has a shorter wavelength than the first laser wavelength light.
- a multi-wavelength emission type light emitting element 61 capable of emitting, and at least two first sub-beams at substantially symmetric positions with at least one first main beam and one first main beam centered on the first laser wavelength light.
- the second laser wavelength light is divided into at least one second main beam and at least two second sub-beams at substantially symmetrical positions around the one second main beam.
- the first optical disc D corresponding to the first laser wavelength light is irradiated with one first main beam and at least two first sub-beams, a substantially central portion of the spot 80 of the first main beam,
- the interval Yp between the irradiation point Oa to be applied and the irradiation point Xb to be the substantially central portion of the spot 81 of the first sub beam is defined as Yp1.
- the first optical disk D corresponding to the first laser wavelength light is set to a substantially central portion of the spot 80 of the first main beam when one first main beam and at least two first sub beams are irradiated.
- the distance Yp between the irradiation point Oa and the irradiation point Xc, which is substantially the center of the spot 82 of the first sub-beam, is defined as Yp1.
- the second optical disk D corresponding to the second laser wavelength light is set to a substantially central portion of the spot 80 of the second main beam when one second main beam and at least two second sub beams are irradiated.
- Irradiation point Oa and the irradiation point X which is substantially the center of the spot 81 of the second sub beam
- the interval Yp with b is defined as Yp2.
- the second optical disc D corresponding to the second laser wavelength light When a second main beam and at least two second sub beams are irradiated to the second main beam.
- the interval Yp between the irradiation point Oa, which is substantially the center of the main beam spot 80, and the irradiation point Xc, which is the approximate center of the second sub-beam spot 82, is defined as Yp2.
- the light intensity of one first main beam The light efficiency ratio of the light intensity of one first main beam to the sum of the light intensity of at least two first sub beams is defined as A1.
- the intensity of the light of one second main beam is defined as A2.
- an optical pickup device that exhibits performance satisfying the following expressions (35) and (36) is configured.
- the optical pickup device satisfies the above formula (1) and / or the above formula (2) and the above formula (3), preferably the above formula (1) and / or the above formula (35) and the above formula (36).
- the first laser wavelength light and the second laser wavelength light that is different from the first laser wavelength light and has a shorter wavelength than the first laser wavelength light are surely obtained.
- a multi-wavelength compatible optical pickup device in which the detection accuracy of error signals such as tracking error signals SE1 and SE2 is improved.
- the first laser wavelength light emitted from the multi-wavelength emission type light emitting element 61 does not have a diffractive surface portion corresponding to the first laser wavelength light, and corresponds to the second laser wavelength light and is based on the second laser wavelength light.
- the diffraction grating 64A having the diffractive surface portion 20a is divided into at least one first main beam and two first sub-beams at substantially symmetrical positions around the first main beam. The first main beam and at least two substantially symmetrical positions about the first main beam.
- the signal surface portion Da of the first optical disc D is irradiated with the first sub-beams, at least two first sub-beams at substantially symmetrical positions around the first main beam and the first main beam.
- One sub-beam is accurately and reliably irradiated onto the track D80 of the signal surface portion Da of the first optical disc D.
- the second laser wavelength light emitted from the light emitting element 61 of the multiple wavelength emission type does not have a diffractive surface portion corresponding to the first laser wavelength light, and corresponds to the second laser wavelength light and is based on the second laser wavelength light.
- the diffraction grating 64A having the diffractive surface portion 20a is divided into at least one second main beam and two second sub-beams at substantially symmetrical positions around the one second main beam.
- the first optical disc D corresponding to the first laser wavelength light corresponds to the difference between the light emission position of the first laser wavelength light in the light emitting element 61 and the light emission position of the second laser wavelength light in the light emitting element 61.
- the optical pickup device is set so as to be different from each other.
- the optical pickup device when the optical pickup device is located on the innermost circumferential side D84 of the optical disc D, when the optical pickup device is located on the outermost circumferential side D88 of the optical disc D, or when the optical pickup device is located on the innermost circumferential side of the optical disc D.
- the position of the first laser wavelength light on the signal surface portion Da of the substantially disc-shaped first optical disc D is substantially greater than the condensing position in the disc radial direction.
- the concentrating position of the second laser wavelength light in the disc radial direction on the signal surface portion Da of the disc-shaped second optical disc D is slightly present on the inner peripheral side D84 of the substantially disc-shaped optical disc D.
- the first laser wavelength is formed on the signal surface portion Da of the first optical disc D.
- the light is surely collected and the second optical disk D has a second signal surface Da.
- a multi-wavelength compatible optical pickup device that reliably collects laser wavelength light is configured.
- various basic information / data related to the first optical disc D can be read into the inner peripheral side D84 of the signal surface portion Da of the substantially disc-shaped first optical disc D corresponding to the first wavelength light and based on the CD standard. Or an area in which various basic information / data relating to the first optical disc D can be written.
- various basic information / data related to the second optical disc D can be read into the inner peripheral side D84 of the signal surface portion Da of the substantially disc-shaped second optical disc D corresponding to the second wavelength light and based on the DVD standard. Or an area in which various basic information / data related to the second optical disc D can be written.
- the second optical disk D corresponding to the second wavelength light and based on the DVD standard rather than the size of the pits on the signal surface portion Da of the first optical disk D corresponding to the first wavelength light and based on the CD standard.
- the size of the pits on the signal surface portion Da is smaller.
- the DVD standard corresponds to the second wavelength light, rather than the size of the light spot 80 irradiated / formed on the signal surface portion Da of the first optical disc D corresponding to the first wavelength light based on the CD standard.
- the size of the spot 80 of the light irradiated / formed on the signal surface portion Da of the second optical disk D based thereon is smaller.
- the first laser wavelength as described above. It is preferable that the concentrating position of the light in the radial direction of the disk and the condensing position of the second laser wavelength light in the radial direction of the disk are set.
- the optical pickup device also includes a first laser wavelength light and a second laser wavelength light that is a laser light having a wavelength different from the first laser wavelength light and a laser light having a shorter wavelength than the first laser wavelength light.
- the first laser wavelength light is divided into at least one first main beam and two first sub beams
- the second laser wavelength light is divided into at least one second main beam and two first sub beams.
- a diffraction grating 64A having a diffraction surface portion 20a (FIG. 4, FIG. 8, FIG. 9) corresponding to the second laser wavelength light and having the second laser wavelength light as a reference is divided into the second sub-beam and one first laser beam.
- One first main light receiving portion 74A (FIGS.
- an optical pickup device in which generation of unnecessary diffracted light in the diffraction grating 64A is suppressed is configured.
- a conventional optical pickup device generally has a first diffractive surface portion 30 corresponding to the first laser wavelength light. 2 (FIGS. 29 and 30) and a second diffraction surface portion 304 corresponding to the second laser wavelength light, and diffraction gratings 300A and 300B having two diffraction surface portions 302 and 304 are provided. Therefore, in the conventional optical pickup device, when the first laser wavelength light passes through the first diffraction surface portion 302 of the diffraction gratings 300A and 300B corresponding to the first laser wavelength light, The laser wavelength light has been divided into at least one first main beam and two first sub beams, but the first laser wavelength light corresponds to the diffraction gratings 300A and 300 corresponding to the second laser wavelength light. Unnecessary diffracted light was generated when passing through the second diffraction surface portion 304 of B.
- the second laser wavelength light is unnecessary when passing through the first diffraction surface portion 302 of the diffraction gratings 300A and 300B (FIGS. 29 and 30) corresponding to the first laser wavelength light. Diffracted light was generated.
- the second laser wavelength light is transmitted through the second diffraction surface 304 of the diffraction gratings 300A and 300B corresponding to the second laser wavelength light, the second laser wavelength light is at least one second main beam and two It was divided into the second sub-beam.
- the diffractive surface portion 20a corresponding to the second laser wavelength light and based on the second laser wavelength light is provided in the optical pickup device, and corresponds to the second laser wavelength light, and the diffraction surface portion 20a of the diffraction grating 64A based on the second laser wavelength light is defined as the first. If the first laser wavelength light is divided into at least one first main beam and two first sub beams when the laser wavelength light is transmitted, the first laser wavelength light is converted into the diffraction grating 64A. It is substantially prevented that unnecessary diffracted light is generated when it passes through.
- the diffraction grating 64A corresponds to the second laser wavelength light and is based on the second laser wavelength light. 8 and 9), when the second laser wavelength light is transmitted through the diffractive surface portion 20a, unnecessary diffracted light does not substantially occur, and the second laser wavelength light has at least one second main beam and 2 Divided into a second sub-beam of the book.
- the center point distance Yt (cd) between the first main light receiving unit 200a and the first sub light receiving units 200b and 200c in the CD light receiving region 280 of the conventional photodetector 270 is expressed as follows.
- the normal distance Yt (cd) was standardized corresponding to the laser wavelength light.
- the “standardization” in the present invention is used for the sake of convenience, for example, for explaining a conventional one that has been widely spread.
- the standardized one is substantially equivalent to the one that has been standardized as a result of mass production.
- What is “standardized” in the present invention is not necessarily limited to, for example, JIS (Japan Industrial St.). It does not mean only those defined in standards such as andards).
- the standardized photodetector 270 is a general-purpose photodetector 270 that has been mass-produced so far and has been widely spread in the market.
- One first main beam of the first laser wavelength light is irradiated to one first main light receiving unit 200a of the conventional standard, and two first sub-beams of the first laser wavelength light are two second main beams of the conventional standard. 1 sub light-receiving parts 200b and 200c were irradiated.
- the distance Yt between the center points of the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the photodetector 270 (FIG. 27) standardized corresponding to the first laser wavelength light.
- the first main light receiving portion 74A in the photodetector 73A (FIG. 7).
- the center point distance Ys (cd) between the first sub-light-receiving portions 74B and 74C are examples of the first laser wavelength light.
- the distance Yt between the center points of the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the photodetector 270 (FIG. 27) standardized corresponding to the first laser wavelength light ( cd), in the photodetector 73A (FIG. 7), the first main light receiving unit 74A and the first Since the distance Ys (cd) between the center points with the sub light receiving portions 74B and 74C is changed, the diffraction grating 64A (see FIGS. 4, 8, and 8) corresponding to the second laser wavelength light and based on the second laser wavelength light. (Fig. 9) Corresponding to the second laser wavelength light when the first laser wavelength light is transmitted through the diffractive surface portion 20a.
- Two first sub-beams of the first laser wavelength light divided by the diffractive surface portion 20a of the diffraction grating 64A based on the laser wavelength light are provided in the photodetector 73A (FIGS. 5 to 7). Occurrence of a problem that the two first sub light receiving portions 74B and 74C in the region 74 are not irradiated well is avoided.
- the two first sub light receiving portions 74B and 74C whose (cd) is changed are reliably irradiated.
- the diffraction grating 64A corresponds to the second laser wavelength light and is based on the second laser wavelength light. 8 and FIG. 9), the first main beam of the first laser wavelength light divided without substantially generating unnecessary diffracted light by transmitting the first laser wavelength light through the diffractive surface 20a of FIG.
- One first main light receiving portion 74A of the first light receiving region 74 provided in the detector 73A (FIGS. 5 to 7). Is reliably irradiated.
- the distance Ys (dvd) between the center points of the second main light receiving portion 75A and the second sub light receiving portions 75B and 75C in the second light receiving region 75 of the photodetector 73A depends on the second laser wavelength light. It is the same as the normal distance Yt (dvd) of the correspondingly standardized photodetector 270 (FIG. 28).
- a diffraction grating 64A corresponding to the second laser wavelength light and based on the second laser wavelength light (FIGS. 4 and 8).
- the second sub-beams of the second laser wavelength light separated without substantially generating unnecessary diffracted light by transmitting the second laser wavelength light through the diffractive surface portion 20a of FIG. 9) are detected by the photodetector 73A.
- the diffraction grating 64A corresponds to the second laser wavelength light and is based on the second laser wavelength light.
- FIG. 8 and FIG. 9 the second main beam of the second laser wavelength light divided without substantially generating unnecessary diffracted light by transmitting the second laser wavelength light through the diffractive surface portion 20a
- One second main light receiving portion 75A in the second light receiving region 75 that is the same as the conventional standard provided in the detector 73A. Is reliably irradiated.
- the center point distance Ys (cd) between the first main light receiving portion 74A and the first sub light receiving portions 74B and 74C, which is changed in the light detector 73A (FIG. 7), is, for example, a standardized light detector 270 ( 27) is set to be longer than the center point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c.
- the value of the center point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the standardized photodetector 270 is 10.
- the value of the center point distance Ys (cd) between the first main light receiving unit 74A and the first sub light receiving units 74B and 74C, which is changed in the photodetector 73A (FIG. 7) when it is determined to be 0%. Is approximately 111 with respect to the value of the center point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 27).
- the value is set to%.
- an optical pickup device with improved detection accuracy of a signal such as an error signal is configured.
- One first main beam generated by dividing the first laser wavelength light by the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) is generated by the photodetector 73A (FIGS. 5 to 7).
- An adverse effect on the two first sub light receiving portions 74B and 74C is avoided.
- an optical pickup device with improved detection accuracy of a signal such as an error signal can be configured.
- One or both of the two first sub-beams generated by dividing the first laser wavelength light by the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) are detected by the photodetector 73A (FIG. An adverse effect on one first main light receiving portion 74A in FIGS. 5 to 7) is avoided.
- the center-point distance Ys (cd) between the first main light-receiving unit 74A and the first sub-light-receiving units 74B and 74C, which is changed in the photodetector 73A (FIG. 7), is standardized by the photodetector 270. If it is set shorter than the center point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c in FIG. 27, one first main beam is There is concern about interference with the two first sub-light-receiving portions 74B and 74C of the photodetector 73A (FIGS. 5 to 7).
- the center point distance Ys (cd) between the first main light receiving unit 74A and the first sub light receiving units 74B and 74C changed in the photodetector 73A is standardized.
- the normal first main light receiver 20 of the standardized photodetector 270 (FIG. 27).
- the first main light-receiving unit 74A and the first sub-light-receiving unit 7 which are changed in the new photodetector 73A (FIG. 7) than the center point distance Yt (cd) between 0a and the first sub-light-receiving units 200b and 200c.
- the distance Ys (cd) between the center points of 4B and 74C is set to be longer, when one first main light beam is irradiated to one first main light receiving portion 74A of the photodetector 73A, It is easy to avoid that one first main beam interferes with one or both of the two first sub light receiving portions 74B and 74C.
- the value of the center point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 27) is determined to be 100%.
- the value of the center point distance Ys (cd) between the first main light receiving unit 74A and the first sub light receiving units 74B and 74C changed in the new photodetector 73A (FIG. 7) was normalized.
- the normal first main light receiver 200a and first sub light receiver 200b, 2 of the photodetector 270 (FIG. 27).
- the photodetector 73A is newer than the center-point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 27).
- the first main light receiving portion 74A and the first sub light receiving portions 74B and 7 changed in FIG. Since the distance Ys (cd) between the center points with respect to 4C is set to be longer, when the two front and rear first sub-beams are irradiated to the front and rear two first sub-light receiving portions 74B and 74C of the photodetector 73A.
- One or both of the two first sub beams are one first main light receiving portion 74A. It is easy to avoid the interference.
- the value of the center point distance Yt (cd) between the normal first main light receiving unit 200a and the first sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 27) is determined to be 100%.
- the value of the center point distance Ys (cd) between the first main light receiving unit 74A and the first sub light receiving units 74B and 74C changed in the new photodetector 73A (FIG. 7) was normalized.
- the normal first main light receiver 200a and first sub light receiver 200b, 2 of the photodetector 270 (FIG. 27).
- the front and rear two first sub light receiving portions 74B and 74C of the photodetector 73A (FIG. 7) Two first When the sub-beam is irradiated, one or both of the two first sub-beams are 1 Interfering with the first main light receiving portions 74A is avoided.
- the distance Ys (dvd) between the center points of the second main light receiving unit 75A and the second sub light receiving units 75B and 75C of the photodetector 73A is the normal second main of the standardized photodetector 270 (FIG. 28).
- the center point distance Yt (dvd) between the light receiving unit 200a and the second sub light receiving units 200b and 200c is the same.
- the value of the center point distance Yt (dvd) between the normal second main light receiving unit 200a and the second sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 28) is determined to be 100%.
- the center point distance Ys (dvd) between the second main light receiving unit 75A and the second sub light receiving units 75B and 75C is, for example, a standardized photodetector.
- 2 70 (FIG. 28) normal second main light receiving unit 200a and second sub light receiving units 200b, 200c Is set to a value of approximately 100% with respect to the value of the distance Yt (dvd) between the center points.
- an optical pickup device with improved detection accuracy of a signal such as an error signal is configured.
- One second main beam generated by dividing the second laser wavelength light by the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) is generated by the photodetector 73A (FIGS. 5 and 7).
- An adverse effect on the two second sub light receiving portions 75B and 75C is avoided.
- the diffraction surface portion 20 of the diffraction grating 64A (FIGS. 4, 8, and 9).
- Either one or both of the two second sub-beams generated by dividing the second laser wavelength light by “a” adversely affects one second main light receiving unit 75A of the photodetector 73A (FIGS. 5 and 7). Is avoided.
- the first main light receiving unit 74A and the first sub light receiving unit 7 are used.
- the first main light-receiving unit 7 is not changed without changing the center-point distance Ys (cd) between 4B and 74C.
- the center point distance Ys (cd) between 4A and the first sub light receiving portions 74B and 74C is equal to the normal first main light receiving portion 200a and the first sub light receiving portion 200b of the standardized photodetector 270 (FIG. 27).
- the center point distance Yt (cd) with respect to 200c is set equal to that of the optical detector 73A (FIG. 7).
- the second main light receiving unit 75A and the second sub light receiving units 75B, 7B, 7 The distance Ys (dvd) between the center points with respect to 5C is the distance Yt between the center points of the normal second main light receiving unit 200a and the second sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 28). If it is set shorter than (dvd), one second main beam generated by dividing the second laser wavelength light by the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) There is concern about interference with the two second sub light receiving portions 75B and 75C of the photodetector 73A (FIGS. 5 and 7).
- a DVD standard optical disc D having a plurality of layers DL0 and DL1 is used to reproduce a signal or record a signal in one of the first layer DL0 or the second layer DL1.
- the second main light receiving unit 75A and the second sub light receiving unit 75 are used.
- the center point distance Ys (dvd) between B and 75C is a standardized photodetector 270 (FIG. 28).
- the diffraction grating 64A (FIGS. 4, 8, and 9) is set to be shorter than the center point distance Yt (dvd) between the normal second main light receiving unit 200a and the second sub light receiving units 200b and 200c.
- One or both of the two second sub-beams generated by dividing the second laser wavelength light by the diffractive surface portion 20a is one second main light receiving portion of the photodetector 73A (FIGS. 5 and 7). 7 There is concern about interfering with 5A.
- the normal second main of the photodetector 270 (FIG. 28) in which the distance Ys (dvd) between the center points of the second main light receiving unit 75A and the second sub light receiving units 75B and 75C of the photodetector 73A is standardized. If the distance between the center points Yt (dvd) between the light receiving unit 200a and the second sub light receiving units 200b and 200c is set to be the same, for example, one second main beam of the photodetector 73A (FIG. 7). 2 One of the second sub light receiving portions 75B and 75C interferes with one or both of them, or one or both of the two second sub light beams are one second main light receiving portion 7 of the photodetector 73A. Interfering with 5A is avoided.
- the value of the center point distance Yt (dvd) between the normal second main light receiving unit 200a and the second sub light receiving units 200b and 200c of the standardized photodetector 270 (FIG. 28) is determined to be 100%.
- the value of the center point distance Ys (dvd) between the second main light receiving unit 75A and the second sub light receiving units 75B and 75C is standardized. 2 70 (FIG.
- normal second main light receiving unit 200a and second sub light receiving units 200b, 200c Is set to a value of approximately 100% with respect to the value of the distance Yt (dvd) between the center points of the first and second main light receiving portions 75A of the photodetector 73A (FIG. 7).
- Yt distance between the center points of the first and second main light receiving portions 75A of the photodetector 73A (FIG. 7).
- the value of the center point distance Yt (dvd) between the normal second main light receiving unit 200a and the second sub light receiving units 200b and 200c of the standardized photodetector 270 is 100%.
- the value of the center point distance Ys (dvd) between the second main light receiving unit 75A and the second sub light receiving units 75B and 75C in the new photodetector 73A is normalized.
- the center point distance Yt (dvd) with respect to 00c is set to a value of approximately 100%, the front and rear two second sub light receiving portions 75B and 75C of the photodetector 73A (FIG. 7) When two second sub beams are irradiated, it is avoided that one or both of the two second sub beams interfere with one second main light receiving unit 75A.
- a pair of first sub light-receiving portions 74B and 74C whose positions are changed around the first main light-receiving portion 74A of the photodetector 73A (FIGS. 5 to 7) are arranged, and the front sub-position-changed first sub light-receiving portions are arranged.
- the spectral ratio between the central first main light-receiving unit 74A and the rear-position-changed first sub-light-receiving unit 74C is the front-side first sub-light detector 270 (FIG. 27).
- first sub light-receiving portions 74B and 74C whose positions are changed around the first main light-receiving portion 74A of the photodetector 73A (FIGS. 5 to 7) are arranged, and the front position is changed.
- first sub light receiving unit 74B, the central first main light receiving unit 74A, and the rear side changed first sub light receiving unit 74C are arranged in a substantially straight line, the front side position is changed.
- the spectral ratio of the first sub light receiving unit 74B, the first main light receiving unit 74A at the center, and the first sub light receiving unit 74C whose rear position has been changed is approximately 1: (20 to 26): 1. Has been.
- the spectral ratio of the first sub light receiving unit 74B whose front position is changed, the first main light receiving unit 74A in the center, and the first sub light receiving unit 74C whose rear position is changed is approximately 1 :( 23 ⁇ 3): 1.
- the spectral ratio of the first sub light receiving unit 74B whose front position is changed, the first main light receiving unit 74A in the center, and the first sub light receiving unit 74C whose rear position is changed is approximately 1: (23 ⁇ 2.3): 1.
- the spectral ratio of the first laser wavelength light of the photodetector 73A (FIGS. 5 to 7) whose setting is changed with respect to the spectral ratio of the first laser wavelength light of the conventional standardized photodetector 270 (FIG. 27). Is changed, the detection of one first main beam and the detection of two first sub-beams are easily performed with good accuracy by the new setting-changed photodetector 73A.
- the spectral ratio of the first laser wavelength light of the conventional standardized photodetector 270 (FIG. 27) is set to approximately 1: 16: 1, whereas the changed photodetector 73A (FIG. 5).
- the first diffractive surface portion 302 (FIGS. 29 and 30) corresponding to the first laser wavelength light
- the second The first laser wavelength light is transmitted through the conventional diffraction gratings 300A and 300B having the two diffraction surface portions 302 and 304 corresponding to the laser wavelength light, and the first laser wavelength light is transmitted to the front side.
- one front first sub-beam is irradiated.
- the front first sub light receiving unit 200b (FIG. 27), the central first main light receiving unit 200a irradiated with one central first main beam, and the rear first sub beam are irradiated.
- the spectral ratio of the first sub light receiving unit 200c on the rear side is set to, for example, an ordinary ratio of about 1: 16: 1, so that the first standardized photodetector 270 can provide one first The detection of the main beam and the detection of the two first sub-beams It was done well every time.
- the diffractive surface 302 corresponding to the first laser wavelength light (FIGS. 29 and 30).
- the diffraction gratings 300A and 300B having the diffraction surface portion 304 corresponding to the second laser wavelength light and having the second laser wavelength light as a reference are provided as the first.
- the laser wavelength light is transmitted, and the first laser wavelength light is at least divided into one front first sub beam, one central first main beam, and one rear first sub beam.
- the front-side position-changed first sub-light-receiving unit 200b (FIG. 27) irradiated with one front-side first sub-beam and the center where one central first main-beam is irradiated.
- the spectral ratio between the first main light-receiving unit 200a and the rear-side changed first sub-light-receiving unit 200c irradiated with one rear first sub-beam is, for example, approximately 1:16: If it is set to 1, in the conventional standardized photodetector 270, there is a concern that the detection of one first main beam and the detection of two first sub beams may not be performed with high accuracy. It was.
- the diffractive surface portion 20a corresponding to the second laser wavelength light and based on the second laser wavelength light.
- the first laser wavelength light is transmitted through the diffraction grating 64A having (FIG. 4, FIG. 8, FIG. 9), and the first laser wavelength light is transmitted through the front first sub-beam and the central first first beam.
- the front-side position-changed first sub-light-receiving unit 74B (FIG. 5) is irradiated. 7), a central first main light receiving portion 74A irradiated with one central first main beam, and a rear position changed with a rear first sub beam irradiated.
- the spectral ratio of the one sub light receiving unit 74C is such that the front side first sub light receiving unit 200b, the center first main light receiving unit 200a, and the rear side of the conventional standardized photodetector 270 (FIG. 27).
- the spectral ratio of the first sub light receiving unit 200c is changed to approximately 1: (20 to 26). 1 That substantially 1: (23 ⁇ 3): 1 preferably approximately 1: (2 3 ⁇ 2.3): If it is set to 1, the detection of one first main beam and two first sub-beams are performed by the newly changed photodetector 73A (FIGS. 5 to 7). Is accurately and satisfactorily performed.
- the spectral ratio is, for example, less than about 1: 20: 1, or the spectral ratio is, for example, about 1: In the case of more than 26: 1, there is a concern that the detection of one first main beam and the detection of two first sub-beams may not be performed accurately, but this spectral ratio is approximately 1: (20-26): 1 preferably about 1: (20.7 to 25.3): 1, more preferably about 1: (21 to 25): By setting to 1, the detection of one first main beam and the detection of two first sub beams are performed with good accuracy.
- a pair of second sub light receiving portions 75B and 75 centering on the second main light receiving portion 75A of the photodetector 73A C is disposed, and when the front side second sub light receiving unit 75B, the center second main light receiving unit 75A, and the rear side second sub light receiving unit 75C are arranged in a substantially straight line, the front side
- the spectral ratio of the second sub light receiving portion 75B, the central second main light receiving portion 75A, and the rear second sub light receiving portion 75C is approximately 1: (12 to 18): 1. That is, the spectral ratio of the front-side second sub light receiving unit 75B, the center second main light receiving unit 75A, and the rear second sub light receiving unit 75C is approximately 1. : (15 ⁇ 3): 1.
- the spectral ratio of the second sub light receiving unit 75B on the front side, the second main light receiving unit 75A on the center, and the second sub light receiving unit 75C on the rear side is approximately 1: (16 ⁇ 1.6): 1.
- the second laser wavelength light is transmitted through the diffraction grating 64A corresponding to the second laser wavelength light and having the diffractive surface portion 20a (FIGS. 4, 8, and 9) with the second laser wavelength light as a reference.
- the light is at least divided into one second sub-beam on the front side, one second main beam on the center, and one second sub-beam on the rear side, one second on the front side Second sub light receiving portion 75B (FIGS.
- the spectral ratio with the second sub light receiving unit 75C on the rear side irradiated with one second sub beam is, for example, approximately 1: When less than 12: 1, or when this spectral ratio is, for example, more than about 1: 18: 1, There is a concern that the detection of one second main beam and the detection of two second sub-beams may not be performed accurately, but this spectral ratio is approximately 1: (12 to 18): 1, preferably approximately 1. : (14-1 8): 1 is preferably set to about 1: (14.4 to 17.6): 1, The detection of the second main beam and the detection of the two second sub beams are performed with good accuracy.
- the value of the light receiving sensitivity in one first main light receiving unit 74A (FIGS. 5 to 7) is changed or the same as the value of the normal light receiving sensitivity in one standardized first main light receiving unit 200a (FIG. 27).
- one standardized first main light receiving unit 200a ( When the value of the normal light receiving sensitivity in FIG. 27) is determined to be 100%, the normalized 1
- the value of the light receiving sensitivity in the first main light receiving unit 74A (FIGS. 5 to 7) that is changed or the same as the value of the normal light receiving sensitivity in the first main light receiving unit 200a is approximately 100% or approximately 100%. It is set to a low value of less than 100% or about 100% or less.
- the light reception sensitivity of the two first sub light receiving units 74B and 74C is compared to the normal light reception sensitivity value of the two first sub light reception units 200b and 200c (FIG. 27). The value has changed. More specifically, the two standardized first sub light receiving units 20 When the values of the normal light receiving sensitivity at 0b and 200c (FIG. 27) are both determined to be 100%, the values of the normal light receiving sensitivity at the two standardized first sub light receiving units 200b and 200c are changed.
- the light receiving sensitivity values in the two first sub light receiving portions 74B and 74C are both set to a high value of about 100% or more or over about 100%.
- the value of the normal light receiving sensitivity in one standardized first main light receiving unit 200a is set to 100%, whereas one changed or the same first light receiving sensitivity value is set to 100%.
- the light receiving sensitivity value in the main light receiving portion 74A (FIGS. 5 to 7) is approximately 100% or approximately 100%.
- Two first sub-light-receiving units 2 that are set to a low value of less than or approximately 100% and standardized
- the normal light receiving sensitivity values at 00b and 200c are both 100%, whereas the light receiving sensitivity values at the two changed first sub light receiving portions 74B and 74C (FIGS. 5 to 7) are set.
- the normal light receiving sensitivity in one normalized first main light receiving unit 200a (FIG. 27) is determined to be 100%, the normal light receiving sensitivity in one normalized first main light receiving unit 200a
- the value of the light receiving sensitivity in the first main light receiving unit 74A (FIGS. 5 to 7) changed or the same as the value of is set to a value of about 95 to 100%, preferably about 96 to 100%.
- the two standardized first sub light receiving units 200b and 200c (FIG. 2).
- the normalized 2 The value of the normal light receiving sensitivity in the first sub light receiving units 200b and 200c is changed to 2
- the light receiving sensitivity values of the first sub light receiving portions 74B and 74C are both approximately 12
- the value is set to 0 to 160%, preferably about 138 to 142%.
- the value of the light receiving sensitivity is set in this way, the detection of one first main beam and the detection of two first sub-beams can be performed with good accuracy with the newly changed photodetector 73A. Done. While the normal light receiving sensitivity value of the standardized first main light receiving unit 200a (FIG. 27) is 100%, the first main light receiving unit 74A (FIG. 5) is changed or made the same. In FIG. 7), the light receiving sensitivity value is approximately 95 to 100%, preferably approximately 96 to 10. Two first sub-light-receiving portions 200b and 200c that are set to a value of 0% and standardized (FIG.
- Both of the values of the normal light receiving sensitivity at 100 are set to 100%, whereas the two changed first
- the light receiving sensitivity values in the sub light receiving portions 74B and 74C are both approximately 120 to 160. % Preferably both are set to a value of approximately 138 to 142%, so that detection of one first main beam and detection of two first sub-beams can be performed by the newly changed photodetector 73A. Performed with good accuracy.
- the value of the light receiving sensitivity in one second main light receiving unit 75A is the value of the normal light receiving sensitivity in one standardized second main light receiving unit 200a (FIG. 28).
- the value of the normal light receiving sensitivity in one standardized second main light receiving unit 200a is 1
- the value of the light receiving sensitivity in the two second main light receiving portions 75A (FIGS. 5 and 7) is set to a value of approximately 100%.
- the value of the light receiving sensitivity in the two second sub light receiving portions 75B and 75C is a normalized 2
- the values of the normal light receiving sensitivity in the two second sub light receiving units 200b and 200c are set.
- the normal light receiving sensitivity values of the two standardized second sub light receiving units 200b and 200c are both determined to be 100%
- two second sub light receiving portions 75B and 75C are set to a value of approximately 100%.
- the value of the light receiving sensitivity is set as described above, the detection of one second main beam and the detection of two second sub beams are accurately performed by the photodetector 73A.
- the value of the light receiving sensitivity in one second main light receiving unit 75A is set as the value of the normal light receiving sensitivity in one normalized second main light receiving unit 200a (FIG. 28), and the two second sub light receiving units 75B and 75C. ( Figure 5, The second sub light receiving units 200b and 200c in which the value of the light receiving sensitivity in FIG. By setting the value of the normal light receiving sensitivity in FIG. 28, detection of one second main beam and detection of two second sub beams are accurately performed by the photodetector 73A.
- While the standardized light receiving sensitivity value of one standardized second main light receiving unit 200a is 100%, the light received by one second main light receiving unit 75A (FIGS. 5 and 7).
- the light receiving sensitivity values of the two second sub light receiving portions 75B and 75C (FIGS. 5 and 7) are both approximately 10. By setting the value to 0%, the photodetector 73A can detect one second main beam and two second sub beams with high accuracy.
- the current / voltage values of 1, TAc1, and TAd1 are set to low values of approximately 100%, less than approximately 100%, or approximately 100% or less.
- an attenuator (not shown) or the like is used to provide one first main light receiving unit.
- the current / voltage value of the signal output from 74A is changed and set.
- the signals UBa1, UBb1, UBc1, UBd1, UCa1, UCb1, UC If the current / voltage values of c1 and UCd1 or the current / voltage values of the signals UAa1, UAb1, UAc1 and UAd1 are set to be changed or the same as the current / voltage values of the conventional signals,
- the detection of the first main beam and the detection of the two first sub beams are easily performed with high accuracy by the arithmetic unit 76A, for example, while suppressing the deterioration of the signal.
- the current / voltage value of the normal signal output from one standardized first main light receiving unit 200a (FIG. 27)
- it is output from one first main light receiving unit 74A (FIGS.
- the current / voltage value of a normal signal output from one standardized first main light receiving unit 200a is set to 100%, whereas it is changed or the same 1
- the signals UAa1 and UAb output from the first main light receiving parts 74A (FIGS. 5 to 7) 1, UAc1 and UAd1 (FIG. 6) current / voltage values are set to a low value of about 100%, less than about 100%, or less than about 100%, and are standardized two first sub light receiving units 200b, While the current / voltage values of the normal signals output from 200c (FIG. 27) are both 100%, they are output from the two first sub light-receiving portions 74B and 74C (FIGS. 5 to 7).
- Signal U The current / voltage values of Ba1, UBb1, UBc1, UBd1, UCa1, UCb1, UCc1, and UCd1 (FIG. 6) are all changed and output from the two first sub light-receiving units 74B and 74C (FIGS. 5 to 7).
- Signals TBa1, TBb1, TBc1, TBd1, TCa1, TCb1 , TCc1 and TCd1 (FIG. 6) are both gained up to a high value of approximately 100% or higher or substantially higher than 100%, for example, in the arithmetic unit 76A while suppressing signal degradation, The detection of one first main beam and the detection of two first sub beams are easily performed with high accuracy.
- the signals UBa1, UBb1, UBc1, UBd1, UCa1, UCb1, UC If the current / voltage values of c1 and UCd1 or the current / voltage values of signals UAa1, UAb1, UAc1, and UAd1 are set, detection of one first main beam and detection of two first sub-beams Is performed accurately and satisfactorily by the calculation unit 76A while suppressing deterioration of the signal. While the current / voltage value of a normal signal output from one standardized first main light receiving unit 200a (FIG. 27) is 100%, one first main that has been changed or made the same Signals UAa1, UAb1, UAc1, U output from the light receiving unit 74A (FIGS.
- the current / voltage value of Ad1 (FIG. 6) is approximately 95 to 100%, preferably approximately 96 to 100%. While the current / voltage values of the normal signals output from the two first sub-light-receiving units 200b and 200c (FIG. 27) that are set to voltage values and standardized are both 100%, Signals UBa1, UBb1, U output from the first sub light receiving parts 74B, 74C (FIGS. 5 to 7) are both changed, and signals UBa1 output from the two first sub-light-receiving units 74B and 74C (FIGS.
- the current / voltage values of (FIG. 6) are both set to gain up to approximately 120 to 160%, preferably approximately 138 to 142%, so that, for example, the calculation unit 76A can be controlled while suppressing signal degradation.
- the detection of one first main beam and the detection of two first sub beams are performed with good accuracy.
- the tracking error signal SE1 is generated with high accuracy.
- one first main light receiving unit ( 74A) can be used in which the current / voltage values of the signals (UAa1, UAb1, UAc1, UAd1) immediately after being output are changed by, for example, an attenuator (not shown) provided in the photodetector (73A). It is said. Also, depending on the design / specifications of the optical pickup device, For example, signals (TAa1, TAb1,...) Output from one first main light receiving unit (74A). For example, the current / voltage values of TAc1 and TAd1) whose settings are changed by an attenuator (not shown) provided in the calculation unit (76A) can be used.
- the current / voltage value of the signal output from one second main light receiving unit 75A (FIGS. 5 and 7) is: The current / voltage value of the normal signal output from one standardized second main light receiving unit 200a (FIG. 28) is used.
- the current / voltage value of a signal output from one second main light receiving unit 75A (FIGS. 5 and 7) is approximately 10 with respect to the current / voltage value of a normal signal output from 200a.
- the current / voltage value is set to 0%.
- the current / voltage values of the signals output from the two second sub light receiving units 75B and 75C are the normal signal output from the two second sub light receiving units 200b and 200c (FIG. 28). Current / voltage value.
- Two standardized second sub light receiving portions 200b and 200c When the current / voltage values of the normal signals output from the two are determined to be 100% current / voltage values, the normal signals output from the two standardized second sub light receiving units 200b and 200c With respect to the current / voltage value, the current / voltage values of the signals output from the two second sub light receiving portions 75B and 75C (FIGS. 5 and 7) are both set to a current / voltage value of approximately 100%. .
- the current / voltage value of the signal output from one second main light receiving unit 75A is the current / voltage value of the normal signal output from one standardized second main light receiving unit 200a (FIG. 28).
- the current / voltage values of the signals output from the two second sub light receiving units 75B and 75C are output from the two standardized second sub light receiving units 200b and 200c (FIG. 28).
- the calculation unit 76A detects one second main beam and 2 The detection of the second sub-beam of the book is performed with high accuracy.
- the current / voltage value of a normal signal output from one standardized second main light receiving unit 200a is 100%
- one second main light receiving unit 75A (FIG. 5).
- the current / voltage value of the signal output from FIG. 7) is set to a current / voltage value of approximately 100%
- the normal output from the two second sub-light-receiving units 200b and 200c (FIG. 28) normalized While the current / voltage values of the signals are both 100%, the two second sub light receiving portions 75B and 7B
- the calculation unit 76A detects one second main beam. And the detection of the two second sub beams are performed with high accuracy.
- the tracking error signal SE2 is generated with high accuracy using each current / voltage conversion amplifier, subsequent amplifier, adder, subtractor, amplifier, etc., based on the laser light irradiated to the DVD light receiving region 75 of the photodetector 73A.
- the detailed description of the process to be performed is omitted here. or, A detailed description of the process of generating a focus error signal with high accuracy based on the laser light irradiated to the CD light receiving area 74 and the DVD light receiving area 75 of the photodetector 73A is also omitted here.
- the current / voltage conversion amplifiers (77DL1, 77DR1, 77EL1, 77ER1, 77FL1, 77FR1, 77) of the previous stage are used.
- GL1, 77GR1, 77HL1, 77HR1, 77IL1, 77IR1 and subsequent amplification amplifiers (77DL2, 77DR2, 77EL2, 77ER2, 77FL2, 77FR2) , 77GL2, 77GR2, 77HL2, 77HR2, 77IL2, 77IR2) and a single-stage current / voltage conversion amplifier (not shown) with an integrated amplification function are equipped in the photodetector (73A)
- an optical detector (73A) having a reduced number of components such as an amplifier.
- the calculation unit (76A) is connected to each light receiving unit (74A, 74B, 74C).
- the diffraction surface portion 20a of the diffraction grating 64A includes a diffraction surface portion 20a that divides the first laser wavelength light into at least one first main beam and two first sub beams, and a second One surface portion 20a corresponding to diffraction of a plurality of types of laser wavelength light, serving also as a diffraction surface portion 20a that divides the laser wavelength light into at least one second main beam and two second sub beams. It is formed as.
- An optical pickup device is configured.
- the first diffractive surface portion 302 (FIGS. 29 and 30) corresponding to the first laser wavelength light
- the second The first laser wavelength light is transmitted through the first diffraction surface portion 302 of the conventional diffraction gratings 300A and 300B having the two diffraction surface portions 302 and 304 corresponding to the laser wavelength light, and the first laser light is transmitted.
- the wavelength light is at least divided into one first main beam and two first sub-beams
- the first main beam of the first laser wavelength light is further generated by the second diffraction surface portion 304 of the diffraction gratings 300A and 300B.
- the first sub-beam is diffracted wastefully and the first sub-beam is further diffracted, and the light efficiency of the first main beam and the first sub-beam of the first laser wavelength light decreases accordingly.
- a conventional diffraction grating 300A having two diffractive surface portions 302, 304, a first diffractive surface portion 302 corresponding to the first laser wavelength light and a second diffractive surface portion 304 corresponding to the second laser wavelength light
- the second laser wavelength light is transmitted through the second diffractive surface portion 304 of 300B and the second laser wavelength light is at least divided into one second main beam and two second sub beams, the diffraction grating 300A.
- the first diffractive surface portion 302 of 300B diffracts the second laser wavelength light unnecessarily, and as a result, the light efficiency of the second laser wavelength light decreases.
- the diffractive surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) has a diffractive surface portion 20a that divides the first laser wavelength light into at least one first main beam and two first sub beams
- the second laser wavelength light is formed as one surface portion 20a corresponding to the diffraction of a plurality of types of laser wavelength light, serving as a diffraction surface portion 20a that divides the second laser wavelength light into at least one second main beam and two second sub beams.
- the first main beam of the first laser wavelength light and the first The sub beam is unnecessarily diffracted to reduce the efficiency of the first main beam and the first sub beam of the first laser wavelength light, or the second laser wavelength light is unnecessarily diffracted to the light efficiency of the second laser wavelength light. This is avoided.
- the diffractive surface portion 20a that divides the first laser wavelength light into at least one first main beam and two first sub-beams, and the second laser wavelength light at least one second main beam and two first sub beams.
- the diffraction surface portion 20a of the diffraction grating 64A is formed as one surface portion 20a corresponding to the diffraction of a plurality of types of laser wavelength light, which also serves as the diffraction surface portion 20a divided into two sub-beams.
- a reduced diffraction grating 64A is formed. Diffraction grating 64 Since the processed portion of A, the number of processing steps, etc. are reduced, the price of the diffraction grating 64A can be kept low. Along with this, it becomes possible to configure an optical pickup device capable of keeping the price low.
- the phase shift region portion 21 that causes the diffraction grating 64A to generate a phase shift of ⁇ radians in a part of the laser light emitted from the laser unit 61 (FIGS. 1 to 3), 22 (FIGS. 4 and 9) are provided.
- the diffraction grating 64A has a substantially rectangular first region portion 21. And at least two region portions 21 and 22, which are a substantially rectangular second region portion 22 adjacent to the first region portion 21.
- the diffraction grating 64 ⁇ / b> A is divided into a plurality of region portions 21 and 22.
- a predetermined periodic structure is configured in each of the region portions 21 and 22.
- each region portion 2 constituting the diffraction grating 64A is fine concavo-convex repeating periodic structures.
- the diffraction grating 6 4A is a glass plate having a thickness of about 0.3 to 3 mm having a vertical and horizontal dimension of about 3 to 10 mm square, for example.
- the diffraction grating 64A includes a plurality of region portions 2.
- the signal surface portion Da of the medium D (FIG. 5) is irradiated with at least three independent focused spots 80, 81, and 82, respectively.
- the diffraction grating 64 ⁇ / b> A is divided into even-numbered area portions 21 and 22.
- the medium D The focused spots 80, 81, 82 formed on the signal surface portion Da in FIG. 5 are formed as the focused spots 80, 81, 82 with high accuracy.
- the diffraction grating 64A is equally divided into two regions 21 and 22 by the boundary portion 26 of the diffraction grating 64A (FIGS. 4 and 9).
- the light applied to the diffraction grating 64A is divided into approximately two equal parts into one region 21 of the diffraction grating 64A and the other region 22 of the diffraction grating 64A. It becomes easy to be hit by.
- the diffraction grating 64 Since the light is easily applied to the one region portion 21 of A and the other region portion 22 of the diffraction grating 64A so that the light is approximately divided into two equal parts, the diffraction grating 64A can be accurately applied to the optical pickup device. It becomes easy to be provided. Therefore, it is easy to form the focused spots 80, 81, 82 on the signal surface portion Da of the medium D (FIG. 5) with high accuracy. Accordingly, tracking error signals SE1, SE at the time of recording / playback of two or more types of media D having different track pitches Dtp. The detection accuracy of error signals such as 2 is improved. Further, the tracking of the optical pickup device with respect to the signal surface portion Da of the media D is easily performed with high accuracy.
- the diffraction grating 64 ⁇ / b> A includes a first region portion 21, a second region portion 22 adjacent to the first region portion 21 and having a periodic structure different from the periodic structure of the first region portion 21, Are divided into two region portions 21 and 22.
- the diffraction grating 64A is configured as a so-called two-divided inline grating.
- the optical pickup device is equipped with the diffraction grating 64A divided into the plurality of region portions 21 and 22 shown in FIGS. 4 and 9, the signal surface portion of the medium D (FIGS. 2, 3, 5, and 7). Da
- the detection of the error signal of the optical pickup device is performed satisfactorily.
- the tracking of the optical pickup device with respect to the signal surface portion Da of the media D is performed satisfactorily.
- the diffraction grating 64A (FIGS. 4 and 9) is divided into two regions 21 and 22, the signal surface portion Da of the medium D (FIG. 5) has at least three independent light condensing spots. 8 0, 81 and 82 are irradiated.
- the track pitch Dtp is different.
- the objective lens 70 FIG. 1 to FIG. It is avoided that the detection accuracy of error signals such as tracking error signals SE1 and SE2 is reduced with the displacement of FIG. Accordingly, it is possible to provide an optical pickup device that is easily subjected to tracking control.
- the diffraction grating 64 ⁇ / b> A has one region portion 2 having a substantially rectangular shape as the first region portion 21. 1 and the other region portion 22 having a substantially rectangular shape adjacent to one region portion 21 and serving as the second region portion 22. It is supposed to have.
- the width 21w of the first region 21 of the diffraction grating 64A and the second region 2 The width 22w of 2 is substantially equal.
- the diffraction grating 64A constitutes the diffraction grating 64A by the boundary line portion 26 between the first region portion 21 of the diffraction grating 64A and the second region portion 22 of the diffraction grating 64A adjacent to the first region portion 21.
- the region portion 21 and the other region portion 22 constituting the diffraction grating 64A are divided into two equal parts.
- the diffraction grating 64A is divided into even numbers.
- the first region portion 21 is defined by the boundary portion 26 between the first region portion 21 of the even-divided diffraction grating 64A (FIGS. 4 and 9) and the second region portion 22 adjacent to the first region portion 21. Since the diffraction grating 64A is equally divided into one region 21 and the other region 22 adjacent to the one region 21 and the second region 22, the housing of the optical pickup device (not shown) ) Is equipped with the diffraction grating 64A, the laser light emitted from the laser unit 61 (FIGS.
- the laser light emitted from the laser unit 61 and applied to the diffraction grating 64A and then transmitted through the objective lens 70 can be observed using, for example, an optical axis adjustment camera.
- the substantially central portion of the diffraction grating 64A is divided into two equal parts, and one of the substantially rectangular regions 21 and the other substantially rectangular region 22 Is provided in the diffraction grating 64A, so that when the optical axis adjustment of the laser light is performed using an optical axis adjustment camera or the like, the laser light constitutes the diffraction grating 64A.
- the laser light is easily applied to the substantially rectangular region part 21 constituting the diffraction grating 64A and the other substantially rectangular part part 22 constituting the diffraction grating 64A.
- the diffraction grating 64A is easily provided in the optical pickup device while being accurately positioned and adjusted. Therefore, it is easy to form the focused spots 80, 81, 82 on the signal surface portion Da of the medium D (FIG. 5) with high accuracy. Accordingly, the tracking of the optical pickup device with respect to the signal surface portion Da of the medium D is easily performed with high accuracy.
- the substantially linear boundary portion 26 constituting the diffraction grating 64A is located.
- the periodic structure of the second region portion 22 is a periodic structure having a different phase.
- the periodic structure of the second region portion 22 is a periodic structure having a phase that differs by about 180 degrees with respect to the periodic structure of the first region portion 21.
- the first region portion 21 and the second region portion 22 in the diffraction grating 64A are distinguished, and the phase difference between the first region portion 21 and the second region portion 22 in the diffraction grating 64A is clarified. Is done.
- the second of the diffraction grating 64A With respect to the periodic structure of the first region portion 21 of the diffraction grating 64A, the second of the diffraction grating 64A. Since the periodic structure of the region portion 22 is a periodic structure having a phase different by about 180 degrees, at least three condensing spots 80, 81, 8 are formed on the signal surface portion Da of the medium D (FIG. 5). 2 is formed well.
- the objective lens 70 It is easy to avoid the tracking error signals SE1 and SE2 from deteriorating with the displacement of (FIGS. 1 to 3).
- the boundary line portion 26 that separates the first region portion 21 (FIGS. 4 and 9) and the second region portion 22 from the first region portion 21 The region portion 21 and the second region portion 22 are separated.
- the diffraction grating 64A is divided into two regions to be distinguished from each other, so that the signal surface portion Da of the medium D (FIG. 5) is irradiated with at least three independent light collection spots 80, 81, and 82, respectively. . At least three focused spots 80, 81, on the signal surface portion Da of the medium D, Since each 82 is irradiated independently, tracking of the optical pick-up apparatus with respect to the signal surface part Da of the media D becomes easy to be performed.
- the diffraction grating 64A (FIGS. 4 and 9) is formed in a substantially rectangular plate shape. When the diffraction grating 64A is viewed in plan, the diffraction grating 64A is viewed as a substantially rectangular plate.
- the diffraction grating 64A When the diffraction grating 64A is viewed in plan with the vertically long and substantially rectangular first region portion 21 and the vertically long and substantially rectangular second region portion 22 being arranged side by side, one region portion of the diffraction grating 64A.
- the phase of the other region adjacent to the right side of one region is shifted to the right in a staircase pattern, the phase of the other region is determined to be shifted to the plus (+) side. It is done.
- the diffraction grating 64A is viewed in plan with the vertically long and substantially rectangular first region portion 21 and the vertically long and substantially rectangular second region portion 22 being arranged side by side
- the phase of the other region adjacent to the right side of one region is shifted in a step-down manner to the right with respect to the phase of the region
- the phase of the other region is shifted to the minus ( ⁇ ) side. It is determined.
- the definition of the plus (+) phase and the minus ( ⁇ ) phase in the present application is a definition for convenience for explaining the phase difference state of the diffraction grating.
- the definitions of “vertical” and “horizontal” in the present application are also defined for convenience in describing the diffraction grating.
- the periodic structure of the second region 22 adjacent to the right side of the first region 21 has a phase shifted to the plus side with respect to the periodic structure of the first region 21. It is set as the periodic structure which has (FIG. 10).
- the periodic structure of the second region portion 22 is a periodic structure having a phase that is approximately +180 degrees different from the periodic structure of the first region portion 21 (FIG. 9).
- This optical pickup device is a desktop personal computer (PC: Pers). It is possible to be used by being mounted on an optical disk device for a laptop computer or a laptop PC.
- PC desktop personal computer
- the optical pickup device includes, for example, a diffraction grating 64A (which is substantially rectangular in plan view). 9), and at least three light condensing spots 80, 81, each of which collects at least three light beams and is independent of the signal surface portion Da (FIG. 5) of the medium D (FIGS. 1 to 3, FIG. 5).
- 82 and the objective lens 70 for irradiating 82, and the three focused spots 80, 8 on the medium D 1 and 82 (FIG. 5) and a photodetector 73A (FIGS. 1 to 3 and 5 to 7) for receiving the reflected light.
- the optical pickup device is configured in this way, the signal surface portion D of the media D (FIG. 5).
- the tracking of the optical pickup device with respect to a is performed with high accuracy. Track pitch D
- the objective lens 70 (see FIG. 1 to FIG. With the displacement of FIG. 3), it is easy to avoid that the amplitude of the tracking error signals SE1 and SE2 deteriorates and that the offset remains in the tracking error signals SE1 and SE2.
- the optical pickup device including the phase shift type two-divided diffraction grating 64A (FIGS. 4 and 9)
- the data reproduction operation or data recording operation of the optical pickup device with respect to the DVD-RAM can be reliably performed.
- the data reproduction operation or data recording operation of the optical pickup device for DVD ⁇ R and DVD ⁇ RW is performed reliably.
- the photodetector 73A shown in FIGS. 1 to 3 is configured as one photodetector 73A capable of receiving a plurality of types of laser wavelength light, such as two types of laser wavelength light, three types of laser wavelength light, and the like. .
- the optical pickup can be used for various media D (FIGS. 1 to 3, 5, and 7). As the apparatus is configured, the cost can be reduced along with the reduction in the number of parts of the optical pickup apparatus.
- the photodetector 73A (FIGS. 1 to 3) includes a first wavelength light and a second wavelength light that has a wavelength different from that of the first wavelength light and is shorter than the first laser wavelength light. Since it is configured as a photodetector 73A corresponding to a plurality of types of wavelength light that can receive two or more types of wavelength light, the optical pickup device can support a variety of media D.
- the photodetector capable of receiving the first wavelength light and the photodetector capable of receiving the second wavelength light are combined as one photodetector 73A, so that the number of parts of the optical pickup device can be reduced. Downsizing, lightening, etc. can be achieved. With the reduction of parts of the optical pickup device, the price of the optical pickup device can be kept low. Therefore, it is possible to provide an optical pickup device that can cope with various types of media D and that is reduced in parts, price, size, and thickness.
- this optical pickup device is configured to include one light emitting element 61 (FIGS. 1 to 3) capable of emitting a plurality of types of laser wavelength light such as two types of laser wavelength light, three types of laser wavelength light, and the like.
- the optical pickup device can handle various media D (FIGS. 1 to 3, 5, and 7).
- the cost can be reduced along with the reduction in the number of parts of the optical pickup device.
- the light emitting element 61 (FIGS. 1 to 3) includes, for example, a first wavelength light, a second wavelength light having a wavelength different from the first wavelength light and a shorter wavelength than the first laser wavelength light. Since the light-emitting element 61 emits a plurality of types of wavelength light capable of emitting at least two types of wavelength light, the optical pickup device can handle various media D.
- the number of parts of the optical pickup device can be reduced, the size can be reduced, and the weight can be reduced. Etc. are planned. With the reduction of parts of the optical pickup device, the price of the optical pickup device can be kept low. Therefore, it is possible to provide an optical pickup device that can cope with various types of media D and that is reduced in parts, price, size, and thickness.
- the performance / quality of the optical pickup device can be stabilized.
- the first light emitting element capable of emitting the first wavelength light and the second light emitting element capable of emitting the second wavelength light are individually provided in the housing or the like, for example, the first light emitting element and / or the second light emitting element.
- the first light emitting element and / or the second light emitting element are individually provided in the housing or the like, for example, the first light emitting element and / or the second light emitting element.
- variation may occur in the optical axis of the first wavelength light and the optical axis of the second wavelength light due to an attachment error of the light emitting element.
- the light emitting element capable of emitting the first wavelength light and the light emitting element capable of emitting the second wavelength light are combined as one light emitting element 61, "variation" of the optical axis due to an attachment error or the like. Occurrence is reduced. Therefore, the performance / quality of the optical pickup device is stabilized.
- the first laser wavelength light is wavelength light conforming to the CD standard.
- the first laser wavelength light is Infrared laser light conforming to the CD standard is used. More specifically, the wavelength of the first laser wavelength light is approximately 765 to 840 nm and the reference wavelength is approximately 780 to 782 nm, corresponding to the optical disc D of the CD standard. For example, the reference wavelength is about 765 to 840 nm. The wavelength light that falls within this range is the first laser wavelength light.
- the first laser wavelength light emitted from the first light source 62 of the dual wavelength light emitting element 61 may vary depending on, for example, the heat storage temperature of the light emitting element 61.
- the second laser wavelength light is a wavelength light conforming to the DVD standard.
- the second laser wavelength light is red laser light compliant with the DVD standard. More specifically, the wavelength of the second laser wavelength light is approximately 630 to 685 nm and the reference wavelength is approximately 635 to 660 nm corresponding to the DVD standard optical disc D. For example, the reference wavelength is approximately 630.
- the wavelength light that falls within the range of ⁇ 685 nm is the second laser wavelength light.
- the second laser wavelength light emitted from the second light source 63 of the two-wavelength light emitting element 61 may vary depending on, for example, the heat storage temperature of the light emitting element 61.
- a diffraction grating 64A having a diffractive surface portion 20a (FIGS. 4, 8, and 9) on only one side surface is used, approximately 765 to 840 nm corresponding to the CD standard optical disc D (FIGS. 1 to 3), reference
- the first laser wavelength light conforming to the CD standard which is assumed to be light having a wavelength of approximately 780 to 782 nm, passes through the diffraction grating 64A, unnecessary diffraction light is substantially prevented.
- the diffraction grating 64A having the diffractive surface portion 20a (FIGS. 4, 8, and 9) on only one side is used, approximately 630 to 685 corresponding to the DVD standard optical disc D (FIGS. 1 to 3).
- the second laser wavelength light conforming to the DVD standard which is a wavelength light having a reference wavelength of about 635 to 660 nm, passes through the diffraction grating 64A, unnecessary diffraction light is substantially prevented.
- the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) that corresponds to the second laser wavelength light that conforms to the DVD standard and that uses the second laser wavelength light as a reference, 1 CDs that are separated without transmitting unnecessary diffracted light by transmitting laser wavelength light.
- the two first sub-beams of the first laser wavelength light complying with the standard are between the central points with respect to one first main light receiving portion 74A of the first light receiving region 74 provided in the photodetector 73A (FIG. 7).
- Distance Ys The two first sub light receiving portions 74B and 74C whose (cd) is changed are reliably irradiated.
- the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) that corresponds to the second laser wavelength light that conforms to the DVD standard and that uses the second laser wavelength light as a reference,
- One first main beam of the first laser wavelength light complying with the CD standard divided without substantially generating unnecessary diffracted light by transmitting one laser wavelength light is the photodetector 73A (FIG. 7).
- the first main light receiving portion 74A of the first light receiving region 74 provided in the above is reliably irradiated.
- the diffraction surface portion 20a of the diffraction grating 64A (FIGS. 4, 8, and 9) corresponding to the second laser wavelength light conforming to the DVD standard and having the second laser wavelength light as a reference is light having a predetermined wavelength conforming to the DVD standard.
- the second laser wavelength light is transmitted, unnecessary diffracted light is not substantially generated, and the second laser wavelength light of the predetermined wavelength conforming to the DVD standard includes at least one second main beam and two The second sub-beam is divided.
- Two second laser wavelength lights conforming to the DVD standard The sub beam is reliably irradiated to the two second sub light receiving portions 75B and 75C of the same second light receiving region 75 as the conventional standard provided in the photodetector 73A (FIG. 7), and the second laser wavelength conforming to the DVD standard.
- One second main beam of light is the second same as the conventional standard provided in the photodetector 73A.
- One second main light receiving part 75A in the light receiving region 75 is reliably irradiated
- the first laser wavelength light is “DVD”.
- the wavelength light may conform to a standard.
- the first laser wavelength light may be red laser light compliant with the “DVD” standard.
- the wavelength of the first laser wavelength light is “D
- the wavelength is set to about 630 to 685 nm and the reference wavelength is set to about 635 to 660 nm.
- a wavelength light whose reference wavelength falls within a range of approximately 630 to 685 nm is set as the first laser wavelength light.
- the first laser wavelength light emitted from the first light source (62) of the dual wavelength light emitting element (61) may vary depending on, for example, the heat storage temperature of the light emitting element (61).
- the second laser wavelength light is “ The wavelength light may be compliant with the “Blu-ray Disc” standard, the “HD DVD” standard, the “CBHD” standard, or the like.
- the second laser wavelength light may be blue-violet laser light compliant with the “Blu-ray Disc” standard, the “HD DVD” standard, the “CBHD” standard, and the like.
- the wavelength of the second laser wavelength light corresponds to an optical disc (D) such as “Blu-ray Disc” standard, “HD DVD” standard, “CBHD” standard, etc., for example, approximately 340 to 450 nm, preferably About 380 to 450 nm, more preferably more than about 400 nm and 450 nm or less, and the reference wavelength is about 405 nm.
- the wavelength light in which the reference wavelength falls within the range of about 340 to 450 nm preferably the wavelength light in which the reference wavelength falls within the range of about 380 to 450 nm, more preferably the reference wavelength.
- the wavelength light that falls within the range of approximately 400 nm to 450 nm or less is the second laser wavelength light.
- the second laser wavelength light emitted from the second light source (63) of the dual wavelength light emitting element (61) is: For example, it may vary depending on the heat storage temperature of the light emitting element (61).
- the optical disc (D) (FIGS. 1 to 3) of “DVD” standard is used.
- Corresponding abbreviation 63 “DVD” with a wavelength of 0 to 685 nm and a reference wavelength of about 635 to 660 nm When the first laser wavelength light complying with the standard passes through the diffraction grating (64A), it is substantially prevented that unnecessary diffracted light is generated.
- a diffraction grating 64 having a diffractive surface portion (20a) (FIGS. 4, 8, and 9) only on one side surface.
- the “Blu-ray Disc” standard, the “HD DVD” standard For example, approximately 340 to 45 corresponding to the optical disk (D) (FIGS. 1 to 3) of the “CBHD” standard or the like.
- 0 nm wavelength light preferably about 380 to 450 nm wavelength light, more preferably about 400 n
- the wavelength light of more than m and not more than 450 nm, and the reference wavelength is the wavelength light of about 405 nm.
- the two first sub-beams of the first laser wavelength light complying with the “D” standard are detected by the photodetector (73A) ( Two first sub-light-receiving portions (Ys (cd)) in which the distance between the center points (Ys (cd)) is changed with respect to one first main light-receiving portion (74A) of the first light-receiving region (74) provided in FIG. 74B, 74C).
- “Blu-ray Disc” standard, “HD DVD” standard The diffraction surface portion (20a) of the diffraction grating (64A) (FIGS.
- the first laser wavelength light of the first laser wavelength conforming to the “DVD” standard which is separated without substantially generating unnecessary diffracted light by transmitting the first laser wavelength light of the predetermined wavelength conforming to the standard.
- the beam is reliably irradiated to one first main light receiving portion (74A) of the first light receiving region (74) provided in the photodetector (73A) (FIG. 7).
- the diffractive surface portion (20a) is represented by “Blu-ray Disc”
- the second laser wavelength light having a predetermined wavelength conforming to the “HD DVD” standard, the “CBHD” standard or the like is transmitted, unnecessary diffracted light is not substantially generated, and the “Blu-ray Disc” standard, “HD DVD”
- the two second sub-beams of the second laser wavelength light compliant with the “u-ray Disc” standard, “HD DVD” standard, “CBHD” standard, etc. are provided in the photodetector (73A) (FIG. 7).
- Two second sub-light-receiving parts (75B, 75C) in the same second light-receiving area (75) as the standard are reliably irradiated and conforms to the “Blu-ray Disc” standard, “HD DVD” standard, “CBHD” standard, etc.
- One second main beam of the second laser wavelength light is reliably transmitted to one second main light receiving portion (75A) of the second light receiving region (75) that is the same as the conventional standard provided in the photodetector (73A). Is irradiated.
- the optical pickup device shown in FIGS. 1 to 3 and the like has a first layer DL0 (FIG. 7), a second layer DL.
- the medium D having a plurality of signal surface portions Da such as 1 can be supported.
- the optical pickup device By configuring the optical pickup device, the first layer DL0 (FIG. 7), the second layer DL Optical pickup apparatus for reading and / or reading signals and / or information of an optical pickup device with respect to a medium D having a plurality of signal surface portions Da such as 1 Device signals, information writing, etc. are performed well. Since the optical pickup device (FIGS. 1 to 3) in which the generation of unnecessary light is suppressed by the diffraction grating 64A (FIGS. 1 to 4, 8, and 9) is configured, a plurality of signals are generated by the optical pickup device. When data, signals, information, etc. are read from the media D having the surface portion Da, or when data, signals, information, etc. are written to the media D, having a plurality of signal surface portions Da, For example, it is possible to avoid a problem caused by generation of unnecessary light.
- D having a plurality of layers DL0 and DL1 of a first layer DL0 (FIG. 7) and a second layer DL1.
- a signal is reproduced or recorded on the first layer DL0 of the VD standard media D
- unnecessary light from the diffraction grating 64A (FIGS. 1 to 4, 8, and 9) is generated by the DVD standard.
- the second layer DL1 of the media D of the DVD is irradiated.
- Unnecessary reflected light in 1 enters as one or both of one second sub light receiving unit 75B and the other second sub light receiving unit 75C of the DVD light receiving region 75 in the light detector 73A as a light detector 73A. It is avoided that so-called interlayer crosstalk occurs.
- a plurality of layers (DL0) of a first layer (DL0) (FIG. 7) and a second layer (DL1) , (DL1) “Blu-ray Disc” standard, “HD DVD” standard, “C
- DL0 first layer
- DL1 second layer
- DL1 DL1 “Blu-ray Disc” standard
- HD DVD HD DVD
- C diffraction grating
- the second layer (D) of the media (D) such as “sc” standard, “HD DVD” standard, “CBHD” standard, etc.
- the unnecessary reflected light in L1) is either one or both of one second sub light receiving part (75B) and the other second sub light receiving part (75C) of the DVD light receiving region (75) in the photodetector (73A). It is avoided that so-called interlayer crosstalk occurs in the photodetector (73A) as noise.
- FIG. 11 is a schematic diagram showing a second embodiment of the diffraction grating provided in the optical pickup device.
- the right side of FIG. 4 and the diffraction grating 64B shown in FIG. The optical pickup device and the optical disk device are not changed except that the diffraction grating 64A shown in FIGS. 1 to 3 and FIG. 8 is replaced with the diffraction grating 64B shown in the right side of FIG. 4 and FIG.
- the diffraction grating 64A shown in FIGS. 1 to 3 and 8 is different from the first embodiment in that the diffraction grating 64A shown in FIG. 4 is replaced with the diffraction grating 64B shown in FIG.
- the first embodiment and the second embodiment are common.
- FIG. 1 to FIG. Example 2 will be described in combination.
- the same components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the phase of the periodic structure of the grating grooves formed on one half plane 21 is about 180 with respect to the phase of the periodic structure of the grating grooves formed on the other half plane 22.
- the DVD diffraction grating member 20 that is shifted in degree is fixed to one flat portion 50 a of the optical glass plate 50. Since the optical glass plate 50 is provided, the diffraction grating 64B is formed into the diffraction grating 6B. It is superior in mechanical strength to 4A (left side of FIG. 4, FIG. 8).
- the diffraction angle ⁇ is obtained by an approximate expression based on the Bragg condition in 16) (see FIG. 11). Note that the explanatory diagram shown in FIG. 11 is drawn for convenience in order to facilitate the description.
- the 1st or 2nd light source 62, 63 contained in the light emission surface 61a of the laser unit 61 is shown.
- the concave surface S21 on the back side of the substantially smooth surface S of the diffraction grating 64B from the first light emitting point O indicating the actual position of the diffraction grating 64B.
- the second light emitting point X indicating the apparent position of the first or second light source 62, 63 with respect to the sub beam on the light emitting surface 61a of the laser unit 61.
- the light emitting surface 61a of the laser unit 61 is perpendicular to the normal N of the substantially smooth surface S of the diffraction grating 64B, and the bottom surface Si constituting the concave surface S21 on the back side of the surface S and the outer surface Sii constituting the convex surface S22. It is a plane located at a position away from the normal distance L by a substantially normal distance L.
- the distance Yr from the first light emission point O to the second light emission point X on the light emission surface 61a of the laser unit 61 is obtained by the above equation (17) (see FIG. 11).
- the said Formula (20) is calculated
- the light receiving interval Ys (dvd) in the DVD light receiving region 75 of the photodetector 73A is obtained by the above formulas (21), (22), and (23). Also, the above formulas (24), (25), (26 ) To obtain the light receiving interval Ys (cd) in the CD light receiving region 74 of the photodetector 73A.
- FIG. 12 is a schematic plan view showing a third embodiment of the diffraction grating provided in the optical pickup device
- FIG. 13 is a diagram showing the relationship between the optical disc radial direction and the phase difference in the diffraction grating of FIG.
- a diffraction grating 64C shown in FIG. 12 is provided in the optical pickup device (FIGS. 1 to 3). There is no change in the optical pickup device and the optical disk device except that the diffraction grating 64A shown in FIGS. 1 to 3 and FIG. 8 is replaced with the diffraction grating 64C shown in FIG.
- the diffraction grating 64A shown in FIGS. 1 to 3 and FIG. Example 1 is different from Example 3 in that it is replaced with the diffraction grating 64C shown in FIG. 2, but Example 1 and Example 3 are common in other parts than the diffraction gratings 64A and 64C. It is supposed to be. For convenience, Example 3 will be described using FIGS. 1 to 8 and FIGS. 16 to 24 together.
- the same components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 17 and FIG. 18 are explanatory views showing the visual field characteristics of the optical pickup device.
- 9 20 and 21 are explanatory diagrams showing sub-push-pull signal amplitude level characteristics of the optical pickup device
- FIGS. 22, 23 and 24 are explanatory diagrams showing tracking error phase difference characteristics of the optical pickup device. is there.
- the diffraction surface portion 30a of the diffraction grating 64C includes a diffraction surface portion 30a that divides the first laser wavelength light into at least one first main beam and two first sub beams, and at least one second laser wavelength light.
- Diffraction surface 30 divided into two second main beams and two second sub-beams a is also formed as one surface portion 30a corresponding to the diffraction of a plurality of types of laser wavelength light.
- An optical pickup device is configured.
- the first diffractive surface portion 302 (FIGS. 29 and 30) corresponding to the first laser wavelength light
- the second The first laser wavelength light is transmitted through the first diffraction surface portion 302 of the conventional diffraction gratings 300A and 300B having the two diffraction surface portions 302 and 304 corresponding to the laser wavelength light, and the first laser light is transmitted.
- the wavelength light is at least divided into one first main beam and two first sub-beams
- the first main beam of the first laser wavelength light is further generated by the second diffraction surface portion 304 of the diffraction gratings 300A and 300B.
- the first sub-beam is diffracted wastefully and the first sub-beam is further diffracted, and the light efficiency of the first main beam and the first sub-beam of the first laser wavelength light decreases accordingly.
- a conventional diffraction grating 300A having two diffractive surface portions 302, 304, a first diffractive surface portion 302 corresponding to the first laser wavelength light and a second diffractive surface portion 304 corresponding to the second laser wavelength light
- the second laser wavelength light is transmitted through the second diffractive surface portion 304 of 300B and the second laser wavelength light is at least divided into one second main beam and two second sub beams, the diffraction grating 300A.
- the first diffractive surface portion 302 of 300B diffracts the second laser wavelength light unnecessarily, and as a result, the light efficiency of the second laser wavelength light decreases.
- the diffractive surface portion 30a of the diffraction grating 64C divides the first laser wavelength light into at least one first main beam and two first sub beams,
- the diffractive surface portion 30a that divides the first laser wavelength light into at least one first main beam and two first sub-beams, and the second laser wavelength light at least one second main beam and two first sub beams.
- the diffraction surface portion 30a of the diffraction grating 64C is formed as one surface portion 30a corresponding to the diffraction of a plurality of types of laser wavelength light, which also serves as the diffraction surface portion 30a divided into two sub-beams.
- a reduced diffraction grating 64C is formed. Diffraction grating 64 Since the processed portion of C, the number of processing steps, etc. are reduced, the price of the diffraction grating 64C can be kept low. Along with this, it becomes possible to configure an optical pickup device capable of keeping the price low.
- phase shift region portions 31 and 33 (FIG. 12) that generate a phase shift of ⁇ radians in a part of the laser light emitted from the laser unit 61 (FIGS. 1 to 3) are provided on the diffraction grating 64C.
- the diffraction grating 64 ⁇ / b> C includes a substantially rectangular first region portion 31, a substantially linear second region portion 32 adjacent to the first region portion 31, and a substantially rectangular third region adjacent to the second region portion 32. It is divided into at least three region portions 31, 32, 33 with the portion 33.
- the diffraction grating 64 ⁇ / b> C is divided into a plurality of region portions 31, 32, and 33. Each area part 31, 32, 33 A predetermined periodic structure is formed in the inside.
- the second region portion 32 is drawn with a certain width for convenience.
- the second region 32 of the diffraction grating 64C has a thin line shape with a width 32w of about 20 to 200 ⁇ m, for example.
- the periodic structure of each of the region portions 31, 32, and 33 constituting the diffraction grating 64C is It is a fine periodic repeating periodic structure.
- the diffraction grating 64C has, for example, approximately 3 to 1.
- the glass plate has a vertical and horizontal dimension of 0 mm square and a thickness of approximately 0.3 to 3 mm. When the diffraction grating 64C shown in FIG. 12 is viewed, the diffraction grating 64C is, for example, the diffraction grating 64 shown in FIG. It can be seen as A.
- the detection of the error signal of the optical pickup device with respect to the signal surface portion Da of the medium D can be performed.
- the tracking of the optical pickup device with respect to the signal surface portion Da of the medium D is easily performed favorably.
- the diffraction grating 64C (FIG. 12) is configured by being divided into a plurality of region portions 31, 32, 33, so that at least three focused spots 80 that are independent of each other on the signal surface portion Da of the medium D (FIG. 5). , 81 and 82 are irradiated.
- the signal surface portion Da of the medium D is irradiated with at least three focused spots 80, 81, and 82 independently, tracking is performed during recording / playback of two or more types of media D having different track pitches Dtp. It is easy to avoid that the detection accuracy of error signals such as error signals SE1 and SE2 decreases. Accordingly, it is possible to provide an optical pickup device that is easily subjected to tracking control.
- the diffraction grating 64 ⁇ / b> C includes a first region portion 31, a second region portion 32 adjacent to the first region portion 31 and having a periodic structure different from the periodic structure of the first region portion 31, and the second region.
- the diffraction grating 64C is configured as a so-called three-divided inline grating.
- the signal surface portion Da of the medium D (FIGS. 2, 3, 5, and 7).
- the detection of the error signal of the optical pickup device is performed satisfactorily.
- media D The tracking of the optical pickup device with respect to the signal surface portion Da is performed satisfactorily.
- the diffraction grating 64C (FIG. 12) is divided into three region portions 31, 32, and 33, so that at least three converging spots 8 that are independent of each other on the signal surface portion Da of the medium D (FIG. 5). 0, 81 and 82 are irradiated.
- the track pitch Dtp is different.
- the objective lens 70 FIG. 1 to FIG. It is avoided that the detection accuracy of error signals such as tracking error signals SE1 and SE2 is reduced with the displacement of FIG. Accordingly, it is possible to provide an optical pickup device that is easily subjected to tracking control.
- the diffraction grating 64 ⁇ / b> C has one of the substantially rectangular regions 31 that is the first region 31 and the other substantially rectangular region 32 that is the third region 32. It is said.
- the width 31w of the first region portion 31 of the diffraction grating 64C and the width 33w of the third region portion 33 are substantially equal. Due to the second region portion 32 of the diffraction grating 64C, the diffraction grating 64C has one region portion 31 constituting the diffraction grating 64C and the other region portion 32 constituting the diffraction grating 64C. And divided.
- the diffraction grating 64C is divided into odd numbers.
- the periodic structure of the second region portion 32 is a periodic structure having a different phase.
- the periodic structure of the third region portion 33 is a periodic structure having a different phase from the periodic structure of the second region portion 32.
- the periodic structure of the third region portion 33 is a periodic structure having a phase that differs by about 180 degrees.
- the periodic structure of the third region portion 33 of the diffraction grating 64C is a periodic structure having a phase that is approximately 180 degrees different from the periodic structure of the first region portion 31 of the diffraction grating 64C.
- At least three condensing spots 80, 81, 82 are well formed on the signal surface portion Da.
- the objective lens 70 It is easy to avoid the tracking error signals SE1 and SE2 from deteriorating with the displacement of (FIGS. 1 to 3).
- the first region portion 31 and the second region portion 32 are separated by a boundary line portion 35 that separates the first region portion 31 (FIG. 12) and the second region portion 32. Further, the second region portion 32 and the third region portion 33 are separated by a boundary line portion 37 that separates the second region portion 32 and the third region portion 33.
- the signal surface portion Da of the medium D (FIG. 5) is irradiated with at least three independent focused spots 80, 81, and 82, respectively.
- At least three focused spots 80, 81, on the signal surface portion Da of the medium D Since each 82 is irradiated independently, tracking of the optical pick-up apparatus with respect to the signal surface part Da of the media D becomes easy to be performed.
- the diffraction grating 64C (FIG. 12) is formed in a substantially rectangular plate shape. When the diffraction grating 64C is viewed in plan, the diffraction grating 64C is viewed as a substantially rectangular plate.
- the diffraction grating 64 ⁇ / b> C is viewed in a plan view in a state where the vertically long substantially rectangular first region portion 31, the vertically long substantially linear second region portion 32, and the vertically long substantially rectangular third region portion 33 are arranged side by side.
- the phase of one region portion of the diffraction grating 64C is shifted to the right side of the one region portion, the phase of the other region portion is shifted to a substantially right-up step shape. It is determined to be shifted to the plus (+) side.
- the diffraction grating 64C is arranged in a state where the vertically long substantially rectangular first region portion 31, the vertically long substantially linear second region portion 32, and the vertically long substantially rectangular third region portion 33 are arranged side by side.
- the phase of the other region portion is shifted when the phase of the other region portion adjacent to the right side of the one region portion is shifted in a substantially step-down manner with respect to the phase of the one region portion of the diffraction grating 64C. Is determined to be shifted to the minus ( ⁇ ) side.
- the periodic structure of the second region portion 32 adjacent to the right side of the first region portion 31 has a phase shifted to the plus side with respect to the periodic structure of the first region portion 31. It has a periodic structure. Further, when the diffraction grating 64C is viewed in plan, the periodic structure of the third region portion 33 adjacent to the right side of the second region portion 32 is shifted to the plus side with respect to the periodic structure of the second region portion 32.
- the periodic structure has a phase.
- the diffraction grating 64C is configured such that the phases of the periodic structures of the region portions 31, 32, and 33 are shifted step by step in order (FIG. 13).
- the diffraction grating 64C (FIG. 12) is a diffraction grating 64C having a so-called rank phase periodic structure.
- a diffraction grating (64C) in which only the outline is horizontally reversed while the sign, lead line, dimension line, etc. are substantially unchanged. May be used.
- the periodic structure of the first region portion (31) is adjacent to the right side of the first region portion (31).
- the periodic structure of the second region portion (32) may be a periodic structure having a phase shifted to the minus side.
- a diffraction grating ( 64C) in plan view the second region portion (3) with respect to the periodic structure of the second region portion (32).
- the periodic structure of the third region portion (33) adjacent to the right side of 2) may be a periodic structure having a phase shifted to the minus side.
- the diffraction grating (64C) is configured by shifting each phase of the periodic structure of each region portion (31, 32, 33) step by step in order.
- the diffraction grating (64C) is a diffraction grating (64C) having a so-called ordered phase periodic structure.
- the optical pickup device is equipped with a diffraction grating with a periodic phase structure,
- the push-pull signal amplitude level (Sub-PP amplitude level) is increased, and the sub-push-pull signal amplitude level characteristic (Sub-PP amplitude level characteristic) is easily improved (FIGS. 19, 20, and 21). It is avoided that the Sub-PP amplitude level (%) is decreased and the Sub-PP amplitude level characteristic is deteriorated.
- At least three condensing spots 80, 81, 82 irradiated on the signal surface portion Da (FIG. 5) of the medium D (FIGS. 1 to 3, 5) are a main spot 80 and a pair of sandwiching the main spot 80.
- Sub-spots 81 and 82 are included.
- the Sub-PP amplitude level which is the signal amplitude level associated with the main spot 80 and the sub-spots 81 and 82, is determined based on the following equation (37).
- the tracking error phase difference amount (TE phase difference amount) is reduced, and the tracking error phase difference characteristic (TE phase difference characteristic) is easily improved (FIGS. 22, 23, and 24). It is avoided that the TE phase difference amount is increased and the TE phase difference characteristic is deteriorated.
- the optical pickup apparatus can be used by being installed in an optical disk apparatus for a desktop PC, It can also be used by being installed in an optical disc device for a notebook or laptop PC.
- an optical pickup device used in an optical disc device for a desktop PC can use a large-sized objective lens, so that the sub-PP amplitude level characteristic, The TE phase difference characteristic may be more important in design.
- the optical pickup device can be used by being mounted on an optical disk device for a desktop PC, and can be used as a notebook type or a lap type. It is also possible to use the optical disc apparatus for a top type PC.
- the periodic structure of the second region portion 32 is a periodic structure having a phase that is approximately +90 degrees different from the periodic structure of the first region portion 31.
- the periodic structure of the third region 33 is a periodic structure having a phase that is approximately +90 degrees different from the periodic structure of the second region 32.
- the periodic structure of the third region portion 33 is approximately +180.
- the periodic structure has different phases.
- the diffraction grating 64C configured in this way is installed in the optical pickup device, then Su The b-PP amplitude level (%) is increased, and the Sub-PP amplitude level characteristic is improved (FIG. 19). 20, FIG. 21). It is avoided that the Sub-PP amplitude level (%) is decreased and the Sub-PP amplitude level characteristic is deteriorated. Further, the TE phase difference amount is reduced, and the TE phase difference characteristic is improved (FIGS. 22, 23, and 24). It is avoided that the TE phase difference amount is increased and the TE phase difference characteristic is deteriorated.
- the optical pickup device in which the phase shift type three-part diffraction grating 64C (FIG. 12) is employed and the tracking error detection method by the inline DPP method is executed can suppress the TE phase difference amount to be small. (FIGS. 22, 23, and 24). Accordingly, in an optical disc apparatus equipped with an optical pickup device (FIGS. 1 to 3) having a phase shift type three-part diffraction grating 64C (FIG. 12), for example, for any media D having a different track pitch Dtp (FIG. 5). However, data / information is read / written to / from the medium D with a stable operation.
- the sub-PP amplitude level characteristic irradiated to the signal surface portion Da of the medium D is improved, and the TE phase difference characteristic is improved. It can be used by being mounted on an optical disk device for C, and can also be used by being mounted on an optical disk device for notebook type or laptop PC.
- this optical pickup device can be used by being mounted on an optical disc device for a notebook type or laptop type PC, It can also be used by being installed in an optical disk device for a desktop PC. In addition, since a significant decrease in the TE visual field characteristic is suppressed, this optical pickup device can be used as an optical pickup device including a plurality of small objective lenses 70, for example.
- the width 32w of (FIG. 12) is, for example, 14 to 30%, preferably 16 to 28%. More preferably, it is 18 to 26%, and further preferably 18 to 25%.
- the central portion ratio Wr of the diffraction grating 64C is, for example, 14 to 30%, preferably 16 to 28%, more preferably 18-26%, still more preferably 18-25% (FIG. 16- FIG. 23).
- the optical pickup device is equipped with the diffraction grating 64C configured as described above, a tracking error signal is generated along with the displacement of the objective lens 70 at the time of data recording / reproduction of a plurality of types of media D having different track pitches Dtp. It is easy to avoid the deterioration of SE1 and SE2.
- Wavelength of approximately 630 to 685 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 The width 32w of the central portion 30m of the diffraction grating 64C with respect to the diameter 70b of the second laser wavelength light of nm Is set to less than 14%, the TE amplitude level (%) is decreased and the TE visual field characteristics are degraded (FIGS. 16 and 17). That is, a wavelength of about 630 to 685 nm conforming to the DVD standard.
- the central portion ratio W of the diffraction grating 64C When the second laser wavelength light passes through the diffraction grating 64C, the central portion ratio W of the diffraction grating 64C When r is set to less than 14%, the OBL center ratio (%) is reduced and the TE visual field characteristics are deteriorated.
- the width 32w of the central portion 30m of the diffraction grating 64C is set to less than 16% with respect to the diameter 70b of the second laser wavelength light of ⁇ 685 nm, the TE amplitude level (%) is reduced and the TE visual field characteristics are deteriorated. It becomes easy (FIG. 16, FIG. 17).
- a wavelength of approximately 63 in accordance with the DVD standard a wavelength of approximately 63 in accordance with the DVD standard.
- the diffraction grating 64C Is set to less than 16%, the OBL center ratio (%) is reduced and T E field of view characteristics tend to be degraded.
- the width 32w of the central portion 30m of the diffraction grating 64C with respect to the diameter 70b of the second laser wavelength light of nm Is set to 18% or more, a decrease in TE amplitude level (%) is suppressed, and a decrease in TE visual field characteristics is suppressed.
- the central portion ratio Wr of the diffraction grating 64C is set to 18% or more, so that the OBL center ratio ( %) Is suppressed, and the deterioration of the TE visual field characteristics is suppressed.
- OBL object lens
- the wavelength approximately 630 to compliant with the DVD standard passing through the pupil plane part 70a of the objective lens 70 is obtained.
- the width 32w of the central portion 30m of the diffraction grating 64C is set to exceed 30% with respect to the diameter 70b of the second laser wavelength light of 685 nm, the sub push-pull signal amplitude level (Sub ⁇ (PP amplitude level) (%) is decreased, and the Sub-PP amplitude level characteristic is degraded (FIG. 19). , FIG. 20).
- the central portion 30m of the diffraction grating 64C with respect to the diameter 70b of the second laser wavelength light of 0 to 685 nm When the width 32w of the sub-push is set to exceed 28%, the sub push-pull signal amplitude level (Su b-PP amplitude level) (%) is reduced, and the Sub-PP amplitude level characteristic is easily deteriorated.
- Wavelength of approximately 630 to 685 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 The width 32w of the central portion 30m of the diffraction grating 64C with respect to the diameter 70b of the second laser wavelength light of nm Is set to be within 26%, the decrease in the Sub-PP amplitude level (%) is easily suppressed, and the decrease in the Sub-PP amplitude level characteristic is easily suppressed. More specifically, the wavelength approximately 630 to 685 nm conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70.
- the width 32w of the central portion 30m of the diffraction grating 64C is 2 with respect to the diameter 70b of the second laser wavelength light. By making it within 5%, the decrease in the Sub-PP amplitude level (%) is suppressed, and the Sub -The deterioration of the PP amplitude level characteristic is suppressed.
- the diffraction grating 64C corresponds to the diameter 70b of the second laser wavelength light having a wavelength of about 630 to 685 nm conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 2).
- the width 32w of the central portion 30m is set to exceed 30%, the tracking error phase difference amount (TE phase difference amount) is increased and the tracking error phase difference characteristic (TE phase difference characteristic) is lowered (FIG. 22, FIG. 23). More specifically, the pupil plane portion 7 of the objective lens 70 (FIG. 2).
- the width 32w of the central portion 30m of the diffraction grating 64C (FIG. 12) corresponds to the diameter 70b of the second laser wavelength light having a wavelength of about 630 to 685 nm conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 2).
- the tracking error phase difference amount (TE phase difference amount) is increased, and the tracking error phase difference characteristic (TE phase difference characteristic) is easily lowered (FIGS. 22 and 23).
- Wavelength of approximately 630 to 685 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 The width 32w of the central portion 30m of the diffraction grating 64C with respect to the diameter 70b of the second laser wavelength light of nm
- the diameter 70 of the second laser wavelength light having a wavelength of approximately 630 to 685 nm conforming to the DVD standard that passes through the pupil plane portion 70a of the objective lens 70 the width 32w of the central portion 30m of the diffraction grating 64C is within 25%, An increase in TE phase difference amount is suppressed, and a decrease in TE phase difference characteristic is suppressed.
- the width 32w of the central portion 30m of the diffraction grating 64C with respect to the diameter 70b of the second laser wavelength light of nm Is set to, for example, 14 to 30%, preferably 16 to 28%, more preferably 18 to 26%, and even more preferably 18 to 25%, so that the TE amplitude level (FIGS. 16 and 17)
- the ⁇ PP amplitude level (FIGS. 19 and 20) and the TE phase difference amount (FIGS. 22 and 23) are easily set to appropriate values.
- a wavelength of approximately 630 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 By setting the width 32w of the central portion 30m of the diffraction grating 64C to about 20% with respect to the diameter 70b of the second laser wavelength light of ⁇ 685 nm, the TE amplitude level (FIGS. 16 and 17) and S The ub-PP amplitude level (FIGS. 19 and 20) and the TE phase difference amount (FIGS. 22 and 23) are easily set to optimum values. Since the TE amplitude level, the Sub-PP amplitude level, and the TE phase difference amount are set to appropriate values in a balanced manner, tracking control of the optical pickup device is easily performed.
- the width 32w of (FIG. 12) is, for example, 10% or more and 40% or less, preferably 12% or more and 30% or less, 14% or more and 25% or less depending on design / specifications, and 16% or more and 20% or less depending on design / specifications. It is said.
- the central portion ratio Wr of the diffraction grating 64C is, for example, 10% or more and 40% or less, preferably 12% or more and 30% or less. % To 25% and 16% to 20% depending on the design / specifications (FIGS. 18, 21, and 24).
- the optical pickup device is equipped with the diffraction grating 64C configured as described above, a tracking error signal is generated along with the displacement of the objective lens 70 at the time of data recording / reproduction of a plurality of types of media D having different track pitches Dtp. It is easy to avoid the deterioration of SE1 and SE2.
- the width 32w of the central portion 30m of the diffraction grating 64C is set to less than 10% with respect to the diameter 70c of the first laser wavelength light of m, the TE amplitude level (%) is reduced and the TE visual field characteristics are deteriorated. (FIG. 18).
- the central portion ratio Wr of the diffraction grating 64C is set to less than 10% when the first laser wavelength light having a wavelength of approximately 765 to 840 nm conforming to the CD standard passes through the diffraction grating 64C, the OBL center ratio ( %) Is reduced, and the TE visual field characteristics are degraded.
- the width 32w of the central portion 30m of the diffraction grating 64C is 12 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70.
- the TE amplitude level (%) is decreased, and the TE visual field characteristics are likely to be deteriorated (FIG. 18). That is, when the first laser wavelength light having a wavelength of approximately 765 to 840 nm conforming to the CD standard passes through the diffraction grating 64C, the central portion ratio Wr of the diffraction grating 64C is 12%. If it is set below, the OBL center ratio (%) is decreased, and the TE visual field characteristics are likely to be deteriorated.
- Wavelength of about 765 to 840n conforming to the CD standard passing through the pupil plane part 70a of the objective lens 70 When the width 32w of the central portion 30m of the diffraction grating 64C is set to 14% or more with respect to the diameter 70c of the first laser wavelength light of m, reduction of the TE amplitude level (%) is suppressed, and the TE visual field characteristics are deteriorated. Is suppressed. That is, when the first laser wavelength light having a wavelength of approximately 765 to 840 nm conforming to the CD standard passes through the diffraction grating 64C, the central portion ratio Wr of the diffraction grating 64C is 14.
- the ratio By setting the ratio to at least%, the decrease in the OBL center ratio (%) can be suppressed, and the deterioration of the TE visual field characteristics can be suppressed. More specifically, the width 32w of the central portion 30m of the diffraction grating 64C is 16 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70. % Or more, the TE amplitude level ( %) Is suppressed, and the deterioration of the TE visual field characteristic is reliably suppressed.
- the central portion ratio Wr of the diffraction grating 64C is set to 16% or more, so that the OBL center ratio ( %) Is suppressed, and the deterioration of the TE visual field characteristic is reliably suppressed.
- the wavelength of about 765 to 8 conforming to the CD standard passing through the pupil plane part 70a of the objective lens 70 is obtained.
- 2w is set to exceed 40%, the sub push-pull signal amplitude level (Sub-P P amplitude level) (%) is reduced, and the Sub-PP amplitude level characteristic is degraded (FIG. 21). .
- the width 32w of the central portion 30m of the diffraction grating 64C is set to exceed 30% with respect to the diameter 70c of the first laser wavelength light of m
- the Sub-PP amplitude level characteristic is likely to be lowered.
- the width 32w of the central portion 30m of the diffraction grating 64C is 25 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70.
- Sub-PP amplitude level (%) The decrease in the sub-PP amplitude level characteristic is easily suppressed.
- Sub-PP amplitude level (% ) And the sub-PP amplitude level characteristic can be prevented from decreasing.
- a wavelength of approximately 7 based on the CD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 3).
- the width 32w of the central portion 30m of the diffraction grating 64C (FIG. 12) is set to exceed 40% with respect to the diameter 70c of the first laser wavelength light of 65 to 840 nm, the tracking error phase difference amount (TE phase difference amount) ) Is increased, and the tracking error phase difference characteristic (TE phase difference characteristic) is reduced (FIG. 24). More specifically, the diffraction grating 64C (FIG.
- the 12 has a diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 3).
- the width 32w of the central portion 30m is set to exceed 30%, the tracking error phase difference amount (TE phase difference amount) is increased, and the tracking error phase difference characteristic (TE phase difference characteristic) is likely to be lowered (FIG. 24).
- the width 32w of the central portion 30m of the diffraction grating 64C is 25 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70.
- the width 32w of the central portion 30m of the diffraction grating 64C with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70. 20 By being within%, an increase in the TE phase difference amount is suppressed, and a decrease in the TE phase difference characteristic is suppressed.
- the width 32w of the central portion 30m of the diffraction grating 64C is, for example, 10% or more and 40% or less, preferably 12% or more and 30% or less, and 14% or more depending on the design / specification with respect to the diameter 70c of the first laser wavelength light of m
- TE amplitude level (FIG. 18)
- Sub-PP amplitude level (FIG. 21)
- the phase difference amount (FIG. 24) is easily set to an appropriate value.
- the following formula (38) and the following formula (39) are set.
- the width 32w of the central portion 30m of the diffraction grating 64C is set to B1. It is determined. Further, the wavelength approximately 7 in conformity with the CD standard passing through the pupil plane part 70a of the objective lens 70.
- the diameter 70c of the first laser wavelength light of 65 to 840 nm is defined as B2.
- the objective lens 7 The diameter 70b of the second laser wavelength light having a wavelength of about 630 to 685 nm conforming to the DVD standard that passes through the zero pupil plane part 70a is defined as B3.
- an optical pickup device that exhibits performance satisfying the following expressions (38) and (39) is configured.
- B1 / B2 is, for example, 0.10 or more and 0.40 or less, preferably 0.12 or more and 0.30 or less, 0.14 or more and 0.25 or less depending on design / specifications, etc.
- the minimum value “DPP_L” of the visual field characteristic is set.
- the ratio “SPP / MPP” of the signal level of the sub push-pull signal to the signal level of the main push-pull signal is easily set to an appropriate value.
- B1 / B3 is set to, for example, 0.14 to 0.30, preferably 0.16 to 0.28, more preferably 0.18 to 0.26, and still more preferably 0.18 to 0.25.
- the minimum value “DPP_L” of the visual field characteristic and the signal level of the main push-pull signal Ratio of signal level of sub push-pull signal “S “PP / MPP” is easily set to an appropriate value.
- the width 32w of the second region portion 32 of the diffraction grating 64C of the diffraction grating 64C is 20-2. It is set to 00 ⁇ m, preferably 60 to 160 ⁇ m, more preferably 96 to 144 ⁇ m. That is, the division width 32w of the diffraction grating 64C is 20 to 200 ⁇ m, preferably 60 to It is set to 160 ⁇ m, more preferably 96 to 144 ⁇ m.
- tracking error signals SE1, S are accompanied by displacement of the objective lens 70. It is easy to avoid that E2 deteriorates.
- the width 32w of the second region portion 32 of the diffraction grating 64C is a narrow width of less than 20 ⁇ m
- the width 32w of the second region portion 32 of the diffraction grating 64C is a wide width exceeding 200 ⁇ m
- the balance between the TE visual field characteristic, the Sub-PP amplitude level characteristic, and the TE phase difference characteristic is lost.
- the tracking error signals SE1 and SE2 are deteriorated, and it becomes difficult to accurately track the optical pickup device with respect to the signal surface portion Da of the medium D.
- the width 32w of the second region 32 of the diffraction grating 64C is set to about 60 to 160 ⁇ m, the balance between the TE visual field characteristics, the Sub-PP amplitude level characteristics, and the TE phase difference characteristics is substantially maintained. It becomes easy. Accordingly, the tracking of the optical pickup device with respect to the signal surface portion Da of the media D is easily performed accurately.
- the width 32w of the second region portion 32 of the diffraction grating 64C is set within the range of 96 to 144 ⁇ m, so that the balance between the TE visual field characteristic, the Sub-PP amplitude level characteristic, and the TE phase difference characteristic is balanced. Kept. Thereby, the deterioration of the tracking error signals SE1, SE2 is avoided. Therefore, the tracking of the optical pickup device with respect to the signal surface portion Da of the medium D is accurately performed.
- This optical pickup device includes, for example, a diffraction grating 64C having a substantially rectangular shape in plan view. (FIG. 12) and at least three light fluxes are collected, and at least three condensing spots 80 that are independent of each other on the signal surface portion Da (FIG. 5) of the medium D (FIGS. 1 to 3 and 5). , 81, and 82, and a photodetector 73 ⁇ / b> A (see FIG. 1) that receives the reflected light of each of the three focused spots 80, 81, and 82 (FIG. 5) on the medium D. 1 to 3 and 5 to 7 ).
- the optical pickup device is configured in this way, the signal surface portion D of the media D (FIG. 5).
- the tracking of the optical pickup device with respect to a is performed with high accuracy. Track pitch D
- the objective lens 70 (see FIG. 1 to FIG. With the displacement of FIG. 3), it is easy to avoid that the amplitude of the tracking error signals SE1 and SE2 deteriorates and that the offset remains in the tracking error signals SE1 and SE2.
- the optical pickup device including the phase shift type three-divided diffraction grating 64C (FIG. 12)
- the data reproduction operation or data recording operation of the optical pickup device with respect to the DVD-RAM is surely performed.
- the data reproduction operation or data recording operation of the optical pickup device for DVD ⁇ R and DVD ⁇ RW is performed reliably.
- FIG. 14 is a schematic plan view showing a fourth embodiment of the diffraction grating provided in the optical pickup device
- FIG. 15 is a diagram showing the relationship between the optical disk radial direction and the phase difference in the diffraction grating of FIG.
- a diffraction grating 64D shown in FIG. 14 is provided in the optical pickup device (FIGS. 1 to 3). There is no change in the optical pickup device and the optical disk device except that the diffraction grating 64A shown in FIGS. 1 to 3 and 8 is replaced with the diffraction grating 64D shown in FIG.
- the diffraction grating 64A shown in FIGS. 1 to 3 and FIG. Example 1 is different from Example 4 in that the diffraction grating 64D shown in FIG. 4 is replaced.
- Example 1 and Example 4 are common. It is supposed to be.
- Example 4 will be described using FIGS. 1 to 8 and FIGS. 16 to 24 together. Moreover, in Example 4, the same thing as what was demonstrated in Example 1 was attached
- the diffraction surface portion 40a of the diffraction grating 64D includes a diffraction surface portion 40a that divides the first laser wavelength light into at least one first main beam and two first sub beams, and at least one second laser wavelength light.
- Diffraction surface portion 40 divided into two second main beams and two second sub beams a is also formed as one surface portion 40a corresponding to the diffraction of plural types of laser wavelength light.
- An optical pickup device is configured.
- the first diffractive surface portion 302 (FIGS. 29 and 30) corresponding to the first laser wavelength light
- the second The first laser wavelength light is transmitted through the first diffraction surface portion 302 of the conventional diffraction gratings 300A and 300B having the two diffraction surface portions 302 and 304 corresponding to the laser wavelength light, and the first laser light is transmitted.
- the wavelength light is at least divided into one first main beam and two first sub-beams
- the first main beam of the first laser wavelength light is further generated by the second diffraction surface portion 304 of the diffraction gratings 300A and 300B.
- the first sub-beam is diffracted wastefully and the first sub-beam is further diffracted, and the light efficiency of the first main beam and the first sub-beam of the first laser wavelength light decreases accordingly.
- a conventional diffraction grating 300A having two diffractive surface portions 302, 304, a first diffractive surface portion 302 corresponding to the first laser wavelength light and a second diffractive surface portion 304 corresponding to the second laser wavelength light
- the second laser wavelength light is transmitted through the second diffractive surface portion 304 of 300B and the second laser wavelength light is at least divided into one second main beam and two second sub beams, the diffraction grating 300A.
- the first diffractive surface portion 302 of 300B diffracts the second laser wavelength light unnecessarily, and as a result, the light efficiency of the second laser wavelength light decreases.
- the diffraction surface portion 40a of the diffraction grating 64D diffracts the first laser wavelength light into at least one first main beam and two first sub beams,
- the diffractive surface portion 40a that divides the first laser wavelength light into at least one first main beam and two first sub-beams, and the second laser wavelength light at least one second main beam and two first sub beams.
- the diffraction surface portion 40a of the diffraction grating 64D is formed as one surface portion 40a corresponding to the diffraction of a plurality of types of laser wavelength light that also serves as the diffraction surface portion 40a divided into two sub-beams.
- a reduced diffraction grating 64D is constructed. Diffraction grating 64 Since the processed portion of D, the number of processing steps, etc. are reduced, the price of the diffraction grating 64D can be kept low. Along with this, it becomes possible to configure an optical pickup device capable of keeping the price low.
- the diffraction grating 64D has phase shift region portions 41 and 44 (FIG. 14) that generate a phase shift of ⁇ radians in a part of the laser light emitted from the laser unit 61 (FIGS. 1 to 3).
- the diffraction grating 64 ⁇ / b> D includes a substantially rectangular first region portion 41, a substantially linear second region portion 42 adjacent to the first region portion 41, and a substantially linear third region adjacent to the second region portion 42.
- the region 43 is divided into at least four region portions 41, 42, 43, and 44, which are a substantially rectangular fourth region portion 44 adjacent to the third region portion 43.
- the diffraction grating 64D includes a plurality of region portions 4 1, 42, 43, and 44. A predetermined periodic structure is configured in each of the region portions 41, 42, 43, 44.
- the phase state of the second region portion 42 and the third region portion 43 is provided. Is drawn with a certain width.
- the third region 43 of the diffraction grating 64D has a thin line shape with a width 40w of about 20 to 200 ⁇ m, for example.
- the periodic structure of each of the region portions 41, 42, 43, and 44 constituting the diffraction grating 64D is a fine concavo-convex repetitive periodic structure.
- the diffraction grating 64D is, for example, a glass plate having a thickness of about 0.3 to 3 mm and a vertical and horizontal dimension of about 3 to 10 mm square.
- the diffraction grating 64D shown in FIG. 14 is viewed from the perspective, the diffraction grating 64D can be viewed as, for example, the diffraction grating 64A shown in FIG.
- the diffraction grating 64D divided into a plurality of region portions 41, 42, 43, and 44 (FIG. 14) is configured, the error signal of the optical pickup device with respect to the signal surface portion Da of the medium D (FIGS. 5 and 7). Detection is easily performed well. For example, the tracking of the optical pickup device with respect to the signal surface portion Da of the medium D is easily performed favorably.
- Diffraction grating 64D (FIG. 14 ) Are divided into a plurality of region portions 41, 42, 43, 44, so that at least three condensing spots 80, 81, independent on the signal surface portion Da of the medium D (FIG. 5). 82 is irradiated.
- At least three focused spots 80 on the signal surface Da of the medium D Since 81 and 82 are irradiated independently, the detection accuracy of error signals such as tracking error signals SE1 and SE2 decreases when recording / reproducing two or more types of media D having different track pitches Dtp. Is easily avoided. Accordingly, it is possible to provide an optical pickup device that is easily subjected to tracking control.
- the diffraction grating 64 ⁇ / b> D is divided into even-numbered region portions 41, 42, 43, and 44.
- the focused spots 80, 81, and 82 formed on the signal surface portion Da of the medium D are accurate. Condensed spots 80, 81, 82 with good quality. For example, the boundary line portion 46 between the second region portion 42 of the diffraction grating 64D (FIG. 14) and the third region portion 43 adjacent to the second region portion 42.
- the first region portion 41 and one region portion 48 including the second region portion 42 adjacent to the first region portion 41 and the fourth region portion 44 adjacent to the third region portion 43 and the third region portion 43 are Since the diffraction grating 64D is divided into at least two equal parts and divided into an even number in the other region portion 49 provided, the light applied to the diffraction grating 64D is diffracted when the diffraction grating 64D is installed in the optical pickup device.
- One region 48 of the grating 64D and the other region 49 of the diffraction grating 64D In addition, it is easy to be applied to a state of being roughly divided into two equal parts.
- One region 48 of the diffraction grating 64D Since the light is easily applied to the other region portion 49 of the diffraction grating 64D in a state where the light is approximately divided into two equal parts, the diffraction grating 64D is easily provided in the optical pickup device with high accuracy. Therefore, it is easy to form the focused spots 80, 81, 82 on the signal surface portion Da of the medium D (FIG. 5) with high accuracy. Accordingly, the detection accuracy of error signals such as tracking error signals SE1 and SE2 at the time of recording / reproducing of two or more types of media D having different track pitches Dtp is improved. Further, the tracking of the optical pickup device with respect to the signal surface portion Da of the media D is easily performed with high accuracy.
- the diffraction grating 64D includes a first region portion 41, a second region portion 42 adjacent to the first region portion 41 and having a periodic structure different from the periodic structure of the first region portion 41, and a second region.
- the region portion 43 is divided into at least four region portions 41, 42, 43, 44 adjacent to the region portion 43 and a fourth region portion 44 having a periodic structure different from the periodic structure of the third region portion 43.
- the diffraction grating 64D is configured as a so-called four-divided inline grating.
- the diffraction grating 64D divided into the plurality of region portions 41, 42, 43, and 44 shown in FIG. 14 is equipped in the optical pickup device, the signal of the medium D (FIGS. 2, 3, 5, and 7)
- the detection of the error signal of the optical pickup device for the surface portion Da is performed satisfactorily.
- the tracking of the optical pickup device with respect to the signal surface portion Da of the media D is performed satisfactorily.
- the diffraction grating 64D (FIG. 14) is configured by being divided into four region portions 41, 42, 43, and 44, so that at least three light collections that are independent of each other on the signal surface portion Da of the medium D (FIG. 5). Spots 80, 81, and 82 are irradiated.
- the track pitch Dt When data is recorded on two or more types of media D having different p, or when the track pitch D When data reproduction of two or more types of media D having different tp is performed, for example, the detection accuracy of error signals such as tracking error signals SE1 and SE2 is reduced with the displacement of the objective lens 70 (FIGS. 1 to 3). Doing so is avoided. Accordingly, it is possible to provide an optical pickup device that is easily subjected to tracking control.
- the diffraction grating 64 ⁇ / b> D includes one region portion 48 having a substantially rectangular shape including the first region portion 41 and the second region portion 42 adjacent to the first region portion 41, the third region portion 43, and the third region portion 3.
- region part 43 shall be included.
- the width 41w of the first region portion 41 of the diffraction grating 64D and the width 44w of the fourth region portion 44 are substantially equal.
- the width 42w of the second region portion 42 of the diffraction grating 64D and the width 43w of the third region portion 43 are substantially equal.
- the diffraction grating 64D has one region 48 constituting the diffraction grating 64D and the diffraction grating 6 Divided into two equal parts with the other region 49 constituting 4D.
- the diffraction grating 64D is divided into even numbers.
- the condensing spots 80 and 81 formed on the signal surface portion Da of the medium D (FIG. 5). , 82 are formed as highly accurate focused spots 80, 81, 82.
- the second region portion 42 of the diffraction grating 64D (FIG. 14) divided into an even number and the third region portion 4 adjacent to the second region portion 42. Adjacent to the first region 41 and the second region 42 adjacent to the first region 41, and adjacent to the third region 43 and the third region 43. Since the diffraction grating 64D is equally divided into the other area 49 including the fourth area 44, the laser unit 61 (when the diffraction grating 64D is installed in the housing (not shown) of the optical pickup device. The laser beam emitted from FIGS.
- the laser light emitted from the laser unit 61 and applied to the diffraction grating 64D and then transmitted through the objective lens 70 can be observed using, for example, an optical axis adjustment camera.
- the substantially central portion of the diffraction grating 64D is divided into two equal parts to form one substantially rectangular region 48 and the other substantially rectangular region 49. Since the boundary line portion 46 is provided in the diffraction grating 64D, when the optical axis adjustment of the laser light is performed by using an optical axis adjustment camera or the like, the laser light has a substantially rectangular shape constituting the diffraction grating 64D.
- the one region portion 48 and the other substantially rectangular region portion 49 constituting the diffraction grating 64D are easily applied to a state of being divided into two equal parts.
- the laser beam is easily applied to one of the substantially rectangular area portions 48 constituting the diffraction grating 64D and the other substantially rectangular area portion 49 constituting the diffraction grating 64D.
- the diffraction grating 64D is easily provided in the housing of the optical pickup device while being accurately positioned and adjusted. Therefore, it is easy to form the focused spots 80, 81, 82 on the signal surface portion Da of the medium D (FIG. 5) with high accuracy. Accordingly, the tracking of the optical pickup device with respect to the signal surface portion Da of the medium D is easily performed with high accuracy.
- the periodic structure is a periodic structure having different phases within a range of 3 to 180 degrees.
- Diffraction grating 64 3rd area part 4 which comprises diffraction grating 64D with respect to the periodic structure of 2nd area part 42 which comprises D
- the periodic structure 3 is a periodic structure having different phases within the range of 3 to 180 degrees, and therefore the second region portion 42 of the diffraction grating 64D and the second region portion 42 of the diffraction grating 64D adjacent to the second region portion 42 are used. 3 A boundary line portion 46 with the region portion 43 is substantially clarified.
- the periodic structure of the third region portion 43 is a periodic structure having a different phase of less than 3 degrees with respect to the periodic structure of the second region portion 42, the boundary between the second region portion 42 and the third region portion 43 The line part 46 is not clarified.
- the periodic structure of the third region portion 43 is 180.
- the boundary line portion 46 between the second region portion 42 and the third region portion 43 is most clearly defined.
- the third region portion 4 When the periodic structure of 3 is a periodic structure having different phases within a range of 3 to 90 degrees, for example, the boundary line portion 46 between the second region portion 42 and the third region portion 43 is being clarified.
- a diffraction grating 64D having appropriate characteristics is formed.
- Boundary line portion 4 between second region portion 42 of diffraction grating 64D and third region portion 43 of diffraction grating 64D 6 is substantially clarified, the second region portion 4 adjacent to the first region portion 41 and the first region portion 41.
- the diffraction grating 64D is formed in the housing of the optical pickup device. Equipped with high accuracy.
- the periodic structure of the second region portion 42 is The periodic structure has different phases.
- the periodic structure of the third region portion 43 is a periodic structure having a different phase from the periodic structure of the second region portion 42.
- the periodic structure of the fourth region 44 is a periodic structure having a different phase from the periodic structure of the third region 43. In contrast to the periodic structure of the first region portion 41, the periodic structure of the fourth region portion 44 is approximately 180.
- the periodic structure has different phases.
- the first region portion 41, the second region portion 42, the third region portion 43, and the fourth region portion 44 in the diffraction grating 64D are differentiated, and the first region portion 41 in the diffraction grating 64D.
- the phase difference with the 4th field part 44 is clarified. Since the periodic structure of the fourth region 44 of the diffraction grating 64D is a periodic structure having a phase different by about 180 degrees with respect to the periodic structure of the first region 41 of the diffraction grating 64D, the medium D (FIG. 5). ) At least three condensing spots 80, 81, 82 are well formed on the signal surface portion Da.
- Signal surface part D of media D At the time of data recording / reproduction of a plurality of types of media D having different track pitches Dtp due to at least three focused spots 80, 81, 82 formed well on a, for example, the objective lens 70 (FIG. 1 to FIG. It is easy to avoid the tracking error signals SE1 and SE2 from deteriorating with the displacement of 3).
- the first region portion 41 and the second region portion 42 are separated by a boundary portion 45 that separates the first region portion 41 (FIG. 14) and the second region portion 42.
- the second region portion 42 and the third region portion 43 are separated by a boundary line portion 46 that separates the second region portion 42 and the third region portion 43.
- the third region portion 43 and the fourth region portion 44 are separated by a boundary line portion 47 that separates the third region portion 43 and the fourth region portion 44.
- the periodic structure of the second region portion 42 is a periodic structure having a different phase within a range of 30 to 180 degrees.
- the periodic structure of the third region portion 43 is a periodic structure having different phases within a range of 3 to 180 degrees.
- the periodic structure of the fourth region 44 is 30 to 1 with respect to the periodic structure of the third region 43.
- the periodic structure has different phases within a range of 80 degrees.
- the first region portion 41, the second region portion 42, the third region portion 43, and the fourth region portion 44 in the diffraction grating 64D are substantially clearly distinguished.
- the first constituting the diffraction grating 64D In contrast to the periodic structure of the region portion 41, the periodic structure of the second region portion 42 constituting the diffraction grating 64D is Since the periodic structure has different phases within the range of 30 to 180 degrees, the diffraction grating 64 The first region portion 41 of D and the second region portion 42 of the diffraction grating 64D are clearly distinguished.
- the periodic structure of the third region portion 43 constituting the diffraction grating 64D is different from the periodic structure of the second region portion 42 constituting the diffraction grating 64D in that the periodic structure having a different phase within a range of 3 to 180 degrees. Therefore, the second region portion 42 of the diffraction grating 64D and the third region portion 43 of the diffraction grating 64D. Is roughly differentiated. Further, the periodic structure of the fourth region portion 44 constituting the diffraction grating 64D is different from the periodic structure of the third region portion 43 constituting the diffraction grating 64D in that the periodic structure having a different phase within a range of 30 to 180 degrees. Therefore, the third region portion 43 of the diffraction grating 64D and the fourth region portion 44 of the diffraction grating 64D are clearly distinguished.
- the diffraction grating 64D is divided into four region portions to be distinguished from each other, so that the signal surface portion Da of the medium D (FIG. 5) is irradiated with at least three independent condensing spots 80, 81, and 82, respectively. . At least three focused spots 80, 81, on the signal surface portion Da of the medium D, Since each 82 is irradiated independently, tracking of the optical pick-up apparatus with respect to the signal surface part Da of the media D becomes easy to be performed.
- the degree of freedom in designing the diffraction grating 64D (FIG. 14) is improved and the degree of freedom in designing the optical pickup device. Will also improve. Therefore, an optical pickup device that can easily exhibit optimum characteristics corresponding to the part to be used is configured.
- the diffraction grating 64D is formed in a substantially rectangular plate shape. When the diffraction grating 64D is viewed in plan, the diffraction grating 64D is viewed as a substantially rectangular plate.
- a vertically long substantially rectangular first region 41, a vertically long substantially linear second region 42, a vertically long substantially linear third region 43, and a vertically long substantially rectangular fourth region 44 are arranged side by side.
- the phase of the other region portion adjacent to the right side of the one region portion is shifted in a substantially stepwise manner with respect to the phase of the one region portion of the diffraction grating 64D. In this case, it is determined that the phase of the other region portion is shifted to the plus (+) side.
- a vertically long substantially rectangular first region portion 41 a vertically long substantially linear second region portion 42, a vertically long substantially linear third region portion 43, and a vertically long substantially rectangular fourth region portion 44 are provided.
- the phase of the other region portion adjacent to the right side of the one region portion is substantially downwardly stepped with respect to the phase of one region portion of the diffraction grating 64D. Is shifted to the minus ( ⁇ ) side, the phase of the other area portion is determined to be shifted to the minus ( ⁇ ) side.
- the periodic structure of the second region portion 42 adjacent to the right side of the first region portion 41 has a phase shifted to the plus side with respect to the periodic structure of the first region portion 41. It has a periodic structure. Further, when the diffraction grating 64D is viewed in plan, the periodic structure of the third region portion 43 adjacent to the right side of the second region portion 42 is shifted to the minus side with respect to the periodic structure of the second region portion 42. It is a periodic structure having a phase.
- the periodic structure of the fourth region portion 44 adjacent to the right side of the third region portion 43 is shifted to the plus side with respect to the periodic structure of the third region portion 43. It is a periodic structure having a phase.
- the diffraction grating 64 ⁇ / b> D is configured such that the phase direction of the phase of the periodic structure of the third region portion 43 is shifted reversely with respect to the phase of the periodic structure of the first region portion 41, the second region portion 42, and the fourth region portion 44.
- the diffraction grating 64D (FIG. 14) is a diffraction grating 64D having a so-called antiphase periodic structure.
- the sign, the leader line, the dimension line, etc. are substantially the same, but only the contour line is left and right centering on the boundary line portion (46)
- An inverted diffraction grating (64D) may be used.
- the periodic structure of the second region portion (42) adjacent to the right side of the first region portion (41) is a periodic structure having a phase shifted to the minus side with respect to the periodic structure of the first region portion (41). May be.
- the periodic structure may be a periodic structure having a phase shifted to the plus side.
- a diffraction grating (64 When D) is viewed in plan, the third region portion (43) with respect to the periodic structure of the third region portion (43).
- the periodic structure of the fourth region portion (44) adjacent to the right side of the region may be a periodic structure having a phase shifted to the negative side.
- the diffraction grating (64D) includes a first region portion (41), a second region portion (42), and a fourth region portion (44). Only the phase of the periodic structure of the third region (43) is shifted in the reverse direction with respect to the phase of the periodic structure of).
- the diffraction grating (64D) is a diffraction grating (64D) having a so-called antiphase periodic structure.
- the optical pickup device is equipped with a diffraction grating having an antiphase periodic structure, the TE amplitude level (%) is increased and the TE visual field characteristics are easily improved (FIGS. 16, 17, and 18). ). It is avoided that the TE amplitude level (%) is decreased and the TE visual field characteristics are deteriorated. Since the TE visual field characteristics are improved, this optical pickup device is preferably installed in an optical disc device for a notebook type or laptop type PC. Further, since the TE visual field characteristics are improved, this optical pickup device is preferably used as an optical pickup device including a plurality of small objective lenses 70, for example. The optical pickup device used in the optical disc device for notebook type or laptop type PC or the optical pickup device including a plurality of objective lenses 70 uses a small-sized objective lens. Is done.
- the optical pickup device may be equipped with a four-divided diffraction grating (not shown) having a periodic structure of rank phases. Further, depending on the design / specification of the optical pickup device, the optical pickup device may be used by being installed in an optical disk device for desktop PC.
- the periodic structure of the second region portion 42 is a periodic structure having a phase that is approximately +120 degrees different from the periodic structure of the first region portion 41.
- the periodic structure of the third region portion 43 is a periodic structure having a phase that is approximately ⁇ 60 degrees different from the periodic structure of the second region portion 42.
- the periodic structure of the third region portion 43 is approximately +60.
- the periodic structure has different phases.
- the periodic structure of the fourth region portion 44 is a periodic structure having a phase that is approximately +120 degrees different.
- the periodic structure of the fourth region portion 44 is a periodic structure having a phase that is approximately +180 degrees different from the periodic structure of the first region portion 41.
- TE The amplitude level (%) is increased, and the TE visual field characteristics are greatly improved (FIGS. 16, 17, and 18). ). It is avoided that the TE amplitude level (%) is decreased and the TE visual field characteristics are deteriorated.
- the TE field-of-view characteristics of this optical pickup device are the three phase region portions 31, 32, 33 (FIG. 1).
- the TE visual field characteristic of the optical pickup device including the diffraction grating 64C divided into 2) is greatly improved (FIGS. 16, 17, and 18). Since the TE visual field characteristics are greatly improved, it is preferable that this optical pickup device is installed in an optical disc device for a notebook type or laptop type PC. Further, since the TE visual field characteristics are greatly improved, this optical pickup device is preferably used as an optical pickup device including a plurality of small objective lenses 70, for example.
- the region portions 42 and 43 formed by combining the second region portion 42 and the third region portion 43 of the diffraction grating 64D serve as the vertically long central portion 40m of the diffraction grating 64D.
- Objective lens 70 (FIG. 1 , FIG. 2), which passes through the pupil plane part 70a (FIG. 2) and has a wavelength of approximately 630 to 685 in accordance with the DVD standard.
- the width 40w of, for example, is 14 to 30%, preferably 16 to 28%, more preferably 18 to 2%. 6%, more preferably 18 to 25%.
- the central portion ratio Wr of D is, for example, 14 to 30%, preferably 16 to 28%, more preferably 18 to 26%, and still more preferably 18 to 25% (FIGS. 16 to 23).
- a tracking error signal is generated along with the displacement of the objective lens 70 during data recording / reproduction of a plurality of types of media D having different track pitches Dtp. It is easy to avoid the deterioration of SE1 and SE2.
- Wavelength of approximately 630 to 685 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 The width 40w of the central portion 40m of the diffraction grating 64D with respect to the diameter 70b of the second laser wavelength light of nm Is set to less than 14%, the TE amplitude level (%) is decreased and the TE visual field characteristics are degraded (FIGS. 16 and 17). That is, a wavelength of about 630 to 685 nm conforming to the DVD standard.
- the central portion ratio W of the diffraction grating 64D When the second laser wavelength light passes through the diffraction grating 64D, the central portion ratio W of the diffraction grating 64D When r is set to less than 14%, the OBL center ratio (%) is reduced and the TE visual field characteristics are deteriorated.
- the width 40w of the central portion 40m of the diffraction grating 64D is set to less than 16% with respect to the diameter 70b of the second laser wavelength light of ⁇ 685 nm, the TE amplitude level (%) is decreased and the TE visual field characteristics are degraded. It becomes easy (FIG. 16, FIG. 17).
- a wavelength of approximately 63 in accordance with the DVD standard a wavelength of approximately 63 in accordance with the DVD standard.
- the diffraction grating 64D Is set to less than 16%, the OBL center ratio (%) is decreased and T E field of view characteristics tend to be degraded.
- the width 40w of the central portion 40m of the diffraction grating 64D with respect to the diameter 70b of the second laser wavelength light of nm Is set to 18% or more, a decrease in TE amplitude level (%) is suppressed, and a decrease in TE visual field characteristics is suppressed.
- the central portion ratio Wr of the diffraction grating 64D is set to 18% or more, so that the OBL center ratio ( %) Is suppressed, and the deterioration of the TE visual field characteristics is suppressed.
- the wavelength approximately 630 to compliant with the DVD standard passing through the pupil plane part 70a of the objective lens 70 is obtained.
- the width 40w of the central portion 40m of the diffraction grating 64D is set to exceed 30% with respect to the diameter 70b of the second laser wavelength light of 685 nm, the sub push-pull signal amplitude level (Sub ⁇ (PP amplitude level) (%) is decreased, and the Sub-PP amplitude level characteristic is degraded (FIG. 19). , FIG. 20).
- the width 40w of the sub-push is set to exceed 28%, the sub push-pull signal amplitude level (Su b-PP amplitude level) (%) is reduced, and the Sub-PP amplitude level characteristic is easily deteriorated.
- Wavelength of approximately 630 to 685 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 The width 40w of the central portion 40m of the diffraction grating 64D with respect to the diameter 70b of the second laser wavelength light of nm Is set to be within 26%, the decrease in the Sub-PP amplitude level (%) is easily suppressed, and the decrease in the Sub-PP amplitude level characteristic is easily suppressed. More specifically, the wavelength approximately 630 to 685 nm conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70.
- the width 40w of the central portion 40m of the diffraction grating 64D is 2 with respect to the diameter 70b of the second laser wavelength light. By making it within 5%, the decrease in the Sub-PP amplitude level (%) is suppressed, and the Sub -The deterioration of the PP amplitude level characteristic is suppressed.
- the diffraction grating 64D (FIG. 14) is used for the diameter 70b of the second laser wavelength light having a wavelength of about 630 to 685 nm conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 2).
- the width 40w of the central portion 40m is set to exceed 30%, the tracking error phase difference amount (TE phase difference amount) is increased and the tracking error phase difference characteristic (TE phase difference characteristic) is lowered (FIG. 22, FIG. 23). More specifically, the pupil plane portion 7 of the objective lens 70 (FIG. 2).
- the width 40w of the central portion 40m of the diffraction grating 64D (FIG. 14) is used for the diameter 70b of the second laser wavelength light having a wavelength of about 630 to 685 nm conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 2).
- the tracking error phase difference amount (TE phase difference amount) is increased, and the tracking error phase difference characteristic (TE phase difference characteristic) is easily lowered (FIGS. 22 and 23).
- Wavelength of approximately 630 to 685 conforming to the DVD standard passing through the pupil plane part 70a of the objective lens 70 The width 40w of the central portion 40m of the diffraction grating 64D with respect to the diameter 70b of the second laser wavelength light of nm
- the diameter 70 of the second laser wavelength light having a wavelength of approximately 630 to 685 nm conforming to the DVD standard that passes through the pupil plane portion 70a of the objective lens 70 the width 40w of the central portion 40m of the diffraction grating 64D is within 25%, An increase in TE phase difference amount is suppressed, and a decrease in TE phase difference characteristic is suppressed.
- the width 40w of the central portion 40m of the diffraction grating 64D with respect to the diameter 70b of the second laser wavelength light of nm Is set to, for example, 14 to 30%, preferably 16 to 28%, more preferably 18 to 26%, and even more preferably 18 to 25%, so that the TE amplitude level (FIGS. 16 and 17)
- the ⁇ PP amplitude level (FIGS. 19 and 20) and the TE phase difference amount (FIGS. 22 and 23) are easily set to appropriate values.
- the TE amplitude level (FIGS. 16 and 17) and S
- the ub-PP amplitude level (FIGS. 19 and 20) and the TE phase difference amount (FIGS. 22 and 23) are easily set to optimum values. Since the TE amplitude level, the Sub-PP amplitude level, and the TE phase difference amount are set to appropriate values in a balanced manner, tracking control of the optical pickup device is easily performed.
- the region portions 42 and 43 formed by combining the second region portion 42 and the third region portion 43 of the diffraction grating 64D serve as the vertically long central portion 40m of the diffraction grating 64D.
- Objective lens 70 (FIG. 1 , FIG. 3), which passes through the pupil plane part 70a (FIG. 3), and has a wavelength of approximately 765 to 840n in accordance with the CD standard.
- the width 40w of the central portion 40m (FIG. 14) of the diffraction grating 64D is 10% or more and 40% or less, preferably 12% or more and 30% or less, the design / specification, etc. From 14% to 25%, and from 16% to 20% depending on the design / specification.
- the central portion ratio Wr of the diffraction grating 64D is, for example, 10% or more and 40% or less, preferably 12%. 30% or less, 14% or more depending on design / specifications 25 % Or less, or 16% or more and 20% or less depending on design / specifications (FIGS. 18, 21, and 24).
- a tracking error signal is generated along with the displacement of the objective lens 70 during data recording / reproduction of a plurality of types of media D having different track pitches Dtp. It is easy to avoid the deterioration of SE1 and SE2.
- the width 40w of the central portion 40m of the diffraction grating 64D is set to be less than 10% with respect to the diameter 70c of the first laser wavelength light of m, the TE amplitude level (%) is reduced and the TE visual field characteristics are deteriorated. (FIG. 18).
- the central portion ratio Wr of the diffraction grating 64D is set to be less than 10% when the first laser wavelength light having the wavelength of about 765 to 840 nm conforming to the CD standard passes through the diffraction grating 64D, the OBL center ratio ( %) Is reduced, and the TE visual field characteristics are degraded.
- the width 40w of the central portion 40m of the diffraction grating 64D is 12 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70.
- the TE amplitude level (%) is decreased, and the TE visual field characteristics are likely to be deteriorated (FIG. 18). That is, when the first laser wavelength light having a wavelength of approximately 765 to 840 nm conforming to the CD standard passes through the diffraction grating 64D, the central portion ratio Wr of the diffraction grating 64D is 12%. If it is set below, the OBL center ratio (%) is decreased, and the TE visual field characteristics are likely to be deteriorated.
- the width 40w of the central portion 40m of the diffraction grating 64D is set to 14% or more with respect to the diameter 70c of the first laser wavelength light of m, the decrease in TE amplitude level (%) is suppressed, and the TE visual field characteristics are degraded. Is suppressed. That is, when the first laser wavelength light having a wavelength of approximately 765 to 840 nm conforming to the CD standard passes through the diffraction grating 64D, the central portion ratio Wr of the diffraction grating 64D is 14.
- the ratio By setting the ratio to at least%, the decrease in the OBL center ratio (%) can be suppressed, and the deterioration of the TE visual field characteristics can be suppressed. More specifically, the width 40w of the central portion 40m of the diffraction grating 64D is 16 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70. % Or more, the TE amplitude level ( %) Is suppressed, and the deterioration of the TE visual field characteristic is reliably suppressed.
- the central portion ratio Wr of the diffraction grating 64D is set to 16% or more, so that the OBL center ratio ( %) Is suppressed, and the deterioration of the TE visual field characteristic is reliably suppressed.
- the wavelength of about 765 to 8 conforming to the CD standard passing through the pupil plane part 70a of the objective lens 70 is obtained.
- the width 40w of the central portion 40m of the diffraction grating 64D is set to exceed 30% with respect to the diameter 70c of the first laser wavelength light of m
- the Sub-PP amplitude level characteristic is likely to be lowered.
- the width 40w of the central portion 40m of the diffraction grating 64D is 25 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70.
- Sub-PP amplitude level (%) The decrease in the sub-PP amplitude level characteristic is easily suppressed.
- Sub-PP amplitude level (% ) And the sub-PP amplitude level characteristic can be prevented from decreasing.
- a wavelength of approximately 7 based on the CD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 3).
- the width 40w of the central portion 40m of the diffraction grating 64D (FIG. 14) is set to exceed 40% with respect to the diameter 70c of the first laser wavelength light of 65 to 840 nm, the tracking error phase difference amount (TE phase difference amount) ) Is increased, and the tracking error phase difference characteristic (TE phase difference characteristic) is reduced (FIG. 24). More specifically, the diffraction grating 64D (FIG.
- the 14 has a diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane part 70a of the objective lens 70 (FIG. 3).
- the width 40w of the central portion 40m is set to exceed 30%, the tracking error phase difference amount (TE phase difference amount) is increased, and the tracking error phase difference characteristic (TE phase difference characteristic) is likely to be lowered (FIG. 24).
- the width 40w of the central portion 40m of the diffraction grating 64D is 25 with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard passing through the pupil plane portion 70a of the objective lens 70.
- the width 40w of the central portion 40m of the diffraction grating 64D with respect to the diameter 70c of the first laser wavelength light having a wavelength of about 765 to 840 nm conforming to the CD standard that passes through the pupil plane portion 70a of the objective lens 70. 20 By being within%, an increase in the TE phase difference amount is suppressed, and a decrease in the TE phase difference characteristic is suppressed.
- the width 40w of the central portion 40m of the diffraction grating 64D is, for example, 10% or more and 40% or less, preferably 12% or more and 30% or less, and 14% or more depending on the design / specification, etc. By setting it to 25% or less, or 16% or more and 20% or less depending on design / specification, etc., TE amplitude level (FIG. 18), Sub-PP amplitude level (FIG. 21), TE The phase difference amount (FIG. 24) is easily set to an appropriate value.
- the following formula (38) and the following formula (39) are set.
- the width 40w of the central portion 40m of the diffraction grating 64D is set to B1. It is determined. Further, the wavelength approximately 7 in conformity with the CD standard passing through the pupil plane part 70a of the objective lens 70.
- the diameter 70c of the first laser wavelength light of 65 to 840 nm is defined as B2.
- the objective lens 7 The diameter 70b of the second laser wavelength light having a wavelength of about 630 to 685 nm conforming to the DVD standard that passes through the zero pupil plane part 70a is defined as B3.
- an optical pickup device that exhibits performance satisfying the following expressions (38) and (39) is configured.
- B1 / B2 is, for example, 0.10 or more and 0.40 or less, preferably 0.12 or more and 0.30 or less, 0.14 or more and 0.25 or less depending on design / specifications, etc.
- the minimum value “DPP_L” of the visual field characteristic is set.
- the ratio “SPP / MPP” of the signal level of the sub push-pull signal to the signal level of the main push-pull signal is easily set to an appropriate value.
- B1 / B3 is set to, for example, 0.14 to 0.30, preferably 0.16 to 0.28, more preferably 0.18 to 0.26, and still more preferably 0.18 to 0.25.
- the minimum value “DPP_L” of the visual field characteristic and the signal level of the main push-pull signal Ratio of signal level of sub push-pull signal “S “PP / MPP” is easily set to an appropriate value.
- the width 42w of the second region portion 42 of the diffraction grating 64D (FIG. 14) and the width 43w of the third region portion 43 of the diffraction grating 64D are both 10 to 100 ⁇ m, preferably 30 to 80 ⁇ m, more preferably 48. It is set to 72 ⁇ m. That is, the divided portion width 42w of the diffraction grating 64D, 43w is 10 to 100 ⁇ m, preferably 30 to 80 ⁇ m, more preferably 48 to 72 ⁇ m. set to m.
- tracking error signals SE1, S are accompanied by displacement of the objective lens 70. It is easy to avoid that E2 deteriorates.
- width 42w of the second region portion 42 of the diffraction grating 64D and the width 43w of the third region portion 43 of the diffraction grating 64D are both set to a narrow width of less than 10 ⁇ m, or the second region portion of the diffraction grating 64D.
- the width 42w of 42 and the width 43w of the third region portion 43 of the diffraction grating 64D are both 100.
- the width exceeds ⁇ m, the balance between the TE visual field characteristics, the Sub-PP amplitude level characteristics, and the TE phase difference characteristics is lost.
- the tracking error signals SE1 and SE2 are deteriorated, and it becomes difficult to accurately track the optical pickup device with respect to the signal surface portion Da of the medium D.
- the width 42w of the second region portion 42 of the diffraction grating 64D and the width 43w of the third region portion 43 of the diffraction grating 64D are both set to about 30 to 80 ⁇ m, the TE visual field characteristics and the Sub The balance between the ⁇ PP amplitude level characteristic and the TE phase difference characteristic is easily maintained. Accordingly, tracking of the optical pickup device with respect to the signal surface portion Da of the media D is easily performed accurately.
- the width 42w of the second region portion 42 of the diffraction grating 64D and the width 43w of the third region portion 43 of the diffraction grating 64D are both set within the range of 48 to 72 ⁇ m, so that T The balance between the E field characteristic, the Sub-PP amplitude level characteristic, and the TE phase difference characteristic is maintained. Thereby, the deterioration of the tracking error signals SE1, SE2 is avoided. Therefore, the tracking of the optical pickup device with respect to the signal surface portion Da of the medium D is accurately performed.
- the central portion 3 of the three-part diffraction grating 64C It was possible only by changing the width 32w of 0m.
- an optical pickup device (FIGS. 1 to 4) provided with a four-part diffraction grating 64D (FIG. 14).
- FIG. 3 when changing the TE visual field characteristics, TE phase difference characteristics, etc., in addition to changing the width 40w of the central portion 40m of the 4-split diffraction grating 64D (FIG. 14), 4-split diffraction Various characteristics can be adjusted and changed by changing the phase difference of the lattice pitch constituting each of the region portions 42 and 43 of the central portion 40m of the lattice 64D.
- the width 40w of the central portion 40m of the quadrant diffraction grating 64D and the phase difference between the grating pitches constituting the respective region portions 42 and 43 of the central portion 40m of the quadrant diffraction grating 64D are adjusted and set. As a result, it is possible to design an optical pickup device that exhibits desired performance and balances various characteristics. Accordingly, the degree of design freedom when the optical pickup device is designed is improved.
- This optical pickup device includes, for example, a diffraction grating 64D ( 14), and at least three light converging spots 80, 81, which collect at least three light fluxes and are independent of each other on the signal surface portion Da (FIG. 5) of the medium D (FIGS. 1 to 3, FIG. 5).
- 82 an objective lens 70 (FIGS. 1 to 3) that irradiates 82, and three focused spots 80 on the medium D, And a photodetector 73A (FIGS. 1 to 3 and FIGS. 5 to 7) that receives the reflected light of 81 and 82 (FIG. 5).
- the optical pickup device is configured in this way, the signal surface portion D of the media D (FIG. 5).
- the tracking of the optical pickup device with respect to a is performed with high accuracy. Track pitch D
- the objective lens 70 (see FIG. 1 to FIG. With the displacement of FIG. 3), it is easy to avoid that the amplitude of the tracking error signals SE1 and SE2 deteriorates and that the offset remains in the tracking error signals SE1 and SE2.
- the optical pickup device including the phase shift type four-divided diffraction grating 64D (FIG. 14)
- the data reproduction operation or data recording operation of the optical pickup device with respect to the DVD-RAM is surely performed.
- the data reproduction operation or data recording operation of the optical pickup device for DVD ⁇ R and DVD ⁇ RW is performed reliably.
- the optical disk device is an optical pickup device shown in the first, second, third, fourth embodiments (FIGS. 1 to 3). ) At least one optical pickup device. Specifically, the optical disc apparatus is configured to include any one of the optical pickup apparatuses shown in the first, second, third, and fourth embodiments. The optical pickup device is installed in an optical disk device.
- optical disk device is configured to include, for example, the arithmetic unit 76A (FIGS. 2 and 3).
- an optical disk device including at least an optical pickup device that can solve at least one of the various problems is configured.
- an optical pickup device set so as to satisfy the above formula (1) and / or the above formula (2) and the above formula (3) is installed in the optical disc apparatus, so that the first laser wavelength light, The second laser wavelength light that is different from the first laser wavelength light and has a shorter wavelength than the first laser wavelength light can be reliably handled, and errors such as tracking error signals SE1, SE2, etc.
- a multi-wavelength compatible optical disc apparatus with improved signal detection accuracy is configured.
- the first laser wavelength light is surely condensed on the signal surface portion Da of the first optical disc D
- the second laser wavelength light is reliably condensed on the signal surface portion Da of the second optical disc D.
- An optical disc apparatus including at least the optical pickup apparatus is configured.
- an optical disc apparatus including at least an optical pickup device that suppresses generation of unnecessary diffracted light in the diffraction gratings 64A, 64B, 64C, and 64D and prevents the efficiency of laser light from being lowered is configured.
- the setting of the first laser wavelength light of the photodetector 73A (FIGS. 5 to 7) changed. If the spectral ratio is changed, the detection of one first main beam and the detection of two first sub-beams are easily performed with good accuracy by the new setting-changed photodetector 73A.
- an optical disc device including a single optical pickup device that is easily controlled with high accuracy such as tracking control. Reading of data from each medium D, writing of data to each medium D, and the like are normally performed by an optical disc apparatus including an optical pickup device. When each medium D is inserted into the optical disc apparatus, data of a plurality of types of media D having different track pitches Dtp is read, or data is written to a plurality of types of media D having different track pitches Dtp.
- the optical disc device is provided with one optical pickup device that can handle a plurality of types of media D having different track pitches Dtp, the price of the optical disc device can be kept low.
- a plurality of optical pickup devices are built in the optical disc device, and as a result, it is avoided that the price of the optical disc device increases significantly.
- FIG. 25 is a schematic diagram showing a fifth embodiment of the optical disk device and the optical pickup device.
- a normal setting photodetector 73B is provided in the optical pickup device in place of the setting-changed photodetector 73A and the normal setting amplification amplifier 78B of the calculation unit 76A shown in FIGS.
- the modified amplification amplifier 78BV (FIG. 25) and the like are equipped, and the arithmetic unit 7 6B is configured.
- the optical pickup device is equipped with a photodetector 73B (FIG. 25) configured with 7IR2 and the like set to normal values.
- the optical system / circuit system including 6B is partially different.
- the DVD light receiving region 75 includes, for example, current / voltage conversion amplifiers and post-stage amplifiers that are similar to the circuit shown in FIG. 6, but detailed description thereof is omitted here.
- the calculation unit 76B includes, for example, each adder, subtracter, and amplifier that approximates the circuit shown in FIG. 6 and calculates signals.
- Each adder, subtractor, and amplifier for signal calculation includes the CD light receiving region 74, Although it is connected to the DVD light receiving area 75, a detailed description thereof is omitted here.
- the normal setting amplification amplifier 78A of the setting-changed photodetector 73A and the calculation unit 76A shown in FIGS. 5 and 6 and the like is replaced with the normal setting photodetector 73B and the setting-changed calculation unit 76B shown in FIG. There is no change in the optical pickup device and the optical disk device other than the replacement with the amplifier 78B.
- the photo detector 73A whose settings are changed as shown in FIGS. 5 and 6 and the normal setting amplification amplifier 78A of the arithmetic unit 76A are replaced with the photo detector 7 with normal settings shown in FIG.
- the first, second, third, and fourth embodiments are different from the fifth embodiment in that 3B and the setting amplifier 76B of the arithmetic unit 76B whose settings are changed are different, but the photodetectors 73A and 73B and the arithmetic unit 76 are different.
- the amplification amplifiers 78A and 78B that constitute A and 76B 2, 3, and 4 and Example 5 are made common.
- Example 5 will be described with reference to FIGS.
- the same components as those described in the first, second, third, and fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
- the photodetector 73B is connected to the calculation unit 76B.
- the signal generated by the photodetector 73B is transmitted to the calculation unit 76B.
- the calculation unit 76B includes, for example, at least four differential amplifiers 77A, 77B, 77C, and 78A, an adder 78C, and an amplification amplifier 78BV.
- the differential amplifier 77A calculates a difference (TAL1-TAR1) between output signals from, for example, the pair of left and right light detection surface portions 74AL and 74AR constituting the central first main light receiving portion 74A, and generates a main push-pull signal Sa1.
- the differential amplifier 77B calculates a difference (TBL1-TBR1) between output signals from, for example, the pair of left and right light detection surface portions 74BL and 74BR constituting one of the first sub light receiving portions 74B, and generates the preceding sub push-pull signal Sc1.
- the differential amplifier 77C calculates a difference (TCL1-TCR1) between output signals from, for example, the pair of left and right light detection surface portions 74CL and 74CR constituting the other first sub light receiving portion 74C, and generates a delayed sub push-pull signal Sc1. .
- the preceding sub push-pull signal Sb1 that is the output signal of the differential amplifier 77B is added to the adder 78C.
- a delayed sub push-pull signal Sc1 that is an output signal of the differential amplifier 77C is added to the adder 78C.
- the adder 78C calculates the addition (Sb1 + Sc1) of these signals to obtain an addition sub push-pull signal Sd1.
- An addition sub push-pull signal Sd1 that is an output signal of the adder 78C is input to the amplification amplifier 78BV.
- the amplification amplifier 78BV amplifies the added sub push-pull signal Sd1 with a gain G, for example, to a signal level equal to or higher than that of the main push-pull signal Sa1.
- the output signal of the differential amplifier 77A and the output signal of the amplification amplifier 78BV are input to the differential amplifier 78A.
- the differential amplifier 78A is connected to the main push-pull signal Sa. 1 and a signal obtained by amplifying the added sub push-pull signal Sd1 are calculated and output as a tracking error signal Se1.
- the tracking error signal Se1 generated by the calculation unit 76B is converted into an objective lens driving unit 79 (FIG. 2). 3) and the objective lens 70 for the track D80 (FIG. 25) of the optical disc D. Tracking adjustment of (FIGS. 2 and 3) is automatically performed.
- the current / voltage value of the signal to be changed is the same or changed. More specifically, when the current / voltage value of a normal signal output from one standardized first main light receiving unit 200a (FIG. 27) is determined to be 100% current / voltage value, it is standardized. The current / voltage value of the normal signal output from the first main light receiving unit 200a is changed or the same 1
- the current / voltage values of the signals output from the first main light receiving units 74A (FIGS. 5 and 7) are approximately 1.
- two first sub light receiving units 74B and 74C (FIG. 5, FIG. 5). 7
- the current / voltage value of the signal output from () is changed. More specifically, when the current / voltage values of normal signals output from the two standardized first sub light receiving units 200b and 200c (FIG. 27) are both determined to be 100% current / voltage values, From the two first sub light-receiving parts 74B and 74C (FIGS. 5 and 7) that have been changed with respect to the current / voltage values of the normal signals output from the two standardized first sub-light-receiving parts 200b and 200c.
- Both the current / voltage values of the signals to be output are set to gain up to approximately 100% or higher or a high value exceeding approximately 100%.
- the current / voltage values of the signals output from the two first sub light receiving portions 74B and 74C are changed and set by the amplifier 78BV.
- Two first sub-light-receiving units 2 that are standardized by changing or having the same current / voltage value of the signal
- the current / voltage values of the signals output from the two first sub light-receiving units 74B and 74C are compared with the current / voltage values of the normal signals output from 00b and 200c (FIG. 27).
- the current / voltage value of a normal signal output from one standardized first main light receiving unit 200a (FIG. 27) is set to 100%, whereas it is changed or the same 1
- the current / voltage value of the signal output from each of the first main light receiving portions 74A (FIGS. 5 and 7) is set to a low value of approximately 100%, less than approximately 100%, or approximately 100% or less, and is normalized 2 While the current / voltage values of the normal signals output from the first sub light receiving units 200b and 200c (FIG. 27) are both 100%, the two changed first sub light receiving units 74 are changed.
- B, 74C (FIGS.
- the current / voltage value of the signal output from both is set to a value higher than approximately 100% or higher than approximately 100%, so that the newly changed amplifier 78BV In the calculation unit 76B including the first main beam detection and the two first Sub-beam detection is easily performed with relatively high accuracy.
- the two first sub light receiving units 74B and 74C (FIGS. 5 and 7) that have been changed are output.
- the current / voltage values of the signals are set to a gain up of about 120 to 160%, preferably about 138 to 142%.
- the detection of one first main beam and the detection of the two first sub beams are performed by the arithmetic unit 7 including the amplifier 78BV whose setting is changed. 6B is performed with good accuracy.
- One standardized first main light receiving unit 200a (FIG. 2) 7)
- the current / voltage value of the normal signal output from 7) is 100%, whereas it is output from one first main light receiving unit 74A (FIGS. 5 and 7) that is changed or the same.
- the current / voltage value of the signal is set to a current / voltage value of about 95-100%, preferably about 96-100%, While the current / voltage values of normal signals output from the two standardized first sub light receiving units 200b and 200c (FIG.
- the two changed first sub light receiving units 200b and 200c are both 100%, the two changed first sub light receiving units 200b and 200c (FIG. 27)
- the current / voltage values of the signals output from the light receiving portions 74B and 74C are both approximately 120 to
- the gain is set to a current / voltage value of 160%, preferably approximately 138 to 142%, so that the calculation unit 76B including the newly changed amplifier 78BV detects one first main beam and 2 The detection of the first sub-beam of the book is performed with good accuracy.
- one first main light receiving unit ( The current / voltage value of the signal immediately after being output from 74A) may be changed by, for example, an attenuator (not shown) provided in the photodetector (73B). Further, depending on the design / specification of the optical pickup device, for example, the current / voltage value of the signal output from one first main light receiving unit (74A) is, for example, an attenuator (not shown) provided in the arithmetic unit (76B). The setting may be changed by, for example.
- a calculation unit (76B) including an amplifier (78BV) or the like is provided in the photodetector (73B), and a calculation unit (76B) including the amplifier (78BV) or the like and the photodetector (73B) are integrated.
- An attached photodetector (not shown) can also be used.
- the current / voltage value of a signal output from one second main light receiving unit 75A is a standardized 1
- the current / voltage value of the normal signal output from the two second main light receiving units 200a (FIG. 28).
- the current / voltage value of the signal output from one second main light receiving unit 75A (FIGS. 5 and 7) is approximately 100% of the current / voltage value of the normal signal output from 200a. Is set to a value.
- the current / voltage values of the signals output from the two second sub light receiving units 75B and 75C are the normal signal output from the two second sub light receiving units 200b and 200c (FIG. 28). Current / voltage value.
- Two standardized second sub light receiving portions 200b and 200c When the current / voltage values of the normal signals output from the two are determined to be 100% current / voltage values, the normal signals output from the two standardized second sub light receiving units 200b and 200c With respect to the current / voltage value, the current / voltage values of the signals output from the two second sub light receiving portions 75B and 75C (FIGS. 5 and 7) are both set to a current / voltage value of approximately 100%. .
- the current / voltage value of the signal output from one second main light receiving unit 75A is the current / voltage value of the normal signal output from one standardized second main light receiving unit 200a (FIG. 28).
- the current / voltage values of the signals output from the two second sub light receiving portions 75B and 75C are output from the two standardized second sub light receiving portions 200b and 200c (FIG. 28).
- the calculation unit 76B detects one second main beam and 2 The detection of the second sub-beam of the book is performed with high accuracy.
- the current / voltage value of a normal signal output from one standardized second main light receiving unit 200a is 100%
- one second main light receiving unit 75A (FIG. 5).
- the current / voltage value of the signal output from FIG. 7) is set to a current / voltage value of approximately 100%
- the normal output from the two second sub-light-receiving units 200b and 200c (FIG. 28) normalized While the current / voltage values of the signals are both 100%, the two second sub light receiving portions 75B and 7B
- the calculation unit 76B detects one second main beam. And the detection of the two second sub-beams are performed with high accuracy.
- an optical disc device including a single optical pickup device that is easily controlled with high accuracy such as tracking control. Reading of data from each medium D, writing of data to each medium D, and the like are normally performed by an optical disc apparatus including an optical pickup device.
- an optical disc apparatus including an optical pickup device When each medium D is inserted into the optical disc apparatus, data of a plurality of types of media D having different track pitches Dtp is read, or data is written to a plurality of types of media D having different track pitches Dtp
- the optical disc device is provided with one optical pickup device that can handle a plurality of types of media D having different track pitches Dtp, the price of the optical disc device can be kept low.
- a plurality of optical pickup devices are built in the optical disc device, and as a result, it is avoided that the price of the optical disc device increases significantly.
- the optical pickup device, and an optical disk device provided with the optical pickup device Data / information / signals are recorded on the various optical discs D, and the various optical discs D are recorded. It can be used in a recording / reproducing apparatus that reproduces data / information / signals. More specifically, the optical pickup device and the optical disc apparatus including the optical pickup device record data / information / signals on the various optical discs D, or store data / information / signals on the various optical discs D.
- the present invention can be used for a recording / playback / erasable apparatus that reproduces or erases data / information / signals and the like of the various optical disks D.
- the optical pickup device and the optical disk device including the optical pickup device can also be used as a reproduction-only device for reproducing data / information / signals and the like of the various optical disks D.
- the optical pickup device and the optical disk device including the optical pickup device are installed in, for example, an optical disk device assembled in a computer, an audio / video device, a game machine, an in-vehicle device (all not shown), and the like.
- the optical pickup device and the optical disc device including the optical pickup device are, for example, a notebook PC, a laptop PC, a desktop PC, a computer such as an in-vehicle computer, and a game such as a computer game machine.
- Machine, CD player / CD recorder, DVD player / D It can be installed in audio and / or video equipment such as a VD recorder (both not shown).
- the optical pickup device includes a CD-type optical disc, a DVD-type optical disc, “HD It is possible to support a plurality of discs such as a “DVD” optical disc, a “CBHD” optical disc, and a “Blu-ray Disc” optical disc. Further, the optical pickup device can be adapted to one optical disk having a plurality of signal surface portions.
- the optical pickup device is, for example, “CD”, “DVD”, “HD DVD”, “CBHD”. ”,“ Blu-ray Disc ”, etc., it can be installed in computers, audio and / or video equipment, game machines, in-vehicle devices, etc. (all not shown).
- the two-divided diffraction grating 6 having the two region portions 21 and 22 shown in FIGS. Instead of 4A and 64B, a two-divided type diffraction grating having two regions having other forms ( (Not shown) may be used.
- the three area portions 31, 32, 3 shown in FIG. instead of the three-divided type diffraction grating 64C having three, a three-divided type diffraction grating (not shown) having three regions having other forms may be used.
- the four-divided type diffraction grating 64D provided with the four region portions 41, 42, 43, and 43 shown in FIG.
- a four-divided diffraction grating (not shown) including four regions having other forms may be used.
- a multi-partition type diffraction grating having a plurality of various regions can be used.
- an optical glass plate (50) (FIGS. 4 and 11) is mounted on a three-part diffraction grating (64C) having three regions (31, 32, 33) shown in FIG. Also good. Further, for example, an optical glass plate (50) (FIGS. 4 and 11) is mounted on a four-part diffraction grating (64D) having the four regions (41, 42, 43, and 43) shown in FIG. May be.
- the first laser light is “DVD” standard red laser light having a wavelength of about 660 nm (first wavelength)
- the second laser light is “wavelength of about 405 nm (second wavelength)”.
- HD Blue-violet laser light such as “DVD” standard, “CBHD” standard, or “Blu-ray Disc” standard may be used.
- the diffraction gratings 64A, 64B, 64C, 64D It is composed only of a diffraction grating member having a grating interval corresponding to a wavelength such as “DVD”, “CBHD”, or “Blu-ray Disc” standard.
- a “CD” standard infrared laser beam having a wavelength of about 780 nm and a wavelength of about 660 nm.
- DVD standard red laser light and a wavelength of about 405nm
- HD DVD high-density DVD
- CB three-wavelength compatible laser unit (61) capable of emitting blue-violet laser light such as “HD” standard or “Blu-ray Disc” standard may be used.
- an optical pickup device including two or more objective lenses (70) may be configured.
- the first wavelength light having a wavelength of about 765 to 840 nm and the wavelength of about 63 Numerical aperture corresponding to second wavelength light of 0 to 685 nm (Numerical Aperture) : NA)
- An optical pickup device comprising an objective lens 70 of approximately 0.6 to 0.66 and an objective lens (not shown) having an NA of approximately 0.85 corresponding to other wavelength light having a wavelength of approximately 340 to 450 nm. It may be configured.
- the optical system can be simplified, and the two types of first and second laser beams having different wavelengths can be handled, unnecessary diffracted light can be suppressed, and error signal detection accuracy can be achieved. And an inexpensive and highly efficient optical pickup device can be provided.
- the present invention can be applied to an optical pickup device that can accurately detect a signal and the like and an optical disk device including the same.
- an optical pickup device that can accurately detect a signal and the like and an optical disk device including the same.
- CD compact disc
- DVD digital versatile disc
- HD DVD digital versatile disc
- CBHD compact disc
- Blu-ray Disc Blu-ray Disc
- Data, information, signals, etc. recorded on various media such as various optical discs can be reproduced and written on various media such as various optical discs that can be written or rewritten. Record data, information, signals, etc. Data recorded on various types of media such as writable or rewritable optical discs,
- the present invention can be applied to an optical pickup device capable of erasing information, signals, and the like and an optical disk device including the same.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
。
不図示の光ディスク装置内に入れられる光ディスクは、略円板状に形成されている。
ROM」、「BD-ROM」などのデータ読出し専用の光ディスクや、「CD-R」、「
DVD-R」、「DVD+R」、「HD DVD-R」、「BD-R」などのデータ追記
型の光ディスクや、「CD-RW」、「DVD-RW」、「DVD+RW」、「DVD-
RAM」、「HD DVD-RW」、「HD DVD-RAM」、「BD-RE」などの
データ書込み/消去やデータ書換え可能なタイプの光ディスクなどが挙げられる。
の略称とされている。また、「DVD」(登録商標)は、「Digital Versa
tile Disc」の略称とされている。また、「HD DVD」(登録商標)は「H
igh Definition DVD」の略称とされている。また、「Blu-ray
Disc」(登録商標)の「Blu-ray」とは、従来の信号の読書きに用いられて
いた赤色のレーザに対し、高密度記録が実現されるために採用された青紫色のレーザを意
味する。「HD DVD」は、従来のDVD系列のものと互換性をもたせ、且つ、従来の
DVD系列のディスクよりも記憶容量の大きいものとされている。従来のCDには、赤外
レーザが用いられていた。また、従来のDVDには、赤色レーザが用いられていた。しか
しながら、「Blu-ray Disc」もしくは「HD DVD」の光ディスクに記録
されたデータ/情報/信号が読み出されるときや、「Blu-ray Disc」もしく
は「HD DVD」の光ディスクにデータ/情報/信号が書き込まれるときには、青紫色
レーザが用いられる。
M」は、「Read Only Memory」の略称とされている。また、「BD-R
OM」は、「Blu-ray Disc-ROM」の略称とされている。「CD-ROM
」、「DVD-ROM」、「HD DVD-ROM」及び「BD-ROM」は、データ/
情報読出し専用のものとされている。また、「CD-R」、「DVD-R」、「DVD+
R」及び「HD DVD-R」の「R」は、「Recordable」の略称とされてい
る。また、「BD-R」は、「Blu-ray Disc-R」の略称とされている。「
CD-R」、「DVD-R」、「DVD+R」、「HD DVD-R」及び「BD-R」
は、データ/情報の書込みが可能なものとされている。また、「CD-RW」、「DVD
-RW」、「DVD+RW」及び「HD DVD-RW」の「RW」は、「Re-Wri
table」の略称とされている。また「BD-RE」は、「Blu-ray Disc
-RE」の略称とされている。「CD-RW」、「DVD-RW」、「DVD+RW」、
「HD DVD-RW」及び「BD-RE」は、データ/情報の書換えが可能なものとさ
れている。また、「DVD-RAM」及び「HD DVD-RAM」の「RAM」は、「
Random Access Memory」の略称とされている。「DVD-RAM」
及び「HD DVD-RAM」は、データ/情報の読書き/消去が可能なものとされてい
る。
ィスクの信号記録面とされる信号層に、データ/情報/信号が保存されるためのグルーブ
(不図示)が設けられている。グルーブとは、例えば細長いへこみ状のものを意味する。
円板状光ディスクが平面視されたときに、グルーブは、略螺旋状に形成されている。光デ
ィスクにレーザ光が照射されるときに、レーザ光が照射される信号層側から光ディスクを
眺めた場合、グルーブは、渦巻状のものとされている。グルーブは、非常に小さいものと
されているので、グルーブは、目視不能とされる。
ラック上に集光スポットを適切に照射させるべく、フォーカスエラー信号やトラッキング
エラー信号等のエラー信号を検出するための光学系を備えている。
焦点を合わせることや、焦点が合わせられることを意味する。また、トラッキングとは、
例えば、光を用いて、光ディスクの信号層や光ディスクの信号層等に設けられた微小なピ
ット(穴、凹み)や、グルーブ(溝)、ウォブル(蛇行)などを追跡観測し、略螺旋状に
描かれた軌道の位置を定めることを意味する。また、ピットとは、例えば穴やへこみ状の
ものを意味する。また、ウォブルとは、例えば情報などのデータ信号が記録されるトラッ
クの蛇行を意味する。
、例えば差動非点収差法に基づいた検出法等が挙げられる。差動非点収差法とは、例えば
、非点収差をもった光学系で結像した点像ひずみを検出することにより、集光スポットの
変位を検出する方法とされる。また、光ピックアップ装置における光ディスクの集光スポ
ットのトラッキング検出法として、例えば差動プッシュプル法に基づいた検出法等が挙げ
られる。差動プッシュプル法とは、例えば、データ読書き用のメインビームと、位置ずれ
の補正信号を検出する2つのサブビームとにより、集光スポットの変位を検出する方法と
される。
6μm(ミクロン/マイクロメートル)のCD規格(CD-ROM、CD-R、CD-R
W等)の光ディスクに対し、光ピックアップ装置によるトラッキングエラー信号の検出が
行われる場合には、トラッキングエラー信号の検出方式として、3本の光束が用いられる
例えば「3ビーム方式(又は3スポット方式とも称される。)」が主に採用される。また
、例えばトラックピッチが0.74μmのDVD規格(DVD-ROM、DVD-R、D
VD-RW等)の光ディスクに対し、光ピックアップ装置によるトラッキングエラー信号
の検出が行われる場合には、トラッキングエラー信号の検出方式として、少なくとも3本
の光束が用いられる例えば「インライン方式」が主に採用される。ここでのトラッキング
エラー信号の各検出方式の呼び名は、便宜上の呼び名とされている。
クピッチが略0.74μmとされているのに対し、ランド・グルーブ構造をしたVers
ion2.0および2.1のDVD-RAMのトラックピッチは、略0.615μmとさ
れている。また、例えばランド・グルーブ構造に対し異なる構造をしたDVD-ROM、
DVD-R、DVD-RW等のトラックピッチが略0.74μmとされているのに対し、
ランド・グルーブ構造をしたVersion2.0および2.1のDVD-RAMのトラ
ックピッチは、略0.615μmとされている。このように、ランド・グルーブ構造をし
たVersion1のDVD-RAM、ランド・グルーブ構造に対し異なる構造をしたD
VD-ROM、DVD-R、DVD-RW等、ランド・グルーブ構造をしたVersio
n2.0および2.1のDVD-RAMは、トラックピッチが異なる。
明する。光ピックアップ装置には、図26に示すように、半導体レーザ素子210と偏光
ビームスプリッタ230間の光路上にCD用回折格子320を配置している。CD用回折
格子320は、一定の周期で等間隔に刻まれた直線状の格子溝を有しており、半導体レー
ザ素子210から発したレーザ光をメインビーム(0次光)および2つのサブビーム(±
1次回折光束)の少なくとも3ビームに回折分岐させる機能を備えている。
ズ250を経た結果、図27の左側に示すように、光ディスクDの信号層Da上において
、メインビームに対応したメインスポット100と、2つのサブビームに各々対応したサ
ブスポット101、102とが形成される。尚、光ディスクDの信号層Da上には信号を
記録するためのトラックD100が周期的に設けられており、メインスポット100並び
にサブスポット101、102のディスク半径方向の間隔δは、CD用回折格子320を
光軸回りに回転調整する手段等によって、トラックD100の周期Dtpの略2分の1に
一致するように調整される。そして、メインスポット100並びにサブスポット101、
102の反射光が、再び対物レンズ250、コリメートレンズ240、偏光ビームスプリ
ッタ230に達して、その一部の光量が偏光ビームスプリッタ230を透過した後に検出
レンズ260を経て光検出器270に入射される。
ポット101、102の反射光に各々対応した受光面200a、200b、200cが配
置される。メインスポット100並びにサブスポット101、102の反射光が各々受光
面200a、200b、200cに入射されると、メインスポット100に対応するメイ
ン検出光スポット200と、サブスポット101、102に対応するサブ検出光スポット
201、202がそれぞれ形成される。
検出光スポット201、202の光量は同一である。しかしながら、メインスポット10
0の走査がトラックD100上からずれる場合、サブ検出光スポット201、202間の
光量に差が生じてくる。そこで、例えばサブ検出光スポット201、202の光量を減算
器400等によって減算処理等することによって、トラッキングの走査ずれを示すトラッ
キングエラー信号が生成される。
いて説明する。インライン方式の光学系としては、基本的には、3ビーム方式と略同じ光
学系に基づきトラッキングエラー信号を検出することができる。ただし、3ビーム方式の
光学系と対比して、図29の左側に示すように、一方の半平面341に形成された格子溝
の周期構造の位相が他方の半平面342に形成された格子溝の周期構造の位相に対して約
180度ずれたDVD用回折格子340を用いる点が相違する。
CD用回折格子320と置き換えて設ける場合と仮定する。また、インライン方式に対応
すべく、図28の左側に示すように、光ディスクDの信号層Daに照射されたメインスポ
ット100及びサブスポット101、102が同一のトラックD100上を照射するよう
に、DVD用回折格子340や集光光学系等の配置位置が調整された場合と仮定する。
光面200aに照射されたときに、受光面200aに接続された減算器500aは、受光
面200aからの出力信号の差分を演算し例えばメインプッシュプル信号Saとして生成
する。
70の受光面200bに照射されたときに、受光面200bに接続された減算器500b
は、受光面200bからの出力信号の差分を演算し例えば先行サブプッシュプル信号Sb
として生成する。
70の受光面200cに照射されたときに、受光面200cに接続された減算器500c
は、受光面200cからの出力信号の差分を演算し例えば遅行サブプッシュプル信号Sc
として生成する。
信号Saと、サブスポット101、102のそれぞれに対応するサブ検出光スポット20
1、202から検出されるプッシュプル信号Sb、Scとは、3ビーム方式と同様に互い
に逆位相で出力される。そののちに、加算器510によってプッシュプル信号Sb、Sc
が加算され、この加算された信号が減算器530によってプッシュプル信号Saに対し減
算処理されることにより、プッシュプル信号Sa、Sb、Scの各オフセット成分が相殺
されたトラッキングエラー信号を生成することが可能となる。
を行うことができる光ピックアップ装置が提案されている。尚、当該光ピックアップ装置
では、光学系の簡略化によるコストダウンを図るべく、CD規格に適した赤外波長帯76
5nm~805nm(ナノメートル)の第1の波長の第1のレーザ光を発するCD用半導
体レーザ素子及びDVD規格に適した赤色波長帯645nm~675nmの第2の波長の
第2のレーザ光を発するDVD用半導体レーザ素子を具備したマルチレーザユニットが用
いられる。
ビーム方式及びDVD規格のインライン方式の両方に対応した2波長対応回折格子が用い
られる(例えば、以下に示す特許文献1を参照)。例えば2波長対応回折格子300Aの
構造としては、図29に示すように、光学ガラス板360の厚さ方向で対向する一方の平
面及び他方の平面に関して、当該一方の平面にはCD用回折格子320を固着し、当該他
方の平面にはDVD用回折格子340を固着して構成される。
うな構造の2波長対応回折格子300Bが提案されている(例えば、以下に示す特許文献
2を参照)。例えば2波長対応回折格子300Bの構造としては、液晶材料等を含んで構
成されたCD用回折格子320及びDVD用回折格子340を重ね合わせて固着した上で
、2枚の光学ガラス板361、362の間に挟み込んで固着して構成される。
合わせた2波長対応回折格子300Aまたは300Bが使用された場合、例えば、CD規
格の第1のレーザ光をCD用回折格子320に入射させたときに、CD用回折格子320
によって当該第1のレーザ光が回折されてメインビーム(0次光)及び2つのサブビーム
(±1次回折光束)の3ビームに分岐される。そして、当該3ビームがDVD用回折格子
340により更に回折されて分岐される。
が、2波長対応回折格子300Aまたは300BのCD用回折格子320及びDVD用回
折格子340の両方を通過する結果、CD用及びDVD用それぞれの回折格子320、3
40において回折分岐が行われるので、不要な回折光が発生してしまう。この結果、トラ
ッキングエラー信号等のエラー信号検出精度が悪化するという問題が生じていた。
び±1次回折光の透過率が低下し、その結果、マルチレーザユニットから発せられる出射
光の利用効率が低下するという問題も生じていた。
ion1、2.0、2.1)等のトラックピッチDtpの異なる複数種類の光ディスクD
に対して不具合なく対応可能とさせるために、トラッキング制御等の制御が行われ易い高
度な光ピックアップ装置や、トラッキング制御等の制御が行われ易い高度な光ピックアッ
プ装置を備えた光ディスク装置が、市場から要求されている。
に、対物レンズ250の変位に伴うトラッキングエラー信号等のエラー信号の振幅を劣化
させない光ピックアップ装置や、トラッキングエラー信号等のエラー信号にオフセットを
残留させない光ピックアップ装置が、市場から要求されている。
置も求められている。
波長光と第2波長光とを少なくとも出射可能な発光素子と、前記第1波長光を少なくとも
第1メインビームと第1サブビームとに分け、且つ、前記第2波長光を少なくとも第2メ
インビームと第2サブビームとに分ける回折格子と、を少なくとも備え、前記第1波長光
に対応する第1メディアに前記第1メインビームと前記第1サブビームとが照射されたと
きの前記第1メインビームと前記第1サブビームとの間隔をYp1と定め、前記第2波長
光に対応する第2メディアに前記第2メインビームと前記第2サブビームとが照射された
ときの前記第2メインビームと前記第2サブビームとの間隔をYp2と定めたときに、下
式(1)を満足すること、を特徴とする。
出精度が向上された光ピックアップ装置が構成される。発光素子から出射された第1波長
光が回折格子により少なくとも第1メインビームと第1サブビームとに分けられて、第1
メインビームと第1サブビームとが第1メディアに照射されるときに、第1メインビーム
と第1サブビームとは、第1メディアに精度よく照射される。また、発光素子から出射さ
れた第2波長光が回折格子により少なくとも第2メインビームと第2サブビームとに分け
られて、第2メインビームと第2サブビームとが第2メディアに照射されるときに、第2
メインビームと第2サブビームとは、第2メディアに精度よく照射される。
能な発光素子と、前記第1波長光を少なくとも第1メインビームと第1サブビームとに分
け、且つ、前記第2波長光を少なくとも第2メインビームと第2サブビームとに分ける回
折格子と、を少なくとも備え、前記第1波長光に対応する第1メディアに前記第1メイン
ビームと前記第1サブビームとが照射されたときに、前記第1メインビームの光の強さと
前記第1サブビームの光の強さとの総和に対する前記第1メインビームの光の強さとされ
た光の効率比をA1と定め、前記第2波長光に対応する第2メディアに前記第2メインビ
ームと前記第2サブビームとが照射されたときに、前記第2メインビームの光の強さと前
記第2サブビームの光の強さとの総和に対する前記第2メインビームの光の強さとされた
光の効率比をA2と定めた場合に、下式(2)及び下式(3)を満足すること、を特徴と
する。
0.87<A2<0.91 …(3)
上記構成により、第1波長光と第2波長光とに確実に対応するとともにエラー信号の検
出精度が向上された光ピックアップ装置が構成される。発光素子から出射された第1波長
光が回折格子により少なくとも第1メインビームと第1サブビームとに分けられて、第1
メインビームと第1サブビームとが第1メディアに照射されるときに、第1メインビーム
と第1サブビームとは、第1メディアに確実に照射される。また、発光素子から出射され
た第2波長光が回折格子により少なくとも第2メインビームと第2サブビームとに分けら
れて、第2メインビームと第2サブビームとが第2メディアに照射されるときに、第2メ
インビームと第2サブビームとは、第2メディアに確実に照射される。
能な発光素子と、前記第2波長光に対応する回折格子と、を少なくとも備え、前記発光素
子における前記第1波長光の発光位置と前記第2波長光の発光位置とが異なることに対応
して、前記第1波長光に対応する第1メディア上の前記第1波長光の集光位置と前記第2
波長光に対応する第2メディア上の前記第2波長光の集光位置とが異なること、を特徴と
する。
ィア上に第2波長光を確実に集光させる光ピックアップ装置が構成される。
、略円板状をした前記第1メディア上の前記第1波長光の集光位置よりも略円板状をした
前記第2メディア上の前記第2波長光の集光位置のほうが略円板状をしたメディアの内周
側に存すること、を特徴とする。
ィア上に第2波長光を確実に集光させる光ピックアップ装置が構成される。
項2に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
出精度が向上された光ピックアップ装置が構成される。発光素子から出射された第1波長
光が回折格子により少なくとも第1メインビームと第1サブビームとに分けられて、第1
メインビームと第1サブビームとが第1メディアに照射されるときに、第1メインビーム
と第1サブビームとは、第1メディアに精度よく確実に照射される。また、発光素子から
出射された第2波長光が回折格子により少なくとも第2メインビームと第2サブビームと
に分けられて、第2メインビームと第2サブビームとが第2メディアに照射されるときに
、第2メインビームと第2サブビームとは、第2メディアに精度よく確実に照射される。
項3に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
出精度が向上された光ピックアップ装置が構成される。発光素子から出射された第1波長
光が回折格子により少なくとも第1メインビームと第1サブビームとに分けられて、第1
メインビームと第1サブビームとが第1メディアに照射されるときに、第1メインビーム
と第1サブビームとは、第1メディアに精度よく照射される。また、発光素子から出射さ
れた第2波長光が回折格子により少なくとも第2メインビームと第2サブビームとに分け
られて、第2メインビームと第2サブビームとが第2メディアに照射されるときに、第2
メインビームと第2サブビームとは、第2メディアに精度よく照射される。第1メディア
上に第1波長光を確実に集光させるとともに、第2メディア上に第2波長光を確実に集光
させる光ピックアップ装置が構成される。
項3に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
出精度が向上された光ピックアップ装置が構成される。発光素子から出射された第1波長
光が回折格子により少なくとも第1メインビームと第1サブビームとに分けられて、第1
メインビームと第1サブビームとが第1メディアに照射されるときに、第1メインビーム
と第1サブビームとは、第1メディアに確実に照射される。また、発光素子から出射され
た第2波長光が回折格子により少なくとも第2メインビームと第2サブビームとに分けら
れて、第2メインビームと第2サブビームとが第2メディアに照射されるときに、第2メ
インビームと第2サブビームとは、第2メディアに確実に照射される。第1メディア上に
第1波長光を確実に集光させるとともに、第2メディア上に第2波長光を確実に集光させ
る光ピックアップ装置が構成される。
項2に記載の光ピックアップ装置と、請求項3に記載の光ピックアップ装置と、が合わせ
られたこと、を特徴とする。
出精度が向上された光ピックアップ装置が構成される。発光素子から出射された第1波長
光が回折格子により少なくとも第1メインビームと第1サブビームとに分けられて、第1
メインビームと第1サブビームとが第1メディアに照射されるときに、第1メインビーム
と第1サブビームとは、第1メディアに精度よく確実に照射される。又、発光素子から出
射された第2波長光が回折格子により少なくとも第2メインビームと第2サブビームとに
分けられて、第2メインビームと第2サブビームとが第2メディアに照射されるときに、
第2メインビームと第2サブビームとは、第2メディアに精度よく確実に照射される。第
1メディア上に第1波長光を確実に集光させるとともに、第2メディア上に第2波長光を
確実に集光させる光ピックアップ装置が構成される。
1サブビームとに分け、第2波長光を少なくとも第2メインビームと第2サブビームとに
分け、前記第2波長光に対応した回折面部を有する回折格子と、前記第1メインビームが
照射される第1メイン受光部と、前記第1サブビームが照射される第1サブ受光部と、前
記第2メインビームが照射される第2メイン受光部と、前記第2サブビームが照射される
第2サブ受光部と、を有する光検出器と、を少なくとも備え、規格化された第1メイン受
光部と第1サブ受光部との間の距離に対し、前記第1メイン受光部と前記第1サブ受光部
との間の距離が変更されたこと、を特徴とする。
光に対応した回折面部を有する回折格子が光ピックアップ装置に備えられ、第2波長光に
対応した回折格子の回折面部を第1波長光が透過したときに、第1波長光が少なくとも第
1メインビームと第1サブビームとに分けられるものとされていれば、第1波長光が回折
格子を透過するときに不要な光が生じるということは略防止される。また、第2波長光に
対応した回折格子の回折面部を第2波長光が透過したときに、不要な光が略生じることな
く、第2波長光は、少なくとも第2メインビームと第2サブビームとに分けられる。また
、規格化された第1メイン受光部と第1サブ受光部との間の距離に対し、この光検出器に
おいては、第1メイン受光部と第1サブ受光部との間の距離が変更されているので、第2
波長光に対応した回折格子の回折面部を第1波長光が透過するときに、第2波長光に対応
した回折格子の回折面部によって分けられた第1波長光の第1サブビームが光検出器の第
1サブ受光部に照射されないという不具合の発生は回避される。本発明における規格化は
、例えば広く普及されてきた従来のもの等を説明するときのために、便宜上、用いられる
。第2波長光に対応した回折格子の回折面部を第1波長光が透過することによって不要な
光が略生じることなく分けられた第1波長光の第1サブビームは、光検出器の第1メイン
受光部に対し距離が変更された第1サブ受光部に照射される。また、第2波長光に対応し
た回折格子の回折面部を第1波長光が透過することによって不要な光が略生じることなく
分けられた第1波長光の第1メインビームは、光検出器の第1メイン受光部に照射される
。また、第2波長光に対応した回折格子の回折面部を第2波長光が透過することによって
不要な光が略生じることなく分けられた第2波長光の第2サブビームは、光検出器の第2
サブ受光部に照射される。また、第2波長光に対応した回折格子の回折面部を第2波長光
が透過することによって不要な光が略生じることなく分けられた第2波長光の第2メイン
ビームは、光検出器の第2メイン受光部に照射される。
て、変更された前記第1メイン受光部と前記第1サブ受光部との間の前記距離は、前記規
格化された第1メイン受光部と第1サブ受光部との間の距離よりも長く設定されたこと、
を特徴とする。
格子の回折面部によって第1波長光が分けられて生じた第1メインビームが、光検出器の
第1サブ受光部に悪影響を及ぼすということは回避され易くなる。また、回折格子の回折
面部によって第1波長光が分けられて生じた第1サブビームが、光検出器の第1メイン受
光部に悪影響を及ぼすということは回避され易くなる。例えば、変更された第1メイン受
光部と第1サブ受光部との間の距離が、規格化された第1メイン受光部と第1サブ受光部
との間の距離よりも短く設定されていると、第1メインビームが、光検出器の第1サブ受
光部に干渉することが懸念される。また、例えば、変更された第1メイン受光部と第1サ
ブ受光部との間の距離が、規格化された第1メイン受光部と第1サブ受光部との間の距離
よりも短く設定されていると、第1サブビームが、光検出器の第1メイン受光部に干渉す
ることが懸念される。しかしながら、規格化された第1メイン受光部と第1サブ受光部と
の間の距離よりも、変更された第1メイン受光部と第1サブ受光部との間の距離のほうが
長く設定されているので、光検出器の第1メイン受光部に第1メインビームが照射される
ときに、第1メインビームが第1サブ受光部に干渉するということは回避され易くなる。
また、規格化された第1メイン受光部と第1サブ受光部との間の距離よりも、変更された
第1メイン受光部と第1サブ受光部との間の距離のほうが長く設定されているので、光検
出器の第1サブ受光部に第1サブビームが照射されるときに、第1サブビームが第1メイ
ン受光部に干渉するということは回避され易くなる。
て、前記規格化された第1メイン受光部と第1サブ受光部との間の距離の値が100%の
値と定められたときに、変更された前記第1メイン受光部と前記第1サブ受光部との間の
前記距離の値は、前記規格化された第1メイン受光部と第1サブ受光部との間の距離の値
に対し、略111%の値に設定されたこと、を特徴とする。
格子の回折面部によって第1波長光が分けられて生じた第1メインビームが、光検出器の
第1サブ受光部に悪影響を及ぼすということは回避される。また、回折格子の回折面部に
よって第1波長光が分けられて生じた第1サブビームが、光検出器の第1メイン受光部に
悪影響を及ぼすということは回避される。例えば、変更された第1メイン受光部と第1サ
ブ受光部との間の距離が、規格化された第1メイン受光部と第1サブ受光部との間の距離
よりも短く設定されていると、第1メインビームが、光検出器の第1サブ受光部に干渉す
ることが懸念される。また、例えば、変更された第1メイン受光部と第1サブ受光部との
間の距離が、規格化された第1メイン受光部と第1サブ受光部との間の距離よりも短く設
定されていると、第1サブビームが、光検出器の第1メイン受光部に干渉することが懸念
される。しかしながら、規格化された第1メイン受光部と第1サブ受光部との間の距離の
値が100%の値と定められたときに、変更された第1メイン受光部と第1サブ受光部と
の間の距離の値が、規格化された第1メイン受光部と第1サブ受光部との間の距離の値に
対し、略111%の値に設定されているので、光検出器の第1メイン受光部に第1メイン
ビームが照射されるときに、第1メインビームが第1サブ受光部に干渉するということは
回避される。また、規格化された第1メイン受光部と第1サブ受光部との間の距離の値が
100%の値と定められたときに、変更された第1メイン受光部と第1サブ受光部との間
の距離の値が、規格化された第1メイン受光部と第1サブ受光部との間の距離の値に対し
、略111%の値に設定されているので、光検出器の第1サブ受光部に第1サブビームが
照射されるときに、第1サブビームが第1メイン受光部に干渉するということは回避され
る。
て、前記規格化された第2メイン受光部と第2サブ受光部との間の距離の値が100%の
値と定められたときに、前記第2メイン受光部と前記第2サブ受光部との間の前記距離の
値は、前記規格化された第2メイン受光部と第2サブ受光部との間の距離の値に対し、略
100%の値に設定されたこと、を特徴とする。
格子の回折面部によって第2波長光が分けられて生じた第2メインビームが、光検出器の
第2サブ受光部に悪影響を及ぼすということは回避される。また、回折格子の回折面部に
よって第2波長光が分けられて生じた第2サブビームが、光検出器の第2メイン受光部に
悪影響を及ぼすということは回避される。例えば、第2メイン受光部と第2サブ受光部と
の間の距離が、規格化された第2メイン受光部と第2サブ受光部との間の距離よりも短く
設定されていると、第2メインビームが、光検出器の第2サブ受光部に干渉することが懸
念される。また、例えば、第2メイン受光部と第2サブ受光部との間の距離が、規格化さ
れた第2メイン受光部と第2サブ受光部との間の距離よりも短く設定されていると、第2
サブビームが、光検出器の第2メイン受光部に干渉することが懸念される。しかしながら
、規格化された第2メイン受光部と第2サブ受光部との間の距離の値が100%の値と定
められたときに、第2メイン受光部と第2サブ受光部との間の距離の値が、規格化された
第2メイン受光部と第2サブ受光部との間の距離の値に対し、略100%の値に設定され
ているので、光検出器の第2メイン受光部に第2メインビームが照射されるときに、第2
メインビームが第2サブ受光部に干渉するということは回避される。また、規格化された
第2メイン受光部と第2サブ受光部との間の距離の値が100%の値と定められたときに
、第2メイン受光部と第2サブ受光部との間の距離の値が、規格化された第2メイン受光
部と第2サブ受光部との間の距離の値に対し、略100%の値に設定されているので、光
検出器の第2サブ受光部に第2サブビームが照射されるときに、第2サブビームが第2メ
イン受光部に干渉するということは回避される。
第1サブビームとに分け、第2波長光を少なくとも第2メインビームと第2サブビームと
に分け、前記第2波長光に対応した回折面部を有する回折格子と、前記第1メインビーム
が照射される第1メイン受光部と、前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、前記第2サブビームが照射され
る第2サブ受光部と、を有する光検出器と、を少なくとも備え、前記第1メイン受光部を
中心に一対の位置変更された前記第1サブ受光部が配置されて、前側の前記第1サブ受光
部と、中央の前記第1メイン受光部と、後側の前記第1サブ受光部と、が並設されたとき
に、前側の前記第1サブ受光部と、中央の前記第1メイン受光部と、後側の前記第1サブ
受光部と、の分光比は、規格化された前側の第1サブ受光部と、中央の第1メイン受光部
と、後側の第1サブ受光部と、の分光比に対し、変更されたこと、を特徴とする。
光に対応した回折面部を有する回折格子が光ピックアップ装置に備えられ、第2波長光に
対応した回折格子の回折面部を第1波長光が透過したときに、第1波長光が少なくとも第
1メインビームと第1サブビームとに分けられるものとされていれば、第1波長光が回折
格子を透過するときに不要な光が生じるということは略防止される。また、第2波長光に
対応した回折格子の回折面部を第2波長光が透過したときに、不要な光が略生じることな
く、第2波長光は、少なくとも第2メインビームと第2サブビームとに分けられる。また
、第1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精
度よく行われ易くなる。第2波長光に対応した回折面部を有する回折格子を第1波長光が
透過して、第1波長光が、前側の第1サブビームと、中央の第1メインビームと、後側の
第1サブビームと、に少なくとも分けられたときに、前側の第1サブビームが照射される
前側の第1サブ受光部と、中央の第1メインビームが照射される中央の第1メイン受光部
と、後側の第1サブビームが照射される後側の第1サブ受光部と、の分光比が、規格化さ
れた前側の第1サブ受光部と、中央の第1メイン受光部と、後側の第1サブ受光部と、の
分光比に対して変更されていれば、設定変更された光検出器にて、第1メインビームの検
出と第1サブビームの検出とが精度よく行われ易くなる。
いて、前記第1メイン受光部を中心に一対の位置変更された前記第1サブ受光部が配置さ
れて、前側の前記第1サブ受光部と、中央の前記第1メイン受光部と、後側の前記第1サ
ブ受光部と、が並設されたときに、前側の前記第1サブ受光部と、中央の前記第1メイン
受光部と、後側の前記第1サブ受光部と、の分光比は、略1:(20~26):1とされ
たこと、を特徴とする。
た光検出器にて精度よく行われる。例えば、第1波長光に対応した第1回折面部と、第2
波長光に対応した第2回折面部と、を有する従来の回折格子を第1波長光が透過して、第
1波長光が、前側の第1サブビームと、中央の第1メインビームと、後側の第1サブビー
ムと、に少なくとも分けられたときに、前側の第1サブビームが照射される前側の第1サ
ブ受光部と、中央の第1メインビームが照射される中央の第1メイン受光部と、後側の第
1サブビームが照射される後側の第1サブ受光部と、の分光比が、例えば略1:16:1
に設定されることで、従来の規格化された光検出器にて、第1メインビームの検出と第1
サブビームの検出とが精度よく行われていた。しかしながら、第1波長光に対応した回折
面部が省略され、第2波長光に対応した回折面部を有する回折格子を第1波長光が透過し
て、第1波長光が、前側の第1サブビームと、中央の第1メインビームと、後側の第1サ
ブビームと、に少なくとも分けられた場合には、前側の第1サブビームが照射される前側
の第1サブ受光部と、中央の第1メインビームが照射される中央の第1メイン受光部と、
後側の第1サブビームが照射される後側の第1サブ受光部と、の分光比が、例えば略1:
16:1に設定されていると、従来の規格化された光検出器においては、第1メインビー
ムの検出と第1サブビームの検出とが精度よく行われないことが懸念されていた。これに
対し、第2波長光に対応した回折面部を有する回折格子を第1波長光が透過して、第1波
長光が、前側の第1サブビームと、中央の第1メインビームと、後側の第1サブビームと
、に少なくとも分けられたときに、前側の第1サブビームが照射される前側の第1サブ受
光部と、中央の第1メインビームが照射される中央の第1メイン受光部と、後側の第1サ
ブビームが照射される後側の第1サブ受光部と、の分光比が、略1:(20~26):1
に設定されていれば、設定変更された光検出器にて、第1メインビームの検出と第1サブ
ビームの検出とが精度よく行われる。前側の第1サブビームが照射される前側の第1サブ
受光部と、中央の第1メインビームが照射される中央の第1メイン受光部と、後側の第1
サブビームが照射される後側の第1サブ受光部と、の分光比が例えば略1:20未満:1
とされた場合や、この分光比が例えば略1:26超:1とされた場合には、第1メインビ
ームの検出と第1サブビームの検出とが精度よく行われないことが懸念されるが、この分
光比が略1:(20~26):1好ましくは略1:(21~25):1に設定されること
により、第1メインビームの検出と第1サブビームの検出とが精度よく行われる。
いて、前記第2メイン受光部を中心に一対の前記第2サブ受光部が配置されて、前側の前
記第2サブ受光部と、中央の前記第2メイン受光部と、後側の前記第2サブ受光部と、が
並設されたときに、前側の前記第2サブ受光部と、中央の前記第2メイン受光部と、後側
の前記第2サブ受光部と、の分光比は、略1:(12~18):1とされたこと、を特徴
とする。
精度よく行われる。第2波長光に対応した回折面部を有する回折格子を第2波長光が透過
して、第2波長光が、前側の第2サブビームと、中央の第2メインビームと、後側の第2
サブビームと、に少なくとも分けられたときに、前側の第2サブビームが照射される前側
の第2サブ受光部と、中央の第2メインビームが照射される中央の第2メイン受光部と、
後側の第2サブビームが照射される後側の第2サブ受光部と、の分光比が、略1:(12
~18):1に設定されていれば、光検出器にて第2メインビームの検出と第2サブビー
ムの検出とが精度よく行われる。前側の第2サブビームが照射される前側の第2サブ受光
部と、中央の第2メインビームが照射される中央の第2メイン受光部と、後側の第2サブ
ビームが照射される後側の第2サブ受光部と、の分光比が例えば略1:12未満:1とさ
れた場合や、この分光比が例えば略1:18超:1とされた場合には、第2メインビーム
の検出と第2サブビームの検出とが精度よく行われないことが懸念されるが、この分光比
が略1:(12~18):1好ましくは略1:(14~18):1に設定されることによ
り、第2メインビームの検出と第2サブビームの検出とが精度よく行われる。
第1サブビームとに分け、第2波長光を少なくとも第2メインビームと第2サブビームと
に分け、前記第2波長光に対応した回折面部を有する回折格子と、前記第1メインビーム
が照射される第1メイン受光部と、前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、前記第2サブビームが照射され
る第2サブ受光部と、を有する光検出器と、を少なくとも備え、規格化された第1メイン
受光部の受光感度の値に対し、前記第1メイン受光部の受光感度の値が変更または同じと
され、規格化された第1サブ受光部の受光感度の値に対し、前記第1サブ受光部の受光感
度の値が変更されたこと、を特徴とする。
光に対応した回折面部を有する回折格子が光ピックアップ装置に備えられ、第2波長光に
対応した回折格子の回折面部を第1波長光が透過したときに、第1波長光が少なくとも第
1メインビームと第1サブビームとに分けられるものとされていれば、第1波長光が回折
格子を透過するときに不要な光が生じるということは略防止される。また、第2波長光に
対応した回折格子の回折面部を第2波長光が透過したときに、不要な光が略生じることな
く、第2波長光は、少なくとも第2メインビームと第2サブビームとに分けられる。また
、第1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精
度よく行われ易くなる。規格化された第1メイン受光部の受光感度の値に対し、第1メイ
ン受光部の受光感度の値が変更または同じとされ、規格化された第1サブ受光部の受光感
度の値に対し、第1サブ受光部の受光感度の値が変更されることにより、設定変更された
光検出器にて、第1メインビームの検出と第1サブビームの検出とが精度よく行われ易く
なる。
いて、前記規格化された第1メイン受光部の受光感度の値が100%の値と定められたと
きに、前記規格化された第1メイン受光部の受光感度の値に対し、変更または同じとされ
た前記第1メイン受光部の受光感度の値は、略100%または略100%以下の低い値に
設定され、前記規格化された第1サブ受光部の受光感度の値が100%の値と定められた
ときに、前記規格化された第1サブ受光部の受光感度の値に対し、変更された前記第1サ
ブ受光部の受光感度の値は、略100%以上の高い値に設定されたこと、を特徴とする。
た光検出器にて精度よく行われ易くなる。規格化された第1メイン受光部の受光感度の値
が100%とされているのに対し、変更または同じとされた第1メイン受光部の受光感度
の値が略100%または略100%以下の低い値に設定され、規格化された第1サブ受光
部の受光感度の値が100%とされているのに対し、変更された第1サブ受光部の受光感
度の値が略100%以上の高い値に設定されることにより、設定変更された光検出器にて
、第1メインビームの検出と第1サブビームの検出とが精度よく行われ易くなる。
いて、前記規格化された第1メイン受光部の受光感度の値が100%の値と定められたと
きに、前記規格化された第1メイン受光部の受光感度の値に対し、変更または同じとされ
た前記第1メイン受光部の受光感度の値は、略95~100%の値に設定され、前記規格
化された第1サブ受光部の受光感度の値が100%の値と定められたときに、前記規格化
された第1サブ受光部の受光感度の値に対し、変更された前記第1サブ受光部の受光感度
の値は、略120~160%の値に設定されたこと、を特徴とする。
た光検出器にて精度よく行われる。規格化された第1メイン受光部の受光感度の値が10
0%とされているのに対し、変更または同じとされた第1メイン受光部の受光感度の値が
略95~100%の値に設定され、規格化された第1サブ受光部の受光感度の値が100
%とされているのに対し、変更された第1サブ受光部の受光感度の値が略120~160
%の値に設定されることにより、設定変更された光検出器にて、第1メインビームの検出
と第1サブビームの検出とが精度よく行われる。
いて、規格化された第2メイン受光部の受光感度の値が100%の値と定められたときに
、前記規格化された第2メイン受光部の受光感度の値に対し、前記第2メイン受光部の受
光感度の値は、略100%の値に設定され、規格化された第2サブ受光部の受光感度の値
が100%の値と定められたときに、前記規格化された第2サブ受光部の受光感度の値に
対し、前記第2サブ受光部の受光感度の値は、略100%の値に設定されたこと、を特徴
とする。
精度よく行われる。規格化された第2メイン受光部の受光感度の値が100%とされてい
るのに対し、第2メイン受光部の受光感度の値が略100%の値に設定され、規格化され
た第2サブ受光部の受光感度の値が100%とされているのに対し、第2サブ受光部の受
光感度の値が略100%の値に設定されることにより、光検出器にて、第2メインビーム
の検出と第2サブビームの検出とが精度よく行われる。
第1サブビームとに分け、第2波長光を少なくとも第2メインビームと第2サブビームと
に分け、前記第2波長光に対応した回折面部を有する回折格子と、前記第1メインビーム
が照射される第1メイン受光部と、前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、前記第2サブビームが照射され
る第2サブ受光部と、を有する光検出器と、を少なくとも備え、規格化された第1メイン
受光部から出力される信号の値に対し、前記第1メイン受光部から出力される信号の値が
変更または同じとされ、規格化された第1サブ受光部から出力される信号の値に対し、前
記第1サブ受光部から出力される信号の値が変更されたこと、を特徴とする。
光に対応した回折面部を有する回折格子が光ピックアップ装置に備えられ、第2波長光に
対応した回折格子の回折面部を第1波長光が透過したときに、第1波長光が少なくとも第
1メインビームと第1サブビームとに分けられるものとされていれば、第1波長光が回折
格子を透過するときに不要な光が生じるということは略防止される。また、第2波長光に
対応した回折格子の回折面部を第2波長光が透過したときに、不要な光が略生じることな
く、第2波長光は、少なくとも第2メインビームと第2サブビームとに分けられる。また
、第1メインビームの検出と第1サブビームの検出とは、精度よく行われ易くなる。規格
化された第1メイン受光部から出力される信号の値に対し、第1メイン受光部から出力さ
れる信号の値が変更または同じとされ、規格化された第1サブ受光部から出力される信号
の値に対し、第1サブ受光部から出力される信号の値が変更されることにより、第1メイ
ンビームの検出と第1サブビームの検出とが精度よく行われ易くなる。
いて、前記規格化された第1メイン受光部から出力される信号の値が100%の値と定め
られたときに、前記規格化された第1メイン受光部から出力される信号の値に対し、変更
または同じとされた前記第1メイン受光部から出力される信号の値は、略100%または
略100%以下の低い値に設定され、前記規格化された第1サブ受光部から出力される信
号の値が100%の値と定められたときに、前記規格化された第1サブ受光部から出力さ
れる信号の値に対し、変更された前記第1サブ受光部から出力される信号の値は、略10
0%以上の高い値に設定されたこと、を特徴とする。
れ易くなる。規格化された第1メイン受光部から出力される信号の値が100%とされて
いるのに対し、変更または同じとされた第1メイン受光部から出力される信号の値が略1
00%または略100%以下の低い値に設定され、規格化された第1サブ受光部から出力
される信号の値が100%とされているのに対し、変更された第1サブ受光部から出力さ
れる信号の値が略100%以上の高い値に設定されることにより、第1メインビームの検
出と第1サブビームの検出とが精度よく行われ易くなる。
いて、前記規格化された第1メイン受光部から出力される信号の値が100%の値と定め
られたときに、前記規格化された第1メイン受光部から出力される信号の値に対し、変更
または同じとされた前記第1メイン受光部から出力される信号の値は、略95~100%
の値に設定され、前記規格化された第1サブ受光部から出力される信号の値が100%の
値と定められたときに、前記規格化された第1サブ受光部から出力される信号の値に対し
、変更された前記第1サブ受光部から出力される信号の値は、略120~160%の値に
設定されたこと、を特徴とする。
れる。規格化された第1メイン受光部から出力される信号の値が100%とされているの
に対し、変更または同じとされた第1メイン受光部から出力される信号の値が略95~1
00%の値に設定され、規格化された第1サブ受光部から出力される信号の値が100%
とされているのに対し、変更された第1サブ受光部から出力される信号の値が略120~
160%の値に設定されることにより、第1メインビームの検出と第1サブビームの検出
とが精度よく行われる。
いて、規格化された第2メイン受光部から出力される信号の値が100%の値と定められ
たときに、前記規格化された第2メイン受光部から出力される信号の値に対し、前記第2
メイン受光部から出力される信号の値は、略100%の値に設定され、規格化された第2
サブ受光部から出力される信号の値が100%の値と定められたときに、前記規格化され
た第2サブ受光部から出力される信号の値に対し、前記第2サブ受光部から出力される信
号の値は、略100%の値に設定されたこと、を特徴とする。
精度よく行われる。規格化された第2メイン受光部から出力される信号の値が100%と
されているのに対し、第2メイン受光部から出力される信号の値が略100%の値に設定
され、規格化された第2サブ受光部から出力される信号の値が100%とされているのに
対し、第2サブ受光部から出力される信号の値が略100%の値に設定されることにより
、光検出器にて、第2メインビームの検出と第2サブビームの検出とが精度よく行われる
。
求項13に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精度よ
く行われ易くなる。
求項16に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精度よ
く行われ易くなる。
求項20に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
請求項16に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精度よ
く行われ易くなる。
請求項20に記載の光ピックアップ装置と、が合わせられたこと、を特徴とする。
1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精度よ
く行われ易くなる。
求項13に記載の光ピックアップ装置と、請求項16に記載の光ピックアップ装置と、が
合わせられたこと、を特徴とする。
1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精度よ
く行われ易くなる。
求項13に記載の光ピックアップ装置と、請求項20に記載の光ピックアップ装置と、が
合わせられたこと、を特徴とする。
1メインビームの検出と第1サブビームの検出とは、設定変更された光検出器にて精度よ
く行われ易くなる。
0の何れか1項に記載の光ピックアップ装置において、前記回折格子の回折面部は、前記
第1波長光を少なくとも前記第1メインビームと前記第1サブビームとに分ける回折面部
と、前記第2波長光を少なくとも前記第2メインビームと前記第2サブビームとに分ける
回折面部と、を兼ねたこと、を特徴とする。
の低下が防止され、更に価格を低く抑えることが可能な光ピックアップ装置が構成される
。回折格子の回折面部が、第1波長光を少なくとも第1メインビームと第1サブビームと
に分ける回折面部と、第2波長光を少なくとも第2メインビームと第2サブビームとに分
ける回折面部と、を兼ねて形成されていれば、第1波長光が不要に回折されて第1波長光
の効率が低下されたり、第2波長光が不要に回折されて第2波長光の効率が低下されたり
するということは回避される。また、第1波長光を少なくとも第1メインビームと第1サ
ブビームとに分ける回折面部と、第2波長光を少なくとも第2メインビームと第2サブビ
ームとに分ける回折面部と、を兼ねて回折格子の回折面部が形成されているので、加工部
分、加工工数が減らされた回折格子が構成される。回折格子の加工部分、加工工数が減ら
されるので、回折格子の価格が低く抑えられる。これに伴って、価格を低く抑えることが
可能とされた光ピックアップ装置を構成させることが可能となる。
0の何れか1項に記載の光ピックアップ装置において、前記回折格子は、複数の領域部に
分けられたこと、を特徴とする。
行われ易くなる。例えば、メディアに対する光ピックアップ装置のトラッキングは、良好
に行われ易くなる。メディアとは、情報を記録して媒介するものや情報を記録して伝達す
るものを意味する。また、光ピックアップ装置におけるトラッキングとは、メディアの半
径方向の振れに追従して、目標のトラック上に常にスポットを存在させる動作を意味する
。回折格子が複数の領域部に分けられて構成されることにより、メディアに、各々独立し
た少なくとも三個のスポットが照射される。メディアに、少なくとも三個のスポットが各
々独立して照射されるので、2種類以上のメディアの記録/再生時等に、トラッキングエ
ラー信号等のエラー信号の検出精度が低下するということは回避され易くなる。
0の何れか1項に記載の光ピックアップ装置において、前記回折格子は、偶数の領域部に
分けられたこと、を特徴とする。
れる。例えば一方の領域部と他方の領域部とに回折格子が偶数分割されるので、光ピック
アップ装置に回折格子が装備されるときに、回折格子に当てられる光は、回折格子の一方
の領域部と、回折格子の他方の領域部とに、略2等分された状態に当てられ易くなる。回
折格子の一方の領域部と、回折格子の他方の領域部とに、光が略2等分とされた状態に当
てられ易くなることにより、回折格子は、光ピックアップ装置に精度よく備えられ易くな
る。従って、メディアに精度よくスポットが形成され易くなる。これに伴って、2種類以
上のメディアの記録/再生時等におけるエラー信号の検出精度が向上する。
0の何れか1項に記載の光ピックアップ装置において、前記回折格子は、第1領域部と、
第2領域部と、第3領域部と、第4領域部と、の少なくとも4つに分けられたこと、を特
徴とする。
行われる。例えば、メディアに対する光ピックアップ装置のトラッキングは、良好に行わ
れる。回折格子が4つの領域部に分けられて構成されることにより、メディアに、各々独
立した少なくとも三個のスポットが照射される。メディアに、少なくとも三個のスポット
が各々独立して照射されるので、2種類以上のメディアの記録/再生時等に、トラッキン
グエラー信号等のエラー信号の検出精度が低下するということは回避される。
0の何れか1項に記載の光ピックアップ装置において、複数種類の波長光を出射可能な発
光素子を備えること、を特徴とする。
。発光素子は、例えば第1波長光と第2波長光との少なくとも2種類以上の波長光を出射
可能な複数種類の波長光を出射する発光素子として構成されるので、光ピックアップ装置
は、多種のメディアに対応可能となる。また、これとともに、少なくとも第1波長光を出
射可能な発光素子と第2波長光を出射可能な発光素子とが1つの発光素子としてまとめら
れるので、光ピックアップ装置の部品削減化が図られる。光ピックアップ装置の部品削減
化に伴って光ピックアップ装置の価格が低く抑えられる。従って、部品削減化、価格低減
化が図られた光ピックアップ装置の提供が可能となる。
0の何れか1項に記載の光ピックアップ装置において、前記第1波長光の波長は、略76
5~840nmとされ、前記第2波長光の波長は、略630~685nmとされたこと、
を特徴とする。
するときに不要な光が生じるということは略防止される。また、略630~685nmの
波長光とされる第2波長光が回折格子を透過するときに不要な光が生じるということは略
防止される。
0の何れか1項に記載の光ピックアップ装置において、前記第1波長光の波長は、略63
0~685nmとされ、前記第2波長光の波長は、略340~450nmとされたこと、
を特徴とする。
するときに不要な光が生じるということは略防止される。また、略340~450nmの
波長光とされる第2波長光が回折格子を透過するときに不要な光が生じるということは略
防止される。
0の何れか1項に記載の光ピックアップ装置において、複数の信号面部を有するメディア
に対応可能とされたこと、を特徴とする。
、情報の読取り、及び/又は、複数の信号面部を有するメディアに対する光ピックアップ
装置の信号、情報の書込み等は、良好に行われる。
えてエラー信号の検出精度を向上させた光ピックアップ装置が提供される。
は20の何れか1項に記載の光ピックアップ装置を少なくとも備えること、を特徴とする
。
置を少なくとも備える光ディスク装置が構成される。
出精度が向上された光ピックアップ装置を構成させることができる。
2メディア上に第2波長光を確実に集光させる光ピックアップ装置を構成させることがで
きる。
ができる。
サブビームの検出とを精度よく行わせ易くさせることができる。
えてエラー信号の検出精度を向上させた光ピックアップ装置を提供することができる。
ップ装置を少なくとも備える光ディスク装置を構成させることができる。
態を図面に基づいて詳細に説明する。
図1は、本発明の一実施形態に係る光ピックアップ装置の光学配置図、図2及び図3は
、本発明の一実施形態に係る光ピックアップ装置の説明図である。
又はDVD規格(DVD-ROM、DVD-RAM(Version1、2.0、2.1
)、DVD-R、DVD+R、DVD-RW、DVD+RW等)の光ディスクD等のメデ
ィアDに対応したものである。メディアとは、情報を記録して媒介するものや情報を記録
して伝達するものを意味する。例えば、ここでのメディアとは、データ、情報、信号など
が保存されるディスク等を意味する。略円板状をした光ディスクDの内周側D84から外
周側D88にかけて1本のトラックが略螺旋状に形成されている。
た規格に基づく光ディスクとされる「CBHD(China Blue High-De
finition)」規格(例:旧名「CH-DVD」規格)等の光ディスク(不図示)
も挙げられる。また、ディスクとして、例えばディスク両面に信号面が設けられ、データ
書込み/消去やデータ書換え等が可能とされた光ディスクD等も挙げられる。また、ディ
スクとして、例えば二層の信号面が設けられ、データ書込み/消去やデータ書換え等が可
能とされた光ディスクD等も挙げられる。また、例えば三層の信号面が設けられ、データ
書込み/消去やデータ書換え等が可能とされた「HD DVD」用光ディスク(不図示)
等も挙げられる。また、例えば四層の信号面が設けられ、データ書込み/消去やデータ書
換え等が可能とされた「Blu-ray Disc」用光ディスク(不図示)等も挙げら
れる。また、例えばディスクのレーベル面側にもレーザ光を照射させてレーベル等の各種
書込み等を行うことが可能とされた光ディスクD等も挙げられる。光ディスクDの信号層
Daは、例えば金属薄膜などの金属層等により形成されている。金属薄膜などから形成さ
れる信号層Daに、情報やデータなどが記録される。
される。光ピックアップ装置を備える光ディスク装置が用いられて、各種光ディスクに記
録された情報などのデータ再生が行われる。また、光ピックアップ装置を備える光ディス
ク装置が用いられて、各種光ディスクに情報などのデータ記録等が行われる。
は、例えば、非点収差法に基づいた検出法とされている。非点収差法とは、例えば、非点
収差をもった光学系で結像した点像ひずみを検出することにより、集光スポットの変位を
検出する方法とされる。また、フォーカシング検出法として、例えば差動非点収差法に基
づいた検出法等が挙げられる。上述した如く、差動非点収差法とは、例えば、非点収差を
もった光学系で結像した点像ひずみを検出することにより、集光スポットの変位を検出す
る方法とされる。また、差動非点収差法とは、例えばメインスポットで生成されたフォー
カスエラー信号から所定の係数を乗じたサブスポットで生成されたフォーカスエラー信号
を減算することによりフォーカスエラー信号を生成する方法とされ、プッシュプル漏れ込
みが小さく抑えられる。この光ピックアップ装置における集光スポットのフォーカシング
検出法は、例えば、非点収差法、差動非点収差法などに基づいた検出法とされる。具体的
に説明すると、この光ピックアップ装置は、差動非点収差法による光学系を備えた光ピッ
クアップ装置とされている。尚、フォーカシング検出法として、例えば、フーコー法、ナ
イフエッジ法などの他の検出法が用いられたり併用されたりしてもよい。各光ディスクD
の種類などにより、例えば差動非点収差法などの各フォーカシング検出法が、適宜、自動
的に選択される。
出法は、例えば、差動プッシュプル法や、位相差法などに基づいた検出法とされる。上述
した如く、差動プッシュプル法とは、例えば、データ読書き用のメインビームと、位置ず
れの補正信号を検出する2つのサブビームとにより、集光スポットの変位を検出する方法
とされる。また、トラッキング検出法として、例えば位相差法などを含むDPD(Dif
ferential Phase Detection)法に基づいた検出法等が挙げら
れる。具体的に説明すると、トラッキング検出法として、例えば、4分割型光検出装置7
3Aによって検出される位相差信号に基づいた位相差法が挙げられる。この光ピックアッ
プ装置における集光スポットのトラッキング検出法は、例えば、DPP法、DPD法、位
相差法、ヘテロダイン検波法などに基づいた検出法が用いられたり併用されたりする。ま
た、各光ディスクDの種類などにより、例えば位相差法などの各トラッキング検出法が、
適宜、自動的に選択される。また、この光ピックアップ装置の光検出装置73Aは、例え
ば光検出器73Aとして構成されている。
の波長(例えば782nm)の第1のレーザ光を発する第1の光源62と、DVD規格に
適した赤色波長帯略630nm~685nmの第2の波長(例えば655nm)の第2の
レーザ光を発する第2の光源63と、を同一の発光面61a上に有したマルチレーザユニ
ットである。レーザユニット61は、第1のレーザ光と、第1のレーザ光と異なる波長と
され且つ第1のレーザ光よりも短い波長のレーザ光とされる第2のレーザ光との2種類の
波長のレーザ光を出射可能な例えば二波長発光素子61として構成されている。このよう
に、レーザユニット61は、複数種類の波長のレーザ光を出射可能な発光素子61とされ
ている。尚、第1の光源62、第2の光源63は、半導体レーザ素子を構成するものであ
る。
ば0.2mW以上500mW(ミリワット)以下、具体的には2mW以上400mW以下
の出力値のレーザ光が出射される。例えば0.2mW未満の出力値のレーザ光とされた場
合、光ディスクDに照射されたのちに反射され光検出器73Aに届くレーザ光の光量が不
足する。光ディスクDの各データ等を再生させるときには、例えば0.2mW以上このま
しくは0.5mW以上より好ましくは2mW以上20mW以下程度という数~数十mWの
出力値のレーザ光で十分とされる。光ディスクDに各データ等を書き込むときには、数十
~数百mWの出力値のレーザ光が必要とされる。例えば光ディスクDに高速で各データ等
を書き込むときには、400mWや500mW等という高い出力値のパルスレーザ光が必
要とされることがある。
ージタイプのレーザダイオードとして構成されている。光ピックアップ装置の設計/仕様
などにより、CANパッケージタイプのレーザユニット61に代えて、例えば、薄型化、
小型化等に対応可能な略板状のリードフレームパッケージタイプのレーザダイオード(不
図示)が用いられてもよい。
レーザ光は、4分割などの複数分割された回折格子64Aによりメインビーム(0次光)
と2つのサブビーム(±1次回折光束)とによる少なくとも3ビームを発生させるべく回
折されたのちに、例えばカップリングレンズ65iにより広がり角が調整されてプレート
型の偏光ビームスプリッタ66の偏光フィルタ面により反射される。
タレンズ67により平行光に形成されたのちに、1/4波長板68を通過して円偏光に変
換され、更に、反射ミラー69により光軸が折曲されて光学レンズとされる対物レンズ7
0に入射され、対物レンズ70により収束されて光ディスクDに照射される。
スクDに対応可能とさせるために、対物レンズ70は、対物レンズ70の光軸方向(P軸
方向)に略沿って移動可能な状態で光ピックアップ装置に備えられている。対物レンズ7
0の光軸方向(P軸方向)に略沿って、対物レンズ70が移動可能な状態で光ピックアッ
プ装置に備えられることにより、複数の信号層Daを有する光ディスクDに対応可能な光
ピックアップ装置が構成される。また、対物レンズ70は、光ディスクDの信号層Daの
トラック等に正確に追従するために、ディスク半径方向(R軸方向)に略沿って移動可能
な状態で光ピックアップ装置に備えられている。
の複数の層DL0、DL1を有する光ディスクDに対応可能とさせるために、コリメータ
レンズ67がコリメータレンズ67の光軸方向に略沿って移動可能な状態で光ピックアッ
プ装置に備えられる。コリメータレンズ67の光軸方向に略沿って、コリメータレンズ6
7が移動可能な状態で光ピックアップ装置に備えられることにより、複数の信号層Daを
有する光ディスクDにより確実に対応可能な光ピックアップ装置が構成される。
6、コリメータレンズ67、1/4波長板68、反射ミラー69、対物レンズ70等は、
集光光学系の一例となる。対物レンズ70および回折格子64Aは、回折格子64Aによ
って分岐されたメインビームと2つのサブビームとを集光して、光ディスクDのトラック
上において、細長のトラックに対し略平行もしくは斜めに傾けられて略一列にメインビー
ムに対応したメインスポットと2つのサブビームに対応した2つのサブスポットとを照射
させる。
)が装備されることなく省略されてもよい。また、図1においては、コリメータレンズ6
7と反射ミラー69との間に1/4波長板68が位置する光ピックアップ装置の光学配置
例を示したが、光ピックアップ装置の設計/仕様などにより、例えば、コリメータレンズ
(67)と反射ミラー(69)との間に1/4波長板(68)が装備されることなく、偏
光ビームスプリッタ(66)とコリメータレンズ(67)との間に1/4波長板(68)
が位置する光ピックアップ装置も使用可能とされている。本願における符号に付けられた
括弧( )は、図面に示されたものと若干異なるものを説明するために便宜上用いられて
いる。
ト61から出射されるレーザ光をモニタし、レーザユニット61の制御のためにフィード
バックをかける受光素子65iiが、例えば偏光ビームスプリッタ66の周辺近傍に装備さ
れる。
の光学特性に合わせて回折する回折格子64Aが入射面に光軸を中心として例えば略輪帯
状に形成させ、当該回折格子により回折分岐された3ビームが各光ディスクDに対して球
面収差を補正して集光作用を持たせるように設計される。そして、対物レンズ70を、フ
ォーカス方向(図1中に示すP軸方向)、トラッキング方向(図1中に示すトラックの形
成方向を示すQ軸と直交する方向であって且つP軸と直交する方向とされるR軸方向)、
チルト方向(レンズ揺動方向)に略沿って対物レンズ70を駆動させることにより、光デ
ィスクDの信号層Daにレーザ光を合焦させるとともに、光ディスクDの所定のトラック
にレーザ光を追従させるように、対物レンズ70から光ディスクDに向けてレーザ光が照
射される。
り、往路と途中まで略同じ光路である復路を経由して偏光ビームスプリッタ66に至る。
光ディスクDの信号層Daに例えば右旋回のレーザ光が照射されたときに、反射されたレ
ーザ光は、例えば左旋回のレーザ光に反転された状態の円偏光となる。また、光ディスク
Dへの往路で例えばS偏光であったレーザ光は、復路では例えばP偏光のレーザ光となっ
て1/4波長板68から出射され、P偏光のレーザ光は、偏光ビームスプリッタ66に入
射される。
リッタ66に戻されたレーザ光は、例えば偏光ビームスプリッタ66を透過する際の非点
収差を補正すべく傾けられて配置された第1の平行平板71を透過する。また、第1の平
行平板71を透過したレーザ光が傾けられて配置された第2の平行平板72を透過するこ
とにより、例えば光ディスクDに照射されるレーザ光のフォーカスエラー成分となる非点
収差が付与されるとともに、偏光ビームスプリッタ66及び第1の平行平板71により発
生されるコマ収差が補正された上で、光検出器73Aにレーザ光が導かれる。この結果、
光検出器73Aは、第2の平行平板72より導かれたレーザ光に基づきトラッキングエラ
ー信号やフォーカスエラー信号等を生成する。
板72は、例えば非点収差素子71、72とされる。例えば第1の非点収差素子71およ
び第2の非点収差素子72も光ピックアップ装置の集光光学系の一例とされる。また、第
1の平行平板71および第2の平行平板72に代えて、例えばレーザ光の非点収差を発生
させて光ディスクDの信号層Daに照射される集光スポット80のフォーカシング検出を
非点収差法/差動非点収差法などに基づいて検出可能とさせるアナモフィックレンズ(不
図示)等のセンサレンズ(不図示)等が非点収差素子として用いられてもよい。
キングエラー信号やフォーカスエラー信号等の電気信号に変えて、光ピックアップ装置を
構成する対物レンズ70付のレンズホルダ(不図示)等のサーボ機構(不図示)を動作さ
せるためのものとされている。サーボとは、例えば制御の対象の状態を測定し、予め定め
られた基準値と比較して、自動的に修正制御する機構のもの等を意味する。また、光検出
器73Aは、光ディスクDから反射されたレーザ光を受けて、その信号を電気信号に変え
、光ディスクDに記録されたデータ/情報/信号などを検出するためのものとされている
。
の位置>>
以下、図2および図3を用いて、光ディスクDに照射される第1の波長光および第2の
波長光のメインスポット80の位置について説明する。
る第2の光源63の装備位置と、が異なる。このため、例えば、光ピックアップ装置が光
ディスクDの最も内周側D84に位置するときや、光ピックアップ装置が光ディスクDの
最も外周側D88に位置するときや、光ピックアップ装置が光ディスクDの最も内周側D
84から最も外周側D88に至るまでの何れかに位置するときに、第1の波長光に対応し
CD規格に基づいた光ディスクDの信号面部Da上における第1の波長光のディスク半径
方向(R軸方向)に略沿ったメインスポット80形成位置と、第2の波長光に対応しDV
D規格に基づいた光ディスクDの信号面部Da上における第2の波長光のディスク半径方
向(R軸方向)に略沿ったメインスポット80形成位置と、は、ディスク半径方向(R軸
方向)に略沿った線上において数μm~数十μmほど異なる。
光ディスクDにレーザ光が照射されるときや、DVD規格に基づいた光ディスクDにレー
ザ光が照射されるときに、CD規格に基づいた光ディスクDに対するCD用レーザ光のデ
ィスク半径方向集光位置と、DVD規格に基づいた光ディスクDに対するDVD用レーザ
光のディスク半径方向集光位置と、が異なる。
や、光ピックアップ装置が光ディスクDの最も外周側D88に位置するときや、光ピック
アップ装置が光ディスクDの最も内周側D84から最も外周側D88に至るまでの何れか
に位置するときに、第1の波長光に対応しCD規格に基づく略円板状の光ディスクDの信
号面部Da上にうつし出される第1波長光のメインスポット80のディスク半径方向(R
軸方向)に略沿った照射位置よりも、第2の波長光に対応しDVD規格に基づく略円板状
の光ディスクDの信号面部Da上にうつし出される第2波長光のメインスポット80のデ
ィスク半径方向(R軸方向)に略沿った照射位置のほうが、数μm~数十μmほど略円板
状をした光ディスクDの内周側D84に存する。
ィスクDの最も内周側D84に位置するときや、光ピックアップ装置が光ディスクDの最
も外周側D88に位置するときや、光ピックアップ装置が光ディスクDの最も内周側D8
4から最も外周側D88に至るまでの何れかに位置するときに、第1の波長光に対応しC
D規格に基づく略円板状の光ディスクDの信号面部Da上にうつし出される第1波長光の
メインスポット80のディスク半径方向(R軸方向)に略沿った照射位置のほうが、第2
の波長光に対応しDVD規格に基づく略円板状の光ディスクDの信号面部Da上にうつし
出される第2波長光のメインスポット80のディスク半径方向(R軸方向)に略沿った照
射位置よりも数μm~数十μmほど略円板状をした光ディスクDの内周側D84に存する
ように、光ピックアップ装置が構成されてもよい。
ト等の大きさよりも、第2の波長光に対応しDVD規格に基づいた光ディスクDの信号面
部Da上におけるピット等の大きさのほうが小さい。また、第1の波長光に対応しCD規
格に基づいた光ディスクDの信号面部Da上に照射/形成される光のスポット80の大き
さよりも、第2の波長光に対応しDVD規格に基づいた光ディスクDの信号面部Da上に
照射/形成される光のスポット80の大きさのほうが小さい。このようなことから、CD
規格に基づく第1の波長光よりも波長の短いDVD規格に基づく第2の波長光が光ピック
アップ装置の光学系中心軸に略位置するように光ピックアップ装置が構成されている。
とサブスポット81、82との間隔Yp>>
以下、図4、図5を用いて、光ディスクDに照射される第1の波長光および第2の波長
光のメインスポット80とサブスポット81、82との間隔Ypについて説明する。
実施形態に係るインライン方式における光ディスク上の集光スポット配置とトラッキング
エラー信号検出系の概要を説明するための図である。
にも対応したものである。尚、CD-ROM、CD-R、CD-RW等のCD規格の光デ
ィスクDのトラックピッチDtpと、DVD-ROM、DVD-R、DVD+R、DVD
-RW、DVD+RWの光ディスクDのトラックピッチDtpと、DVD-RAM(Ve
rsion1)の光ディスクDのトラックピッチDtpと、DVD-RAM(Versi
on2.0、2.1)の光ディスクDのトラックピッチDtpと、は異なるが、各図面に
おいては、各種の光ディスクDは、便宜上、一纏めに描かれている。また、光ディスクD
の信号面部Da上に照射/形成される各光のスポット80、81、82の形状/配置/形
態等は、便宜上、描かれた形状/配置/形態等とされている。
ン方式対応の回折格子64Aとされている。回折格子64Aは、3ビーム方式対応のCD
用回折格子を用いずに、インライン方式対応のDVD用回折格子20のみで構成されたも
のである。本願における回折格子とは、例えば光を回折させる回折面部が形成された部材
を意味し、例えばインライン・グレーティング等と呼ばれる。また、本願における図示さ
れた回折格子等は、各詳細部が分かり易くされるために、便宜上、描かれている。インラ
イン方式対応の回折格子64Aに入射された光は、インライン方式対応の回折格子64A
によって、1本の第1メインビームと少なくとも2本の第1サブビームとに分光される。
とされ、インライン方式対応の回折格子64Aに入射される第2の波長がDVD規格の波
長とされた場合について説明する。第1の波長をCD規格の波長λ(cd)と定める。第
1の波長λ(cd)は、略765nm~840nmとされている。また、第2の波長をD
VD規格の波長λ(dvd)と定める。第2の波長λ(dvd)は、略630nm~68
5nmとされている。
とも2本の第1サブビームとが照射されたときの第1メインビームのスポット80の略中
心部とされる照射点Oaと第1サブビームのスポット81の略中心部とされる照射点Xb
との間隔YpをYp1と定める。
とも2本の第1サブビームとが照射されたときの第1メインビームのスポット80の略中
心部とされる照射点Oaと第1サブビームのスポット82の略中心部とされる照射点Xc
との間隔YpをYp1と定める。
とも2本の第2サブビームとが照射されたときの第2メインビームのスポット80の略中
心部とされる照射点Oaと第2サブビームのスポット81の略中心部とされる照射点Xb
との間隔YpをYp2と定める。
とも2本の第2サブビームとが照射されたときの第2メインビームのスポット80の略中
心部とされる照射点Oaと第2サブビームのスポット82の略中心部とされる照射点Xc
との間隔YpをYp2と定める。
合、式(4)のλ(cd)に765を代入する。また、DVD規格の波長(第2の波長)
λ(dvd)が例えば略685nmとされたと仮定した場合、式(4)のλ(dvd)に
685を代入する。すると、つぎの式(5)に記載された通りに値が求められる。
また、CD規格の波長(第1の波長)λ(cd)が例えば略840nmとされたと仮定
した場合、式(4)のλ(cd)に840を代入する。また、DVD規格の波長(第2の
波長)λ(dvd)が例えば略630nmとされたと仮定した場合、式(4)のλ(dv
d)に630を代入する。すると、つぎの式(6)に記載された通りに値が求められる。
以上より、CD規格の波長とされる第1の波長λ(cd)と、DVD規格の波長とされ
る第2の波長λ(dvd)と、を出射可能な光ピックアップ装置は、例えば下式(7)を
満足する光ピックアップ装置とされる。
波長とされ、インライン方式対応の回折格子64Aに入射される第2の波長がBD規格の
波長とされた場合について説明する。第1の波長をDVD規格の波長λ(dvd)と仮定
する。第1の波長λ(dvd)は、略630nm~685nmとされる。また、第2の波
長をBD規格の波長λ(bd)と仮定する。第2の波長λ(bd)は、略340nm~4
50nmとされる。この場合、例えば次の式(8)を仮定する。
た場合、式(8)のλ(dvd)に630を代入する。また、BD規格の波長(第2の波
長)λ(bd)が例えば略450nmとされたと仮定した場合、式(8)のλ(bd)に
450を代入する。すると、つぎの式(9)に記載された通りに値が求められる。
また、DVD規格の波長(第1の波長)λ(dvd)が例えば略685nmとされたと
仮定した場合、式(8)のλ(dvd)に685を代入する。また、BD規格の波長(第
2の波長)λ(bd)が例えば略340nmとされたと仮定した場合、式(8)のλ(b
d)に340を代入する。すると、つぎの式(10)に記載された通りに値が求められる
。
以上より、DVD規格の波長とされる第1の波長λ(dvd)と、BD規格の波長とさ
れる第2の波長λ(bd)と、を出射可能な光ピックアップ装置は、例えば下式(11)
を満足する光ピックアップ装置とされる。
長とされ、インライン方式対応の回折格子64Aに入射される第2の波長がBD規格の波
長とされた場合について説明する。第1の波長をCD規格の波長λ(cd)と仮定する。
第1の波長λ(cd)は、略765nm~840nmとされる。また、第2の波長をBD
規格の波長λ(bd)と仮定する。第2の波長λ(bd)は、略340nm~450nm
とされる。この場合、例えば次の式(12)を仮定する。
合、式(12)のλ(cd)に765を代入する。また、BD規格の波長(第2の波長)
λ(bd)が例えば略450nmとされたと仮定した場合、式(12)のλ(bd)に4
50を代入する。すると、つぎの式(13)に記載された通りに値が求められる。
また、CD規格の波長(第1の波長)λ(cd)が例えば略840nmとされたと仮定
した場合、式(12)のλ(cd)に840を代入する。また、BD規格の波長(第2の
波長)λ(bd)が例えば略340nmとされたと仮定した場合、式(12)のλ(bd
)に340を代入する。すると、つぎの式(14)に記載された通りに値が求められる。
以上より、CD規格の波長とされる第1の波長λ(cd)と、BD規格の波長とされる
第2の波長λ(bd)と、を出射可能な光ピックアップ装置は、例えば下式(15)を満
足する光ピックアップ装置とされる。
照射される各スポット80、81、82の光の強さの総和に対するメインスポット80の
光の強さの効率比>>
以下、図5を用いて例えば光ディスクDに照射される各スポット80、81、82の光
の強度比とされる分光比、メインスポット80の光の効率比A1、A2について説明する
。
2本の第1波長光のサブビームとが照射されたときに、1本の第1波長光のメインビーム
により光ディスクDにうつし出されたメインスポット80の光の強さと少なくとも2本の
第1波長光のサブビームにより光ディスクDにうつし出された各サブスポット81、82
の光の強さとの総和に対し、1本の第1波長光のメインビームにより光ディスクDにうつ
し出されたメインスポット80の光の強さを例えば光の効率比A1と定める。
も2本の第2波長光のサブビームとが照射されたときに、1本の第2波長光のメインビー
ムにより光ディスクDにうつし出されたメインスポット80の光の強さと少なくとも2本
の第2波長光のサブビームにより光ディスクDにうつし出された各サブスポット81、8
2の光の強さとの総和に対し、1本の第2波長光のメインビームにより光ディスクDにう
つし出されたメインスポット80の光の強さを例えば光の効率比A2と定める。
する。例えば、DVD規格に基づく光ディスクDのトラックD80上の先行サブスポット
81と、DVD規格に基づく光ディスクDのトラックD80上のメインスポット80と、
DVD規格に基づく光ディスクDのトラックD80上の後行サブスポット82との分光比
は、略1:(16±1.6):1とされる。
と、DVD規格に基づく光ディスクDのトラックD80上のメインスポット80と、DV
D規格に基づく光ディスクDのトラックD80上の後行サブスポット82との分光比は、
略1:14.4:1とされる。
光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略1/16.
4となる。また、この場合のDVD規格に基づく光ディスクD上のメインスポット80に
おける光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略14
.4/16.4となる。すなわち、この場合のDVD規格に基づく光ディスクD上のメイ
ンスポット80の光の効率比A2は、0.87805となる。
ト81と、DVD規格に基づく光ディスクDのトラックD80上のメインスポット80と
、DVD規格に基づく光ディスクDのトラックD80上の後行サブスポット82との分光
比は、略1:17.6:1とされる。
光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略1/19.
6となる。また、この場合のDVD規格に基づく光ディスクD上のメインスポット80に
おける光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略17
.6/19.6となる。すなわち、この場合のDVD規格に基づく光ディスクD上のメイ
ンスポット80の光の効率比A2は、0.89796となる。
先行サブスポット81と、DVD規格に基づく光ディスクDのトラックD80上のメイン
スポット80と、DVD規格に基づく光ディスクDのトラックD80上の後行サブスポッ
ト82との分光比は、略1:16:1とされる。
光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略1/18と
なる。また、この場合のDVD規格に基づく光ディスクD上のメインスポット80におけ
る光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略16/1
8となる。すなわち、この場合のDVD規格に基づく光ディスクD上のメインスポット8
0の光の効率比A2は、0.88889となる。
DのトラックD80上の先行サブスポット81と、DVD規格に基づく光ディスクDのト
ラックD80上のメインスポット80と、DVD規格に基づく光ディスクDのトラックD
80上の後行サブスポット82との分光比が、略1:15:1とされる。
光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略1/17と
なる。また、この場合のDVD規格に基づく光ディスクD上のメインスポット80におけ
る光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略15/1
7となる。すなわち、この場合のDVD規格に基づく光ディスクD上のメインスポット8
0の光の効率比A2は、0.88235となる。
分光比は、図28に示すインライン方式のDVD規格に基づく光ディスクDに照射される
レーザ光の分光比と略同じとされる。
01と、DVD規格に基づく光ディスクDのトラックD100上のメインスポット100
と、DVD規格に基づく光ディスクDのトラックD100上の後行サブスポット102と
の分光比は、略1:15:1とされる。
ける光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略1/1
7となる。また、この場合のDVD規格に基づく光ディスクD上のメインスポット100
における光の強さは、DVD規格に基づく光ディスクDに照射される光の強さ全体の略1
5/17となる。すなわち、この場合のDVD規格に基づく光ディスクD上のメインスポ
ット100の光の効率比A2は、0.88235となる。
ついて説明する。例えば、CD規格に基づく光ディスクDのトラックD80上の先行サブ
スポット81と、CD規格に基づく光ディスクDのトラックD80上のメインスポット8
0と、CD規格に基づく光ディスクDのトラックD80上の後行サブスポット82との分
光比は、略1:(23±2.3):1とされる。
、CD規格に基づく光ディスクDのトラックD80上のメインスポット80と、CD規格
に基づく光ディスクDのトラックD80上の後行サブスポット82との分光比は、略1:
20.7:1とされる。
の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/22.7と
なる。また、この場合のCD規格に基づく光ディスクD上のメインスポット80における
光の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略20.7/2
2.7となる。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット
80の光の効率比A1は、0.91189となる。
81と、CD規格に基づく光ディスクDのトラックD80上のメインスポット80と、C
D規格に基づく光ディスクDのトラックD80上の後行サブスポット82との分光比は、
略1:25.3:1とされる。
の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/27.3と
なる。また、この場合のCD規格に基づく光ディスクD上のメインスポット80における
光の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略25.3/2
7.3となる。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット
80の光の効率比A1は、0.92674となる。
行サブスポット81と、CD規格に基づく光ディスクDのトラックD80上のメインスポ
ット80と、CD規格に基づく光ディスクDのトラックD80上の後行サブスポット82
との分光比は、略1:23:1とされる。
の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/25となる
。また、この場合のCD規格に基づく光ディスクD上のメインスポット80における光の
強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略23/25となる
。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット80の光の効
率比A1は、0.92000となる。
光比は、図27に示す3ビーム方式のCD規格に基づく光ディスクDに照射されるレーザ
光の分光比と異なる。
1と、CD規格に基づく光ディスクDのトラックD100上のメインスポット100と、
CD規格に基づく光ディスクDのトラックD100上の後行サブスポット102との分光
比は、略1:16:1とされる。
る光の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/18と
なる。また、この場合のCD規格に基づく光ディスクD上のメインスポット100におけ
る光の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略16/18
となる。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット100
の光の効率比A1は、0.88889となる。
アップ装置が構成された場合、回折格子64Aを透過した各CD用レーザ光がCD規格に
基づく光ディスクDに照射されると、従来のものに対し、CD規格に基づいた光ディスク
Dに照射される各レーザ光の分光比が変更される。
スクDのトラックD80上の先行サブスポット81と、CD規格に基づく光ディスクDの
トラックD80上のメインスポット80と、CD規格に基づく光ディスクDのトラックD
80上の後行サブスポット82との分光比が、略1:23.5:1とされてもよい。
の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/25.5と
なる。また、この場合のCD規格に基づく光ディスクD上のメインスポット80における
光の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略23.5/2
5.5となる。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット
80の光の効率比A1は、0.92157となる。
スクDのトラックD80上の先行サブスポット81と、CD規格に基づく光ディスクDの
トラックD80上のメインスポット80と、CD規格に基づく光ディスクDのトラックD
80上の後行サブスポット82との分光比が、略1:20:1とされてもよい。
の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/22となる
。また、この場合のCD規格に基づく光ディスクD上のメインスポット80における光の
強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略20/22となる
。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット80の光の効
率比A1は、0.90909となる。
スクDのトラックD80上の先行サブスポット81と、CD規格に基づく光ディスクDの
トラックD80上のメインスポット80と、CD規格に基づく光ディスクDのトラックD
80上の後行サブスポット82との分光比が、略1:26:1とされてもよい。
の強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略1/28となる
。また、この場合のCD規格に基づく光ディスクD上のメインスポット80における光の
強さは、CD規格に基づく光ディスクDに照射される光の強さ全体の略26/28となる
。すなわち、この場合のCD規格に基づく光ディスクD上のメインスポット80の光の効
率比A1は、0.92857となる。
以下、図4、図5を用いて回折格子64Aおよび光検出器73Aについて説明する。
方具備する2波長対応回折格子300A、300Bにおいては、CD規格に準拠した第1
のレーザ光又はDVD規格に準拠した第2のレーザ光がCD用回折格子部320及びDV
D用回折格子部340の両方を通過した結果、不要な回折光が発生されることが問題とさ
れていた。このような不要な回折光の発生を解消させるために、回折格子64A(図4)
は、DVD規格に準拠した一波長光用回折格子部20のみの構成とされている。
れた格子溝の周期構造の位相が他方の半平面22に形成された格子溝の周期構造の位相に
対して約180度ずれたDVD用回折格子部材20とされている。また、回折格子64A
の光学配置は、インライン方式に準拠して、図5に示すように、光ディスクD上に照射さ
れた第1又は第2のレーザ光のメインビームに基づくメインスポット80及び第1又は第
2のレーザ光のサブビームに基づくサブスポット81、82を同一のトラックD80上に
略平行もしくは斜めに傾けられた状態で略一列に照射させるように調整される。
光学配置を採用したことによって、前述したとおり、不要な回折光が抑制されるとともに
、インライン方式に基づくトラッキングエラー信号SE1、SE2の検出を適切に行うこ
とができる。具体的に説明すると、図5に示すように、DVD規格に準拠した第2のレー
ザ光の場合には、つぎのとおりトラッキングエラー信号SE2の検出が行われる。
のとおりトラッキングエラー信号SE2の検出が行われる。
光ディスクDの信号層Daから反射されて、光検出器73Aの第2受光領域75たとえば
DVD受光領域75におけるメイン受光部75Aにメイン検出光スポット90iiとして照
射されたときに、メイン受光部75Aに接続された減算器は、メイン受光部75Aからの
出力信号の差分を演算し例えばメインプッシュプル信号SA2として生成する。
のサブビームが光ディスクDの信号層Daから反射されて、光検出器73AのDVD受光
領域75における一方の第2のサブ受光部75Bに第1のサブ検出光スポット91iiとし
て照射されたときに、一方の第2のサブ受光部75Bに接続された減算器は、一方の第2
のサブ受光部75Bからの出力信号の差分を演算し例えば先行サブプッシュプル信号SB
2として生成する。
のサブビームが光ディスクDの信号層Daから反射されて、光検出器73AのDVD受光
領域75における他方の第2のサブ受光部75Cに第2のサブ検出光スポット92iiとし
て照射されたときに、他方の第2のサブ受光部75Cに接続された減算器は、他方の第2
のサブ受光部75Cからの出力信号の差分を演算し例えば遅行サブプッシュプル信号SC
2として生成する。
ル信号SA2と、サブスポット81、82のそれぞれに対応するサブ検出光スポット91
ii、92iiから検出されるプッシュプル信号SB2、SC2とは、互いに逆位相で出力さ
れる。そののちに、加算器78Cによってプッシュプル信号SB2、SC2が加算され、
この加算された信号SD2が増幅器78Bによって増幅されたのちに減算器78Aによっ
てプッシュプル信号SA2に対し減算処理されることにより、プッシュプル信号SA2、
SB2、SC2の各オフセット成分が相殺された精度の高いトラッキングエラー信号SE
2を生成させることが可能となる。
、つぎのとおりトラッキングエラー信号SE1の検出が行われる。
ィスクDの信号層Daから反射されて、光検出器73Aの第1受光領域74たとえばCD
受光領域74におけるメイン受光部74Aにメイン検出光スポット90iとして照射され
たときに、メイン受光部74Aに接続された減算器は、メイン受光部74Aからの出力信
号の差分を演算し例えばメインプッシュプル信号SA1として生成する。
ブビームが光ディスクDの信号層Daから反射されて、光検出器73AのCD受光領域7
4における一方の第1のサブ受光部74Bに第1のサブ検出光スポット91iとして照射
されたときに、一方の第1のサブ受光部74Bに接続された減算器は、一方の第1のサブ
受光部74Bからの出力信号の差分を演算し例えば先行サブプッシュプル信号SB1とし
て生成する。
ブビームが光ディスクDの信号層Daから反射されて、光検出器73AのCD受光領域7
4における他方の第1のサブ受光部74Cに第2のサブ検出光スポット92iとして照射
されたときに、他方の第1のサブ受光部74Cに接続された減算器は、他方の第1のサブ
受光部74Cからの出力信号の差分を演算し例えば遅行サブプッシュプル信号SC1とし
て生成する。
ル信号SA1と、サブスポット81、82のそれぞれに対応するサブ検出光スポット91
i、92iから検出されるプッシュプル信号SB1、SC1とは、互いに逆位相で出力さ
れる。そののちに、加算器78Cによってプッシュプル信号SB1、SC1が加算され、
この加算された信号SD1が増幅器78Bによって増幅されたのちに減算器78Aによっ
てプッシュプル信号SA1に対し減算処理されることにより、プッシュプル信号SA1、
SB1、SC1の各オフセット成分が相殺された精度の高いトラッキングエラー信号SE
1を生成させることが可能となる。
に通電可能に接続された光ディスク装置の基板(不図示)の演算部76Aに送られて計算
が行われ、光ディスク装置の基板の演算部76Aにて生成された信号が光ピックアップ装
置の対物レンズ駆動部79に送られる。光ピックアップ装置の対物レンズ駆動部79に電
気信号が流されることにより、光ピックアップ装置の対物レンズ70が動かされる。演算
部76Aで生成されたトラッキング誤差信号SE1、SE2が対物レンズ駆動部79に送
られて、光ディスクDのトラックD80に対する対物レンズ70のトラッキング調整が自
動的に行われる。
る第2の波長に対応するDVD用回折格子部材20のみの構成とされており、CD規格に
準拠した第1のレーザ光とされる第1の波長には対応していない。このため、CD規格に
準拠した第1のレーザ光が回折格子64Aにより回折分岐されたメイン検出光スポット9
0iとサブ検出光スポット91i、92iとの間隔(以下、メイン-サブピッチと呼ぶ。
)は、回折格子64Aが対応する波長に反比例した長さとなるので、本来使用すべきCD
用回折格子により回折分岐された場合のメイン-サブピッチと対比して拡大する。また、
メイン-サブピッチが拡大した結果、メイン検出光スポット90iとサブ検出光スポット
91i、92iの分光比も変化してしまう。
受光する第2のメイン受光部75Aと一方のサブ検出光スポット91iiを受光する一方の
第2のサブ受光部75Bとの間の受光間隔Ys(dvd)、及び、メイン検出光スポット
90iiを受光する第2のメイン受光部75aと他方のサブ検出光スポット92iiを受光す
る他方の第2のサブ受光部75Cとの間の受光間隔Ys(dvd)、および/または、メ
イン検出光スポット90iを受光する第1のメイン受光部74Aと一方のサブ検出光スポ
ット91iを受光する一方の第1のサブ受光部74Bとの間の受光間隔Ys(cd)、及
び、メイン検出光スポット90iを受光する第1のメイン受光部74aと他方のサブ検出
光スポット92iを受光する他方の第1のサブ受光部74Cとの間の受光間隔Ys(cd
)を、それぞれのレーザ光に応じたメイン-サブピッチと合わせるように、適切に設定す
る必要がある。
以下、図5、図6を用いて光検出器73Aおよび演算部76Aについて説明する。
る演算部76Aの全体構成の一例を示す演算処理回路図である。
74Aと、2本の第1サブビームが照射される2つの第1サブ受光部74B、74Cと、
を備えた第1受光領域74と、1本の第2メインビームが照射される1つの第2メイン受
光部75Aと、2本の第2サブビームが照射される2つの第2サブ受光部75B、75C
と、を備えた第2受光領域75と、を有する光検出器73Aを備えている。
に用いられる第1の受光領域74たとえばCD受光領域74と、DVD規格の光ディスク
Dの記録/再生に用いられる第2の受光領域75たとえばDVD受光領域75と、が並べ
られて形成されている。
により構成されるCD用のメイン受光部74A、サブ受光部74B及び74Cが例えば縦
に3つ並べられて配置されて、光検出器73AにCD受光領域74が構成される。CD用
のメイン受光部74A、サブ受光部74B及び74Cに、CD規格に基づく光ディスクD
により反射された0次回折レーザ光、+1次回折レーザ光、-1次回折レーザ光のそれぞ
れの反射レーザ光が受光される。光検出器73AのCD受光領域74に、例えば非点収差
発生光学系により非点収差が付与されたCD規格に基づくレーザ光が受光される。光検出
器73AのCD用メイン受光部74Aの分割線74Ax、74Ay、サブ受光部74B及
び74Cのそれぞれの分割線74Bx、74By及び74Cx、74Cyは、受光される
レーザ光の非点収差の発生方向に対してそれぞれ略45°の角度となるように設定されて
いる。
出面部により構成されるDVD用のメイン受光部75A、サブ受光部75B及び75Cが
例えば縦に3つ並べられて配置されて、光検出器73AにDVD受光領域75が構成され
る。DVD用のメイン受光部75A、サブ受光部75B及び75Cに、DVD規格に基づ
く光ディスクDにより反射された0次回折レーザ光、+1次回折レーザ光、-1次回折レ
ーザ光のそれぞれの反射レーザ光が受光される。光検出器73AのDVD受光領域75に
、例えば非点収差発生光学系により非点収差が付与されたDVD規格に基づくレーザ光が
受光される。光検出器73AのDVD用メイン受光部75Aの分割線75Ax、75Ay
、サブ受光部75B及び75Cのそれぞれの分割線75Bx、75By及び75Cx、7
5Cyは、受光されるレーザ光の非点収差の発生方向に対してそれぞれ略45°の角度と
なるように設定されている。
7G、77H、77I、78Cと、4つの減算器77A、77B、77C、78Aと、1
つの増幅器78Bと、を含んで構成される。加算器77D、77E、減算器77Aは、ト
ラッキングエラー信号SE1の基となる0次反射光の光量に応じた信号SA1を生成する
ために、演算部76Aを構成するものとして演算部76A内に備えられている。また、加
算器77F、77G、減算器77Bは、トラッキングエラー信号SE1の基となる+1次
反射光の光量に応じた信号SB1を生成するために、演算部76Aを構成するものとして
演算部76A内に備えられている。また、加算器77H、77I、減算器77Cは、トラ
ッキングエラー信号SE1の基となる-1次反射光の光量に応じた信号SC1を生成する
ために、演算部76Aを構成するものとして演算部76A内に備えられている。減算器7
7A、77B、77C、78Aは、例えば差動アンプ77A、77B、77C、78Aと
される。また、増幅器78Bは、例えば増幅アンプ78Bとされる。
算部76Aに通電可能に接続されている。光ピックアップ装置の光検出器73Aにて生成
された信号は、コネクタ、フレキシブル回路基板(不図示)等を経由して光ディスク装置
の演算部76Aに送信される。詳しく説明すると、光ピックアップ装置を構成する光検出
器73A等と、光ディスク装置の基板を構成する演算部76A等とは、回路基板とされる
フレキシブルプリント回路体(FPC:flexible printed circu
it/flexible printed cable)、フレキシブルフラット回路体
(FFC:flexible flat circuit/flexible flat
cable)などのフレキシブル回路基板の各導体部や、フレキシブル回路基板の各導
体部に接続される端子などを備えたコネクタなどを介して通電可能に接続される(何れも
不図示)。
に、FPCの基部は、耐熱性に優れるポリイミド系樹脂などの耐熱性合成重合体が用いら
れて形成されている。ポリイミド(polyimide)は、例えば「PI」と略称され
る。FPCは、例えば複数の回路導体部が全芳香族系ポリイミド樹脂などの芳香族系耐熱
性樹脂製の絶縁シートに印刷等されて、例えば銅箔などの金属箔が絶縁シートに並設され
、その上に例えば全芳香族系ポリイミド樹脂などの芳香族系耐熱性樹脂製の透明もしくは
半透明の保護層が設けられて構成される。FPCは、例えば可撓性の薄い略帯状をしたシ
ート物として形成される。
護層を備えるFPCが用いられることにより、FPC同士の半田付けが良好に行われる。
また、FPCに対し、各種電子部品、各種電気部品などの半田付けが良好に行われる。F
PCは、例えば他の光ピックアップ装置に共通して使用可能な例えば規格化されたFPC
として構成される。
拠した第1のレーザ光を回折格子64Aにより回折分岐した3ビーム、具体的には、メイ
ンビーム(0次光)と、そのメインビームの前後に配置される2つのサブビーム(±1次
回折光束)とのそれぞれに対応して、第1のメイン受光部74Aと、2つの第1のサブ受
光部74B、74Cとが形成されている。本願における「前」、「後」の定義は、便宜上
の定義とされている。第1のメイン受光部74A、第1のサブ受光部74B、74Cは、
それぞれ4分割されて4つの光検出面部により構成される。
Aは、略直交する2本の分割線74Ax、74Ayにより4分割されて、4つの略矩形状
をした光検出面部74Aa、74Ab、74Ac、74Adいわゆるセグメント74Aa
、74Ab、74Ac、74Adを備えて構成される。セグメント(segment)と
は、例えば、部分、断片など、全体が幾つかに分割されたもののうちの1つを意味する。
CD受光領域74の略矩形状をした中央の第1のメイン受光部74Aは、略矩形状をした
第1のメインセグメント74Aaと、第1のメインセグメント74Aaに隣接する略矩形
状をした第2のメインセグメント74Abと、第2のメインセグメント74Abに隣接す
る略矩形状をした第3のメインセグメント74Acと、第3のメインセグメント74Ac
に隣接する略矩形状をした第4のメインセグメント74Adと、を備えて構成され、第4
のメインセグメント74Adに第1のメインセグメント74Aaが隣接されている。CD
受光領域74の中央の第1メイン受光部74Aは、略正方形状に構成されている。
イン受光部74Aの各セグメント74Aa、74Ab、74Ac、74Adからの各受光
出力信号UAa1、UAb1、UAc1、UAd1をそれぞれ電流信号から電圧信号に変
換すると共に増幅する各電流・電圧変換アンプ77DL1、77DR1、77EL1、7
7ER1と、各電流・電圧変換アンプ77DL1、77DR1、77EL1、77ER1
により電圧信号に変換され且つ増幅された各信号をそれぞれ更に増幅する各後段アンプ7
7DL2、77DR2、77EL2、77ER2と、を備えている。
中央の第1メイン受光部74Aを構成する例えば上下一対のセグメント74Aa、74A
b、及び、74Ac,74Adからの出力信号の差分{(TAa1+TAb1)-(TA
c1+TAd1)}すなわち(TAab1-TAcd1)を演算しメインプッシュプル信
号SA1として生成する。
る2本の分割線74Bx、74Byにより4分割されて、4つの略矩形状をした光検出面
部74Ba、74Bb、74Bc、74Bdいわゆるセグメント74Ba、74Bb、7
4Bc、74Bdを備えて構成される。CD受光領域74の略矩形状をした前側の第1の
サブ受光部74Bは、略矩形状をした第1のサブセグメント74Baと、第1のサブセグ
メント74Baに隣接する略矩形状をした第2のサブセグメント74Bbと、第2のサブ
セグメント74Bbに隣接する略矩形状をした第3のサブセグメント74Bcと、第3の
サブセグメント74Bcに隣接する略矩形状をした第4のサブセグメント74Bdと、を
備えて構成され、第4のサブセグメント74Bdに第1のサブセグメント74Baが隣接
されている。CD受光領域74の前側の第1サブ受光部74Bは、略正方形状に構成され
ている。
受光部74Bの各セグメント74Ba、74Bb、74Bc、74Bdからの各受光出力
信号UBa1、UBb1、UBc1、UBd1をそれぞれ電流信号から電圧信号に変換す
ると共に増幅する各電流・電圧変換アンプ77FL1、77FR1、77GL1、77G
R1と、各電流・電圧変換アンプ77FL1、77FR1、77GL1、77GR1によ
り電圧信号に変換され且つ増幅された各信号をそれぞれ更に増幅する各後段アンプ77F
L2、77FR2、77GL2、77GR2と、を備えている。
前側の第1サブ受光部74Bを構成する例えば上下一対のセグメント74Ba、74Bb
、及び、74Bc,74Bdからの出力信号の差分{(TBa1+TBb1)-(TBc
1+TBd1)}すなわち(TBab1-TBcd1)を演算し先行サブプッシュプル信
号SB1として生成する。
る2本の分割線74Cx、74Cyにより4分割されて、4つの略矩形状をした光検出面
部74Ca、74Cb、74Cc、74Cdいわゆるセグメント74Ca、74Cb、7
4Cc、74Cdを備えて構成される。CD受光領域74の略矩形状をした後側の第1の
サブ受光部74Cは、略矩形状をした第1のサブセグメント74Caと、第1のサブセグ
メント74Caに隣接する略矩形状をした第2のサブセグメント74Cbと、第2のサブ
セグメント74Cbに隣接する略矩形状をした第3のサブセグメント74Ccと、第3の
サブセグメント74Ccに隣接する略矩形状をした第4のサブセグメント74Cdと、を
備えて構成され、第4のサブセグメント74Cdに第1のサブセグメント74Caが隣接
されている。CD受光領域74の後側の第1サブ受光部74Cは、略正方形状に構成され
ている。
受光部74Cの各セグメント74Ca、74Cb、74Cc、74Cdからの各受光出力
信号UCa1、UCb1、UCc1、UCd1をそれぞれ電流信号から電圧信号に変換す
ると共に増幅する各電流・電圧変換アンプ77HL1、77HR1、77IL1、77I
R1と、各電流・電圧変換アンプ77HL1、77HR1、77IL1、77IR1によ
り電圧信号に変換され且つ増幅された各信号をそれぞれ更に増幅する各後段アンプ77H
L2、77HR2、77IL2、77IR2と、を備えている。
後側の第1サブ受光部74Cを構成する例えば上下一対のセグメント74Ca、74Cb
、及び、74Cc,74Cdからの出力信号の差分{(TCa1+TCb1)-(TCc
1+TCd1)}すなわち(TCab1-TCcd1)を演算し遅行サブプッシュプル信
号SC1として生成する。
減算器77Cの出力信号である遅行サブプッシュプル信号SC1とが入力される。加算器
78Cは、これらの信号の加算(SB1+SC1)を演算し加算サブプッシュプル信号S
D1とさせる。増幅器78Bに、加算器78Cの出力信号である加算サブプッシュプル信
号SD1が入力される。増幅器78Bは、加算サブプッシュプル信号SD1を例えば増幅
率Kでメインプッシュプル信号SA1と同等の信号レベルに増幅する。減算器78Aに、
減算器77Aの出力信号と、増幅器78Bの出力信号とが入力される。減算器78Aは、
メインプッシュプル信号SA1と、加算サブプッシュプル信号SD1を増幅した信号との
差分を演算して、トラッキング誤差信号SE1として出力する。
、図3)に送られて、光ディスクDのトラックD80(図5)に対する対物レンズ70(
図2、図3)のトラッキング調整が自動的に行われる。
から得られる各受光出力に所定の演算を施すことにより、CD規格の光ディスクDの記録
/再生時等に、メイン情報信号、フォーカスエラー信号およびトラッキングエラー信号S
E1が得られる。
クアップ装置の発光素子(LD:laser diode)に例えば単一周波数であって
高周波のレーザ光出射信号が送られるときに、FPC等の周囲に不要輻射が生じることが
ある。LSI(large scale integration)とは、例えば半導体
集積回路(IC:integrated circuit)のうち素子の集積度が100
0個~100000個程度のもの、又は単にICの同義語とされる。また、不要輻射とは
、例えば電子機器などが出す電磁波や不要な電波等を意味する。
情報、信号が記録されるときに、光ディスク装置を構成する基板のLSIと光ピックアッ
プ装置のLDとを通電可能に繋ぐFPCが撓まされたりのばされたりして、FPCが例え
ば引き回される環境下において、FPCに例えば単一周波数であって高周波のパルス信号
が流される構造のものにおいては、不要輻射の点で不利とされることがある。
c1、UBd1、UCa1、UCb1、UCc1、UCd1をそれぞれ電流信号から電圧
信号に変換すると共に増幅する各電流・電圧変換アンプ77DL1、77DR1、77E
L1、77ER1、77FL1、77FR1、77GL1、77GR1、77HL1、7
7HR1、77IL1、77IR1、及び、各電流・電圧変換アンプ77DL1、77D
R1、77EL1、77ER1、77FL1、77FR1、77GL1、77GR1、7
7HL1、77HR1、77IL1、77IR1により電圧信号に変換され且つ増幅され
た各信号をそれぞれ更に増幅する各後段アンプ77DL2、77DR2、77EL2、7
7ER2、77FL2、77FR2、77GL2、77GR2、77HL2、77HR2
、77IL2、77IR2が光ピックアップ装置の光検出器73Aに装備されていれば、
前記各電流・電圧変換アンプ77DL1、77DR1、77EL1、77ER1、77F
L1、77FR1、77GL1、77GR1、77HL1、77HR1、77IL1、7
7IR1、及び、前記各後段アンプ77DL2、77DR2、77EL2、77ER2、
77FL2、77FR2、77GL2、77GR2、77HL2、77HR2、77IL
2、77IR2により、光検出器73Aの各受光部74A、74B、74Cから出力され
る各受光出力信号UAa1、UAb1、UAc1、UAd1、UBa1、UBb1、UB
c1、UBd1、UCa1、UCb1、UCc1、UCd1は、例えば確実にゲインアッ
プされた光電変換信号TAa1、TAb1、TAc1、TAd1、TBa1、TBb1、
TBc1、TBd1、TCa1、TCb1、TCc1、TCd1として光検出器73Aか
ら出力される。
の基板を構成する演算部76A等とを通電可能に接続するFPC等の周囲に不要輻射など
が生じても、光検出器73Aから出力される光電変換信号TAa1、TAb1、TAc1
、TAd1、TBa1、TBb1、TBc1、TBd1、TCa1、TCb1、TCc1
、TCd1の劣化が抑えられる。従って、光ディスク装置の基板の演算部76Aにて、1
本の第1メインビームの検出と2本の第1サブビームの検出とが精度よく確実に行われる
。
7DL1、77DR1、77EL1、77ER1、77FL1、77FR1、77GL1
、77GR1、77HL1、77HR1、77IL1、77IR1)は、電流・電圧変換
機能を備えもっていない通常の前段増幅アンプ(77DL1、77DR1、77EL1、
77ER1、77FL1、77FR1、77GL1、77GR1、77HL1、77HR
1、77IL1、77IR1)として構成されてもよい。
7DL1、77DR1、77EL1、77ER1、77FL1、77FR1、77GL1
、77GR1、77HL1、77HR1、77IL1、77IR1)は、増幅アンプ(7
7DL2、77DR2、77EL2、77ER2、77FL2、77FR2、77GL2
、77GR2、77HL2、77HR2、77IL2、77IR2)よりも信号の流れの
下流側に位置するものとされてもよい。
に照射される場合、つぎのとおりトラッキングエラー信号SE1の検出が行われる。
グメント74Aaにおいて受光した0次反射光の一部の光量に応じた光電変換信号TAa
1と、光検出器73Aのメイン受光部74Aの第2セグメント74Abにおいて受光した
0次反射光の一部の光量に応じた光電変換信号TAb1と、を加算し、光電変換信号TA
ab1を生成する。
グメント74Acにおいて受光した0次反射光の一部の光量に応じた光電変換信号TAc
1と、光検出器73Aのメイン受光部74Aの第4セグメント74Adにおいて受光した
0次反射光の一部の光量に応じた光電変換信号TAd1と、を加算し、光電変換信号TA
cd1を生成する。
1+光電変換信号TAb1)から、加算器77Eの加算結果(光電変換信号TAc1+光
電変換信号TAd1)を減算し、メインプッシュプル信号SA1を生成する。この結果、
減算器77Aは、トラッキングエラー信号SE1の基となる0次反射光の光量に応じた信
号{(光電変換信号TAa1+光電変換信号TAb1)-(光電変換信号TAc1+光電
変換信号TAd1)}、即ちメインプッシュプル信号SA1を出力することとなる。
ィスクDの信号層Daから反射されて、光検出器73AのCD受光領域74におけるメイ
ン受光部74Aにメイン検出光スポット90iとして照射されたときに、メイン受光部7
4Aに接続された減算器77Aは、メイン受光部74Aからの出力信号の差分を演算し例
えばメインプッシュプル信号SA1として生成する。
セグメント74Baにおいて受光した+1次反射光の一部の光量に応じた光電変換信号T
Ba1と、光検出器73Aの前側サブ受光部74Bの第2セグメント74Bbにおいて受
光した+1次反射光の一部の光量に応じた光電変換信号TBb1と、を加算し、光電変換
信号TBab1を生成する。
セグメント74Bcにおいて受光した+1次反射光の一部の光量に応じた光電変換信号T
Bc1と、光検出器73Aの前側サブ受光部74Bの第4セグメント74Bdにおいて受
光した+1次反射光の一部の光量に応じた光電変換信号TBd1と、を加算し、光電変換
信号TBcd1を生成する。
1+光電変換信号TBb1)から、加算器77Gの加算結果(光電変換信号TBc1+光
電変換信号TBd1)を減じ、サブプッシュプル信号SB1を生成する。
ムが光ディスクDの信号層Daから反射されて、光検出器73AのCD受光領域74にお
ける前側の第1のサブ受光部74Bに第1のサブ検出光スポット91iとして照射された
ときに、前側の第1のサブ受光部74Bに接続された減算器77Bは、前側の第1のサブ
受光部74Bからの出力信号の差分を演算し例えば先行サブプッシュプル信号SB1とし
て生成する。
セグメント74Caにおいて受光した-1次反射光の一部の光量に応じた光電変換信号T
Ca1と、光検出器73Aの後側サブ受光部74Cの第2セグメント74Cbにおいて受
光した-1次反射光の一部の光量に応じた光電変換信号TCb1と、を加算し、光電変換
信号TCab1を生成する。
セグメント74Ccにおいて受光した-1次反射光の一部の光量に応じた光電変換信号T
Cc1と、光検出器73Aの後側サブ受光部74Cの第4セグメント74Cdにおいて受
光した-1次反射光の一部の光量に応じた光電変換信号TCd1と、を加算し、光電変換
信号TCcd1を生成する。
1+光電変換信号TCb1)から、加算器77Iの加算結果(光電変換信号TCc1+光
電変換信号TCd1)を減じ、サブプッシュプル信号SC1を生成する。
ムが光ディスクDの信号層Daから反射されて、光検出器73AのCD受光領域74にお
ける後側の第1のサブ受光部74Cに第2のサブ検出光スポット92iとして照射された
ときに、後側の第1のサブ受光部74Cに接続された減算器77Cは、後側の第1のサブ
受光部74Cからの出力信号の差分を演算し例えば遅行サブプッシュプル信号SC1とし
て生成する。
光電変換信号TBb1)-(光電変換信号TBc1+光電変換信号TBd1)}と、減算
器77Cの減算結果{(光電変換信号TCa1+光電変換信号TCb1)-(光電変換信
号TCc1+光電変換信号TCd1)}と、を加算し、加算サブプッシュプル信号SD1
を生成する。
+光電変換信号TBb1)-(光電変換信号TBc1+光電変換信号TBd1)}+{(
光電変換信号TCa1+光電変換信号TCb1)-(光電変換信号TCc1+光電変換信
号TCd1)}〕、即ち、加算サブプッシュプル信号SD1を増幅率Kで増幅する。この
増幅率Kは、例えば回折格子64Aの回折効率による0次光と±1次回折光の光強度の相
違を調整するべく定まる値である。
光電変換信号TAb1)-(光電変換信号TAc1+光電変換信号TAd1)〕から、増
幅器78Bの増幅結果[K・〔{(光電変換信号TBa1+光電変換信号TBb1)-(
光電変換信号TBc1+光電変換信号TBd1)}+{(光電変換信号TCa1+光電変
換信号TCb1)-(光電変換信号TCc1+光電変換信号TCd1)}〕]を減算する
ことにより、トラッキングエラー信号SE1を生成する。このトラッキングエラー信号S
E1は、[〔(光電変換信号TAa1+光電変換信号TAb1)-(光電変換信号TAc
1+光電変換信号TAd1)〕-K・[〔{(光電変換信号TBa1+光電変換信号TB
b1)-(光電変換信号TBc1+光電変換信号TBd1)}+{(光電変換信号TCa
1+光電変換信号TCb1)-(光電変換信号TCc1+光電変換信号TCd1)}〕]
]とされる。
るメインプッシュプル信号SA1と、前後のサブスポット81、82のそれぞれに対応す
る前後のサブ検出光スポット91i、92iから検出される各サブプッシュプル信号SB
1、SC1とは、互いに逆位相で出力される。そののちに、加算器78Cによって各サブ
プッシュプル信号SB1、SC1が加算され、加算生成された加算サブプッシュプル信号
SD1が増幅器78Bによって増幅されたのちに減算器78Aによってメインプッシュプ
ル信号SA1に対し減算処理されることにより、プッシュプル信号SA1、SB1、SC
1の各オフセット成分が相殺された精度の高いトラッキングエラー信号SE1を生成させ
ることが可能となる。
に準拠した第2のレーザ光を回折格子64Aにより回折分岐した3ビーム、具体的には、
メインビーム(0次光)と、そのメインビームの前後に配置される2つのサブビーム(±
1次回折光束)とのそれぞれに対応して、第2のメイン受光部75Aと、2つの第2のサ
ブ受光部75B、75Cとが形成されている。第2のメイン受光部75A、第2のサブ受
光部75B、75Cは、それぞれ4分割されて4つのセグメントにより構成される。
5Aは、略直交する2本の分割線75Ax、75Ayにより4分割されて、4つの略矩形
状をしたセグメント75Aa、75Ab、75Ac、75Adを備えて構成される。DV
D受光領域75の略矩形状をした中央の第2のメイン受光部75Aは、略矩形状をした第
2のメインセグメント75Aaと、第2のメインセグメント75Aaに隣接する略矩形状
をした第2のメインセグメント75Abと、第2のメインセグメント75Abに隣接する
略矩形状をした第3のメインセグメント75Acと、第3のメインセグメント75Acに
隣接する略矩形状をした第4のメインセグメント75Adと、を備えて構成され、第4の
メインセグメント75Adに第2のメインセグメント75Aaが隣接されている。DVD
受光領域75の中央の第2メイン受光部75Aは、略正方形状に構成されている。
する2本の分割線75Bx、75Byにより4分割されて、4つの略矩形状をしたセグメ
ント75Ba、75Bb、75Bc、75Bdを備えて構成される。DVD受光領域75
の略矩形状をした前側の第2のサブ受光部75Bは、略矩形状をした第2のサブセグメン
ト75Baと、第2のサブセグメント75Baに隣接する略矩形状をした第2のサブセグ
メント75Bbと、第2のサブセグメント75Bbに隣接する略矩形状をした第3のサブ
セグメント75Bcと、第3のサブセグメント75Bcに隣接する略矩形状をした第4の
サブセグメント75Bdと、を備えて構成され、第4のサブセグメント75Bdに第2の
サブセグメント75Baが隣接されている。DVD受光領域75の前側の第2サブ受光部
75Bは、略正方形状に構成されている。
する2本の分割線75Cx、75Cyにより4分割されて、4つの略矩形状をしたセグメ
ント75Ca、75Cb、75Cc、75DVDを備えて構成される。DVD受光領域7
5の略矩形状をした後側の第2のサブ受光部75Cは、略矩形状をした第2のサブセグメ
ント75Caと、第2のサブセグメント75Caに隣接する略矩形状をした第2のサブセ
グメント75Cbと、第2のサブセグメント75Cbに隣接する略矩形状をした第3のサ
ブセグメント75Ccと、第3のサブセグメント75Ccに隣接する略矩形状をした第4
のサブセグメント75DVDと、を備えて構成され、第4のサブセグメント75DVDに
第2のサブセグメント75Caが隣接されている。DVD受光領域75の後側の第2サブ
受光部75Cは、略正方形状に構成されている。
・電圧変換アンプ、各後段アンプを備えるが、ここではその詳細な説明を省略する。また
、演算部76Aは、例えば図6に示す回路に近似しDVD用信号を演算する各加算器、減
算器、増幅器を備え、DVD信号演算用の各加算器、減算器、増幅器は、DVD受光領域
75に接続されるが、ここではその詳細な説明を省略する。
から得られる各受光出力に所定の演算を施すことにより、DVD規格の光ディスクDの記
録/再生時等に、メイン情報信号、フォーカスエラー信号およびトラッキングエラー信号
SE2が得られる。
クDに照射される場合、つぎのとおりトラッキングエラー信号SE2の検出が行われる。
光ディスクDの信号層Daから反射されて、光検出器73AのDVD受光領域75におけ
るメイン受光部75Aにメイン検出光スポット90iiとして照射されたときに、メイン受
光部75Aに接続された減算器は、メイン受光部75Aからの出力信号の差分を演算し例
えばメインプッシュプル信号SA2として生成する。
のサブビームが光ディスクDの信号層Daから反射されて、光検出器73AのDVD受光
領域75における前側の第2のサブ受光部75Bに第2のサブ検出光スポット91iiとし
て照射されたときに、前側の第2のサブ受光部75Bに接続された減算器は、前側の第2
のサブ受光部75Bからの出力信号の差分を演算し例えば先行サブプッシュプル信号SB
2として生成する。
のサブビームが光ディスクDの信号層Daから反射されて、光検出器73AのDVD受光
領域75における後側の第2のサブ受光部75Cに第2のサブ検出光スポット92iiとし
て照射されたときに、後側の第2のサブ受光部75Cに接続された減算器は、後側の第2
のサブ受光部75Cからの出力信号の差分を演算し例えば遅行サブプッシュプル信号SC
2として生成する。
るメインプッシュプル信号SA2と、前後のサブスポット81、82のそれぞれに対応す
る前後のサブ検出光スポット91ii、92iiから検出される各サブプッシュプル信号SB
2、SC2とは、互いに逆位相で出力される。そののちに、加算器78Cによって各サブ
プッシュプル信号SB2、SC2が加算され、加算生成された加算サブプッシュプル信号
SD2が増幅器78Bによって増幅されたのちに減算器78Aによってメインプッシュプ
ル信号SA2に対し減算処理されることにより、プッシュプル信号SA2、SB2、SC
2の各オフセット成分が相殺された精度の高いトラッキングエラー信号SE2を生成させ
ることが可能となる。
以下、図7、図8を用いて光検出器73Aの受光領域74、75について説明する。
本発明の一実施形態に係る光検出器の受光領域における各受光部間隔の導出方法を説明す
るための図である。
生に用いられるDVD受光領域75と、CD規格の光ディスクDの記録/再生に用いられ
るCD受光領域74と、が並べられて形成されている。
り回折分岐した3ビーム、具体的には、メインビーム(0次光)と、そのメインビームの
前後に配置される2つのサブビーム(±1次回折光束)とのそれぞれに対応して、第2の
メイン受光部75Aと、第2のサブ受光部75B、75Cとが形成される。第2のメイン
受光部75A、第2のサブ受光部75B、75Cは、4分割されてそれぞれ4つのセグメ
ントにより構成される。第2のメイン受光部75A、第2のサブ受光部75B及び第2の
サブ受光部75Cを構成する各セグメントから得られる各受光出力に所定の演算を施すこ
とにより、DVD規格の光ディスクDの記録/再生時等に、メイン情報信号、フォーカス
エラー信号及びトラッキングエラー信号SE2が得られる。尚、第2のメイン受光部75
A、第2のサブ受光部75B、75Cは、4分割に限定されず、例えば2分割であっても
よい。また、第2のサブ受光部75b、75cは、例えば分割されていなくてもよい。
折分岐した3ビーム、具体的には、メインビーム(0次光)と、そのメインビームの前後
に配置される2つのサブビーム(±1次回折光束)とのそれぞれに対応して、第1のメイ
ン受光部74Aと、2つの第1のサブ受光部74B、74Cとが形成される。第1のメイ
ン受光部74A、第1のサブ受光部74B、74Cは、それぞれ4分割されて4つのセグ
メントにより構成される。第1のメイン受光部74A、第1のサブ受光部74B、74C
を構成する各セグメントから得られる各受光出力に所定の演算を施すことにより、CD規
格の光ディスクDの記録/再生時等に、メイン情報信号、フォーカスエラー信号及びトラ
ッキングエラー信号SE1が得られる。尚、第1のメイン受光部74A、第1のサブ受光
部74B、74Cは、4分割に限定されず、例えば2分割であってもよい。また、第1の
サブ受光部74b、74cは、例えば分割されていなくてもよい。
5Cとの間の受光間隔Ys(dvd)と、CD受光領域74における第1のメイン受光部
74Aと第1のサブ受光部74B、74Cとの間の受光間隔Ys(cd)とは、つぎのよ
うに導出される。
2のレーザ光の波長λと、回折格子64Aにおいて連続した凹部S11から凸部S12ま
たは凸部S12から凹部S11までを一周期とした格子間隔dと、に基づいて、つぎの式
(16)によるブラッグの条件に基づく近似式によって回折角θが求められる(図8参照
)。尚、格子間隔dは、例えば数μm~数百μm程度とされる。
また、凹部S11は、底面Siと、底面Siに対し略直交する両側面Siii、Sivと、
を備えて構成されている。また、凹部S11を構成する凹面S21も、底面Siと、底面
Siに対し略直交する両側面Siii、Sivと、を備えて構成される。また、凸部S12は
、底面Siに略平行な外面Siiと、底面Siおよび外面Siiに対し略直交する両側面Sii
i、Sivと、を備えて構成されている。また、凸部S12を構成する凸面S21も、底面
Siに略平行な外面Siiと、底面Siおよび外面Siiに対し略直交する両側面Siii、Si
vと、を備えて構成される。また、回折角θとは、回折光が回折格子64Aの略平滑面S
の裏側の回折面部20aを構成する凹面S21の底面Siや凸面S22の外面Siiの法線
Nと成す角度のことを意味する。また、仮想の発光点Xは、法線Nを中心軸として略対称
に一対ほど設定される。尚、図8に示す説明図は、説明を容易とさせるために、便宜上、
描かれた図である。
の現実の位置を示す第1の発光点Oから回折格子64Aの略平滑面Sの裏側の凹面S21
を構成する底面Siや凸面S22を構成する外面Siiまでの間の法線距離Lと、上記式(
16)により求めた回折角θと、に基づき、レーザユニット61の発光面61a上でのサ
ブビームに関する見かけ上の第1又は第2の光源62、63の位置を示す第2の発光点X
を定めることができる。尚、レーザユニット61の発光面61aは、回折格子64Aの略
平滑面Sの法線Nに対して垂直であり、面Sの裏側の凹面S21を構成する底面Siや凸
面S22を構成する外面Siiから略法線距離Lだけ離れた位置にある平面となっている。
そして、つぎの式(17)により、レーザユニット61の発光面61a上における第1の
発光点Oから第2の発光点Xまでの間の距離Yrが求められる(図8参照)。
ここで、光ディスクDの信号層Da上におけるメインスポット80の略中心部とされる
第1の照射点Oaと、第2の発光点Xより仮想的に発光される第1又は第2のレーザ光に
対応した光ディスクDの信号層Da上におけるサブスポット81/82の略中心部とされ
る第2の照射点Xb/Xcとについて、簡単に説明する。
離f1(不図示)と、に基づいて、第1の発光点Oより仮想的に発光される第1又は第2
のレーザ光に対応した光ディスクDの信号層Da上におけるメインスポット80の略中心
部とされる第1の照射点Oaと、第2の発光点Xより仮想的に発光される第1又は第2の
レーザ光に対応した光ディスクDの信号層Da上におけるサブスポット81/82の略中
心部とされる第2の照射点Xb/Xcと、が求められる。例えば、光ディスクDの信号層
Da上における第1の照射点Oaと第2の照射点Xb又はXcとの間の距離Ypは、発光
点Oから発光点Xまでの距離Yrと、コリメータレンズ67の焦点距離f2と、対物レン
ズ70の焦点距離f1と、に基づいて、例えばつぎの式(18)により求められる。
以上を整理すると、第1又は第2のレーザ光の波長を例えばλとし、回折格子64Aの
格子間隔をdとし、レーザユニット61の発光面61aから回折格子64Aの面Sに対す
る裏側の凹面S21を構成する底面Siや凸面S22を構成する外面Siiとの間の法線距
離をLとし、対物レンズ70の焦点距離をf1とし、コリメータレンズ67の焦点距離を
f2としたときに、光ディスクDの信号層Da上における第1の照射点Oaと第2の照射
点Xb又はXcとの間の距離Ypは、つぎの式(19)に基づいて求められる。尚、距離
Ypは、第1又は第2のレーザ光が回折格子64Aにより回折分岐された場合の光ディス
クDの信号層Da上での各メイン-サブピッチを表している。
光ディスクDの信号層Daに照射される第1又は第2のレーザ光のメインビームおよび
2つのサブビームは、光ディスクDの信号層Daにより反射されて最終的に光検出器73
Aに照射される。
、74Cとの間の受光間隔Ys(cd)並びに第2のメイン受光部75Aと第2のサブ受
光部75B、75Cとの間の受光間隔Ys(dvd)の設定方法について、引き続き説明
する。
ここで、レーザユニット61の発光面61aにおけるDVD用の発光点O、Xと、DV
D用反射光に対応した光検出器73Aの受光面におけるDVD用の照射点O(dvd)、
X(dvd)とを、例えば光学的に等価な位置に配置させるために、DVD用出射光に対
応した仮想の光源間隔Yr(dvd)と、DVD用反射光に対応した実際の受光間隔Ys
(dvd)とが略等しいものと仮定する。
つぎに、式(20)および式(21)に基づき、例えばつぎの式(22)が設定される
。
DVD規格の波長(第2の波長)λ(dvd)が例えば略660nmとされている場合
、式(22)のλ(dvd)に660を代入すると、つぎの式(23)が求められる。
予め定められた法線距離Lの数値と、予め定められた格子間隔dの数値とを式(23)
に代入することにより、光検出器73AのDVD受光領域75における受光間隔Ys(d
vd)が求められる。
反射光に対応した光検出器73Aの受光面におけるCD用の照射点O(cd)、X(cd
)とを、例えば光学的に等価な位置に配置させるために、CD用出射光に対応した仮想の
光源間隔Yr(cd)と、CD用反射光に対応した実際の受光間隔Ys(cd)とが略等
しいものと仮定する。
つぎに、式(20)および式(24)に基づき、例えばつぎの式(25)が設定される
。
CD規格の波長(第1の波長)λ(cd)が例えば略785nmとされている場合、式
(25)のλ(cd)に785を代入すると、つぎの式(26)が求められる。
予め定められた法線距離Lの数値と、予め定められた格子間隔dの数値とを式(26)
に代入することにより、光検出器73AのCD受光領域74における受光間隔Ys(cd
)が求められる。
)と、光検出器73AのCD受光領域74における受光間隔Ys(cd)とが定められる
。
値とされることから、式(23)に基づいて導き出されたDVD用反射光に対応する実際
の受光間隔Ys(dvd)と、式(26)に基づいて導き出されたCD用反射光に対応す
る実際の受光間隔Ys(cd)とを比較すると、受光間隔Ys(dvd)よりも受光間隔
Ys(cd)のほうが明らかに長くなる。
4B、74Cとの間の受光間隔Ys(cd)は、式(26)によって求まる距離Ys(c
d)に基づいて設定される。また、光検出器73Aにおける第2のメイン受光部75Aと
第2のサブ受光部75B、75Cとの間の受光間隔Ys(dvd)は、式(23)によっ
て求まる距離Ys(dvd)に基づいて設定される。
光部74B、74Cの4セグメントの中心との間の距離Ys(cd)を、式(26)によ
って求められる距離Ys(cd)に設定する。また、第2のメイン受光部75Aにおける
4セグメントの中心と、第2のサブ受光部75B、75Cの4セグメントの中心との間の
距離Ys(dvd)を、式(23)によって求められる距離Ys(dvd)に設定する。
これにより、光検出器73Aは、第1又は第2のレーザ光を回折格子64Aにより回折分
岐させた場合の各メイン-サブピッチに適切に対応可能となる。
、92iiの分光比、光検出器73Aの受光感度>>
以下、図5を用いて例えば各スポット90i、91i、92i/90ii、91ii、92
iiの光の強度比とされる分光比等について説明する。
説明する。
に対応するサブ検出光スポット91iiと、DVD規格に基づく光ディスクDのトラックD
80上のメインスポット80に対応するメイン検出光スポット90iiと、DVD規格に基
づく光ディスクDのトラックD80上の後行サブスポット82に対応するサブ検出光スポ
ット92iiとの分光比は、略1:15:1とされている。
AのDVD受光領域75に照射される光の強さ全体の略1/17となる。また、この場合
のメイン検出光スポット90iiにおける光の強さは、光検出器73AのDVD受光領域7
5に照射される光の強さ全体の略15/17となる。
光の分光比は、図28に示すインライン方式のDVD用光検出器270に照射されるレー
ザ光の分光比と略同じとされている。
01に対応するサブ検出光スポット201と、DVD規格に基づく光ディスクDのトラッ
クD100上のメインスポット100に対応するメイン検出光スポット200と、DVD
規格に基づく光ディスクDのトラックD100上の後行サブスポット102に対応するサ
ブ検出光スポット202との分光比は、略1:15:1とされている。
0に照射される光の強さ全体の略1/17となる。また、この場合のメイン検出光スポッ
ト200における光の強さは、光検出器270に照射される光の強さ全体の略15/17
となる。
等について説明する。
対応するサブ検出光スポット91iと、CD規格に基づく光ディスクDのトラックD80
上のメインスポット80に対応するメイン検出光スポット90iと、CD規格に基づく光
ディスクDのトラックD80上の後行サブスポット82に対応するサブ検出光スポット9
2iとの分光比は、略1:23:1とされている。
AのCD受光領域74に照射される光の強さ全体の略1/25となる。また、この場合の
メイン検出光スポット90iにおける光の強さは、光検出器73AのCD受光領域74に
照射される光の強さ全体の略23/25となる。
の分光比は、図27に示す3ビーム方式のCD用光検出器270に照射されるレーザ光の
分光比と異なる。
1に対応するサブ検出光スポット201と、CD規格に基づく光ディスクDのトラックD
100上のメインスポット100に対応するメイン検出光スポット200と、CD規格に
基づく光ディスクDのトラックD100上の後行サブスポット102に対応するサブ検出
光スポット202との分光比は、略1:16:1とされている。
0に照射される光の強さ全体の略1/18となる。また、この場合のメイン検出光スポッ
ト200における光の強さは、光検出器270に照射される光の強さ全体の略16/18
となる。
アップ装置が構成された場合、回折格子64Aを透過した各CD用レーザ光が光検出器7
3AのCD受光領域74に照射されると、従来のものに対し、CD受光領域74に照射さ
れる各レーザ光の分光比が変更される。
とに伴い、光検出器73AのCD受光領域74におけるメイン受光部74Aおよび各サブ
受光部74B、74Cの受光感度が変更される。
受光感度の変更倍率は、つぎの式(27)により求められる。
このように、光検出器73AのCD受光領域74におけるサブ受光部74Bまたは74
Cの受光感度(mV/μW)(ミリボルト・パー・マイクロワット)は、例えば従来のも
のを100%とした場合、従来のものに対して略139%の値に設定されることとなる。
度の変更倍率は、つぎの式(28)により求められる。
このように、光検出器73AのCD受光領域74におけるメイン受光部74Aの受光感
度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに対して略9
7%の値に設定されることとなる。
DのトラックD80上の先行サブスポット81に対応するサブ検出光スポット91iiと、
DVD規格に基づく光ディスクDのトラックD80上のメインスポット80に対応するメ
イン検出光スポット90iiと、DVD規格に基づく光ディスクDのトラックD80上の後
行サブスポット82に対応するサブ検出光スポット92iiとの分光比が、略1:16:1
とされてもよい。
AのDVD受光領域75に照射される光の強さ全体の略1/18となる。また、この場合
のメイン検出光スポット90iiにおける光の強さは、光検出器73AのDVD受光領域7
5に照射される光の強さ全体の略16/18となる。
スクDのトラックD80上の先行サブスポット81に対応するサブ検出光スポット91i
と、CD規格に基づく光ディスクDのトラックD80上のメインスポット80に対応する
メイン検出光スポット90iと、CD規格に基づく光ディスクDのトラックD80上の後
行サブスポット82に対応するサブ検出光スポット92iとの分光比が、略1:23.5
:1とされてもよい。
AのCD受光領域74に照射される光の強さ全体の略1/25.5となる。また、この場
合のメイン検出光スポット90iにおける光の強さは、光検出器73AのCD受光領域7
4に照射される光の強さ全体の略23.5/25.5となる。
74B、74Cの受光感度の変更倍率は、つぎの式(29)により求められる。
このように、光検出器73AのCD受光領域74におけるサブ受光部74Bまたは74
Cの受光感度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに
対して略142%の値に設定されることとなる。
Aの受光感度の変更倍率は、つぎの式(30)により求められる。
このように、光検出器73AのCD受光領域74におけるメイン受光部74Aの受光感
度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに対して略9
6%の値に設定されることとなる。
スクDのトラックD80上の先行サブスポット81に対応するサブ検出光スポット91i
と、CD規格に基づく光ディスクDのトラックD80上のメインスポット80に対応する
メイン検出光スポット90iと、CD規格に基づく光ディスクDのトラックD80上の後
行サブスポット82に対応するサブ検出光スポット92iとの分光比が、略1:20:1
とされてもよい。
AのCD受光領域74に照射される光の強さ全体の略1/22となる。また、この場合の
メイン検出光スポット90iにおける光の強さは、光検出器73AのCD受光領域74に
照射される光の強さ全体の略20/22となる。
74B、74Cの受光感度の変更倍率は、つぎの式(31)により求められる。
このように、光検出器73AのCD受光領域74におけるサブ受光部74Bまたは74
Cの受光感度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに
対して略122%の値に設定されることとなる。
Aの受光感度の変更倍率は、つぎの式(32)により求められる。
このように、光検出器73AのCD受光領域74におけるメイン受光部74Aの受光感
度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに対して略9
8%の値に設定されることとなる。
スクDのトラックD80上の先行サブスポット81に対応するサブ検出光スポット91i
と、CD規格に基づく光ディスクDのトラックD80上のメインスポット80に対応する
メイン検出光スポット90iと、CD規格に基づく光ディスクDのトラックD80上の後
行サブスポット82に対応するサブ検出光スポット92iとの分光比が、略1:26:1
とされてもよい。
AのCD受光領域74に照射される光の強さ全体の略1/28となる。また、この場合の
メイン検出光スポット90iにおける光の強さは、光検出器73AのCD受光領域74に
照射される光の強さ全体の略26/28となる。
74B、74Cの受光感度の変更倍率は、つぎの式(33)により求められる。
このように、光検出器73AのCD受光領域74におけるサブ受光部74Bまたは74
Cの受光感度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに
対して略156%の値に設定されることとなる。
Aの受光感度の変更倍率は、つぎの式(34)により求められる。
このように、光検出器73AのCD受光領域74におけるメイン受光部74Aの受光感
度(mV/μW)は、例えば従来のものを100%とした場合、従来のものに対して略9
6%の値に設定されることとなる。
されることにより、光検出器73Aは、DVD規格に準拠した第2のレーザ光を回折格子
64Aにより回折分岐した3ビームに関するメイン-サブピッチはもとより、CD規格に
準拠した第1のレーザ光を回折格子64Aにより回折分岐した3ビームに関するメイン-
サブピッチならびに分光比についても対応することができ、トラッキングエラー信号SE
1、SE2等のエラー信号検出精度等を向上させることができる。
D用回折格子部材20もしくはDVD用回折格子64Aの格子間隔dを基準としたもので
あるので、例えば、DVD規格の光ディスクDの信号層Daが第1層DL0と第2層DL
1の2層構造の場合にあって、第1層DL0の再生時において第2層DL1からの反射光
が第2のメイン受光部75Aのみならず一方の第2のサブ受光部75B及び他方の第2の
サブ受光部75Cにおいても受光されてしまうことを未然に抑制することができる。
以下、図1~図10を用いて光ピックアップ装置について説明する。
図10は、図9の回折格子における光ディスク半径方向と位相差との関係を示す図である
。
63を有する上記発光素子61と、上記回折格子64Aと、上記偏光ビームスプリッタ6
6と、上記コリメータレンズ67と、上記1/4波長板68と、上記反射ミラー69と、
上記対物レンズ70と、上記第1の平行平板71と、上記第2の平行平板72と、上記光
検出器73Aと、上記対物レンズ駆動部79と、不図示の上記フレキシブル回路基板と、
上記コネクタと、を備えて構成されている。また、必要に応じて、この光ピックアップ装
置は、上記カップリングレンズ65iと、上記受光素子65iiと、を更に備える。また、
必要に応じて、この光ピックアップ装置(図1~図3)は、例えば上記演算部76A(図
2、図3)を更に備えてもよい。
長光とされ且つ第1レーザ波長光よりも短い波長のレーザ光とされる第2レーザ波長光と
、を少なくとも出射可能な複数波長出射型の発光素子61と、第1レーザ波長光を少なく
とも1本の第1メインビームと1本の第1メインビームを中心とした略対称位置の少なく
とも2本の第1サブビームとに分け、且つ、第2レーザ波長光を少なくとも1本の第2メ
インビームと1本の第2メインビームを中心とした略対称位置の少なくとも2本の第2サ
ブビームとに分け、第1レーザ波長光に対応した回折面部(不図示)を有することなく第
2レーザ波長光に対応し第2レーザ波長光を基準とした回折面部20aを有する回折格子
64Aと、を備えて構成されている。
なくとも2本の第1サブビームとが照射されたときの第1メインビームのスポット80の
略中心部とされる照射点Oaと第1サブビームのスポット81の略中心部とされる照射点
Xbとの間隔YpをYp1と定める。また、第1レーザ波長光に対応する第1光ディスク
Dに1本の第1メインビームと少なくとも2本の第1サブビームとが照射されたときの第
1メインビームのスポット80の略中心部とされる照射点Oaと第1サブビームのスポッ
ト82の略中心部とされる照射点Xcとの間隔YpをYp1と定める。
くとも2本の第2サブビームとが照射されたときの第2メインビームのスポット80の略
中心部とされる照射点Oaと第2サブビームのスポット81の略中心部とされる照射点X
bとの間隔YpをYp2と定める。また、第2レーザ波長光に対応する第2光ディスクD
に1本の第2メインビームと少なくとも2本の第2サブビームとが照射されたときの第2
メインビームのスポット80の略中心部とされる照射点Oaと第2サブビームのスポット
82の略中心部とされる照射点Xcとの間隔YpをYp2と定める。
(11)、及び上記式(15)に基づき、下式(1)を満足する性能を発揮する光ピック
アップ装置を構成させる。
くとも2本の第1サブビームとが照射されたときに、1本の第1メインビームの光の強さ
と少なくとも2本の第1サブビームの光の強さとの総和に対する1本の第1メインビーム
の光の強さとされた光の効率比をA1と定める。
くとも2本の第2サブビームとが照射されたときに、1本の第2メインビームの光の強さ
と少なくとも2本の第2サブビームの光の強さとの総和に対する1本の第2メインビーム
の光の強さとされた光の効率比をA2と定める。
効率比A1およびA2に基づき、下式(2)及び下式(3)を満足する性能を発揮する光
ピックアップ装置を構成させる。
0.87<A2<0.91 …(3)
好ましくは、下式(35)及び下式(36)を満足する性能を発揮する光ピックアップ
装置を構成させる。
0.87<A2<0.90 …(36)
上記式(1)及び/又は上記式(2)及び上記式(3)、好ましくは上記式(1)及び
/又は上記式(35)及び上記式(36)を満足するように光ピックアップ装置が設定さ
れることにより、第1レーザ波長光と、第1レーザ波長光と異なるレーザ波長光とされ且
つ第1レーザ波長光よりも短い波長のレーザ光とされる第2レーザ波長光と、に確実に対
応するとともに、トラッキングエラー信号SE1、SE2等のエラー信号の検出精度が向
上された複数波長対応型の光ピックアップ装置が構成される。
に対応した回折面部を有さず第2レーザ波長光に対応し第2レーザ波長光を基準とした回
折面部20aを有する回折格子64Aにより、少なくとも1本の第1メインビームと1本
の第1メインビームを中心とした略対称位置の2本の第1サブビームとに分けられて、1
本の第1メインビームと1本の第1メインビームを中心とした略対称位置の少なくとも2
本の第1サブビームとが第1光ディスクDの信号面部Daに照射されるときに、1本の第
1メインビームと1本の第1メインビームを中心とした略対称位置の少なくとも2本の第
1サブビームとは、第1光ディスクDの信号面部DaのトラックD80に精度よく確実に
照射される。
波長光に対応した回折面部を有さず第2レーザ波長光に対応し第2レーザ波長光を基準と
した回折面部20aを有する回折格子64Aにより、少なくとも1本の第2メインビーム
と1本の第2メインビームを中心とした略対称位置の2本の第2サブビームとに分けられ
て、1本の第2メインビームと1本の第2メインビームを中心とした略対称位置の少なく
とも2本の第2サブビームとが第2光ディスクDの信号面部Daに照射されるときに、1
本の第2メインビームと1本の第2メインビームを中心とした略対称位置の少なくとも2
本の第2サブビームとは、第2光ディスクDの信号面部DaのトラックD80に精度よく
確実に照射される。
2レーザ波長光の発光位置と、が異なることに対応して、第1レーザ波長光に対応する第
1光ディスクDの信号面部Da上における第1レーザ波長光のディスク半径方向集光位置
と、第2レーザ波長光に対応する第2光ディスクDの信号面部Da上における第2レーザ
波長光のディスク半径方向集光位置と、が異なるように、光ピックアップ装置が設定され
ている。
や、光ピックアップ装置が光ディスクDの最も外周側D88に位置するときや、光ピック
アップ装置が光ディスクDの最も内周側D84から最も外周側D88に至るまでの何れか
に位置するときに、略円板状をした第1光ディスクDの信号面部Da上における第1レー
ザ波長光のディスク半径方向集光位置よりも、略円板状をした第2光ディスクDの信号面
部Da上における第2レーザ波長光のディスク半径方向集光位置のほうが、略円板状をし
た光ディスクDの内周側D84に僅かに存する。
ク半径方向集光位置とが設定されることにより、第1光ディスクDの信号面部Da上に第
1レーザ波長光を確実に集光させるとともに、第2光ディスクDの信号面部Da上に第2
レーザ波長光を確実に集光させる複数波長対応型の光ピックアップ装置が構成される。
部Daの内周側D84に、第1光ディスクDに関する各種基本情報/データ等が読込み可
能とされたり、第1光ディスクDに関する各種基本情報/データ等が書込み可能とされた
りする領域が形成されている。また、例えば、第2の波長光に対応しDVD規格に基づい
た略円板状第2光ディスクDの信号面部Daの内周側D84に、第2光ディスクDに関す
る各種基本情報/データ等が読込み可能とされたり、第2光ディスクDに関する各種基本
情報/データ等が書込み可能とされたりする領域が形成されている。
ピット等の大きさよりも、第2の波長光に対応しDVD規格に基づいた第2光ディスクD
の信号面部Da上におけるピット等の大きさのほうが小さい。また、第1の波長光に対応
しCD規格に基づいた第1光ディスクDの信号面部Da上に照射/形成される光のスポッ
ト80の大きさよりも、第2の波長光に対応しDVD規格に基づいた第2光ディスクDの
信号面部Da上に照射/形成される光のスポット80の大きさのほうが小さい。例えば略
円板状をした第2光ディスクDの信号面部Daの内周側D84に存する精緻なピット情報
などに対し、精度よく正確に光ピックアップ装置が対応するために、上記の如く第1レー
ザ波長光のディスク半径方向集光位置と第2レーザ波長光のディスク半径方向集光位置と
が設定されることが好ましい。
る波長のレーザ光とされ且つ第1レーザ波長光よりも短い波長のレーザ光とされる第2レ
ーザ波長光と、に少なくとも対応し、第1レーザ波長光を少なくとも1本の第1メインビ
ームと2本の第1サブビームとに分け、第2レーザ波長光を少なくとも1本の第2メイン
ビームと2本の第2サブビームとに分け、第2レーザ波長光に対応し第2レーザ波長光を
基準とした回折面部20a(図4、図8、図9)を有する回折格子64Aと、1本の第1
メインビームが照射される1つの第1メイン受光部74A(図5~図7)と、2本の第1
サブビームが照射される2つの第1サブ受光部74B、74Cと、を備えた第1受光領域
74と、1本の第2メインビームが照射される1つの第2メイン受光部75Aと、2本の
第2サブビームが照射される2つの第2サブ受光部75B、75Cと、を備えた第2受光
領域75と、を有する光検出器73Aと、を備えて構成されている。
不要な回折光の発生を抑えた光ピックアップ装置が構成される。
2(図29、図30)と、第2レーザ波長光に対応した第2回折面部304と、の2つの
回折面部302、304を有する回折格子300A、300Bを備えるものとされていた
。そのため、従来の光ピックアップ装置においては、第1レーザ波長光が第1レーザ波長
光に対応した回折格子300A、300Bの第1回折面部302を透過するときに、第1
レーザ波長光は、少なくとも1本の第1メインビームと2本の第1サブビームとに分けら
れていたが、第1レーザ波長光が第2レーザ波長光に対応した回折格子300A、300
Bの第2回折面部304を透過するときに、不要な回折光が発生されていた。
対応した回折格子300A、300B(図29、図30)の第1回折面部302を透過す
るときに、不要な回折光が発生されていた。第2レーザ波長光が第2レーザ波長光に対応
した回折格子300A、300Bの第2回折面部304を透過するときに、第2レーザ波
長光は、少なくとも1本の第2メインビームと2本の第2サブビームとに分けられていた
。
(図4、図8、図9)を有する回折格子64Aが光ピックアップ装置に備えられ、第2レ
ーザ波長光に対応し第2レーザ波長光を基準とした回折格子64Aの回折面部20aを第
1レーザ波長光が透過したときに、第1レーザ波長光が少なくとも1本の第1メインビー
ムと2本の第1サブビームとに分けられるものとされていれば、第1レーザ波長光が回折
格子64Aを透過するときに不要な回折光が生じるということは略防止される。
、図8、図9)の回折面部20aを第2レーザ波長光が透過したときに、不要な回折光が
略生じることなく、第2レーザ波長光は、少なくとも1本の第2メインビームと2本の第
2サブビームとに分けられる。
部200aと第1サブ受光部200b、200cとの中心点間距離Yt(cd)は、第1
レーザ波長光に対応して規格化された通常の距離Yt(cd)とされていた。本発明にお
ける「規格化」は、例えば広く普及されてきた従来のもの等を説明するときのために、便
宜上、用いられている。例えば規格化されたものとは、大量生産などが行われてきたこと
により実質的に規格化されたものに等しいもの等とされる。本発明における「規格化」さ
れたものとは、必ずしも例えばJIS(Japanese Industrial St
andards)等の規格にて定められたものだけを意味するものではない。例えば、規
格化された光検出器270とは、これまでに大量生産されて市場等で広く普及されてきた
汎用の光検出器270等とされる。第1レーザ波長光の1本の第1メインビームは、従来
規格の1つの第1メイン受光部200aに照射され、第1レーザ波長光の2本の第1サブ
ビームは、従来規格の2つの第1サブ受光部200b、200cに照射されていた。
27)の通常の第1メイン受光部200aと第1サブ受光部200b、200cとの中心
点間距離Yt(cd)に対し、光検出器73A(図7)における第1メイン受光部74A
と第1サブ受光部74B、74Cとの中心点間距離Ys(cd)は、変更されている。
第1メイン受光部200aと第1サブ受光部200b、200cとの中心点間距離Yt(
cd)に対し、この光検出器73A(図7)においては、第1メイン受光部74Aと第1
サブ受光部74B、74Cとの中心点間距離Ys(cd)が変更されているので、第2レ
ーザ波長光に対応し第2レーザ波長光を基準とした回折格子64A(図4、図8、図9)
の回折面部20aを第1レーザ波長光が透過するときに、第2レーザ波長光に対応し第2
レーザ波長光を基準とした回折格子64Aの回折面部20aによって分けられた第1レー
ザ波長光の2本の第1サブビームが、光検出器73A(図5~図7)に備えられた第1受
光領域74の2つの第1サブ受光部74B、74Cにうまく照射されないという不具合の
発生は回避される。
、図9)の回折面部20aを第1レーザ波長光が透過することによって不要な回折光が略
生じることなく分けられた第1レーザ波長光の2本の第1サブビームは、光検出器73A
(図7)に備えられた第1受光領域74の1つの第1メイン受光部74Aに対し距離Ys
(cd)が変更された2つの第1サブ受光部74B、74Cに確実に照射される。
、図8、図9)の回折面部20aを第1レーザ波長光が透過することによって不要な回折
光が略生じることなく分けられた第1レーザ波長光の1本の第1メインビームは、光検出
器73A(図5~図7)に備えられた第1受光領域74の1つの第1メイン受光部74A
に確実に照射される。
第2サブ受光部75B、75Cとの中心点間距離Ys(dvd)は、第2レーザ波長光に
対応して規格化された光検出器270(図28)の通常の距離Yt(dvd)と同じとさ
れている。
、図9)の回折面部20aを第2レーザ波長光が透過することによって不要な回折光が略
生じることなく分けられた第2レーザ波長光の2本の第2サブビームは、光検出器73A
(図5、図7)に備えられた従来規格と同じ第2受光領域75の2つの第2サブ受光部7
5B、75Cに確実に照射される。
、図8、図9)の回折面部20aを第2レーザ波長光が透過することによって不要な回折
光が略生じることなく分けられた第2レーザ波長光の1本の第2メインビームは、光検出
器73Aに備えられた従来規格と同じ第2受光領域75の1つの第2メイン受光部75A
に確実に照射される。
74B、74Cとの中心点間距離Ys(cd)は、例えば規格化された光検出器270(
図27)の通常の第1メイン受光部200aと第1サブ受光部200b、200cとの中
心点間距離Yt(cd)よりも長く設定されている。
200aと第1サブ受光部200b、200cとの中心点間距離Yt(cd)の値が10
0%の値と定められたときに、光検出器73A(図7)において変更された第1メイン受
光部74Aと第1サブ受光部74B、74Cとの中心点間距離Ys(cd)の値は、例え
ば規格化された光検出器270(図27)の通常の第1メイン受光部200aと第1サブ
受光部200b、200cとの中心点間距離Yt(cd)の値に対し、略111%の値に
設定されている。
を向上させた光ピックアップ装置が構成される。回折格子64A(図4、図8、図9)の
回折面部20aによって第1レーザ波長光が分けられて生じた1本の第1メインビームが
、光検出器73A(図5~図7)の2つの第1サブ受光部74B、74Cに悪影響を及ぼ
すということは回避される。
出精度を向上させた光ピックアップ装置が構成される。回折格子64A(図4、図8、図
9)の回折面部20aによって第1レーザ波長光が分けられて生じた2本の第1サブビー
ムのうち何れか一方または両方が、光検出器73A(図5~図7)の1つの第1メイン受
光部74Aに悪影響を及ぼすということは回避される。
ブ受光部74B、74Cとの中心点間距離Ys(cd)が、規格化された光検出器270
(図27)の通常の第1メイン受光部200aと第1サブ受光部200b、200cとの
中心点間距離Yt(cd)よりも短く設定されていると、1本の第1メインビームが、光
検出器73A(図5~図7)の2つの第1サブ受光部74B、74Cに干渉することが懸
念される。
第1サブ受光部74B、74Cとの中心点間距離Ys(cd)が、規格化された光検出器
270(図27)の通常の第1メイン受光部200aと第1サブ受光部200b、200
cとの中心点間距離Yt(cd)よりも短く設定されていると、2本の第1サブビームの
うち何れか一方または両方が、光検出器73A(図5~図7)の1つの第1メイン受光部
74Aに干渉することが懸念される。
0aと第1サブ受光部200b、200cとの中心点間距離Yt(cd)よりも、新しい
光検出器73A(図7)において変更された第1メイン受光部74Aと第1サブ受光部7
4B、74Cとの中心点間距離Ys(cd)のほうが長く設定されているので、光検出器
73Aの1つの第1メイン受光部74Aに1本の第1メインビームが照射されるときに、
1本の第1メインビームが2つの第1サブ受光部74B、74Cの何れか一方または両方
に干渉するということは回避され易くなる。
受光部200b、200cとの中心点間距離Yt(cd)の値が100%の値と定められ
たときに、新しい光検出器73A(図7)において変更された第1メイン受光部74Aと
第1サブ受光部74B、74Cとの中心点間距離Ys(cd)の値は、規格化された光検
出器270(図27)の通常の第1メイン受光部200aと第1サブ受光部200b、2
00cとの中心点間距離Yt(cd)の値に対し、略111%の値に設定されているので
、光検出器73A(図7)の1つの第1メイン受光部74Aに1本の第1メインビームが
照射されるときに、1本の第1メインビームが2つの第1サブ受光部74B、74Cの何
れか一方または両方に干渉するということは回避される。
1サブ受光部200b、200cとの中心点間距離Yt(cd)よりも、新しい光検出器
73A(図7)において変更された第1メイン受光部74Aと第1サブ受光部74B、7
4Cとの中心点間距離Ys(cd)のほうが長く設定されているので、光検出器73Aの
前後2つの第1サブ受光部74B、74Cに前後2本の第1サブビームが照射されるとき
に、2本の第1サブビームのうち何れか一方または両方が1つの第1メイン受光部74A
に干渉するということは回避され易くなる。
受光部200b、200cとの中心点間距離Yt(cd)の値が100%の値と定められ
たときに、新しい光検出器73A(図7)において変更された第1メイン受光部74Aと
第1サブ受光部74B、74Cとの中心点間距離Ys(cd)の値は、規格化された光検
出器270(図27)の通常の第1メイン受光部200aと第1サブ受光部200b、2
00cとの中心点間距離Yt(cd)の値に対し、略111%の値に設定されているので
、光検出器73A(図7)の前後2つの第1サブ受光部74B、74Cに前後2本の第1
サブビームが照射されるときに、2本の第1サブビームのうち何れか一方または両方が1
つの第1メイン受光部74Aに干渉するということは回避される。
間距離Ys(dvd)は、規格化された光検出器270(図28)の通常の第2メイン受
光部200aと第2サブ受光部200b、200cとの中心点間距離Yt(dvd)と同
じとされている。
受光部200b、200cとの中心点間距離Yt(dvd)の値が100%の値と定めら
れたときに、光検出器73A(図7)において第2メイン受光部75Aと第2サブ受光部
75B、75Cとの中心点間距離Ys(dvd)の値は、例えば規格化された光検出器2
70(図28)の通常の第2メイン受光部200aと第2サブ受光部200b、200c
との中心点間距離Yt(dvd)の値に対し、略100%の値に設定されている。
を向上させた光ピックアップ装置が構成される。回折格子64A(図4、図8、図9)の
回折面部20aによって第2レーザ波長光が分けられて生じた1本の第2メインビームが
、光検出器73A(図5、図7)の2つの第2サブ受光部75B、75Cに悪影響を及ぼ
すということは回避される。また、回折格子64A(図4、図8、図9)の回折面部20
aによって第2レーザ波長光が分けられて生じた2本の第2サブビームのうち何れか一方
または両方が、光検出器73A(図5、図7)の1つの第2メイン受光部75Aに悪影響
を及ぼすということは回避される。
4B、74Cとの中心点間距離Ys(cd)が変更されることなく、第1メイン受光部7
4Aと第1サブ受光部74B、74Cとの中心点間距離Ys(cd)が、規格化された光
検出器270(図27)の通常の第1メイン受光部200aと第1サブ受光部200b、
200cとの中心点間距離Yt(cd)と等しく設定された場合、光検出器73A(図7
)における第2メイン受光部75Aと第2サブ受光部75B、75Cとの中心点間距離Y
s(dvd)を狭める必要性が生じる。
5Cとの中心点間距離Ys(dvd)が、規格化された光検出器270(図28)の通常
の第2メイン受光部200aと第2サブ受光部200b、200cとの中心点間距離Yt
(dvd)よりも短く設定されていると、回折格子64A(図4、図8、図9)の回折面
部20aによって第2レーザ波長光が分けられて生じた1本の第2メインビームが、光検
出器73A(図5、図7)の2つの第2サブ受光部75B、75Cに干渉することが懸念
される。
DVD規格の光ディスクDの第1層DL0における信号の再生または信号の記録等が行わ
れているときに、DVD規格の光ディスクDの第2層DL1における不要な反射光が、光
検出器73AにおけるDVD受光領域75の一方の第2サブ受光部75Bもしくは他方の
第2サブ受光部75Cの何れか一方または両方にノイズとして入り込むことが懸念される
。
、第1層DL0または第2層DL1の何れか一方の層DL0またはDL1における信号の
再生または信号の記録等が行われているときに、光検出器73AにおけるDVD受光領域
75の一方の第2サブ受光部75Bもしくは他方の第2サブ受光部75Cの何れか一方ま
たは両方に漏れ信号が入り込むといういわゆる層間クロストークの発生が懸念される。
B、75Cとの中心点間距離Ys(dvd)が、規格化された光検出器270(図28)
の通常の第2メイン受光部200aと第2サブ受光部200b、200cとの中心点間距
離Yt(dvd)よりも短く設定されていると、回折格子64A(図4、図8、図9)の
回折面部20aによって第2レーザ波長光が分けられて生じた2本の第2サブビームのう
ち何れか一方または両方が、光検出器73A(図5、図7)の1つの第2メイン受光部7
5Aに干渉することが懸念される。
間距離Ys(dvd)が、規格化された光検出器270(図28)の通常の第2メイン受
光部200aと第2サブ受光部200b、200cとの中心点間距離Yt(dvd)と同
じに設定されていれば、例えば、1本の第2メインビームが光検出器73A(図7)の2
つの第2サブ受光部75B、75Cのうち何れか一方または両方に干渉したり、2本の第
2サブビームのうち何れか一方または両方が光検出器73Aの1つの第2メイン受光部7
5Aに干渉したりするということは回避される。
受光部200b、200cとの中心点間距離Yt(dvd)の値が100%の値と定めら
れたときに、新しい光検出器73A(図7)において第2メイン受光部75Aと第2サブ
受光部75B、75Cとの中心点間距離Ys(dvd)の値が、規格化された光検出器2
70(図28)の通常の第2メイン受光部200aと第2サブ受光部200b、200c
との中心点間距離Yt(dvd)の値に対し、略100%の値に設定されているので、光
検出器73Aの(図7)1つの第2メイン受光部75Aに1本の第2メインビームが照射
されるときに、1本の第2メインビームが2つの第2サブ受光部75B、75Cの何れか
一方または両方に干渉するということは回避される。
2サブ受光部200b、200cとの中心点間距離Yt(dvd)の値が100%の値と
定められたときに、新しい光検出器73A(図7)において第2メイン受光部75Aと第
2サブ受光部75B、75Cとの中心点間距離Ys(dvd)の値が、規格化された光検
出器270(図28)の通常の第2メイン受光部200aと第2サブ受光部200b、2
00cとの中心点間距離Yt(dvd)の値に対し、略100%の値に設定されているの
で、光検出器73A(図7)の前後2つの第2サブ受光部75B、75Cに前後2本の第
2サブビームが照射されるときに、2本の第2サブビームのうち何れか一方または両方が
1つの第2メイン受光部75Aに干渉するということは回避される。
た第1サブ受光部74B、74Cが配置されて、前側の位置変更された第1サブ受光部7
4Bと、中央の第1メイン受光部74Aと、後側の位置変更された第1サブ受光部74C
と、が略一直線上に並設されたときに、前側の位置変更された第1サブ受光部74Bと、
中央の第1メイン受光部74Aと、後側の位置変更された第1サブ受光部74Cと、の分
光比は、従来の規格化された光検出器270(図27)の前側の第1サブ受光部200b
と、中央の第1メイン受光部200aと、後側の第1サブ受光部200cと、の分光比に
対して変更されている。
一対の位置変更された第1サブ受光部74B、74Cが配置されて、前側の位置変更され
た第1サブ受光部74Bと、中央の第1メイン受光部74Aと、後側の位置変更された第
1サブ受光部74Cと、が略一直線上に並設されたときに、前側の位置変更された第1サ
ブ受光部74Bと、中央の第1メイン受光部74Aと、後側の位置変更された第1サブ受
光部74Cと、の分光比は、略1:(20~26):1とされている。すなわち、前側の
位置変更された第1サブ受光部74Bと、中央の第1メイン受光部74Aと、後側の位置
変更された第1サブ受光部74Cと、の分光比は、略1:(23±3):1とされている
。好ましくは、前側の位置変更された第1サブ受光部74Bと、中央の第1メイン受光部
74Aと、後側の位置変更された第1サブ受光部74Cと、の分光比は、略1:(23±
2.3):1とされる。
定変更された光検出器73A(図5~図7)の第1レーザ波長光の分光比が変更されてい
れば、1本の第1メインビームの検出と2本の第1サブビームの検出とは、新しい設定変
更された光検出器73Aにて精度よく良好に行われ易くなる。従来の規格化された光検出
器270(図27)の第1レーザ波長光の分光比が略1:16:1に設定されているのに
対し、設定変更された光検出器73A(図5~図7)の第1レーザ波長光の分光比が、略
1:(20~26):1すなわち略1:(23±3):1好ましくは略1:(23±2.
3):1に設定されていれば、1本の第1メインビームの検出と2本の第1サブビームの
検出とは、新しい設定変更された光検出器73Aにて精度よく良好に行われる。
レーザ波長光に対応した第2回折面部304と、の2つの回折面部302、304を有す
る従来の回折格子300A、300Bを第1レーザ波長光が透過して、第1レーザ波長光
が、前側の1本の第1サブビームと、中央の1本の第1メインビームと、後側の1本の第
1サブビームと、に少なくとも分けられたときに、前側の1本の第1サブビームが照射さ
れる前側の第1サブ受光部200b(図27)と、中央の1本の第1メインビームが照射
される中央の第1メイン受光部200aと、後側の1本の第1サブビームが照射される後
側の第1サブ受光部200cと、の分光比が、例えば通常の略1:16:1に設定される
ことで、従来の規格化された光検出器270にて、1本の第1メインビームの検出と2本
の第1サブビームの検出とが精度よく行われていた。
を有する回折格子320が設けられることなく省略され、第2レーザ波長光に対応し第
2レーザ波長光を基準とした回折面部304を有する回折格子300A、300Bを第1
レーザ波長光が透過して、第1レーザ波長光が、前側の1本の第1サブビームと、中央の
1本の第1メインビームと、後側の1本の第1サブビームと、に少なくとも分けられた場
合には、前側の1本の第1サブビームが照射される前側の位置変更された第1サブ受光部
200b(図27)と、中央の1本の第1メインビームが照射される中央の第1メイン受
光部200aと、後側の1本の第1サブビームが照射される後側の位置変更された第1サ
ブ受光部200cと、の分光比が、例えば通常の略1:16:1に設定されていると、従
来の規格化された光検出器270においては、1本の第1メインビームの検出と2本の第
1サブビームの検出とが精度よく行われないことが懸念されていた。
(図4、図8、図9)を有する回折格子64Aを第1レーザ波長光が透過して、第1レー
ザ波長光が、前側の1本の第1サブビームと、中央の1本の第1メインビームと、後側の
1本の第1サブビームと、に少なくとも分けられたときに、前側の1本の第1サブビーム
が照射される前側の位置変更された第1サブ受光部74B(図5~図7)と、中央の1本
の第1メインビームが照射される中央の第1メイン受光部74Aと、後側の1本の第1サ
ブビームが照射される後側の位置変更された第1サブ受光部74Cと、の分光比が、従来
の規格化された光検出器270(図27)の前側の第1サブ受光部200bと、中央の第
1メイン受光部200aと、後側の第1サブ受光部200cと、の分光比に対して変更さ
れて、略1:(20~26):1すなわち略1:(23±3):1好ましくは略1:(2
3±2.3):1に設定されていれば、新しい設定変更された光検出器73A(図5~図
7)にて、1本の第1メインビームの検出と2本の第1サブビームの検出とが精度よく良
好に行われる。
74Bと、中央の1本の第1メインビームが照射される中央の第1メイン受光部74Aと
、後側の1本の第1サブビームが照射される後側の位置変更された第1サブ受光部74C
と、の分光比が、例えば略1:20未満:1とされた場合や、この分光比が例えば略1:
26超:1とされた場合には、1本の第1メインビームの検出と2本の第1サブビームの
検出とが精度よく行われないことが懸念されるが、この分光比が略1:(20~26):
1好ましくは略1:(20.7~25.3):1より好ましくは略1:(21~25):
1に設定されることにより、1本の第1メインビームの検出と2本の第1サブビームの検
出とが精度よく良好に行われる。
Cが配置されて、前側の第2サブ受光部75Bと、中央の第2メイン受光部75Aと、後
側の第2サブ受光部75Cと、が略一直線上に並設されたときに、前側の第2サブ受光部
75Bと、中央の第2メイン受光部75Aと、後側の第2サブ受光部75Cと、の分光比
は、略1:(12~18):1とされている。すなわち、前側の第2サブ受光部75Bと
、中央の第2メイン受光部75Aと、後側の第2サブ受光部75Cと、の分光比は、略1
:(15±3):1とされている。好ましくは、前側の第2サブ受光部75Bと、中央の
第2メイン受光部75Aと、後側の第2サブ受光部75Cと、の分光比は、略1:(16
±1.6):1とされる。
ブビームの検出とは、光検出器73Aにて精度よく良好に行われる。第2レーザ波長光に
対応し第2レーザ波長光を基準とした回折面部20a(図4、図8、図9)を有する回折
格子64Aを第2レーザ波長光が透過して、第2レーザ波長光が、前側の1本の第2サブ
ビームと、中央の1本の第2メインビームと、後側の1本の第2サブビームと、に少なく
とも分けられたときに、前側の1本の第2サブビームが照射される前側の第2サブ受光部
75B(図5、図7)と、中央の1本の第2メインビームが照射される中央の第2メイン
受光部75Aと、後側の1本の第2サブビームが照射される後側の第2サブ受光部75C
と、の分光比が、略1:(12~18):1すなわち略1:(15±3):1好ましくは
略1:(16±1.6):1に設定されていれば、光検出器73Aにて1本の第2メイン
ビームの検出と2本の第2サブビームの検出とが精度よく良好に行われる。
の1本の第2メインビームが照射される中央の第2メイン受光部75Aと、後側の1本の
第2サブビームが照射される後側の第2サブ受光部75Cと、の分光比が、例えば略1:
12未満:1とされた場合や、この分光比が例えば略1:18超:1とされた場合には、
1本の第2メインビームの検出と2本の第2サブビームの検出とが精度よく行われないこ
とが懸念されるが、この分光比が略1:(12~18):1好ましくは略1:(14~1
8):1より好ましくは略1:(14.4~17.6):1に設定されることにより、1
本の第2メインビームの検出と2本の第2サブビームの検出とが精度よく良好に行われる
。
対し、1つの第1メイン受光部74A(図5~図7)における受光感度の値が変更または
同じとされている。詳しく説明すると、規格化された1つの第1メイン受光部200a(
図27)における通常受光感度の値が100%の値と定められたときに、規格化された1
つの第1メイン受光部200aにおける通常受光感度の値に対し、変更または同じとされ
た1つの第1メイン受光部74A(図5~図7)における受光感度の値は、略100%ま
たは略100%未満もしくは略100%以下の低い値に設定されている。
受光感度の値に対し、2つの第1サブ受光部74B、74C(図5~図7)における受光
感度の値が変更されている。詳しく説明すると、規格化された2つの第1サブ受光部20
0b、200c(図27)における通常受光感度の値が共に100%の値と定められたと
きに、規格化された2つの第1サブ受光部200b、200cにおける通常受光感度の値
に対し、変更された2つの第1サブ受光部74B、74C(図5~図7)における受光感
度の値は、共に略100%以上または略100%を超える高い値に設定されている。
1本の第1メインビームの検出と2本の第1サブビームの検出とは、新しい設定変更され
た光検出器73Aにて比較的精度よく行われ易くなる。規格化された1つの第1メイン受
光部200a(図27)における通常受光感度の値に対し、1つの第1メイン受光部74
A(図5~図7)における受光感度の値が変更または同じとされ、規格化された2つの第
1サブ受光部200b、200c(図27)における通常受光感度の値に対し、2つの第
1サブ受光部74B、74C(図5~図7)における受光感度の値が変更されることによ
り、新しい設定変更された光検出器73Aにて、1本の第1メインビームの検出と2本の
第1サブビームの検出とが比較的精度よく行われ易くなる。
通常受光感度の値が100%とされているのに対し、変更または同じとされた1つの第1
メイン受光部74A(図5~図7)における受光感度の値が略100%または略100%
未満もしくは略100%以下の低い値に設定され、規格化された2つの第1サブ受光部2
00b、200c(図27)における通常受光感度の値が共に100%とされているのに
対し、変更された2つの第1サブ受光部74B、74C(図5~図7)における受光感度
の値が共に略100%以上または略100%を超える高い値に設定されることにより、新
しい設定変更された光検出器73Aにて、1本の第1メインビームの検出と2本の第1サ
ブビームの検出とが比較的精度よく行われ易くなる。
100%の値と定められたときに、規格化された1つの第1メイン受光部200aにおけ
る通常受光感度の値に対し、変更または同じとされた1つの第1メイン受光部74A(図
5~図7)における受光感度の値は、略95~100%好ましくは略96~100%の値
に設定されている。また、規格化された2つの第1サブ受光部200b、200c(図2
7)における通常受光感度の値が共に100%の値と定められたときに、規格化された2
つの第1サブ受光部200b、200cにおける通常受光感度の値に対し、変更された2
つの第1サブ受光部74B、74C(図5~図7)における受光感度の値は、共に略12
0~160%好ましくは共に略138~142%の値に設定されている。
第1サブビームの検出とは、新しい設定変更された光検出器73Aにて精度よく良好に行
われる。規格化された1つの第1メイン受光部200a(図27)における通常受光感度
の値が100%とされているのに対し、変更または同じとされた1つの第1メイン受光部
74A(図5~図7)における受光感度の値が略95~100%好ましくは略96~10
0%の値に設定され、規格化された2つの第1サブ受光部200b、200c(図27)
における通常受光感度の値が共に100%とされているのに対し、変更された2つの第1
サブ受光部74B、74C(図5~図7)における受光感度の値が共に略120~160
%好ましくは共に略138~142%の値に設定されることにより、新しい設定変更され
た光検出器73Aにて、1本の第1メインビームの検出と2本の第1サブビームの検出と
が精度よく良好に行われる。
ン受光部200a(図28)における通常受光感度の値とされている。規格化された1つ
の第2メイン受光部200aにおける通常受光感度の値が100%の値と定められたとき
に、規格化された1つの第2メイン受光部200aにおける通常受光感度の値に対し、1
つの第2メイン受光部75A(図5、図7)における受光感度の値は、略100%の値に
設定されている。
つの第2サブ受光部200b、200c(図28)における通常受光感度の値とされてい
る。規格化された2つの第2サブ受光部200b、200cにおける通常受光感度の値が
共に100%の値と定められたときに、規格化された2つの第2サブ受光部200b、2
00cにおける通常受光感度の値に対し、2つの第2サブ受光部75B、75C(図5、
図7)における受光感度の値は、共に略100%の値に設定されている。
第2サブビームの検出とは、光検出器73Aにて精度よく行われる。1つの第2メイン受
光部75Aにおける受光感度の値が、規格化された1つの第2メイン受光部200a(図
28)における通常受光感度の値とされ、2つの第2サブ受光部75B、75C(図5、
図7)における受光感度の値が、規格化された2つの第2サブ受光部200b、200c
(図28)における通常受光感度の値とされることにより、光検出器73Aにて、1本の
第2メインビームの検出と2本の第2サブビームの検出とが精度よく行われる。
100%とされているのに対し、1つの第2メイン受光部75A(図5、図7)における
受光感度の値が略100%の値に設定され、規格化された2つの第2サブ受光部200b
、200c(図28)における通常受光感度の値が共に100%とされているのに対し、
2つの第2サブ受光部75B、75C(図5、図7)における受光感度の値が共に略10
0%の値に設定されることにより、光検出器73Aにて、1本の第2メインビームの検出
と2本の第2サブビームの検出とが精度よく行われる。
電流および/または電圧値に対し、1つの第1メイン受光部74A(図5~図7)から出
力される信号UAa1、UAb1、UAc1、UAd1(図6)の電流/電圧値が変更ま
たは同じとされている。詳しく説明すると、規格化された1つの第1メイン受光部200
a(図27)から出力される通常の信号の電流/電圧値が100%の電流/電圧値と定め
られたときに、規格化された1つの第1メイン受光部200aから出力される通常の信号
の電流/電圧値に対し、変更または同じとされた1つの第1メイン受光部74A(図5~
図7)から出力される信号UAa1、UAb1、UAc1、UAd1/TAa1、TAb
1、TAc1、TAd1(図6)の電流/電圧値は、略100%または略100%未満も
しくは略100%以下の低い値に設定されている。1つの第1メイン受光部74Aから出
力される信号UAa1、UAb1、UAc1、UAd1の電流/電圧値が設定変更される
場合、例えばアッテネータ(不図示)等が用いられて1つの第1メイン受光部74Aから
出力される信号の電流/電圧値が変更設定される。
る通常の信号の電流/電圧値に対し、2つの第1サブ受光部74B、74C(図5~図7
)から出力される信号UBa1、UBb1、UBc1、UBd1、UCa1、UCb1、
UCc1、UCd1(図6)の電流/電圧値が変更されている。詳しく説明すると、規格
化された2つの第1サブ受光部200b、200c(図27)から出力される通常の信号
の電流/電圧値が共に100%の電流/電圧値と定められたときに、規格化された2つの
第1サブ受光部200b、200cから出力される通常の信号の電流/電圧値に対し、2
つの第1サブ受光部74B、74C(図5~図7)から出力される信号UBa1、UBb
1、UBc1、UBd1、UCa1、UCb1、UCc1、UCd1(図6)の電流/電
圧値が共に変更されて、2つの第1サブ受光部74B、74C(図5~図7)から出力さ
れた信号TBa1、TBb1、TBc1、TBd1、TCa1、TCb1、TCc1、T
Cd1(図6)の電流/電圧値は、共に略100%以上または略100%を超える高い値
にゲインアップ設定されている。
1、UBd1、UCa1、UCb1、UCc1、UCd1の電流/電圧値は、光検出器7
3Aに備えられた前段アンプ77FL1、77FR1、77GL1、77GR1、77H
L1、77HR1、77IL1、77IR1、及び/又は、後段アンプ77FL2、77
FR2、77GL2、77GR2、77HL2、77HR2、77IL2、77IR2に
て変更設定される。
c1、UCd1の電流/電圧値、又は、信号UAa1、UAb1、UAc1、UAd1の
電流/電圧値が従来の信号の電流/電圧値に対し変更または同じとされて設定されていれ
ば、1本の第1メインビームの検出と2本の第1サブビームの検出とは、例えば信号の劣
化が抑えられつつ演算部76Aにて精度よく行われ易くなる。規格化された1つの第1メ
イン受光部200a(図27)から出力される通常の信号の電流/電圧値に対し、1つの
第1メイン受光部74A(図5~図7)から出力される信号UAa1、UAb1、UAc
1、UAd1(図6)の電流/電圧値が変更または同じとされ、規格化された2つの第1
サブ受光部200b、200c(図27)から出力される通常の信号の電流/電圧値に対
し、2つの第1サブ受光部74B、74C(図5~図7)から出力される信号UBa1、
UBb1、UBc1、UBd1、UCa1、UCb1、UCc1、UCd1(図6)の電
流/電圧値がゲインアップ変更されることにより、例えば信号の劣化が抑えられつつ演算
部76Aにて、1本の第1メインビームの検出と2本の第1サブビームの検出とが精度よ
く行われ易くなる。
される通常の信号の電流/電圧値が100%とされているのに対し、変更または同じとさ
れた1つの第1メイン受光部74A(図5~図7)から出力される信号UAa1、UAb
1、UAc1、UAd1(図6)の電流/電圧値が略100%または略100%未満もし
くは略100%以下の低い値に設定され、規格化された2つの第1サブ受光部200b、
200c(図27)から出力される通常の信号の電流/電圧値が共に100%とされてい
るのに対し、2つの第1サブ受光部74B、74C(図5~図7)から出力される信号U
Ba1、UBb1、UBc1、UBd1、UCa1、UCb1、UCc1、UCd1(図
6)の電流/電圧値が共に変更されて、2つの第1サブ受光部74B、74C(図5~図
7)から出力された信号TBa1、TBb1、TBc1、TBd1、TCa1、TCb1
、TCc1、TCd1(図6)の電流/電圧値が共に略100%以上または略100%を
超える高い値にゲインアップ設定されることにより、例えば信号の劣化が抑えられつつ演
算部76Aにて、1本の第1メインビームの検出と2本の第1サブビームの検出とが精度
よく行われ易くなる。
電流/電圧値が100%の電流/電圧値と定められたときに、規格化された1つの第1メ
イン受光部200aから出力される通常の信号の電流/電圧値に対し、変更または同じと
された1つの第1メイン受光部74A(図5~図7)から出力される信号UAa1、UA
b1、UAc1、UAd1の電流/電圧値は、略95~100%好ましくは略96~10
0%の電流/電圧値に設定されている。また、規格化された2つの第1サブ受光部200
b、200c(図27)から出力される通常の信号の電流/電圧値が共に100%の電流
/電圧値と定められたときに、規格化された2つの第1サブ受光部200b、200cか
ら出力される通常の信号の電流/電圧値に対し、2つの第1サブ受光部74B、74C(
図5~図7)から出力される信号UBa1、UBb1、UBc1、UBd1、UCa1、
UCb1、UCc1、UCd1(図6)の電流/電圧値が共に変更されて、2つの第1サ
ブ受光部74B、74C(図5~図7)から出力された信号TBa1、TBb1、TBc
1、TBd1、TCa1、TCb1、TCc1、TCd1(図6)の電流/電圧値は、共
に略120~160%好ましくは共に略138~142%の電流/電圧値にゲインアップ
設定されている。
c1、UCd1の電流/電圧値、又は、信号UAa1、UAb1、UAc1、UAd1の
電流/電圧値が設定されていれば、1本の第1メインビームの検出と2本の第1サブビー
ムの検出とは、例えば信号の劣化が抑えられつつ演算部76Aにて精度よく良好に行われ
る。規格化された1つの第1メイン受光部200a(図27)から出力される通常の信号
の電流/電圧値が100%とされているのに対し、変更または同じとされた1つの第1メ
イン受光部74A(図5~図7)から出力される信号UAa1、UAb1、UAc1、U
Ad1(図6)の電流/電圧値が略95~100%好ましくは略96~100%の電流/
電圧値に設定され、規格化された2つの第1サブ受光部200b、200c(図27)か
ら出力される通常の信号の電流/電圧値が共に100%とされているのに対し、2つの第
1サブ受光部74B、74C(図5~図7)から出力される信号UBa1、UBb1、U
Bc1、UBd1、UCa1、UCb1、UCc1、UCd1(図6)の電流/電圧値が
共に変更されて、2つの第1サブ受光部74B、74C(図5~図7)から出力された信
号UBa1、UBb1、UBc1、UBd1、UCa1、UCb1、UCc1、UCd1
(図6)の電流/電圧値が共に略120~160%好ましくは共に略138~142%の
電流/電圧値にゲインアップ設定されることにより、例えば信号の劣化が抑えられつつ演
算部76Aにて、1本の第1メインビームの検出と2本の第1サブビームの検出とが精度
よく良好に行われる。
74A)から出力される直後の信号(UAa1、UAb1、UAc1、UAd1)の電流
/電圧値が、例えば光検出器(73A)に備えられた不図示のアッテネータ等により設定
変更されたものも使用可能とされる。又、光ピックアップ装置の設計/仕様などにより、
例えば、1つの第1メイン受光部(74A)から出力される信号(TAa1、TAb1、
TAc1、TAd1)の電流/電圧値が、例えば演算部(76A)に備えられた不図示の
アッテネータ等により設定変更されたものも使用可能とされる。
規格化された1つの第2メイン受光部200a(図28)から出力される通常の信号の電
流/電圧値とされている。規格化された1つの第2メイン受光部200aから出力される
通常の信号の電流/電圧値が100%の電流/電圧値と定められたときに、規格化された
1つの第2メイン受光部200aから出力される通常の信号の電流/電圧値に対し、1つ
の第2メイン受光部75A(図5、図7)から出力される信号の電流/電圧値は、略10
0%の電流/電圧値に設定されている。
格化された2つの第2サブ受光部200b、200c(図28)から出力される通常の信
号の電流/電圧値とされている。規格化された2つの第2サブ受光部200b、200c
から出力される通常の信号の電流/電圧値が共に100%の電流/電圧値と定められたと
きに、規格化された2つの第2サブ受光部200b、200cから出力される通常の信号
の電流/電圧値に対し、2つの第2サブ受光部75B、75C(図5、図7)から出力さ
れる信号の電流/電圧値は、共に略100%の電流/電圧値に設定されている。
2本の第2サブビームの検出とは、演算部76Aにて精度よく行われる。1つの第2メイ
ン受光部75Aから出力される信号の電流/電圧値が、規格化された1つの第2メイン受
光部200a(図28)から出力される通常の信号の電流/電圧値とされ、2つの第2サ
ブ受光部75B、75C(図5、図7)から出力される信号の電流/電圧値が、規格化さ
れた2つの第2サブ受光部200b、200c(図28)から出力される通常の信号の電
流/電圧値とされることにより、演算部76Aにて、1本の第2メインビームの検出と2
本の第2サブビームの検出とが精度よく行われる。
電流/電圧値が100%とされているのに対し、1つの第2メイン受光部75A(図5、
図7)から出力される信号の電流/電圧値が略100%の電流/電圧値に設定され、規格
化された2つの第2サブ受光部200b、200c(図28)から出力される通常の信号
の電流/電圧値が共に100%とされているのに対し、2つの第2サブ受光部75B、7
5C(図5、図7)から出力される信号の電流/電圧値が共に略100%の電流/電圧値
に設定されることにより、演算部76Aにて、1本の第2メインビームの検出と2本の第
2サブビームの検出とが精度よく行われる。
圧変換アンプ、後段アンプ、加算器、減算器、増幅器などが用いられて精度よくトラッキ
ングエラー信号SE2が生成される工程の詳細説明については、ここでは省略する。又、
光検出器73AのCD受光領域74、DVD受光領域75に照射されたレーザ光に基づき
、精度よくフォーカスエラー信号が生成される工程の詳細説明についても、ここでは省略
する。又、光検出器73AのCD受光領域74、DVD受光領域75に照射されたレーザ
光に基づき、光ディスクDに記録されたデータ、情報などの信号が精度よく生成される工
程の詳細説明についても、ここでは省略する。
プ(77DL1、77DR1、77EL1、77ER1、77FL1、77FR1、77
GL1、77GR1、77HL1、77HR1、77IL1、77IR1)と、後段の増
幅アンプ(77DL2、77DR2、77EL2、77ER2、77FL2、77FR2
、77GL2、77GR2、77HL2、77HR2、77IL2、77IR2)と、が
合わせられて一体化された増幅機能を備えもつ1段タイプの電流・電圧変換アンプ(不図
示)が光検出器(73A)に装備されて、光検出器(73A)におけるアンプ等の部品点
数が少なくされたものも使用可能とされる。
77F、77G、77H、77I、78C)、減算器(77A、77B、77C、78A
)、増幅器(78B)等を含む演算部(76A)が、各受光部(74A、74B、74C
)、各電流・電圧変換アンプ(77DL1、77DR1、77EL1、77ER1、77
FL1、77FR1、77GL1、77GR1、77HL1、77HR1、77IL1、
77IR1)、各後段アンプ(77DL2、77DR2、77EL2、77ER2、77
FL2、77FR2、77GL2、77GR2、77HL2、77HR2、77IL2、
77IR2)等を含む光検出器(73A)に備えられ、加算器(77D、77E、77F
、77G、77H、77I、78C)、減算器(77A、77B、77C、78A)、増
幅器(78B)等を含む演算部(76A)と、各受光部(74A、74B、74C)、各
電流・電圧変換アンプ(77DL1、77DR1、77EL1、77ER1、77FL1
、77FR1、77GL1、77GR1、77HL1、77HR1、77IL1、77I
R1)、各後段アンプ(77DL2、77DR2、77EL2、77ER2、77FL2
、77FR2、77GL2、77GR2、77HL2、77HR2、77IL2、77I
R2)等を含む光検出器(73A)と、が一体化された演算部付光検出器(不図示)も使
用可能とされる。
とも1本の第1メインビームと2本の第1サブビームとに分ける回折面部20aと、第2
レーザ波長光を少なくとも1本の第2メインビームと2本の第2サブビームとに分ける回
折面部20aと、を兼ねて、複数種類のレーザ波長光の回折に対応する1つの面部20a
として形成されている。
ける不要な回折光の発生が抑えられるとともにレーザ光の効率の低下が防止され、更に価
格を低く抑えることが可能な光ピックアップ装置が構成される。
レーザ波長光に対応した第2回折面部304と、の2つの回折面部302、304を有す
る従来の回折格子300A、300Bの第1回折面部302を第1レーザ波長光が透過し
て、第1レーザ波長光が1本の第1メインビームと2本の第1サブビームとに少なくとも
分けられるときに、回折格子300A、300Bの第2回折面部304により、第1レー
ザ波長光の第1メインビームが更に無駄に回折されるとともに第1サブビームが更に無駄
に回折され、これに伴って、第1レーザ波長光の第1メインビームおよび第1サブビーム
の光の効率が低下することが懸念されていた。
に対応した第2回折面部304と、の2つの回折面部302、304を有する従来の回折
格子300A、300Bの第2回折面部304を第2レーザ波長光が透過して、第2レー
ザ波長光が1本の第2メインビームと2本の第2サブビームとに少なくとも分けられると
きに、回折格子300A、300Bの第1回折面部302により、第2レーザ波長光が無
駄に回折され、これに伴って、第2レーザ波長光の光の効率が低下することが懸念されて
いた。
波長光を少なくとも1本の第1メインビームと2本の第1サブビームとに分ける回折面部
20aと、第2レーザ波長光を少なくとも1本の第2メインビームと2本の第2サブビー
ムとに分ける回折面部20aと、を兼ねて複数種類のレーザ波長光の回折に対応する1つ
の面部20aとして形成されていれば、第1レーザ波長光の第1メインビームおよび第1
サブビームが不要に回折されて第1レーザ波長光の第1メインビームおよび第1サブビー
ムの光の効率が低下されたり、第2レーザ波長光が不要に回折されて第2レーザ波長光の
光の効率が低下されたりするということは回避される。
とに分ける回折面部20aと、第2レーザ波長光を少なくとも1本の第2メインビームと
2本の第2サブビームとに分ける回折面部20aと、を兼ねて複数種類のレーザ波長光の
回折に対応する1つの面部20aとして回折格子64Aの回折面部20aが形成されてい
るので、加工部分、加工工数等が減らされた回折格子64Aが構成される。回折格子64
Aの加工部分、加工工数等が減らされるので、回折格子64Aの価格が低く抑えられる。
これに伴って、価格を低く抑えることが可能とされた光ピックアップ装置を構成させるこ
とが可能となる。
射されるレーザ光の一部にπラジアンの位相シフトを発生させる位相シフト領域部21、
22(図4、図9)が設けられている。回折格子64Aは、略長方形状の第1領域部21
と、第1領域部21に隣接する略長方形状の第2領域部22との少なくとも2つの領域部
21、22に分けられている。回折格子64Aは、複数の領域部21、22に分けられて
いる。各領域部21、22内で所定の周期構造が構成されている。
1、22の周期構造は、微細な凹凸状の繰返し周期構造とされている。また、回折格子6
4Aは、例えば略3~10mm角の縦横寸法をした厚み略0.3~3mmのガラス板とさ
れている。
(図5、図7)の信号面部Daに対する光ピックアップ装置のエラー信号の検出は、良好
に行われ易くなる。例えば、メディアDの信号面部Daに対する光ピックアップ装置のト
ラッキングは、良好に行われ易くなる。回折格子64A(図4、図9)が複数の領域部2
1、22に分けられて構成されることにより、メディアD(図5)の信号面部Daに、各
々独立した少なくとも三個の集光スポット80、81、82が照射される。メディアDの
信号面部Daに、少なくとも三個の集光スポット80、81、82が各々独立して照射さ
れるので、トラックピッチDtpが異なる2種類以上のメディアDの記録/再生時等に、
トラッキングエラー信号SE1、SE2等のエラー信号の検出精度が低下するということ
は回避され易くなる。従って、トラッキング制御が行われ易い光ピックアップ装置の提供
が可能となる。
。
(図5)の信号面部Daに形成される集光スポット80、81、82は、精度のよい集光
スポット80、81、82として形成される。例えば回折格子64A(図4、図9)の境
界線部26によって、一方の領域部21と他方の領域部22とに回折格子64Aが2等分
されて偶数分割されているので、光ピックアップ装置に回折格子64Aが装備されるとき
に、回折格子64Aに当てられる光は、回折格子64Aの一方の領域部21と、回折格子
64Aの他方の領域部22とに、略2等分された状態に当てられ易くなる。回折格子64
Aの一方の領域部21と、回折格子64Aの他方の領域部22とに、光が略2等分とされ
た状態に当てられ易くなることにより、回折格子64Aは、光ピックアップ装置に精度よ
く備えられ易くなる。従って、メディアD(図5)の信号面部Daに精度よく集光スポッ
ト80、81、82が形成され易くなる。これに伴って、トラックピッチDtpが異なる
2種類以上のメディアDの記録/再生時等におけるトラッキングエラー信号SE1、SE
2等のエラー信号の検出精度が向上する。また、メディアDの信号面部Daに対する光ピ
ックアップ装置のトラッキングは、精度よく行われ易くなる。
し第1領域部21の周期構造に対し異なる周期構造を有する第2領域部22と、の2つの
領域部21、22に分けられている。回折格子64Aは、いわゆる2分割型インライング
レーティングとして構成されている。
アップ装置に装備されていれば、メディアD(図2、図3、図5、図7)の信号面部Da
に対する光ピックアップ装置のエラー信号の検出は、良好に行われる。例えば、メディア
Dの信号面部Daに対する光ピックアップ装置のトラッキングは、良好に行われる。回折
格子64A(図4、図9)が2つの領域部21、22に分けられて構成されることにより
、メディアD(図5)の信号面部Daに、各々独立した少なくとも3個の集光スポット8
0、81、82が照射される。メディアDの信号面部Daに、少なくとも3個の集光スポ
ット80、81、82が各々独立して照射されるので、トラックピッチDtpが異なる2
種類以上のメディアDにデータ記録等が行われるときや、トラックピッチDtpが異なる
2種類以上のメディアDのデータ再生が行われるときに、例えば対物レンズ70(図1~
図3)の変位に伴って、トラッキングエラー信号SE1、SE2等のエラー信号の検出精
度が低下するということは回避される。従って、トラッキング制御が行われ易い光ピック
アップ装置の提供が可能となる。
1と、一方の領域部21に隣接し第2領域部22とされる略長方形状の他方の領域部22
とを有するものとされる。回折格子64Aの第1領域部21の幅21wと、第2領域部2
2の幅22wとは、略等しい幅とされている。回折格子64Aの第1領域部21と、この
第1領域部21に隣接する回折格子64Aの第2領域部22との境界線部26により、回
折格子64Aは、回折格子64Aを構成する一方の領域部21と、回折格子64Aを構成
する他方の領域部22とに2等分される。回折格子64Aは、偶数分割されている。
、82は、精度のよい集光スポット80、81、82として形成される。偶数分割された
回折格子64A(図4、図9)の第1領域部21と、第1領域部21に隣接する第2領域
部22との境界線部26によって、第1領域部21とされる一方の領域部21と、一方の
領域部21に隣接し第2領域部22とされる他方の領域部22とに回折格子64Aが2等
分されるので、光ピックアップ装置のハウジング(不図示)に回折格子64Aが装備され
るときに、レーザユニット61(図1~図3)から出射され回折格子64Aに当てられた
レーザ光は、例えば不図示の光軸調整用カメラなどにより、容易に光軸調整される。レー
ザユニット61から出射され回折格子64Aに当てられたのちに対物レンズ70を透過し
たレーザ光は、例えば光軸調整用カメラなどが用いられて観察可能とされる。
させて、略長方形状の一方の領域部21と、略長方形状の他方の領域部22とを構成させ
る境界線部26が回折格子64Aに設けられているので、光軸調整用カメラなどが用いら
れてレーザ光の光軸調整が行われるときに、レーザ光は、回折格子64Aを構成する略長
方形状の一方の領域部21と、回折格子64Aを構成する略長方形状の他方の領域部22
とに、略2等分された状態に当てられ易くなる。
る略長方形状の他方の領域部22とに、レーザ光が略2等分とされた状態に当てられ易く
なることにより、回折格子64Aは、光ピックアップ装置のハウジングに精度よく位置決
め調整されつつ備えられ易くなる。従って、メディアD(図5)の信号面部Daに精度よ
く集光スポット80、81、82が形成され易くなる。これに伴って、メディアDの信号
面部Daに対する光ピックアップ装置のトラッキングは、精度よく行われ易くなる。
第2領域部22の間に、回折格子64Aを構成する略線状の境界線部26が位置する。第
1領域部21の周期構造に対し、第2領域部22の周期構造は、異なる位相を有する周期
構造とされている。第1領域部21の周期構造に対し、第2領域部22の周期構造は、略
180度ほど異なる位相を有する周期構造とされている。
れるとともに、回折格子64Aおける第1領域部21と、第2領域部22との位相差が明
確化される。回折格子64Aの第1領域部21の周期構造に対し、回折格子64Aの第2
領域部22の周期構造が、略180度ほど異なる位相を有する周期構造とされているので
、メディアD(図5)の信号面部Daに少なくとも3個の各集光スポット80、81、8
2が良好に形成される。メディアDの信号面部Daに良好に形成された少なくとも3個の
各集光スポット80、81、82により、トラックピッチDtpが異なる複数種類のメデ
ィアDのデータ記録/再生時等に、例えば対物レンズ70(図1~図3)の変位に伴って
トラッキングエラー信号SE1、SE2が劣化するということは回避され易くなる。
領域部21と第2領域部22とが分けられている。
5)の信号面部Daに、各々独立した少なくとも3個の集光スポット80、81、82が
照射される。メディアDの信号面部Daに、少なくとも3個の集光スポット80、81、
82が各々独立して照射されるので、メディアDの信号面部Daに対する光ピックアップ
装置のトラッキングは、行われ易くなる。
面視されたときに、回折格子64Aは、略矩形板状のものとして目視される。
列された状態で、回折格子64Aが平面視されたときに、回折格子64Aの一領域部の位
相に対し、一領域部の右側に隣接する他領域部の位相が略右上がり階段状にずらされた場
合に、他領域部の位相は、プラス(+)側にずらされたものと定められる。
びに配列された状態で、回折格子64Aが平面視されたときに、回折格子64Aの一領域
部の位相に対し、一領域部の右側に隣接する他領域部の位相が略右下がり階段状にずらさ
れた場合に、他領域部の位相は、マイナス(-)側にずらされたものと定められる。
の位相差状態を説明するための便宜上の定義とされる。また、本願における「縦」、「横
」の定義についても、回折格子を説明するための便宜上の定義とされる。
21の右側に隣接する第2領域部22の周期構造は、プラス側にずらされた位相を有する
周期構造とされている(図10)。第1領域部21(図9)の周期構造に対し、第2領域
部22の周期構造は、略+180度異なる位相を有する周期構造とされている。
onal Computer)用の光ディスク装置に装備されて使用されることが可能と
されるとともに、ノート型もしくはラップトップ型PC用の光ディスク装置に装備されて
使用されることも可能とされる。
図9)と、少なくとも3本の光束を集光してメディアD(図1~図3、図5)の信号面部
Da(図5)に各々独立した少なくとも3個の集光スポット80、81、82を照射させ
る対物レンズ70(図1~図3)と、メディアDにおける3個の各集光スポット80、8
1、82(図5)の反射光を受光する光検出器73A(図1~図3、図5~図7)と、を
備えて構成される。
aに対する光ピックアップ装置のトラッキングは、精度よく行われる。トラックピッチD
tpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ70(図1~
図3)の変位に伴って、トラッキングエラー信号SE1、SE2の振幅が劣化することや
、トラッキングエラー信号SE1、SE2にオフセットが残留するということは回避され
易くなる。
されることにより、DVD-RAMに対する光ピックアップ装置のデータ再生動作または
データ記録動作は、確実に行われる。また、DVD±R、DVD±RWに対する光ピック
アップ装置のデータ再生動作またはデータ記録動作も、確実に行われる。
波長光等といった複数種類のレーザ波長光を受光可能な1つの光検出器73Aとして構成
される。
備されていれば、多種のメディアD(図1~図3、図5、図7)に対応可能な光ピックア
ップ装置が構成されるとともに、光ピックアップ装置の部品点数の削減化に伴う価格低減
化が図られる。光検出器73A(図1~図3)は、第1波長光と、第1波長光と異なる波
長とされ且つ第1レーザ波長光よりも短い波長のレーザ光とされる第2波長光との2種類
以上の波長光を受光可能な複数種類の波長光に対応する光検出器73Aとして構成される
ので、光ピックアップ装置は、多種のメディアDに対応可能となる。また、これとともに
、第1波長光を受光可能な光検出器と、第2波長光を受光可能な光検出器とが、1つの光
検出器73Aとしてまとめられるので、光ピックアップ装置の部品削減化、小型化、軽薄
化などが図られる。光ピックアップ装置の部品削減化に伴って光ピックアップ装置の価格
が低く抑えられる。従って、多種のメディアDに対応可能とされるとともに、部品削減化
、価格低減化、小型化、軽薄化などが図られた光ピックアップ装置の提供が可能となる。
いった複数種類のレーザ波長光を出射可能な1つの発光素子61(図1~図3)を備えて
構成される。
されていれば、多種のメディアD(図1~図3、図5、図7)に対応可能な光ピックアッ
プ装置が構成されるとともに、光ピックアップ装置の部品点数の削減化に伴う価格低減化
が図られる。発光素子61(図1~図3)は、例えば、第1波長光と、第1波長光と異な
る波長とされ且つ第1レーザ波長光よりも短い波長のレーザ光とされる第2波長光との少
なくとも2種類以上の波長光を出射可能な複数種類の波長光を出射する発光素子61とし
て構成されるので、光ピックアップ装置は、多種のメディアDに対応可能となる。また、
これとともに、少なくとも第1波長光を出射可能な発光素子と第2波長光を出射可能な発
光素子とが1つの発光素子61としてまとめられるので、光ピックアップ装置の部品削減
化、小型化、軽薄化などが図られる。光ピックアップ装置の部品削減化に伴って光ピック
アップ装置の価格が低く抑えられる。従って、多種のメディアDに対応可能とされるとと
もに、部品削減化、価格低減化、小型化、軽薄化などが図られた光ピックアップ装置の提
供が可能となる。
質の安定化も図られる。例えば、第1波長光を出射可能な第1発光素子と、第2波長光を
出射可能な第2発光素子とが、個別にハウジング等に備えられる場合、例えば第1発光素
子および/または第2発光素子の取付誤差などにより、第1波長光の光軸および第2波長
光の光軸などに「ばらつき」が生じることが懸念される。しかしながら、第1波長光を出
射可能な発光素子と、第2波長光を出射可能な発光素子とが、1つの発光素子61として
まとめられていれば、取付誤差などによる光軸などの「ばらつき」発生が減らされる。従
って、光ピックアップ装置の性能/品質が安定化される。
CD規格に準拠した赤外レーザ光とされている。詳しく説明すると、第1レーザ波長光の
波長は、CD規格の光ディスクDに対応して、略765~840nm、基準とされる波長
が略780~782nmとされている。例えば基準とされる波長が略765~840nm
の範囲内に収められる波長光が第1レーザ波長光とされる。二波長発光素子61の第1光
源62から出射される第1レーザ波長光は、例えば発光素子61の蓄熱温度等により変動
することがある。
長光は、DVD規格に準拠した赤色レーザ光とされている。詳しく説明すると、第2レー
ザ波長光の波長は、DVD規格の光ディスクDに対応して、略630~685nm、基準
とされる波長が略635~660nmとされている。例えば基準とされる波長が略630
~685nmの範囲内に収められる波長光が第2レーザ波長光とされる。二波長発光素子
61の第2光源63から出射される第2レーザ波長光は、例えば発光素子61の蓄熱温度
等により変動することがある。
ていれば、CD規格の光ディスクD(図1~図3)に対応した略765~840nm、基
準とされる波長が略780~782nmの波長光とされるCD規格に準拠した第1レーザ
波長光が回折格子64Aを透過するときに、不要な回折光が生じるということは略防止さ
れる。
いられていれば、DVD規格の光ディスクD(図1~図3)に対応した略630~685
nm、基準とされる波長が略635~660nmの波長光とされるDVD規格に準拠した
第2レーザ波長光が回折格子64Aを透過するときに、不要な回折光が生じるということ
は略防止される。
子64A(図4、図8、図9)の回折面部20aをCD規格に準拠した所定波長光の第1
レーザ波長光が透過することによって、不要な回折光が略生じることなく分けられたCD
規格に準拠する第1レーザ波長光の2本の第1サブビームは、光検出器73A(図7)に
備えられた第1受光領域74の1つの第1メイン受光部74Aに対して中心点間距離Ys
(cd)が変更された2つの第1サブ受光部74B、74Cに確実に照射される。また、
DVD規格に準拠する第2レーザ波長光に対応し第2レーザ波長光を基準とした回折格子
64A(図4、図8、図9)の回折面部20aをCD規格に準拠した所定波長光の第1レ
ーザ波長光が透過することによって、不要な回折光が略生じることなく分けられたCD規
格に準拠する第1レーザ波長光の1本の第1メインビームは、光検出器73A(図7)に
備えられた第1受光領域74の1つの第1メイン受光部74Aに確実に照射される。
回折格子64A(図4、図8、図9)の回折面部20aをDVD規格に準拠した所定波長
光の第2レーザ波長光が透過したときに、不要な回折光が略生じることなく、DVD規格
に準拠した所定波長光の第2レーザ波長光は、少なくとも1本の第2メインビームと2本
の第2サブビームとに分けられる。DVD規格に準拠する第2レーザ波長光の2本の第2
サブビームは、光検出器73A(図7)に備えられた従来規格と同じ第2受光領域75の
2つの第2サブ受光部75B、75Cに確実に照射され、DVD規格に準拠する第2レー
ザ波長光の1本の第2メインビームは、光検出器73Aに備えられた従来規格と同じ第2
受光領域75の1つの第2メイン受光部75Aに確実に照射される。
規格に準拠した波長光とされてもよい。例えば第1レーザ波長光が「DVD」規格に準拠
した赤色レーザ光とされてもよい。詳しく説明すると、第1レーザ波長光の波長は、「D
VD」規格の光ディスク(D)に対応して、略630~685nm、基準とされる波長が
略635~660nmとされる。例えば基準とされる波長が略630~685nmの範囲
内に収められる波長光が第1レーザ波長光とされる。二波長発光素子(61)の第1光源
(62)から出射される第1レーザ波長光は、例えば発光素子(61)の蓄熱温度等によ
り変動することがある。
Blu-ray Disc」規格、「HD DVD」規格、「CBHD」規格等に準拠し
た波長光とされてもよい。例えば第2レーザ波長光が、「Blu-ray Disc」規
格、「HD DVD」規格、「CBHD」規格等に準拠した青紫色レーザ光とされてもよ
い。詳しく説明すると、第2レーザ波長光の波長は、「Blu-ray Disc」規格
、「HD DVD」規格、「CBHD」規格等の光ディスク(D)に対応して、例えば略
340~450nm、好ましくは略380~450nm、より好ましくは略400nmを
超え450nm以下、基準とされる波長が略405nmとされる。例えば基準とされる波
長が略340~450nmの範囲内に収められる波長光、好ましくは基準とされる波長が
略380~450nmの範囲内に収められる波長光、より好ましくは基準とされる波長が
略400nmを超え450nm以下の範囲内に収められる波長光が第2レーザ波長光とさ
れる。二波長発光素子(61)の第2光源(63)から出射される第2レーザ波長光は、
例えば発光素子(61)の蓄熱温度等により変動することがある。
用いられていれば、「DVD」規格の光ディスク(D)(図1~図3)に対応した略63
0~685nm、基準とされる波長が略635~660nmの波長光とされる「DVD」
規格に準拠した第1レーザ波長光が回折格子(64A)を透過するときに、不要な回折光
が生じるということは略防止される。
A)が用いられていれば、「Blu-ray Disc」規格、「HD DVD」規格、
「CBHD」規格等の光ディスク(D)(図1~図3)に対応した例えば略340~45
0nmの波長光、好ましくは略380~450nmの波長光、より好ましくは略400n
mを超え450nm以下の波長光、基準とされる波長が略405nmの波長光とされる「
Blu-ray Disc」規格、「HD DVD」規格、「CBHD」規格等に準拠し
た第2レーザ波長光が回折格子(64A)を透過するときに、不要な回折光が生じるとい
うことは略防止される。
拠する第2レーザ波長光に対応し第2レーザ波長光を基準とした回折格子(64A)(図
4、図8、図9)の回折面部(20a)を「DVD」規格に準拠した所定波長光の第1レ
ーザ波長光が透過することによって、不要な回折光が略生じることなく分けられた「DV
D」規格に準拠する第1レーザ波長光の2本の第1サブビームは、光検出器(73A)(
図7)に備えられた第1受光領域(74)の1つの第1メイン受光部(74A)に対して
中心点間距離(Ys(cd))が変更された2つの第1サブ受光部(74B、74C)に
確実に照射される。また、「Blu-ray Disc」規格、「HD DVD」規格、
「CBHD」規格等に準拠する第2レーザ波長光に対応し第2レーザ波長光を基準とした
回折格子(64A)(図4、図8、図9)の回折面部(20a)を「DVD」規格に準拠
した所定波長光の第1レーザ波長光が透過することによって、不要な回折光が略生じるこ
となく分けられた「DVD」規格に準拠する第1レーザ波長光の1本の第1メインビーム
は、光検出器(73A)(図7)に備えられた第1受光領域(74)の1つの第1メイン
受光部(74A)に確実に照射される。
等に準拠する第2レーザ波長光に対応し第2レーザ波長光を基準とした回折格子(64A
)(図4、図8、図9)の回折面部(20a)を、「Blu-ray Disc」規格、
「HD DVD」規格、「CBHD」規格等に準拠した所定波長光の第2レーザ波長光が
透過したときに、不要な回折光が略生じることなく、「Blu-ray Disc」規格
、「HD DVD」規格、「CBHD」規格等に準拠した所定波長光の第2レーザ波長光
は、少なくとも1本の第2メインビームと2本の第2サブビームとに分けられる。「Bl
u-ray Disc」規格、「HD DVD」規格、「CBHD」規格等に準拠する第
2レーザ波長光の2本の第2サブビームは、光検出器(73A)(図7)に備えられた従
来規格と同じ第2受光領域(75)の2つの第2サブ受光部(75B、75C)に確実に
照射され、「Blu-ray Disc」規格、「HD DVD」規格、「CBHD」規
格等に準拠する第2レーザ波長光の1本の第2メインビームは、光検出器(73A)に備
えられた従来規格と同じ第2受光領域(75)の1つの第2メイン受光部(75A)に確
実に照射される。
1等の複数の信号面部Daを有するメディアDに対応可能とされている。
1等の複数の信号面部Daを有するメディアDに対する光ピックアップ装置の信号、情報
の読取り、及び/又は、第1層DL0、第2層DL1等の複数の信号面部Daを有するメ
ディアDに対する光ピックアップ装置の信号、情報の書込み等は、良好に行われる。回折
格子64A(図1~図4、図8、図9)による不要な光の発生が抑えられた光ピックアッ
プ装置(図1~図3)が構成されるので、光ピックアップ装置によって、複数の信号面部
Daを有するメディアDのデータ、信号、情報等の読取りが行われているときや、複数の
信号面部Daを有するメディアDにデータ、信号、情報等の書込み等が行われているとき
に、例えば不要な光の発生に起因した不具合が生じるということは回避される。
VD規格のメディアDの第1層DL0における信号の再生または信号の記録等が行われて
いるときに、回折格子64A(図1~図4、図8、図9)による不要な光がDVD規格の
メディアDの第2層DL1に照射され、その結果、DVD規格のメディアDの第2層DL
1における不要な反射光が、光検出器73AにおけるDVD受光領域75の一方の第2サ
ブ受光部75Bもしくは他方の第2サブ受光部75Cの何れか一方または両方にノイズと
して入り込み、光検出器73Aにいわゆる層間クロストークが生じるということは回避さ
れる。
、(DL1)を有する「Blu-ray Disc」規格、「HD DVD」規格、「C
BHD」規格等のメディア(D)の第1層(DL0)における信号の再生または信号の記
録等が行われているときに、回折格子(64A)(図1~図4、図8、図9)による不要
な光が、「Blu-ray Disc」規格、「HD DVD」規格、「CBHD」規格
等のメディア(D)の第2層(DL1)に照射され、その結果、「Blu-ray Di
sc」規格、「HD DVD」規格、「CBHD」規格等のメディア(D)の第2層(D
L1)における不要な反射光が、光検出器(73A)におけるDVD受光領域(75)の
一方の第2サブ受光部(75B)もしくは他方の第2サブ受光部(75C)の何れか一方
または両方にノイズとして入り込み、光検出器(73A)にいわゆる層間クロストークが
生じるということは回避される。
る。
回折格子64Bが光ピックアップ装置(図1~図3)に装備される。図1~図3および図
8に示す回折格子64Aが図4の右側および図11に示す回折格子64Bに置き換えられ
たこと以外に、光ピックアップ装置および光ディスク装置に変更はない。図1~図3およ
び図8に示す回折格子64Aが図4の右側および図11に示す回折格子64Bに置き換え
られた点で、実施例1と実施例2とが異なるが、回折格子64A、64B以外の他の部分
においては、実施例1と実施例2とは、共通なものとされている。便宜上、図1~図10
を併用して、実施例2を説明する。また、実施例2において、実施例1にて説明したもの
と同一のものについては、同一の符号を付し、その詳細な説明を省略した。
造の位相が他方の半平面22に形成された格子溝の周期構造の位相に対して約180度ず
れたDVD用回折格子部材20が、光学ガラス板50の一方の平面部50aに固着されて
構成される。光学ガラス板50が装備されることにより、回折格子64Bは、回折格子6
4A(図4の左側、図8)よりも機械的強度に優れる。
2のレーザ光の波長λと、回折格子64Bにおいて連続した凹部S11から凸部S12ま
たは凸部S12から凹部S11までを一周期とした格子間隔dと、に基づいて、上記式(
16)によるブラッグの条件に基づく近似式によって回折角θが求められる(図11参照
)。尚、図11に示す説明図は、説明を容易とさせるために、便宜上、描かれた図である
。
の現実の位置を示す第1の発光点Oから回折格子64Bの略平滑面Sの裏側の凹面S21
を構成する底面Siや凸面S22を構成する外面Siiまでの間の法線距離Lと、上記式(
16)により求めた回折角θと、に基づき、レーザユニット61の発光面61a上でのサ
ブビームに関する見かけ上の第1又は第2の光源62、63の位置を示す第2の発光点X
を定めることができる。尚、レーザユニット61の発光面61aは、回折格子64Bの略
平滑面Sの法線Nに対して垂直であり、面Sの裏側の凹面S21を構成する底面Siや凸
面S22を構成する外面Siiから略法線距離Lだけ離れた位置にある平面となっている。
そして、上記式(17)により、レーザユニット61の発光面61a上における第1の発
光点Oから第2の発光点Xまでの間の距離Yrが求められる(図11参照)。
、上記式(21)、(22)、(23)により、光検出器73AのDVD受光領域75に
おける受光間隔Ys(dvd)が求められる。また、上記式(24)、(25)、(26
)により、光検出器73AのCD受光領域74における受光間隔Ys(cd)が求められ
る。
、図13は、図12の回折格子における光ディスク半径方向と位相差との関係を示す図で
ある。
光ピックアップ装置(図1~図3)に装備される。図1~図3および図8に示す回折格子
64Aが図12に示す回折格子64Cに置き換えられたこと以外に、光ピックアップ装置
および光ディスク装置に変更はない。図1~図3および図8に示す回折格子64Aが図1
2に示す回折格子64Cに置き換えられた点で、実施例1と実施例3とが異なるが、回折
格子64A、64C以外の他の部分においては、実施例1と実施例3とは、共通なものと
されている。便宜上、図1~図8ならびに図16~図24を併用して、実施例3を説明す
る。また、実施例3において、実施例1にて説明したものと同一のものについては、同一
の符号を付し、その詳細な説明を省略した。
9、図20及び図21は、光ピックアップ装置のサブ・プッシュプル信号振幅レベル特性
を示す説明図、図22、図23及び図24は、光ピックアップ装置のトラッキングエラー
位相差特性を示す説明図である。
第1メインビームと2本の第1サブビームとに分ける回折面部30aと、第2レーザ波長
光を少なくとも1本の第2メインビームと2本の第2サブビームとに分ける回折面部30
aと、を兼ねて、複数種類のレーザ波長光の回折に対応する1つの面部30aとして形成
されている。
ける不要な回折光の発生が抑えられるとともにレーザ光の効率の低下が防止され、更に価
格を低く抑えることが可能な光ピックアップ装置が構成される。
レーザ波長光に対応した第2回折面部304と、の2つの回折面部302、304を有す
る従来の回折格子300A、300Bの第1回折面部302を第1レーザ波長光が透過し
て、第1レーザ波長光が1本の第1メインビームと2本の第1サブビームとに少なくとも
分けられるときに、回折格子300A、300Bの第2回折面部304により、第1レー
ザ波長光の第1メインビームが更に無駄に回折されるとともに第1サブビームが更に無駄
に回折され、これに伴って、第1レーザ波長光の第1メインビームおよび第1サブビーム
の光の効率が低下することが懸念されていた。
に対応した第2回折面部304と、の2つの回折面部302、304を有する従来の回折
格子300A、300Bの第2回折面部304を第2レーザ波長光が透過して、第2レー
ザ波長光が1本の第2メインビームと2本の第2サブビームとに少なくとも分けられると
きに、回折格子300A、300Bの第1回折面部302により、第2レーザ波長光が無
駄に回折され、これに伴って、第2レーザ波長光の光の効率が低下することが懸念されて
いた。
なくとも1本の第1メインビームと2本の第1サブビームとに分ける回折面部30aと、
第2レーザ波長光を少なくとも1本の第2メインビームと2本の第2サブビームとに分け
る回折面部30aと、を兼ねて複数種類のレーザ波長光の回折に対応する1つの面部30
aとして形成されていれば、第1レーザ波長光の第1メインビームおよび第1サブビーム
が不要に回折されて第1レーザ波長光の第1メインビームおよび第1サブビームの光の効
率が低下されたり、第2レーザ波長光が不要に回折されて第2レーザ波長光の光の効率が
低下されたりするということは回避される。
とに分ける回折面部30aと、第2レーザ波長光を少なくとも1本の第2メインビームと
2本の第2サブビームとに分ける回折面部30aと、を兼ねて複数種類のレーザ波長光の
回折に対応する1つの面部30aとして回折格子64Cの回折面部30aが形成されてい
るので、加工部分、加工工数等が減らされた回折格子64Cが構成される。回折格子64
Cの加工部分、加工工数等が減らされるので、回折格子64Cの価格が低く抑えられる。
これに伴って、価格を低く抑えることが可能とされた光ピックアップ装置を構成させるこ
とが可能となる。
レーザ光の一部にπラジアンの位相シフトを発生させる位相シフト領域部31、33(図
12)が設けられている。回折格子64Cは、略長方形状の第1領域部31と、第1領域
部31に隣接する略線状の第2領域部32と、第2領域部32に隣接する略長方形状の第
3領域部33との少なくとも3つの領域部31、32、33に分けられている。回折格子
64Cは、複数の領域部31、32、33に分けられている。各領域部31、32、33
内で所定の周期構造が構成されている。
ために、便宜上、第2領域部32は、ある程度の幅をもたせて描かれている。実際には、
回折格子64Cの第2領域部32は、例えば幅32wが20~200μm程度の細い線形
状とされる。また、回折格子64Cを構成する各領域部31、32、33の周期構造は、
微細な凹凸状の繰返し周期構造とされている。また、回折格子64Cは、例えば略3~1
0mm角の縦横寸法をした厚み略0.3~3mmのガラス板とされている。図12に示す
回折格子64Cが斜視されたときに、回折格子64Cは、例えば図1に示す回折格子64
Aのように眺められる。
れば、メディアD(図5、図7)の信号面部Daに対する光ピックアップ装置のエラー信
号の検出は、良好に行われ易くなる。例えば、メディアDの信号面部Daに対する光ピッ
クアップ装置のトラッキングは、良好に行われ易くなる。回折格子64C(図12)が複
数の領域部31、32、33に分けられて構成されることにより、メディアD(図5)の
信号面部Daに、各々独立した少なくとも三個の集光スポット80、81、82が照射さ
れる。メディアDの信号面部Daに、少なくとも三個の集光スポット80、81、82が
各々独立して照射されるので、トラックピッチDtpが異なる2種類以上のメディアDの
記録/再生時等に、トラッキングエラー信号SE1、SE2等のエラー信号の検出精度が
低下するということは回避され易くなる。従って、トラッキング制御が行われ易い光ピッ
クアップ装置の提供が可能となる。
域部31の周期構造に対し異なる周期構造を有する第2領域部32と、第2領域部32に
隣接し第2領域部32の周期構造に対し異なる周期構造を有する第3領域部33と、の3
つの領域部31、32、33に分けられている。回折格子64Cは、いわゆる3分割型イ
ンライングレーティングとして構成されている。
ップ装置に装備されていれば、メディアD(図2、図3、図5、図7)の信号面部Daに
対する光ピックアップ装置のエラー信号の検出は、良好に行われる。例えば、メディアD
の信号面部Daに対する光ピックアップ装置のトラッキングは、良好に行われる。回折格
子64C(図12)が3つの領域部31、32、33に分けられて構成されることにより
、メディアD(図5)の信号面部Daに、各々独立した少なくとも3個の集光スポット8
0、81、82が照射される。メディアDの信号面部Daに、少なくとも3個の集光スポ
ット80、81、82が各々独立して照射されるので、トラックピッチDtpが異なる2
種類以上のメディアDにデータ記録等が行われるときや、トラックピッチDtpが異なる
2種類以上のメディアDのデータ再生が行われるときに、例えば対物レンズ70(図1~
図3)の変位に伴って、トラッキングエラー信号SE1、SE2等のエラー信号の検出精
度が低下するということは回避される。従って、トラッキング制御が行われ易い光ピック
アップ装置の提供が可能となる。
31と、第3領域部32とされる略長方形状の他方の領域部32とを有するものとされる
。回折格子64Cの第1領域部31の幅31wと、第3領域部33の幅33wとは、略等
しい幅とされている。回折格子64Cの第2領域部32により、回折格子64Cは、回折
格子64Cを構成する一方の領域部31と、回折格子64Cを構成する他方の領域部32
とに分けられる。回折格子64Cは、奇数分割されている。
の間に、回折格子64Cを構成する略線状の第2領域部32が配置されている。第1領域
部31の周期構造に対し、第2領域部32の周期構造は、異なる位相を有する周期構造と
されている。また、第2領域部32の周期構造に対し、第3領域部33の周期構造は、異
なる位相を有する周期構造とされている。第1領域部31の周期構造に対し、第3領域部
33の周期構造は、略180度ほど異なる位相を有する周期構造とされている。
部33とが区別化されるとともに、回折格子64Cおける第1領域部31と、第3領域部
33との位相差が明確化される。回折格子64Cの第1領域部31の周期構造に対し、回
折格子64Cの第3領域部33の周期構造が、略180度ほど異なる位相を有する周期構
造とされているので、メディアD(図5)の信号面部Daに少なくとも3個の各集光スポ
ット80、81、82が良好に形成される。メディアDの信号面部Daに良好に形成され
た少なくとも3個の各集光スポット80、81、82により、トラックピッチDtpが異
なる複数種類のメディアDのデータ記録/再生時等に、例えば対物レンズ70(図1~図
3)の変位に伴ってトラッキングエラー信号SE1、SE2が劣化するということは回避
され易くなる。
部31と第2領域部32とが分けられている。また、第2領域部32と第3領域部33と
を区切る境界線部37により、第2領域部32と第3領域部33とが分けられている。
5)の信号面部Daに、各々独立した少なくとも3個の集光スポット80、81、82が
照射される。メディアDの信号面部Daに、少なくとも3個の集光スポット80、81、
82が各々独立して照射されるので、メディアDの信号面部Daに対する光ピックアップ
装置のトラッキングは、行われ易くなる。
されたときに、回折格子64Cは、略矩形板状のものとして目視される。
状第3領域部33とが横並びに配列された状態で、回折格子64Cが平面視されたときに
、回折格子64Cの一領域部の位相に対し、一領域部の右側に隣接する他領域部の位相が
略右上がり階段状にずらされた場合に、他領域部の位相は、プラス(+)側にずらされた
ものと定められる。
長方形状第3領域部33とが横並びに配列された状態で、回折格子64Cが平面視された
ときに、回折格子64Cの一領域部の位相に対し、一領域部の右側に隣接する他領域部の
位相が略右下がり階段状にずらされた場合に、他領域部の位相は、マイナス(-)側にず
らされたものと定められる。
31の右側に隣接する第2領域部32の周期構造は、プラス側にずらされた位相を有する
周期構造とされている。また、回折格子64Cが平面視されたときに、第2領域部32の
周期構造に対し、第2領域部32の右側に隣接する第3領域部33の周期構造は、プラス
側にずらされた位相を有する周期構造とされている。
にずらされて構成されている(図13)。回折格子64C(図12)は、いわゆる順位相
の周期構造を備える回折格子64Cとされている。
いて、符号や引出線や寸法線などについては略そのままとされつつ、輪郭線のみが左右反
転された回折格子(64C)が用いられてもよい。そのようなものについて具体的に説明
すると、例えば、回折格子(64C)が平面視されたときに、第1領域部(31)の周期
構造に対し、第1領域部(31)の右側に隣接する第2領域部(32)の周期構造が、マ
イナス側にずらされた位相を有する周期構造とされてもよい。また、例えば、回折格子(
64C)が平面視されたときに、第2領域部(32)の周期構造に対し、第2領域部(3
2)の右側に隣接する第3領域部(33)の周期構造が、マイナス側にずらされた位相を
有する周期構造とされてもよい。
て段階的にずらされて構成される。回折格子(64C)は、いわゆる順位相の周期構造を
備える回折格子(64C)とされる。
プッシュプル信号振幅レベル(Sub-PP振幅レベル)が増加され、サブ・プッシュプ
ル信号振幅レベル特性(Sub-PP振幅レベル特性)が向上され易くなる(図19、図
20、図21)。Sub-PP振幅レベル(%)が減少され、Sub-PP振幅レベル特
性が低下するということは回避される。
の集光スポット80、81、82は、メインスポット80と、メインスポット80を挟む
一対のサブスポット81、82とを含むものとされている。メインスポット80と、サブ
スポット81、82とに関連した信号振幅レベルとされるSub-PP振幅レベルは、つ
ぎの式(37)に基づいて定められる。
位相差特性(TE位相差特性)が向上され易くなる(図22、図23、図24)。TE位
相差量が増加され、TE位相差特性が低下するということは回避される。
、この光ピックアップ装置は、デスクトップ型PC用の光ディスク装置に装備されて使用
されることが可能とされるとともに、ノート型もしくはラップトップ型PC用の光ディス
ク装置に装備されて使用されることも可能とされる。例えばデスクトップ型PC用の光デ
ィスク装置に用いられる光ピックアップ装置は、大きいサイズの対物レンズが使用可能と
されることから、視野特性が考慮されつつ、視野特性よりも、Sub-PP振幅レベル特
性や、TE位相差特性のほうが、設計上、重要とされることがある。
ピックアップ装置は、デスクトップ型PC用の光ディスク装置に装備されて使用されるこ
とが可能とされるとともに、ノート型もしくはラップトップ型PC用の光ディスク装置に
装備されて使用されることも可能とされる。
は、略+90度異なる位相を有する周期構造とされている。また、第2領域部32の周期
構造に対し、第3領域部33の周期構造は、略+90度異なる位相を有する周期構造とさ
れている。第1領域部31の周期構造に対し、第3領域部33の周期構造は、略+180
度異なる位相を有する周期構造とされている。
b-PP振幅レベル(%)が増加され、Sub-PP振幅レベル特性が向上する(図19
、図20、図21)。Sub-PP振幅レベル(%)が減少され、Sub-PP振幅レベ
ル特性が低下するということは回避される。また、TE位相差量が減少され、TE位相差
特性が向上する(図22、図23、図24)。TE位相差量が増加され、TE位相差特性
が低下するということは回避される。
るトラッキング誤差検出法が実行される光ピックアップ装置(図1~図3)は、TE位相
差量を小さく抑えることが可能となる(図22、図23、図24)。従って、位相シフト
型3分割回折格子64C(図12)を備える光ピックアップ装置(図1~図3)が装備さ
れた光ディスク装置においては、例えばトラックピッチDtp(図5)の異なるいかなる
メディアDに対しても、安定した動作にて、メディアDに対しデータ/情報の読出し/書
込み等が行われる。
もに、TE位相差特性が向上されるので、この光ピックアップ装置は、デスクトップ型P
C用の光ディスク装置に装備されて使用されることが可能とされるとともに、ノート型も
しくはラップトップ型PC用の光ディスク装置に装備されて使用されることも可能とされ
る。
、トラッキングエラー振幅レベル(TE振幅レベル)(%)が大幅に減少され、TE視野
特性が著しく低下するということは回避される(図16、図17、図18)。TE視野特
性の大幅な低下が抑えられるので、この光ピックアップ装置は、ノート型もしくはラップ
トップ型PC用の光ディスク装置に装備されて使用されることが可能とされるとともに、
デスクトップ型PC用の光ディスク装置に装備されて使用されることも可能とされる。ま
た、TE視野特性の大幅な低下が抑えられるので、この光ピックアップ装置は、例えば複
数の小さい対物レンズ70を備える光ピックアップ装置として使用されることも可能とさ
れる。
た波長略630~685nmの第2レーザ波長光の直径70bに対し、回折格子64Cの
中央部30m(図12)の幅32wは、例えば14~30%、好ましくは16~28%、
より好ましくは18~26%、更に好ましくは18~25%とされる。すなわち、DVD
規格に準拠した波長略630~685nmの第2レーザ波長光が回折格子64Cを通過す
るときに、回折格子64Cの中央部比率Wrは、例えば14~30%、好ましくは16~
28%、より好ましくは18~26%、更に好ましくは18~25%とされる(図16~
図23)。
ックピッチDtpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ
70の変位に伴ってトラッキングエラー信号SE1、SE2が劣化するということは回避
され易くなる。
nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅32w
が14%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特性が低下
される(図16、図17)。すなわち、DVD規格に準拠した波長略630~685nm
の第2レーザ波長光が回折格子64Cを通過するときに、回折格子64Cの中央部比率W
rが14%未満に設定された場合、OBLセンタ比(%)が減少され、TE視野特性が低
下される。対物レンズ70の瞳面部70aを通過するDVD規格に準拠した波長略630
~685nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの
幅32wが16%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特
性が低下され易くなる(図16、図17)。すなわち、DVD規格に準拠した波長略63
0~685nmの第2レーザ波長光が回折格子64Cを通過するときに、回折格子64C
の中央部比率Wrが16%未満に設定された場合、OBLセンタ比(%)が減少され、T
E視野特性が低下され易くなる。
nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅32w
が18%以上とされることにより、TE振幅レベル(%)の減少が抑えられ、TE視野特
性の低下が抑えられる。すなわち、DVD規格に準拠した波長略630~685nmの第
2レーザ波長光が回折格子64Cを通過するときに、回折格子64Cの中央部比率Wrが
18%以上とされることにより、OBLセンタ比(%)の減少が抑えられ、TE視野特性
の低下が抑えられる。OBL(objective lens)とは、対物レンズを意味
する。
685nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅
32wが30%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Sub-
PP振幅レベル)(%)が減少され、Sub-PP振幅レベル特性が低下される(図19
、図20)。対物レンズ70の瞳面部70aを通過するDVD規格に準拠した波長略63
0~685nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30m
の幅32wが28%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Su
b-PP振幅レベル)(%)が減少され、Sub-PP振幅レベル特性が低下され易くな
る。
nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅32w
が26%以内とされることにより、Sub-PP振幅レベル(%)の減少が抑えられ易く
なり、Sub-PP振幅レベル特性の低下が抑えられ易くなる。具体的に説明すると、対
物レンズ70の瞳面部70aを通過するDVD規格に準拠した波長略630~685nm
の第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅32wが2
5%以内とされることにより、Sub-PP振幅レベル(%)の減少が抑えられ、Sub
-PP振幅レベル特性の低下が抑えられる。
630~685nmの第2レーザ波長光の直径70bに対し、回折格子64C(図12)
の中央部30mの幅32wが30%を超えて設定された場合、トラッキングエラー位相差
量(TE位相差量)が増加され、トラッキングエラー位相差特性(TE位相差特性)が低
下される(図22、図23)。具体的に説明すると、対物レンズ70(図2)の瞳面部7
0aを通過するDVD規格に準拠した波長略630~685nmの第2レーザ波長光の直
径70bに対し、回折格子64C(図12)の中央部30mの幅32wが28%を超えて
設定された場合、トラッキングエラー位相差量(TE位相差量)が増加され、トラッキン
グエラー位相差特性(TE位相差特性)が低下され易くなる(図22、図23)。
nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅32w
が26%以内とされることにより、TE位相差量の増加が抑えられ易くなり、TE位相差
特性の低下が抑えられ易くなる。具体的に説明すると、対物レンズ70の瞳面部70aを
通過するDVD規格に準拠した波長略630~685nmの第2レーザ波長光の直径70
bに対し、回折格子64Cの中央部30mの幅32wが25%以内とされることにより、
TE位相差量の増加が抑えられ、TE位相差特性の低下が抑えられる。
nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの幅32w
が例えば14~30%好ましくは16~28%より好ましくは18~26%更に好ましく
は18~25%に設定されることにより、TE振幅レベル(図16、図17)と、Sub
-PP振幅レベル(図19、図20)と、TE位相差量(図22、図23)とが適度な値
に設定され易くなる。
~685nmの第2レーザ波長光の直径70bに対し、回折格子64Cの中央部30mの
幅32wが略20%に設定されることにより、TE振幅レベル(図16、図17)と、S
ub-PP振幅レベル(図19、図20)と、TE位相差量(図22、図23)とが最適
な値に設定され易くなる。TE振幅レベルと、Sub-PP振幅レベルと、TE位相差量
とが、バランスよく適度な値に設定されるので、光ピックアップ装置のトラッキング制御
が行われ易くなる。
波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Cの中
央部30m(図12)の幅32wは、例えば10%以上40%以下、好ましくは12%以
上30%以下、設計/仕様などにより14%以上25%以下、また設計/仕様などにより
16%以上20%以下とされる。すなわち、CD規格に準拠した波長略765~840n
mの第1レーザ波長光が回折格子64Cを通過するときに、回折格子64Cの中央部比率
Wrは、例えば10%以上40%以下、好ましくは12%以上30%以下、設計/仕様な
どにより14%以上25%以下、また設計/仕様などにより16%以上20%以下とされ
る(図18、図21、図24)。
ックピッチDtpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ
70の変位に伴ってトラッキングエラー信号SE1、SE2が劣化するということは回避
され易くなる。
mの第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅32wが
10%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特性が低下さ
れる(図18)。すなわち、CD規格に準拠した波長略765~840nmの第1レーザ
波長光が回折格子64Cを通過するときに、回折格子64Cの中央部比率Wrが10%未
満に設定された場合、OBLセンタ比(%)が減少され、TE視野特性が低下される。対
物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略765~840nmの
第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅32wが12
%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特性が低下され易
くなる(図18)。すなわち、CD規格に準拠した波長略765~840nmの第1レー
ザ波長光が回折格子64Cを通過するときに、回折格子64Cの中央部比率Wrが12%
未満に設定された場合、OBLセンタ比(%)が減少され、TE視野特性が低下され易く
なる。
mの第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅32wが
14%以上とされることにより、TE振幅レベル(%)の減少が抑えられ、TE視野特性
の低下が抑えられる。すなわち、CD規格に準拠した波長略765~840nmの第1レ
ーザ波長光が回折格子64Cを通過するときに、回折格子64Cの中央部比率Wrが14
%以上とされることにより、OBLセンタ比(%)の減少が抑えられ、TE視野特性の低
下が抑えられる。具体的に説明すると、対物レンズ70の瞳面部70aを通過するCD規
格に準拠した波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格
子64Cの中央部30mの幅32wが16%以上とされることにより、TE振幅レベル(
%)の減少が抑えられ、TE視野特性の低下が確実に抑えられる。すなわち、CD規格に
準拠した波長略765~840nmの第1レーザ波長光が回折格子64Cを通過するとき
に、回折格子64Cの中央部比率Wrが16%以上とされることにより、OBLセンタ比
(%)の減少が抑えられ、TE視野特性の低下が確実に抑えられる。
40nmの第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅3
2wが40%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Sub-P
P振幅レベル)(%)が減少され、Sub-PP振幅レベル特性が低下される(図21)
。対物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略765~840n
mの第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅32wが
30%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Sub-PP振幅
レベル)(%)が減少され、Sub-PP振幅レベル特性が低下され易くなる。
波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Cの中
央部30mの幅32wが25%以内とされることにより、Sub-PP振幅レベル(%)
の減少が抑えられ易くなり、Sub-PP振幅レベル特性の低下が抑えられ易くなる。ま
た、設計/仕様などにより、対物レンズ70の瞳面部70aを通過するCD規格に準拠し
た波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Cの
中央部30mの幅32wが20%以内とされることにより、Sub-PP振幅レベル(%
)の減少が抑えられ、Sub-PP振幅レベル特性の低下が抑えられる。
65~840nmの第1レーザ波長光の直径70cに対し、回折格子64C(図12)の
中央部30mの幅32wが40%を超えて設定された場合、トラッキングエラー位相差量
(TE位相差量)が増加され、トラッキングエラー位相差特性(TE位相差特性)が低下
される(図24)。具体的に説明すると、対物レンズ70(図3)の瞳面部70aを通過
するCD規格に準拠した波長略765~840nmの第1レーザ波長光の直径70cに対
し、回折格子64C(図12)の中央部30mの幅32wが30%を超えて設定された場
合、トラッキングエラー位相差量(TE位相差量)が増加され、トラッキングエラー位相
差特性(TE位相差特性)が低下され易くなる(図24)。
波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Cの中
央部30mの幅32wが25%以内とされることにより、TE位相差量の増加が抑えられ
易くなり、TE位相差特性の低下が抑えられ易くなる。また、設計/仕様などにより、対
物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略765~840nmの
第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅32wが20
%以内とされることにより、TE位相差量の増加が抑えられ、TE位相差特性の低下が抑
えられる。
mの第1レーザ波長光の直径70cに対し、回折格子64Cの中央部30mの幅32wが
、例えば10%以上40%以下、好ましくは12%以上30%以下、設計/仕様などによ
り14%以上25%以下、また設計/仕様などにより16%以上20%以下に設定される
ことにより、TE振幅レベル(図18)と、Sub-PP振幅レベル(図21)と、TE
位相差量(図24)とが適度な値に設定され易くなる。
下式(39)を設定するために、まず、回折格子64Cの中央部30mの幅32wをB1
と定める。また、対物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略7
65~840nmの第1レーザ波長光の直径70cをB2と定める。また、対物レンズ7
0の瞳面部70aを通過するDVD規格に準拠した波長略630~685nmの第2レー
ザ波長光の直径70bをB3と定める。
る光ピックアップ装置を構成させる。
下、設計/仕様などにより0.14以上0.25以下、また設計/仕様などにより0.1
6以上0.20以下に設定されることにより、CD規格に準拠した光ディスクDに対する
光ピックアップ装置のデータ/情報/信号の読取り/書込み等が行われるときに、視野特
性の最低値「DPP_L」と、メインプッシュプル信号の信号レベルに対するサブプッシ
ュプル信号の信号レベルの割合「SPP/MPP」とが適度な値に設定され易くなる。
り好ましくは0.18~0.26、更に好ましくは0.18~0.25に設定されること
により、DVD規格に準拠した光ディスクDに対する光ピックアップ装置のデータ/情報
/信号の読取り/書込み等が行われるときに、視野特性の最低値「DPP_L」と、メイ
ンプッシュプル信号の信号レベルに対するサブプッシュプル信号の信号レベルの割合「S
PP/MPP」とが適度な値に設定され易くなる。
00μm、好ましくは60~160μm、より好ましくは96~144μmに設定される
。すなわち、回折格子64Cの分割部幅32wは、20~200μm、好ましくは60~
160μm、より好ましくは96~144μmに設定される。
、良好に行われ易くなる。トラックピッチDtpが異なる複数種類のメディアDの記録/
再生時等に、例えば対物レンズ70の変位に伴って、トラッキングエラー信号SE1、S
E2が劣化するということは回避され易くなる。
回折格子64Cの第2領域部32の幅32wが200μmを超える広い幅とされた場合に
は、TE視野特性と、Sub-PP振幅レベル特性と、TE位相差特性とのバランスが崩
される。各特性のバランスが崩されると、トラッキングエラー信号SE1、SE2が劣化
されて、メディアDの信号面部Daに対する光ピックアップ装置のトラッキングが正確に
行われ難くなる。
れることにより、TE視野特性と、Sub-PP振幅レベル特性と、TE位相差特性との
バランスが略保たれ易くなる。これに伴って、メディアDの信号面部Daに対する光ピッ
クアップ装置のトラッキングは、正確に行われ易くなる。
に設定されることにより、TE視野特性と、Sub-PP振幅レベル特性と、TE位相差
特性とのバランスが保たれる。これにより、トラッキングエラー信号SE1、SE2の劣
化は回避される。従って、メディアDの信号面部Daに対する光ピックアップ装置のトラ
ッキングは、正確に行われる。
(図12)と、少なくとも3本の光束を集光して、メディアD(図1~図3、図5)の信
号面部Da(図5)に、各々独立した少なくとも3個の集光スポット80、81、82を
照射させる対物レンズ70(図1~図3)と、メディアDにおける3個の各集光スポット
80、81、82(図5)の反射光を受光する光検出器73A(図1~図3、図5~図7
)とを備えて構成される。
aに対する光ピックアップ装置のトラッキングは、精度よく行われる。トラックピッチD
tpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ70(図1~
図3)の変位に伴って、トラッキングエラー信号SE1、SE2の振幅が劣化することや
、トラッキングエラー信号SE1、SE2にオフセットが残留するということは回避され
易くなる。
ることにより、DVD-RAMに対する光ピックアップ装置のデータ再生動作またはデー
タ記録動作は、確実に行われる。また、DVD±R、DVD±RWに対する光ピックアッ
プ装置のデータ再生動作またはデータ記録動作も、確実に行われる。
、図15は、図14の回折格子における光ディスク半径方向と位相差との関係を示す図で
ある。
光ピックアップ装置(図1~図3)に装備される。図1~図3および図8に示す回折格子
64Aが図14に示す回折格子64Dに置き換えられたこと以外に、光ピックアップ装置
および光ディスク装置に変更はない。図1~図3および図8に示す回折格子64Aが図1
4に示す回折格子64Dに置き換えられた点で、実施例1と実施例4とが異なるが、回折
格子64A、64D以外の他の部分においては、実施例1と実施例4とは、共通なものと
されている。便宜上、図1~図8ならびに図16~図24を併用して、実施例4を説明す
る。また、実施例4において、実施例1にて説明したものと同一のものについては、同一
の符号を付し、その詳細な説明を省略した。
第1メインビームと2本の第1サブビームとに分ける回折面部40aと、第2レーザ波長
光を少なくとも1本の第2メインビームと2本の第2サブビームとに分ける回折面部40
aと、を兼ねて、複数種類のレーザ波長光の回折に対応する1つの面部40aとして形成
されている。
ける不要な回折光の発生が抑えられるとともにレーザ光の効率の低下が防止され、更に価
格を低く抑えることが可能な光ピックアップ装置が構成される。
レーザ波長光に対応した第2回折面部304と、の2つの回折面部302、304を有す
る従来の回折格子300A、300Bの第1回折面部302を第1レーザ波長光が透過し
て、第1レーザ波長光が1本の第1メインビームと2本の第1サブビームとに少なくとも
分けられるときに、回折格子300A、300Bの第2回折面部304により、第1レー
ザ波長光の第1メインビームが更に無駄に回折されるとともに第1サブビームが更に無駄
に回折され、これに伴って、第1レーザ波長光の第1メインビームおよび第1サブビーム
の光の効率が低下することが懸念されていた。
に対応した第2回折面部304と、の2つの回折面部302、304を有する従来の回折
格子300A、300Bの第2回折面部304を第2レーザ波長光が透過して、第2レー
ザ波長光が1本の第2メインビームと2本の第2サブビームとに少なくとも分けられると
きに、回折格子300A、300Bの第1回折面部302により、第2レーザ波長光が無
駄に回折され、これに伴って、第2レーザ波長光の光の効率が低下することが懸念されて
いた。
なくとも1本の第1メインビームと2本の第1サブビームとに分ける回折面部40aと、
第2レーザ波長光を少なくとも1本の第2メインビームと2本の第2サブビームとに分け
る回折面部40aと、を兼ねて複数種類のレーザ波長光の回折に対応する1つの面部40
aとして形成されていれば、第1レーザ波長光の第1メインビームおよび第1サブビーム
が不要に回折されて第1レーザ波長光の第1メインビームおよび第1サブビームの光の効
率が低下されたり、第2レーザ波長光が不要に回折されて第2レーザ波長光の光の効率が
低下されたりするということは回避される。
とに分ける回折面部40aと、第2レーザ波長光を少なくとも1本の第2メインビームと
2本の第2サブビームとに分ける回折面部40aと、を兼ねて複数種類のレーザ波長光の
回折に対応する1つの面部40aとして回折格子64Dの回折面部40aが形成されてい
るので、加工部分、加工工数等が減らされた回折格子64Dが構成される。回折格子64
Dの加工部分、加工工数等が減らされるので、回折格子64Dの価格が低く抑えられる。
これに伴って、価格を低く抑えることが可能とされた光ピックアップ装置を構成させるこ
とが可能となる。
レーザ光の一部にπラジアンの位相シフトを発生させる位相シフト領域部41、44(図
14)が設けられている。回折格子64Dは、略長方形状の第1領域部41と、第1領域
部41に隣接する略線状の第2領域部42と、第2領域部42に隣接する略線状の第3領
域部43と、第3領域部43に隣接する略長方形状の第4領域部44との少なくとも4つ
の領域部41、42、43、44に分けられている。回折格子64Dは、複数の領域部4
1、42、43、44に分けられている。各領域部41、42、43、44内で所定の周
期構造が構成されている。
の位相状態とが分かり易くされるために、便宜上、第2領域部42および第3領域部43
は、ある程度の幅をもたせて描かれている。実際には、回折格子64Dの第2領域部42
および回折格子64Dの第3領域部43は、例えば幅40wが20~200μm程度の細
い線形状とされる。また、回折格子64Dを構成する各領域部41、42、43、44の
周期構造は、微細な凹凸状の繰返し周期構造とされている。また、回折格子64Dは、例
えば略3~10mm角の縦横寸法をした厚み略0.3~3mmのガラス板とされている。
図14に示す回折格子64Dが斜視されたときに、回折格子64Dは、例えば図1に示す
回折格子64Aのように眺められる。
れていれば、メディアD(図5、図7)の信号面部Daに対する光ピックアップ装置のエ
ラー信号の検出は、良好に行われ易くなる。例えば、メディアDの信号面部Daに対する
光ピックアップ装置のトラッキングは、良好に行われ易くなる。回折格子64D(図14
)が複数の領域部41、42、43、44に分けられて構成されることにより、メディア
D(図5)の信号面部Daに、各々独立した少なくとも三個の集光スポット80、81、
82が照射される。メディアDの信号面部Daに、少なくとも三個の集光スポット80、
81、82が各々独立して照射されるので、トラックピッチDtpが異なる2種類以上の
メディアDの記録/再生時等に、トラッキングエラー信号SE1、SE2等のエラー信号
の検出精度が低下するということは回避され易くなる。従って、トラッキング制御が行わ
れ易い光ピックアップ装置の提供が可能となる。
いる。
、メディアD(図5)の信号面部Daに形成される集光スポット80、81、82は、精
度のよい集光スポット80、81、82として形成される。例えば、回折格子64D(図
14)の第2領域部42と、第2領域部42に隣接する第3領域部43との境界線部46
によって、第1領域部41および第1領域部41に隣接する第2領域部42を備える一方
の領域部48と、第3領域部43および第3領域部43に隣接する第4領域部44を備え
る他方の領域部49と、に回折格子64Dが少なくとも2等分されて偶数分割されている
ので、光ピックアップ装置に回折格子64Dが装備されるときに、回折格子64Dに当て
られる光は、回折格子64Dの一方の領域部48と、回折格子64Dの他方の領域部49
とに、略2等分された状態に当てられ易くなる。回折格子64Dの一方の領域部48と、
回折格子64Dの他方の領域部49とに、光が略2等分とされた状態に当てられ易くなる
ことにより、回折格子64Dは、光ピックアップ装置に精度よく備えられ易くなる。従っ
て、メディアD(図5)の信号面部Daに精度よく集光スポット80、81、82が形成
され易くなる。これに伴って、トラックピッチDtpが異なる2種類以上のメディアDの
記録/再生時等におけるトラッキングエラー信号SE1、SE2等のエラー信号の検出精
度が向上する。また、メディアDの信号面部Daに対する光ピックアップ装置のトラッキ
ングは、精度よく行われ易くなる。
域部41の周期構造に対し異なる周期構造を有する第2領域部42と、第2領域部42に
隣接し第2領域部42の周期構造に対し異なる周期構造を有する第3領域部43と、第3
領域部43に隣接し第3領域部43の周期構造に対し異なる周期構造を有する第4領域部
44と、の少なくとも4つの領域部41、42、43、44に分けられている。回折格子
64Dは、いわゆる4分割型インライングレーティングとして構成されている。
ックアップ装置に装備されていれば、メディアD(図2、図3、図5、図7)の信号面部
Daに対する光ピックアップ装置のエラー信号の検出は、良好に行われる。例えば、メデ
ィアDの信号面部Daに対する光ピックアップ装置のトラッキングは、良好に行われる。
回折格子64D(図14)が4つの領域部41、42、43、44に分けられて構成され
ることにより、メディアD(図5)の信号面部Daに、各々独立した少なくとも3個の集
光スポット80、81、82が照射される。メディアDの信号面部Daに、少なくとも3
個の集光スポット80、81、82が各々独立して照射されるので、トラックピッチDt
pが異なる2種類以上のメディアDにデータ記録等が行われるときや、トラックピッチD
tpが異なる2種類以上のメディアDのデータ再生が行われるときに、例えば対物レンズ
70(図1~図3)の変位に伴って、トラッキングエラー信号SE1、SE2等のエラー
信号の検出精度が低下するということは回避される。従って、トラッキング制御が行われ
易い光ピックアップ装置の提供が可能となる。
2領域部42を備える略長方形状の一方の領域部48と、第3領域部43および第3領域
部43に隣接する第4領域部44を備える略長方形状の他方の領域部49とを有するもの
とされる。回折格子64Dの第1領域部41の幅41wと、第4領域部44の幅44wと
は、略等しい幅とされている。また、回折格子64Dの第2領域部42の幅42wと、第
3領域部43の幅43wとは、略等しい幅とされている。回折格子64Dの第2領域部4
2と、この第2領域部42に隣接する回折格子64Dの第3領域部43との境界線部46
により、回折格子64Dは、回折格子64Dを構成する一方の領域部48と、回折格子6
4Dを構成する他方の領域部49とに2等分される。回折格子64Dは、偶数分割されて
いる。
、82は、精度のよい集光スポット80、81、82として形成される。偶数分割された
回折格子64D(図14)の第2領域部42と、第2領域部42に隣接する第3領域部4
3との境界線部46によって、第1領域部41および第1領域部41に隣接する第2領域
部42を備える一方の領域部48と、第3領域部43および第3領域部43に隣接する第
4領域部44を備える他方の領域部49とに回折格子64Dが2等分されるので、光ピッ
クアップ装置のハウジング(不図示)に回折格子64Dが装備されるときに、レーザユニ
ット61(図1~図3)から出射され回折格子64Dに当てられたレーザ光は、例えば不
図示の光軸調整用カメラなどにより、容易に光軸調整される。レーザユニット61から出
射され回折格子64Dに当てられたのちに対物レンズ70を透過したレーザ光は、例えば
光軸調整用カメラなどが用いられて観察可能とされる。
せて、略長方形状の一方の領域部48と、略長方形状の他方の領域部49とを構成させる
境界線部46が回折格子64Dに設けられているので、光軸調整用カメラなどが用いられ
てレーザ光の光軸調整が行われるときに、レーザ光は、回折格子64Dを構成する略長方
形状の一方の領域部48と、回折格子64Dを構成する略長方形状の他方の領域部49と
に、略2等分された状態に当てられ易くなる。
る略長方形状の他方の領域部49とに、レーザ光が略2等分とされた状態に当てられ易く
なることにより、回折格子64Dは、光ピックアップ装置のハウジングに精度よく位置決
め調整されつつ備えられ易くなる。従って、メディアD(図5)の信号面部Daに精度よ
く集光スポット80、81、82が形成され易くなる。これに伴って、メディアDの信号
面部Daに対する光ピックアップ装置のトラッキングは、精度よく行われ易くなる。
の周期構造は、3~180度の範囲内の異なる位相を有する周期構造とされる。
、より精度の高い集光スポット80、81、82として形成され易くなる。回折格子64
Dを構成する第2領域部42の周期構造に対し、回折格子64Dを構成する第3領域部4
3の周期構造は、3~180度の範囲内の異なる位相を有する周期構造とされているので
、回折格子64Dの第2領域部42と、第2領域部42に隣接する回折格子64Dの第3
領域部43との境界線部46が略明確化される。
を有する周期構造とされた場合、第2領域部42と、第3領域部43との境界線部46が
明確化されない。第2領域部42の周期構造に対し、第3領域部43の周期構造が180
度の異なる位相を有する周期構造とされたときに、第2領域部42と、第3領域部43と
の境界線部46は、最も明確化される。第2領域部42の周期構造に対し、第3領域部4
3の周期構造が、例えば3~90度の範囲内の異なる位相を有する周期構造とされた場合
に、第2領域部42と、第3領域部43との境界線部46が明確化されつつ、適度な特性
を備えた回折格子64Dが形成される。
6が略明確化されるので、第1領域部41および第1領域部41に隣接する第2領域部4
2を備える回折格子64Dの一方の領域部48と、第3領域部43および第3領域部43
に隣接する第4領域部44を備える回折格子64Dの他方の領域部49との境界線部46
が明確化される。従って、回折格子64Dの一方の領域部48と、回折格子64Dの他方
の領域部49とに、レーザ光が略2等分された状態に当てられる。回折格子64Dの一方
の領域部48と、回折格子64Dの他方の領域部49とに、レーザ光が略2等分された状
態に当てられたときに、光ピックアップ装置のハウジングに回折格子64Dが精度よく装
備される。
の間に、回折格子64Dを構成する略線状の第2領域部42および略線状の第3領域部4
3が配置されている。第1領域部41の周期構造に対し、第2領域部42の周期構造は、
異なる位相を有する周期構造とされている。また、第2領域部42の周期構造に対し、第
3領域部43の周期構造は、異なる位相を有する周期構造とされている。また、第3領域
部43の周期構造に対し、第4領域部44の周期構造は、異なる位相を有する周期構造と
されている。第1領域部41の周期構造に対し、第4領域部44の周期構造は、略180
度ほど異なる位相を有する周期構造とされている。
部43と、第4領域部44とが区別化されるとともに、回折格子64Dおける第1領域部
41と、第4領域部44との位相差が明確化される。回折格子64Dの第1領域部41の
周期構造に対し、回折格子64Dの第4領域部44の周期構造が、略180度ほど異なる
位相を有する周期構造とされているので、メディアD(図5)の信号面部Daに少なくと
も3個の各集光スポット80、81、82が良好に形成される。メディアDの信号面部D
aに良好に形成された少なくとも3個の各集光スポット80、81、82により、トラッ
クピッチDtpが異なる複数種類のメディアDのデータ記録/再生時等に、例えば対物レ
ンズ70(図1~図3)の変位に伴ってトラッキングエラー信号SE1、SE2が劣化す
るということは回避され易くなる。
部41と第2領域部42とが分けられている。また、第2領域部42と第3領域部43と
を区切る境界線部46により、第2領域部42と第3領域部43とが分けられている。ま
た、第3領域部43と第4領域部44とを区切る境界線部47により、第3領域部43と
第4領域部44とが分けられている。
囲内の異なる位相を有する周期構造とされる。また、第2領域部42の周期構造に対し、
第3領域部43の周期構造は、3~180度の範囲内の異なる位相を有する周期構造とさ
れる。また、第3領域部43の周期構造に対し、第4領域部44の周期構造は、30~1
80度の範囲内の異なる位相を有する周期構造とされる。
部43と、第4領域部44とが、略明確に区別化される。回折格子64Dを構成する第1
領域部41の周期構造に対し、回折格子64Dを構成する第2領域部42の周期構造は、
30~180度の範囲内の異なる位相を有する周期構造とされているので、回折格子64
Dの第1領域部41と、回折格子64Dの第2領域部42とが明確に区別化される。また
、回折格子64Dを構成する第2領域部42の周期構造に対し、回折格子64Dを構成す
る第3領域部43の周期構造は、3~180度の範囲内の異なる位相を有する周期構造と
されているので、回折格子64Dの第2領域部42と、回折格子64Dの第3領域部43
とが略区別化される。また、回折格子64Dを構成する第3領域部43の周期構造に対し
、回折格子64Dを構成する第4領域部44の周期構造は、30~180度の範囲内の異
なる位相を有する周期構造とされているので、回折格子64Dの第3領域部43と、回折
格子64Dの第4領域部44とが明確に区別化される。
5)の信号面部Daに、各々独立した少なくとも3個の集光スポット80、81、82が
照射される。メディアDの信号面部Daに、少なくとも3個の集光スポット80、81、
82が各々独立して照射されるので、メディアDの信号面部Daに対する光ピックアップ
装置のトラッキングは、行われ易くなる。また、各領域部の周期構造の位相が、定められ
た数値の範囲内に適宜設定されることにより、回折格子64D(図14)の設計自由度が
向上するとともに、光ピックアップ装置の設計自由度も向上する。従って、使用される部
位に対応して最適な特性が発揮され易い光ピックアップ装置が構成される。
に、回折格子64Dは、略矩形板状のものとして目視される。
3領域部43と、縦長の略長方形状第4領域部44とが横並びに配列された状態で、回折
格子64Dが平面視されたときに、回折格子64Dの一領域部の位相に対し、一領域部の
右側に隣接する他領域部の位相が略右上がり階段状にずらされた場合に、他領域部の位相
は、プラス(+)側にずらされたものと定められる。
線状第3領域部43と、縦長の略長方形状第4領域部44とが横並びに配列された状態で
、回折格子64Dが平面視されたときに、回折格子64Dの一領域部の位相に対し、一領
域部の右側に隣接する他領域部の位相が略右下がり階段状にずらされた場合に、他領域部
の位相は、マイナス(-)側にずらされたものと定められる。
41の右側に隣接する第2領域部42の周期構造は、プラス側にずらされた位相を有する
周期構造とされている。また、回折格子64Dが平面視されたときに、第2領域部42の
周期構造に対し、第2領域部42の右側に隣接する第3領域部43の周期構造は、マイナ
ス側にずらされた位相を有する周期構造とされている。また、回折格子64Dが平面視さ
れたときに、第3領域部43の周期構造に対し、第3領域部43の右側に隣接する第4領
域部44の周期構造は、プラス側にずらされた位相を有する周期構造とされている。
相に対し、第3領域部43の周期構造の位相のみ位相方向が逆にずらされて構成されてい
る(図15)。回折格子64D(図14)は、いわゆる逆位相の周期構造を備える回折格
子64Dとされている。
いて、符号や引出線や寸法線などについては略そのままとされつつ、輪郭線のみが境界線
部(46)を中心に左右反転された回折格子(64D)が用いられてもよい。そのような
ものについて具体的に説明すると、例えば、回折格子(64D)が平面視されたときに、
第1領域部(41)の周期構造に対し、第1領域部(41)の右側に隣接する第2領域部
(42)の周期構造が、マイナス側にずらされた位相を有する周期構造とされてもよい。
また、例えば、回折格子(64D)が平面視されたときに、第2領域部(42)の周期構
造に対し、第2領域部(42)の右側に隣接する第3領域部(43)の周期構造が、プラ
ス側にずらされた位相を有する周期構造とされてもよい。また、例えば、回折格子(64
D)が平面視されたときに、第3領域部(43)の周期構造に対し、第3領域部(43)
の右側に隣接する第4領域部(44)の周期構造が、マイナス側にずらされた位相を有す
る周期構造とされてもよい。
)の周期構造の位相に対し、第3領域部(43)の周期構造の位相のみ位相方向が逆にず
らされて構成される。回折格子(64D)は、いわゆる逆位相の周期構造を備える回折格
子(64D)とされる。
幅レベル(%)が増加され、TE視野特性が向上され易くなる(図16、図17、図18
)。TE振幅レベル(%)が減少され、TE視野特性が低下するということは回避される
。TE視野特性が向上されるので、この光ピックアップ装置は、ノート型もしくはラップ
トップ型PC用の光ディスク装置に装備されることが好ましい。また、TE視野特性が向
上されるので、この光ピックアップ装置は、例えば複数の小さい対物レンズ70を備える
光ピックアップ装置として用いられることが好ましい。ノート型もしくはラップトップ型
PC用の光ディスク装置に用いられる光ピックアップ装置や、複数の対物レンズ70を備
える光ピックアップ装置は、小さいサイズの対物レンズが使用されることから、主に視野
特性が重要とされる。
の周期構造を備える4分割型回折格子(不図示)が装備されてもよい。また、光ピックア
ップ装置の設計/仕様などにより、この光ピックアップ装置は、デスクトップ型PC用の
光ディスク装置に装備されて使用されてもよい。
は、略+120度異なる位相を有する周期構造とされている。また、第2領域部42の周
期構造に対し、第3領域部43の周期構造は、略-60度異なる位相を有する周期構造と
されている。第1領域部41の周期構造に対し、第3領域部43の周期構造は、略+60
度異なる位相を有する周期構造とされている。また、第3領域部43の周期構造に対し、
第4領域部44の周期構造は、略+120度異なる位相を有する周期構造とされている。
第1領域部41の周期構造に対し、第4領域部44の周期構造は、略+180度異なる位
相を有する周期構造とされている。
振幅レベル(%)が増加され、TE視野特性が大幅に向上する(図16、図17、図18
)。TE振幅レベル(%)が減少され、TE視野特性が低下するということは回避される
。この光ピックアップ装置のTE視野特性は、3つの位相領域部31、32、33(図1
2)に分けられた回折格子64Cを備える光ピックアップ装置のTE視野特性よりも、大
幅に向上する(図16、図17、図18)。TE視野特性が大幅に向上されるので、この
光ピックアップ装置は、ノート型もしくはラップトップ型PC用の光ディスク装置に装備
されることが好ましい。また、TE視野特性が大幅に向上されるので、この光ピックアッ
プ装置は、例えば複数の小さい対物レンズ70を備える光ピックアップ装置として用いら
れることが好ましい。
部42、43が、回折格子64Dの縦長の中央部40mとされる。対物レンズ70(図1
、図2)の瞳面部70a(図2)を通過するDVD規格に準拠した波長略630~685
nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40m(図14)
の幅40wは、例えば14~30%、好ましくは16~28%、より好ましくは18~2
6%、更に好ましくは18~25%とされる。すなわち、DVD規格に準拠した波長略6
30~685nmの第2レーザ波長光が回折格子64Dを通過するときに、回折格子64
Dの中央部比率Wrは、例えば14~30%、好ましくは16~28%、より好ましくは
18~26%、更に好ましくは18~25%とされる(図16~図23)。
ックピッチDtpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ
70の変位に伴ってトラッキングエラー信号SE1、SE2が劣化するということは回避
され易くなる。
nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅40w
が14%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特性が低下
される(図16、図17)。すなわち、DVD規格に準拠した波長略630~685nm
の第2レーザ波長光が回折格子64Dを通過するときに、回折格子64Dの中央部比率W
rが14%未満に設定された場合、OBLセンタ比(%)が減少され、TE視野特性が低
下される。対物レンズ70の瞳面部70aを通過するDVD規格に準拠した波長略630
~685nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの
幅40wが16%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特
性が低下され易くなる(図16、図17)。すなわち、DVD規格に準拠した波長略63
0~685nmの第2レーザ波長光が回折格子64Dを通過するときに、回折格子64D
の中央部比率Wrが16%未満に設定された場合、OBLセンタ比(%)が減少され、T
E視野特性が低下され易くなる。
nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅40w
が18%以上とされることにより、TE振幅レベル(%)の減少が抑えられ、TE視野特
性の低下が抑えられる。すなわち、DVD規格に準拠した波長略630~685nmの第
2レーザ波長光が回折格子64Dを通過するときに、回折格子64Dの中央部比率Wrが
18%以上とされることにより、OBLセンタ比(%)の減少が抑えられ、TE視野特性
の低下が抑えられる。
685nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅
40wが30%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Sub-
PP振幅レベル)(%)が減少され、Sub-PP振幅レベル特性が低下される(図19
、図20)。対物レンズ70の瞳面部70aを通過するDVD規格に準拠した波長略63
0~685nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40m
の幅40wが28%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Su
b-PP振幅レベル)(%)が減少され、Sub-PP振幅レベル特性が低下され易くな
る。
nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅40w
が26%以内とされることにより、Sub-PP振幅レベル(%)の減少が抑えられ易く
なり、Sub-PP振幅レベル特性の低下が抑えられ易くなる。具体的に説明すると、対
物レンズ70の瞳面部70aを通過するDVD規格に準拠した波長略630~685nm
の第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅40wが2
5%以内とされることにより、Sub-PP振幅レベル(%)の減少が抑えられ、Sub
-PP振幅レベル特性の低下が抑えられる。
630~685nmの第2レーザ波長光の直径70bに対し、回折格子64D(図14)
の中央部40mの幅40wが30%を超えて設定された場合、トラッキングエラー位相差
量(TE位相差量)が増加され、トラッキングエラー位相差特性(TE位相差特性)が低
下される(図22、図23)。具体的に説明すると、対物レンズ70(図2)の瞳面部7
0aを通過するDVD規格に準拠した波長略630~685nmの第2レーザ波長光の直
径70bに対し、回折格子64D(図14)の中央部40mの幅40wが28%を超えて
設定された場合、トラッキングエラー位相差量(TE位相差量)が増加され、トラッキン
グエラー位相差特性(TE位相差特性)が低下され易くなる(図22、図23)。
nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅40w
が26%以内とされることにより、TE位相差量の増加が抑えられ易くなり、TE位相差
特性の低下が抑えられ易くなる。具体的に説明すると、対物レンズ70の瞳面部70aを
通過するDVD規格に準拠した波長略630~685nmの第2レーザ波長光の直径70
bに対し、回折格子64Dの中央部40mの幅40wが25%以内とされることにより、
TE位相差量の増加が抑えられ、TE位相差特性の低下が抑えられる。
nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの幅40w
が例えば14~30%好ましくは16~28%より好ましくは18~26%更に好ましく
は18~25%に設定されることにより、TE振幅レベル(図16、図17)と、Sub
-PP振幅レベル(図19、図20)と、TE位相差量(図22、図23)とが適度な値
に設定され易くなる。
~685nmの第2レーザ波長光の直径70bに対し、回折格子64Dの中央部40mの
幅40wが略20%に設定されることにより、TE振幅レベル(図16、図17)と、S
ub-PP振幅レベル(図19、図20)と、TE位相差量(図22、図23)とが最適
な値に設定され易くなる。TE振幅レベルと、Sub-PP振幅レベルと、TE位相差量
とが、バランスよく適度な値に設定されるので、光ピックアップ装置のトラッキング制御
が行われ易くなる。
部42、43が、回折格子64Dの縦長の中央部40mとされる。対物レンズ70(図1
、図3)の瞳面部70a(図3)を通過するCD規格に準拠した波長略765~840n
mの第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40m(図14)の
幅40wは、例えば10%以上40%以下、好ましくは12%以上30%以下、設計/仕
様などにより14%以上25%以下、また設計/仕様などにより16%以上20%以下と
される。すなわち、CD規格に準拠した波長略765~840nmの第1レーザ波長光が
回折格子64Dを通過するときに、回折格子64Dの中央部比率Wrは、例えば10%以
上40%以下、好ましくは12%以上30%以下、設計/仕様などにより14%以上25
%以下、また設計/仕様などにより16%以上20%以下とされる(図18、図21、図
24)。
ックピッチDtpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ
70の変位に伴ってトラッキングエラー信号SE1、SE2が劣化するということは回避
され易くなる。
mの第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅40wが
10%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特性が低下さ
れる(図18)。すなわち、CD規格に準拠した波長略765~840nmの第1レーザ
波長光が回折格子64Dを通過するときに、回折格子64Dの中央部比率Wrが10%未
満に設定された場合、OBLセンタ比(%)が減少され、TE視野特性が低下される。対
物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略765~840nmの
第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅40wが12
%未満に設定された場合、TE振幅レベル(%)が減少され、TE視野特性が低下され易
くなる(図18)。すなわち、CD規格に準拠した波長略765~840nmの第1レー
ザ波長光が回折格子64Dを通過するときに、回折格子64Dの中央部比率Wrが12%
未満に設定された場合、OBLセンタ比(%)が減少され、TE視野特性が低下され易く
なる。
mの第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅40wが
14%以上とされることにより、TE振幅レベル(%)の減少が抑えられ、TE視野特性
の低下が抑えられる。すなわち、CD規格に準拠した波長略765~840nmの第1レ
ーザ波長光が回折格子64Dを通過するときに、回折格子64Dの中央部比率Wrが14
%以上とされることにより、OBLセンタ比(%)の減少が抑えられ、TE視野特性の低
下が抑えられる。具体的に説明すると、対物レンズ70の瞳面部70aを通過するCD規
格に準拠した波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格
子64Dの中央部40mの幅40wが16%以上とされることにより、TE振幅レベル(
%)の減少が抑えられ、TE視野特性の低下が確実に抑えられる。すなわち、CD規格に
準拠した波長略765~840nmの第1レーザ波長光が回折格子64Dを通過するとき
に、回折格子64Dの中央部比率Wrが16%以上とされることにより、OBLセンタ比
(%)の減少が抑えられ、TE視野特性の低下が確実に抑えられる。
40nmの第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅4
0wが40%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Sub-P
P振幅レベル)(%)が減少され、Sub-PP振幅レベル特性が低下される(図21)
。対物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略765~840n
mの第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅40wが
30%を超えて設定された場合、サブ・プッシュプル信号振幅レベル(Sub-PP振幅
レベル)(%)が減少され、Sub-PP振幅レベル特性が低下され易くなる。
波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Dの中
央部40mの幅40wが25%以内とされることにより、Sub-PP振幅レベル(%)
の減少が抑えられ易くなり、Sub-PP振幅レベル特性の低下が抑えられ易くなる。ま
た、設計/仕様などにより、対物レンズ70の瞳面部70aを通過するCD規格に準拠し
た波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Dの
中央部40mの幅40wが20%以内とされることにより、Sub-PP振幅レベル(%
)の減少が抑えられ、Sub-PP振幅レベル特性の低下が抑えられる。
65~840nmの第1レーザ波長光の直径70cに対し、回折格子64D(図14)の
中央部40mの幅40wが40%を超えて設定された場合、トラッキングエラー位相差量
(TE位相差量)が増加され、トラッキングエラー位相差特性(TE位相差特性)が低下
される(図24)。具体的に説明すると、対物レンズ70(図3)の瞳面部70aを通過
するCD規格に準拠した波長略765~840nmの第1レーザ波長光の直径70cに対
し、回折格子64D(図14)の中央部40mの幅40wが30%を超えて設定された場
合、トラッキングエラー位相差量(TE位相差量)が増加され、トラッキングエラー位相
差特性(TE位相差特性)が低下され易くなる(図24)。
波長略765~840nmの第1レーザ波長光の直径70cに対し、回折格子64Dの中
央部40mの幅40wが25%以内とされることにより、TE位相差量の増加が抑えられ
易くなり、TE位相差特性の低下が抑えられ易くなる。また、設計/仕様などにより、対
物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略765~840nmの
第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅40wが20
%以内とされることにより、TE位相差量の増加が抑えられ、TE位相差特性の低下が抑
えられる。
mの第1レーザ波長光の直径70cに対し、回折格子64Dの中央部40mの幅40wが
、例えば10%以上40%以下、好ましくは12%以上30%以下、設計/仕様などによ
り14%以上25%以下、また設計/仕様などにより16%以上20%以下に設定される
ことにより、TE振幅レベル(図18)と、Sub-PP振幅レベル(図21)と、TE
位相差量(図24)とが適度な値に設定され易くなる。
下式(39)を設定するために、まず、回折格子64Dの中央部40mの幅40wをB1
と定める。また、対物レンズ70の瞳面部70aを通過するCD規格に準拠した波長略7
65~840nmの第1レーザ波長光の直径70cをB2と定める。また、対物レンズ7
0の瞳面部70aを通過するDVD規格に準拠した波長略630~685nmの第2レー
ザ波長光の直径70bをB3と定める。
る光ピックアップ装置を構成させる。
下、設計/仕様などにより0.14以上0.25以下、また設計/仕様などにより0.1
6以上0.20以下に設定されることにより、CD規格に準拠した光ディスクDに対する
光ピックアップ装置のデータ/情報/信号の読取り/書込み等が行われるときに、視野特
性の最低値「DPP_L」と、メインプッシュプル信号の信号レベルに対するサブプッシ
ュプル信号の信号レベルの割合「SPP/MPP」とが適度な値に設定され易くなる。
り好ましくは0.18~0.26、更に好ましくは0.18~0.25に設定されること
により、DVD規格に準拠した光ディスクDに対する光ピックアップ装置のデータ/情報
/信号の読取り/書込み等が行われるときに、視野特性の最低値「DPP_L」と、メイ
ンプッシュプル信号の信号レベルに対するサブプッシュプル信号の信号レベルの割合「S
PP/MPP」とが適度な値に設定され易くなる。
部43の幅43wとは、両方とも、10~100μm、好ましくは30~80μm、より
好ましくは48~72μmに設定される。すなわち、回折格子64Dの分割部幅42w、
43wは、10~100μm、好ましくは30~80μm、より好ましくは48~72μ
mに設定される。
、良好に行われ易くなる。トラックピッチDtpが異なる複数種類のメディアDの記録/
再生時等に、例えば対物レンズ70の変位に伴って、トラッキングエラー信号SE1、S
E2が劣化するということは回避され易くなる。
43wとが、両方とも10μm未満の狭い幅とされた場合や、回折格子64Dの第2領域
部42の幅42wと、回折格子64Dの第3領域部43の幅43wとが、両方とも100
μmを超える広い幅とされた場合には、TE視野特性と、Sub-PP振幅レベル特性と
、TE位相差特性とのバランスが崩される。各特性のバランスが崩されると、トラッキン
グエラー信号SE1、SE2が劣化されて、メディアDの信号面部Daに対する光ピック
アップ装置のトラッキングが正確に行われ難くなる。
43の幅43wとが、両方とも30~80μm程度に設定されることにより、TE視野特
性と、Sub-PP振幅レベル特性と、TE位相差特性とのバランスが略保たれ易くなる
。これに伴って、メディアDの信号面部Daに対する光ピックアップ装置のトラッキング
は、正確に行われ易くなる。
域部43の幅43wとが、両方とも48~72μmの範囲内に設定されることにより、T
E視野特性と、Sub-PP振幅レベル特性と、TE位相差特性とのバランスが保たれる
。これにより、トラッキングエラー信号SE1、SE2の劣化は回避される。従って、メ
ディアDの信号面部Daに対する光ピックアップ装置のトラッキングは、正確に行われる
。
視野特性もしくはTE位相差特性を変更させるには、3分割型回折格子64Cの中央部3
0mの幅32wを変更させることでしかできなかった。
図3)において、TE視野特性や、TE位相差特性などを変更させる場合には、4分割型
回折格子64D(図14)の中央部40mの幅40wを変更させることに加え、4分割型
回折格子64Dの中央部40mの各領域部42、43を構成する格子状ピッチの位相差を
変更させることにより、各種特性を調整変更させることが可能となる。
部40mの各領域部42、43を構成する格子状ピッチの位相差とが、調整されて設定さ
れることにより、所望の性能が発揮されるとともに各種特性のバランスがとられた光ピッ
クアップ装置を設計することが可能となる。従って、光ピックアップ装置が設計されると
きの設計の自由度が向上する。
図14)と、少なくとも3本の光束を集光してメディアD(図1~図3、図5)の信号面
部Da(図5)に各々独立した少なくとも3個の集光スポット80、81、82を照射さ
せる対物レンズ70(図1~図3)と、メディアDにおける3個の各集光スポット80、
81、82(図5)の反射光を受光する光検出器73A(図1~図3、図5~図7)とを
備えて構成される。
aに対する光ピックアップ装置のトラッキングは、精度よく行われる。トラックピッチD
tpが異なる複数種類のメディアDのデータ記録/再生時等に、対物レンズ70(図1~
図3)の変位に伴って、トラッキングエラー信号SE1、SE2の振幅が劣化することや
、トラッキングエラー信号SE1、SE2にオフセットが残留するということは回避され
易くなる。
ることにより、DVD-RAMに対する光ピックアップ装置のデータ再生動作またはデー
タ記録動作は、確実に行われる。また、DVD±R、DVD±RWに対する光ピックアッ
プ装置のデータ再生動作またはデータ記録動作も、確実に行われる。
光ディスク装置は、上記実施例1、2、3、4に示す光ピックアップ装置(図1~図3
)のうち少なくとも1つの光ピックアップ装置を備えて構成される。具体的に説明すると
、光ディスク装置は、上記実施例1、2、3、4に示す光ピックアップ装置のうち何れか
単一の光ピックアップ装置を備えて構成される。上記光ピックアップ装置は、光ディスク
装置に装備される。
。
とにより、上記各種問題点のうち少なくとも1つを解決可能な光ピックアップ装置を少な
くとも備える光ディスク装置が構成される。
された光ピックアップ装置が光ディスク装置に装備されることにより、第1レーザ波長光
と、第1レーザ波長光と異なるレーザ波長光とされ且つ第1レーザ波長光よりも短い波長
のレーザ光とされる第2レーザ波長光と、に確実に対応するとともに、トラッキングエラ
ー信号SE1、SE2等のエラー信号の検出精度が向上された複数波長対応型の光ディス
ク装置が構成される。
もに、第2光ディスクDの信号面部Da上に第2レーザ波長光を確実に集光させる複数波
長対応型の光ピックアップ装置を少なくとも備える光ディスク装置が構成される。
とともにレーザ光の効率の低下を防いだ光ピックアップ装置を少なくとも備える光ディス
ク装置が構成される。
し、設定変更された光検出器73A(図5~図7)の第1レーザ波長光の分光比が変更さ
れていれば、1本の第1メインビームの検出と2本の第1サブビームの検出とは、新しい
設定変更された光検出器73Aにて精度よく良好に行われ易くなる。
備えた光ディスク装置の提供が可能となる。各メディアDからのデータの読出しや、各メ
ディアDに対するデータの書込み等は、光ピックアップ装置を備える光ディスク装置にて
正常に行われる。光ディスク装置に各メディアDが挿入されて、トラックピッチDtpが
異なる複数種類のメディアDのデータが読み出されたり、又は、トラックピッチDtpが
異なる複数種類のメディアDにデータが書き込まれたりされるときに、例えば対物レンズ
70の変位に伴って、トラッキングエラー信号SE1、SE2が劣化するということは回
避され易くなる。従って、精度の高いトラッキング制御が行われ易い単一の光ピックアッ
プ装置を備えた光ディスク装置の提供が可能となる。
可能な1つの光ピックアップ装置が内装されていれば、光ディスク装置の価格が低く抑え
られる。トラックピッチDtpが異なる複数種類のメディアDに対応して、複数の光ピッ
クアップ装置が光ディスク装置に内装され、これに伴って、光ディスク装置の価格が大幅
に上昇するということは回避される。
増幅アンプ78Bに代えて、例えば、通常設定の光検出器73Bが光ピックアップ装置に
装備され、且つ、設定変更された増幅アンプ78BV(図25)等が装備されて演算部7
6Bが構成されている。
された増幅アンプ78Bに代えて、例えば増幅率が設定変更されて増幅率Gとされた増幅
アンプ78BV(図25)等が演算部76Bに装備されている。また、例えば図6に示す
各電流・電圧変換アンプ77DL1、77DR1、77EL1、77ER1、77FL1
、77FR1、77GL1、77GR1、77HL1、77HR1、77IL1、77I
R1等、及び、各後段アンプ77DL2、77DR2、77EL2、77ER2、77F
L2、77FR2、77GL2、77GR2、77HL2、77HR2、77IL2、7
7IR2等が通常の値に設定されて構成された光検出器73B(図25)が光ピックアッ
プ装置に装備されている。
6Bを含む光学系/回路系は、一部が異なる。また、光検出器73BのCD受光領域74
、DVD受光領域75は、例えば図6に示す回路に近似した各電流・電圧変換アンプ、各
後段アンプを備えるが、ここではその詳細な説明を省略する。また、演算部76Bは、例
えば図6に示す回路に近似し信号を演算する各加算器、減算器、増幅器を備え、信号演算
用の各加算器、減算器、増幅器は、CD受光領域74、DVD受光領域75に接続される
が、ここではその詳細な説明を省略する。
電圧変換アンプ、後段アンプ、加算器、減算器、増幅器などが用いられて精度よくトラッ
キングエラー信号が生成される工程の詳細説明についても、ここでは省略する。また、光
検出器73BのCD受光領域74、DVD受光領域75に照射されたレーザ光に基づき、
精度よくフォーカスエラー信号が生成される工程の詳細説明についても、ここでは省略す
る。また、光検出器73BのCD受光領域74、DVD受光領域75に照射されたレーザ
光に基づき、光ディスクDに記録されたデータ、情報などの信号が精度よく生成される工
程の詳細説明についても、ここでは省略する。
の増幅アンプ78Aが、図25に示す通常設定の光検出器73Bおよび設定変更された演
算部76Bの増幅アンプ78Bに置き換えられたこと以外に、光ピックアップ装置および
光ディスク装置に変更はない。図5および図6等に示す設定変更された光検出器73Aお
よび演算部76Aの通常設定の増幅アンプ78Aが、図25に示す通常設定の光検出器7
3Bおよび設定変更された演算部76Bの増幅アンプ78Bに置き換えられた点で、実施
例1、2、3、及び4と、実施例5とが異なるが、光検出器73A、73B、演算部76
A、76Bを構成する増幅アンプ78A、78B以外の他の部分においては、実施例1、
2、3、及び4と、実施例5とは、共通なものとされている。便宜上、図1~図24を併
用して、実施例5を説明する。また、実施例5において、実施例1、2、3、及び4にて
説明したものと同一のものについては、同一の符号を付し、その詳細な説明を省略した。
号は、演算部76Bに送信される。演算部76Bは、例えば少なくとも4つの差動アンプ
77A、77B、77C、78Aと、加算器78Cと、増幅アンプ78BVとを含んで構
成される。差動アンプ77Aは、中央の第1メイン受光部74Aを構成する例えば左右一
対の光検出面部74AL、74ARからの出力信号の差分(TAL1-TAR1)を演算
しメインプッシュプル信号Sa1として生成する。差動アンプ77Bは、一方の第1サブ
受光部74Bを構成する例えば左右一対の光検出面部74BL、74BRからの出力信号
の差分(TBL1-TBR1)を演算し先行サブプッシュプル信号Sc1として生成する
。差動アンプ77Cは、他方の第1サブ受光部74Cを構成する例えば左右一対の光検出
面部74CL、74CRからの出力信号の差分(TCL1-TCR1)を演算し遅行サブ
プッシュプル信号Sc1として生成する。
と、差動アンプ77Cの出力信号である遅行サブプッシュプル信号Sc1とが入力される
。加算器78Cは、これらの信号の加算(Sb1+Sc1)を演算し加算サブプッシュプ
ル信号Sd1とさせる。増幅アンプ78BVに、加算器78Cの出力信号である加算サブ
プッシュプル信号Sd1が入力される。増幅アンプ78BVは、加算サブプッシュプル信
号Sd1を例えば増幅率Gでメインプッシュプル信号Sa1と同等もしくはそれ以上の信
号レベルに増幅する。差動アンプ78Aに、差動アンプ77Aの出力信号と、増幅アンプ
78BVの出力信号とが入力される。差動アンプ78Aは、メインプッシュプル信号Sa
1と、加算サブプッシュプル信号Sd1を増幅した信号との差分を演算して、トラッキン
グ誤差信号Se1として出力する。
、図3)に送られて、光ディスクDのトラックD80(図25)に対する対物レンズ70
(図2、図3)のトラッキング調整が自動的に行われる。
電流および/または電圧値に対し、1つの第1メイン受光部74A(図5、図7)から出
力される信号の電流/電圧値が変更または同じとされている。詳しく説明すると、規格化
された1つの第1メイン受光部200a(図27)から出力される通常の信号の電流/電
圧値が100%の電流/電圧値と定められたときに、規格化された1つの第1メイン受光
部200aから出力される通常の信号の電流/電圧値に対し、変更または同じとされた1
つの第1メイン受光部74A(図5、図7)から出力される信号の電流/電圧値は、略1
00%または略100%未満もしくは略100%以下の低い値に設定されている。1つの
第1メイン受光部74Aから出力される信号の電流/電圧値が設定変更される場合、例え
ばアッテネータ(不図示)等が用いられて1つの第1メイン受光部74Aから出力される
信号の電流/電圧値が変更設定される。
る通常の信号の電流/電圧値に対し、2つの第1サブ受光部74B、74C(図5、図7
)から出力される信号の電流/電圧値が変更されている。詳しく説明すると、規格化され
た2つの第1サブ受光部200b、200c(図27)から出力される通常の信号の電流
/電圧値が共に100%の電流/電圧値と定められたときに、規格化された2つの第1サ
ブ受光部200b、200cから出力される通常の信号の電流/電圧値に対し、変更され
た2つの第1サブ受光部74B、74C(図5、図7)から出力される信号の電流/電圧
値は、共に略100%以上または略100%を超える高い値にゲインアップ設定されてい
る。2つの第1サブ受光部74B、74Cから出力される信号の電流/電圧値は、増幅器
78BVにて変更設定される。
れて設定されていれば、1本の第1メインビームの検出と2本の第1サブビームの検出と
は、新しい設定変更された増幅器78BVを含む演算部76Bにて比較的精度よく行われ
易くなる。規格化された1つの第1メイン受光部200a(図27)から出力される通常
の信号の電流/電圧値に対し、1つの第1メイン受光部74A(図5、図7)から出力さ
れる信号の電流/電圧値が変更または同じとされ、規格化された2つの第1サブ受光部2
00b、200c(図27)から出力される通常の信号の電流/電圧値に対し、2つの第
1サブ受光部74B、74C(図5、図7)から出力される信号の電流/電圧値がゲイン
アップ変更されることにより、新しい設定変更された増幅器78BVを含む演算部76B
にて、1本の第1メインビームの検出と2本の第1サブビームの検出とが比較的精度よく
行われ易くなる。
される通常の信号の電流/電圧値が100%とされているのに対し、変更または同じとさ
れた1つの第1メイン受光部74A(図5、図7)から出力される信号の電流/電圧値が
略100%または略100%未満もしくは略100%以下の低い値に設定され、規格化さ
れた2つの第1サブ受光部200b、200c(図27)から出力される通常の信号の電
流/電圧値が共に100%とされているのに対し、変更された2つの第1サブ受光部74
B、74C(図5、図7)から出力される信号の電流/電圧値が共に略100%以上また
は略100%を超える高い値にゲインアップ設定されることにより、新しい設定変更され
た増幅器78BVを含む演算部76Bにて、1本の第1メインビームの検出と2本の第1
サブビームの検出とが比較的精度よく行われ易くなる。
電流/電圧値が100%の電流/電圧値と定められたときに、規格化された1つの第1メ
イン受光部200aから出力される通常の信号の電流/電圧値に対し、変更または同じと
された1つの第1メイン受光部74A(図5、図7)から出力される信号の電流/電圧値
は、略95~100%好ましくは略96~100%の電流/電圧値に設定されている。ま
た、規格化された2つの第1サブ受光部200b、200c(図27)から出力される通
常の信号の電流/電圧値が共に100%の電流/電圧値と定められたときに、規格化され
た2つの第1サブ受光部200b、200cから出力される通常の信号の電流/電圧値に
対し、変更された2つの第1サブ受光部74B、74C(図5、図7)から出力される信
号の電流/電圧値は、共に略120~160%好ましくは共に略138~142%の電流
/電圧値にゲインアップ設定されている。
2本の第1サブビームの検出とは、新しい設定変更された増幅器78BVを含む演算部7
6Bにて精度よく良好に行われる。規格化された1つの第1メイン受光部200a(図2
7)から出力される通常の信号の電流/電圧値が100%とされているのに対し、変更ま
たは同じとされた1つの第1メイン受光部74A(図5、図7)から出力される信号の電
流/電圧値が略95~100%好ましくは略96~100%の電流/電圧値に設定され、
規格化された2つの第1サブ受光部200b、200c(図27)から出力される通常の
信号の電流/電圧値が共に100%とされているのに対し、変更された2つの第1サブ受
光部74B、74C(図5、図7)から出力される信号の電流/電圧値が共に略120~
160%好ましくは共に略138~142%の電流/電圧値にゲインアップ設定されるこ
とにより、新しい設定変更された増幅器78BVを含む演算部76Bにて、1本の第1メ
インビームの検出と2本の第1サブビームの検出とが精度よく良好に行われる。
74A)から出力される直後の信号の電流/電圧値が、例えば光検出器(73B)に備え
られた不図示のアッテネータ等により設定変更されてもよい。また、光ピックアップ装置
の設計/仕様などにより、例えば、1つの第1メイン受光部(74A)から出力される信
号の電流/電圧値が、例えば演算部(76B)に備えられた不図示のアッテネータ等によ
り設定変更されてもよい。また、光ピックアップ装置の設計/仕様などにより、例えば、
増幅器(78BV)等を含む演算部(76B)が光検出器(73B)に備えられ、増幅器
(78BV)等を含む演算部(76B)と光検出器(73B)とが一体化された演算部付
光検出器(不図示)も使用可能とされる。
つの第2メイン受光部200a(図28)から出力される通常の信号の電流/電圧値とさ
れている。規格化された1つの第2メイン受光部200aから出力される通常の信号の電
流/電圧値が100%の電流/電圧値と定められたときに、規格化された1つの第2メイ
ン受光部200aから出力される通常の信号の電流/電圧値に対し、1つの第2メイン受
光部75A(図5、図7)から出力される信号の電流/電圧値は、略100%の電流/電
圧値に設定されている。
格化された2つの第2サブ受光部200b、200c(図28)から出力される通常の信
号の電流/電圧値とされている。規格化された2つの第2サブ受光部200b、200c
から出力される通常の信号の電流/電圧値が共に100%の電流/電圧値と定められたと
きに、規格化された2つの第2サブ受光部200b、200cから出力される通常の信号
の電流/電圧値に対し、2つの第2サブ受光部75B、75C(図5、図7)から出力さ
れる信号の電流/電圧値は、共に略100%の電流/電圧値に設定されている。
2本の第2サブビームの検出とは、演算部76Bにて精度よく行われる。1つの第2メイ
ン受光部75Aから出力される信号の電流/電圧値が、規格化された1つの第2メイン受
光部200a(図28)から出力される通常の信号の電流/電圧値とされ、2つの第2サ
ブ受光部75B、75C(図5、図7)から出力される信号の電流/電圧値が、規格化さ
れた2つの第2サブ受光部200b、200c(図28)から出力される通常の信号の電
流/電圧値とされることにより、演算部76Bにて、1本の第2メインビームの検出と2
本の第2サブビームの検出とが精度よく行われる。
電流/電圧値が100%とされているのに対し、1つの第2メイン受光部75A(図5、
図7)から出力される信号の電流/電圧値が略100%の電流/電圧値に設定され、規格
化された2つの第2サブ受光部200b、200c(図28)から出力される通常の信号
の電流/電圧値が共に100%とされているのに対し、2つの第2サブ受光部75B、7
5C(図5、図7)から出力される信号の電流/電圧値が共に略100%の電流/電圧値
に設定されることにより、演算部76Bにて、1本の第2メインビームの検出と2本の第
2サブビームの検出とが精度よく行われる。
備えた光ディスク装置の提供が可能となる。各メディアDからのデータの読出しや、各メ
ディアDに対するデータの書込み等は、光ピックアップ装置を備える光ディスク装置にて
正常に行われる。光ディスク装置に各メディアDが挿入されて、トラックピッチDtpが
異なる複数種類のメディアDのデータが読み出されたり、又は、トラックピッチDtpが
異なる複数種類のメディアDにデータが書き込まれたりされるときに、例えば対物レンズ
70の変位に伴って、トラッキングエラー信号Se1等が劣化するということは回避され
易くなる。従って、精度の高いトラッキング制御が行われ易い単一の光ピックアップ装置
を備えた光ディスク装置の提供が可能となる。
可能な1つの光ピックアップ装置が内装されていれば、光ディスク装置の価格が低く抑え
られる。トラックピッチDtpが異なる複数種類のメディアDに対応して、複数の光ピッ
クアップ装置が光ディスク装置に内装され、これに伴って、光ディスク装置の価格が大幅
に上昇するということは回避される。
上記各種光ディスクDにデータ/情報/信号等を記録等させたり、上記各種光ディスクD
のデータ/情報/信号等を再生させたりする記録・再生装置に使用可能とされる。具体的
に説明すると、上記光ピックアップ装置、並びに上記光ピックアップ装置を備える光ディ
スク装置は、上記各種光ディスクDにデータ/情報/信号等を記録させたり、上記各種光
ディスクDのデータ/情報/信号等を再生させたり、上記各種光ディスクDのデータ/情
報/信号等を消去させたりする記録・再生・消去可能装置に使用可能とされる。また、上
記光ピックアップ装置、並びに上記光ピックアップ装置を備える光ディスク装置は、上記
各種光ディスクDのデータ/情報/信号等を再生させる再生専用装置にも使用可能とされ
る。
置は、例えば、コンピュータ、音響/映像機器、ゲーム機、車載機(何れも不図示)など
に組み付けられる光ディスク装置に装備される。また、上記光ピックアップ装置、並びに
上記光ピックアップ装置を備える光ディスク装置は、例えば、ノート型PCや、ラップト
ップ型PCや、デスクトップ型PCや、車載用コンピュータなどのコンピュータや、コン
ピュータゲーム機などのゲーム機や、CDプレーヤ/CDレコーダ、DVDプレーヤ/D
VDレコーダなどの音響および/または映像機器などに装備可能とされる(何れも不図示
)。また、上記光ピックアップ装置は、CD系光ディスク、DVD系光ディスク、「HD
DVD」系光ディスク、「CBHD」系光ディスク、「Blu-ray Disc」系
光ディスク等の複数のディスクに対応可能なものとされる。また、上記光ピックアップ装
置は、複数層の信号面部を有する一枚の光ディスクに対応可能なものとされている。上記
光ピックアップ装置は、例えば、「CD」、「DVD」、「HD DVD」、「CBHD
」、「Blu-ray Disc」などの各種光ディスクに対応したコンピュータ、音響
および/または映像機器、ゲーム機、車載機などに装備可能とされている(何れも不図示
)。
易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、
その趣旨を逸脱することなく変更/改良され得るとともに、本発明にはその等価物も含ま
れる。
4A、64Bに代えて、他の形態をした2つの領域部を備える2分割タイプの回折格子(
不図示)が用いられてもよい。また、例えば、図12に示す3つの領域部31、32、3
3を備えた3分割タイプの回折格子64Cに代えて、他の形態をした3つの領域部を備え
る3分割タイプの回折格子(不図示)が用いられてもよい。また、例えば、図14に示す
4つの領域部41、42、43、43を備えた4分割タイプの回折格子64Dに代えて、
他の形態をした4つの領域部を備える4分割タイプの回折格子(不図示)が用いられても
よい。このように各種複数の領域部を備える複数分割タイプの回折格子が使用可能とされ
ている。
の回折格子(64C)に、光学ガラス板(50)(図4、図11)が装着されてもよい。
また、例えば、図14に示す4つの領域部(41、42、43、43)を備えた4分割タ
イプの回折格子(64D)に、光学ガラス板(50)(図4、図11)が装着されてもよ
い。
の赤色レーザ光であり、第2のレーザ光は、波長略405nm(第2の波長)の「HD
DVD」規格、「CBHD」規格、又は「Blu-ray Disc」規格等の青紫色レ
ーザ光でもよい。尚、この場合、回折格子64A、64B、64C、64Dは、「HD
DVD」、「CBHD」、又は「Blu-ray Disc」規格等の波長に応じた格子
間隔を具備した回折格子部材のみで構成される。
の「DVD」規格の赤色レーザ光と、波長略405nmの「HD DVD」規格、「CB
HD」規格、又は「Blu-ray Disc」規格等の青紫色レーザ光と、を出射可能
な3波長対応のレーザユニット(61)が用いられてもよい。
成されてもよい。例えば、波長が略765~840nmの第1波長光および波長が略63
0~685nmの第2波長光に対応した開口数(Numerical Aperture
:NA)略0.6~0.66の対物レンズ70と、波長が略340~450nmの他の波
長光に対応したNA略0.85の不図示の対物レンズと、を備える光ピックアップ装置が
構成されてもよい。
異なる2種類の第1及び第2のレーザ光に対応し、不要な回折光を抑えてエラー信号の検
出精度を向上させるとともに安価で高効率な光ピックアップ装置を提供することができる
。
ィスク装置に適用可能とされる。また、例えば、「CD」、「DVD」、「HD DVD
」、「CBHD」、「Blu-ray Disc」等として挙げられる各種光ディスク等
の各種メディアに記録されたデータ、情報、信号等を再生させたり、書込み可能もしくは
書換え可能な各種光ディスク等の各種メディアにデータ、情報、信号等を記録させたり、
書込み可能もしくは書換え可能な各種光ディスク等の各種メディアに記録されたデータ、
情報、信号等を消去させたりすることが可能な光ピックアップ装置およびそれを備える光
ディスク装置に適用可能とされる。
20a、30a、40a 回折面部(面部)
21、22、341、342 半平面(領域部)
21w、22w、31w、32w、33w、40w、41w、44w 幅
26、35、37、45、46、47 境界線部(境界部)
30m、40m 中央部
31、41 第1領域部(領域部)
32、42 第2領域部(領域部)
33、43 第3領域部(領域部)
42w、43w 分割部幅(幅)
44 第4領域部(領域部)
48 一方の領域部
49 他方の領域部
50、360、361、362 光学ガラス板(ガラス基板)
50a 平面部
61 レーザユニット(発光素子)
61a 発光面
62 第1の光源(光源)
63 第2の光源(光源)
64A、64B、64C、64D 回折格子
65i カップリングレンズ
65ii 受光素子
66、230 偏光ビームスプリッタ
67、240 コリメータレンズ
68 1/4波長板
69 反射ミラー
70、250 対物レンズ
70a 瞳面部
70b、70c 光の直径(直径)
71、72 平行平板(非点収差素子)
73A、73B、270 光検出器(光検出装置)
73s 同一受光面部(受光面部)
74、75、280、290 受光領域(領域)
74A、75A メイン受光部(受光部)
74Aa、74Ab、74Ac、74Ad、74AL、74AR、74Ba、74Bb
、74Bc、74Bd、74BL、74BR、74Ca、74Cb、74Cc、74Cd
、74CL、74CR、75Aa、75Ab、75Ac、75Ad、75Ba、75Bb
、75Bc、75Bd、75Ca、75Cb、75Cc、75Cd、 セグメント(光検
出面部)
74Ax、74Ay、74Bx、74By、74Cx、74Cy、75Ax、75Ay
、75Bx、75By、75Cx、75Cy 分割線
74B、74C、75B、75C サブ受光部(受光部)
76A、76B 演算部
77A、77B、77C、78A 差動アンプ(減算器)
77D、77E、77F、77G、77H、77I、78C、510 加算器
77DL1、77DR1、77EL1、77ER1、77FL1、77FR1、77G
L1、77GR1、77HL1、77HR1、77IL1、77IR1 電流・電圧変換
アンプ(アンプ)
77DL2、77DR2、77EL2、77ER2、77FL2、77FR2、77G
L2、77GR2、77HL2、77HR2、77IL2、77IR2 後段アンプ(ア
ンプ)
78B、78BV 増幅アンプ(増幅器)
79 対物レンズ駆動部(駆動部)
80、100 メインスポット(スポット)
81、82、101、102 サブスポット(スポット)
90i、90ii、200 メイン検出光スポット(スポット)
91i、91ii、92i、92ii、201、202 サブ検出光スポット(スポット)
200a、200b、200c 受光面(受光部)
210 半導体レーザ素子
260 検出レンズ
300A、300B 2波長対応回折格子(回折格子)
302 第1回折面部(回折面部)
304 第2回折面部(回折面部)
400、500a、500b、500c、530 減算器
D 光ディスク(メディア)
D80、D100 トラック
D84 内周側
D88 外周側
Da 信号層(信号面部)
DL0 第1層(層)
DL1 第2層(層)
Dtp トラックピッチ(周期)
d 格子間隔
L 法線距離
N 法線
O、X 発光点
Oa、Xb、Xc、O(cd)、X(cd)、O(dvd)、X(dvd) 照射点
S 面
S11 凹部
S12 凸部
S21 凹面
S22 凸面
Si 底面
Sii 外面
Siii、Siv 側面
SA1、Sa1、SA2、Sa、SB1、Sb1、SB2、Sb、SC1、Sc1、S
C2、Sc プッシュプル信号
SD1、Sd1、SD2 加算サブプッシュプル信号(信号)
SE1、Se1、SE2 トラッキングエラー信号(トラッキング誤差信号)
TAa1、TAab1、TAb1、TAc1、TAcd1、TAd1、TAL1、TA
R1、TBa1、TBab1、TBb1、TBc1、TBcd1、TBd1、TBL1、
TBR1、TCa1、TCab1、TCb1、TCc1、TCcd1、TCd1、TCL
1、TCR1 光電変換信号(信号)
UAa1、UAb1、UAc1、UAd1、UBa1、UBb1、UBc1、UBd1
、UCa1、UCb1、UCc1、UCd1 受光出力信号(信号)
Yp、Ys(cd)、Ys(dvd)、Yt(cd)、Yt(dvd) 間隔(距離)
Yr 距離
θ 回折角
δ 間隔
Claims (39)
- 第1波長光と第2波長光とを少なくとも出射可能な発光素子と、
前記第1波長光を少なくとも第1メインビームと第1サブビームとに分け、且つ、前記
第2波長光を少なくとも第2メインビームと第2サブビームとに分ける回折格子と、
を少なくとも備え、
前記第1波長光に対応する第1メディアに前記第1メインビームと前記第1サブビーム
とが照射されたときの前記第1メインビームと前記第1サブビームとの間隔をYp1と定
め、
前記第2波長光に対応する第2メディアに前記第2メインビームと前記第2サブビーム
とが照射されたときの前記第2メインビームと前記第2サブビームとの間隔をYp2と定
めたときに、
下式(1)を満足すること、
を特徴とする光ピックアップ装置。
- 第1波長光と第2波長光とを少なくとも出射可能な発光素子と、
前記第1波長光を少なくとも第1メインビームと第1サブビームとに分け、且つ、前記
第2波長光を少なくとも第2メインビームと第2サブビームとに分ける回折格子と、
を少なくとも備え、
前記第1波長光に対応する第1メディアに前記第1メインビームと前記第1サブビーム
とが照射されたときに、前記第1メインビームの光の強さと前記第1サブビームの光の強
さとの総和に対する前記第1メインビームの光の強さとされた光の効率比をA1と定め、
前記第2波長光に対応する第2メディアに前記第2メインビームと前記第2サブビーム
とが照射されたときに、前記第2メインビームの光の強さと前記第2サブビームの光の強
さとの総和に対する前記第2メインビームの光の強さとされた光の効率比をA2と定めた
場合に、
下式(2)及び下式(3)を満足すること、
を特徴とする光ピックアップ装置。
0.90<A1<0.94 …(2)
0.87<A2<0.91 …(3) - 第1波長光と第2波長光とを少なくとも出射可能な発光素子と、
前記第2波長光に対応する回折格子と、
を少なくとも備え、
前記発光素子における前記第1波長光の発光位置と前記第2波長光の発光位置とが異な
ることに対応して、前記第1波長光に対応する第1メディア上の前記第1波長光の集光位
置と前記第2波長光に対応する第2メディア上の前記第2波長光の集光位置とが異なるこ
と、
を特徴とする光ピックアップ装置。 - 請求項3に記載の光ピックアップ装置において、
略円板状をした前記第1メディア上の前記第1波長光の集光位置よりも略円板状をした
前記第2メディア上の前記第2波長光の集光位置のほうが略円板状をしたメディアの内周
側に存すること、
を特徴とする光ピックアップ装置。 - 請求項1に記載の光ピックアップ装置と、
請求項2に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項1に記載の光ピックアップ装置と、
請求項3に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項2に記載の光ピックアップ装置と、
請求項3に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項1に記載の光ピックアップ装置と、
請求項2に記載の光ピックアップ装置と、
請求項3に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 第1波長光を少なくとも第1メインビームと第1サブビームとに分け、
第2波長光を少なくとも第2メインビームと第2サブビームとに分け、
前記第2波長光に対応した回折面部を有する回折格子と、
前記第1メインビームが照射される第1メイン受光部と、
前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、
前記第2サブビームが照射される第2サブ受光部と、
を有する光検出器と、
を少なくとも備え、
規格化された第1メイン受光部と第1サブ受光部との間の距離に対し、前記第1メイン
受光部と前記第1サブ受光部との間の距離が変更されたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置において、
変更された前記第1メイン受光部と前記第1サブ受光部との間の前記距離は、前記規格
化された第1メイン受光部と第1サブ受光部との間の距離よりも長く設定されたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置において、
前記規格化された第1メイン受光部と第1サブ受光部との間の距離の値が100%の値
と定められたときに、変更された前記第1メイン受光部と前記第1サブ受光部との間の前
記距離の値は、前記規格化された第1メイン受光部と第1サブ受光部との間の距離の値に
対し、略111%の値に設定されたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置において、
前記規格化された第2メイン受光部と第2サブ受光部との間の距離の値が100%の値
と定められたときに、前記第2メイン受光部と前記第2サブ受光部との間の前記距離の値
は、前記規格化された第2メイン受光部と第2サブ受光部との間の距離の値に対し、略1
00%の値に設定されたこと、
を特徴とする光ピックアップ装置。 - 第1波長光を少なくとも第1メインビームと第1サブビームとに分け、
第2波長光を少なくとも第2メインビームと第2サブビームとに分け、
前記第2波長光に対応した回折面部を有する回折格子と、
前記第1メインビームが照射される第1メイン受光部と、
前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、
前記第2サブビームが照射される第2サブ受光部と、
を有する光検出器と、
を少なくとも備え、
前記第1メイン受光部を中心に一対の位置変更された前記第1サブ受光部が配置されて
、前側の前記第1サブ受光部と、中央の前記第1メイン受光部と、後側の前記第1サブ受
光部と、が並設されたときに、
前側の前記第1サブ受光部と、中央の前記第1メイン受光部と、後側の前記第1サブ受
光部と、の分光比は、規格化された前側の第1サブ受光部と、中央の第1メイン受光部と
、後側の第1サブ受光部と、の分光比に対し、変更されたこと、
を特徴とする光ピックアップ装置。 - 請求項13に記載の光ピックアップ装置において、
前記第1メイン受光部を中心に一対の位置変更された前記第1サブ受光部が配置されて
、前側の前記第1サブ受光部と、中央の前記第1メイン受光部と、後側の前記第1サブ受
光部と、が並設されたときに、
前側の前記第1サブ受光部と、中央の前記第1メイン受光部と、後側の前記第1サブ受
光部と、の分光比は、略1:(20~26):1とされたこと、
を特徴とする光ピックアップ装置。 - 請求項13に記載の光ピックアップ装置において、
前記第2メイン受光部を中心に一対の前記第2サブ受光部が配置されて、前側の前記第
2サブ受光部と、中央の前記第2メイン受光部と、後側の前記第2サブ受光部と、が並設
されたときに、
前側の前記第2サブ受光部と、中央の前記第2メイン受光部と、後側の前記第2サブ受
光部と、の分光比は、略1:(12~18):1とされたこと、
を特徴とする光ピックアップ装置。 - 第1波長光を少なくとも第1メインビームと第1サブビームとに分け、
第2波長光を少なくとも第2メインビームと第2サブビームとに分け、
前記第2波長光に対応した回折面部を有する回折格子と、
前記第1メインビームが照射される第1メイン受光部と、
前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、
前記第2サブビームが照射される第2サブ受光部と、
を有する光検出器と、
を少なくとも備え、
規格化された第1メイン受光部の受光感度の値に対し、前記第1メイン受光部の受光感
度の値が変更または同じとされ、
規格化された第1サブ受光部の受光感度の値に対し、前記第1サブ受光部の受光感度の
値が変更されたこと、
を特徴とする光ピックアップ装置。 - 請求項16に記載の光ピックアップ装置において、
前記規格化された第1メイン受光部の受光感度の値が100%の値と定められたときに
、前記規格化された第1メイン受光部の受光感度の値に対し、変更または同じとされた前
記第1メイン受光部の受光感度の値は、略100%または略100%以下の低い値に設定
され、
前記規格化された第1サブ受光部の受光感度の値が100%の値と定められたときに、
前記規格化された第1サブ受光部の受光感度の値に対し、変更された前記第1サブ受光部
の受光感度の値は、略100%以上の高い値に設定されたこと、
を特徴とする光ピックアップ装置。 - 請求項16に記載の光ピックアップ装置において、
前記規格化された第1メイン受光部の受光感度の値が100%の値と定められたときに
、前記規格化された第1メイン受光部の受光感度の値に対し、変更または同じとされた前
記第1メイン受光部の受光感度の値は、略95~100%の値に設定され、
前記規格化された第1サブ受光部の受光感度の値が100%の値と定められたときに、
前記規格化された第1サブ受光部の受光感度の値に対し、変更された前記第1サブ受光部
の受光感度の値は、略120~160%の値に設定されたこと、
を特徴とする光ピックアップ装置。 - 請求項16に記載の光ピックアップ装置において、
規格化された第2メイン受光部の受光感度の値が100%の値と定められたときに、前
記規格化された第2メイン受光部の受光感度の値に対し、前記第2メイン受光部の受光感
度の値は、略100%の値に設定され、
規格化された第2サブ受光部の受光感度の値が100%の値と定められたときに、前記
規格化された第2サブ受光部の受光感度の値に対し、前記第2サブ受光部の受光感度の値
は、略100%の値に設定されたこと、
を特徴とする光ピックアップ装置。 - 第1波長光を少なくとも第1メインビームと第1サブビームとに分け、
第2波長光を少なくとも第2メインビームと第2サブビームとに分け、
前記第2波長光に対応した回折面部を有する回折格子と、
前記第1メインビームが照射される第1メイン受光部と、
前記第1サブビームが照射される第1サブ受光部と、
前記第2メインビームが照射される第2メイン受光部と、
前記第2サブビームが照射される第2サブ受光部と、
を有する光検出器と、
を少なくとも備え、
規格化された第1メイン受光部から出力される信号の値に対し、前記第1メイン受光部
から出力される信号の値が変更または同じとされ、
規格化された第1サブ受光部から出力される信号の値に対し、前記第1サブ受光部から
出力される信号の値が変更されたこと、
を特徴とする光ピックアップ装置。 - 請求項20に記載の光ピックアップ装置において、
前記規格化された第1メイン受光部から出力される信号の値が100%の値と定められ
たときに、前記規格化された第1メイン受光部から出力される信号の値に対し、変更また
は同じとされた前記第1メイン受光部から出力される信号の値は、略100%または略1
00%以下の低い値に設定され、
前記規格化された第1サブ受光部から出力される信号の値が100%の値と定められた
ときに、前記規格化された第1サブ受光部から出力される信号の値に対し、変更された前
記第1サブ受光部から出力される信号の値は、略100%以上の高い値に設定されたこと
、
を特徴とする光ピックアップ装置。 - 請求項20に記載の光ピックアップ装置において、
前記規格化された第1メイン受光部から出力される信号の値が100%の値と定められ
たときに、前記規格化された第1メイン受光部から出力される信号の値に対し、変更また
は同じとされた前記第1メイン受光部から出力される信号の値は、略95~100%の値
に設定され、
前記規格化された第1サブ受光部から出力される信号の値が100%の値と定められた
ときに、前記規格化された第1サブ受光部から出力される信号の値に対し、変更された前
記第1サブ受光部から出力される信号の値は、略120~160%の値に設定されたこと
、
を特徴とする光ピックアップ装置。 - 請求項20に記載の光ピックアップ装置において、
規格化された第2メイン受光部から出力される信号の値が100%の値と定められたと
きに、前記規格化された第2メイン受光部から出力される信号の値に対し、前記第2メイ
ン受光部から出力される信号の値は、略100%の値に設定され、
規格化された第2サブ受光部から出力される信号の値が100%の値と定められたとき
に、前記規格化された第2サブ受光部から出力される信号の値に対し、前記第2サブ受光
部から出力される信号の値は、略100%の値に設定されたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置と、
請求項13に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置と、
請求項16に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置と、
請求項20に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項13に記載の光ピックアップ装置と、
請求項16に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項13に記載の光ピックアップ装置と、
請求項20に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置と、
請求項13に記載の光ピックアップ装置と、
請求項16に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項9に記載の光ピックアップ装置と、
請求項13に記載の光ピックアップ装置と、
請求項20に記載の光ピックアップ装置と、
が合わせられたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
前記回折格子の回折面部は、
前記第1波長光を少なくとも前記第1メインビームと前記第1サブビームとに分ける回
折面部と、
前記第2波長光を少なくとも前記第2メインビームと前記第2サブビームとに分ける回
折面部と、
を兼ねたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
前記回折格子は、複数の領域部に分けられたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
前記回折格子は、偶数の領域部に分けられたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
前記回折格子は、第1領域部と、第2領域部と、第3領域部と、第4領域部と、の少な
くとも4つに分けられたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
複数種類の波長光を出射可能な発光素子を備えること、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
前記第1波長光の波長は、略765~840nmとされ、
前記第2波長光の波長は、略630~685nmとされたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
前記第1波長光の波長は、略630~685nmとされ、
前記第2波長光の波長は、略340~450nmとされたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置において、
複数の信号面部を有するメディアに対応可能とされたこと、
を特徴とする光ピックアップ装置。 - 請求項1、2、3、9、13、16、又は20の何れか1項に記載の光ピックアップ装
置を少なくとも備えること、
を特徴とする光ディスク装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801438097A CN102203860A (zh) | 2008-10-30 | 2009-10-29 | 光拾取装置以及具备光拾取装置的光盘装置 |
JP2010535841A JPWO2010050571A1 (ja) | 2008-10-30 | 2009-10-29 | 光ピックアップ装置およびそれを備える光ディスク装置 |
US13/095,624 US8750083B2 (en) | 2008-10-30 | 2011-04-27 | Optical pickup apparatus and disc apparatus including the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008280164 | 2008-10-30 | ||
JP2008-280164 | 2008-10-30 | ||
JP2009-034805 | 2009-02-18 | ||
JP2009034805 | 2009-02-18 | ||
JP2009183202 | 2009-08-06 | ||
JP2009-183202 | 2009-08-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/095,624 Continuation US8750083B2 (en) | 2008-10-30 | 2011-04-27 | Optical pickup apparatus and disc apparatus including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010050571A1 true WO2010050571A1 (ja) | 2010-05-06 |
Family
ID=42128930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068621 WO2010050571A1 (ja) | 2008-10-30 | 2009-10-29 | 光ピックアップ装置およびそれを備える光ディスク装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8750083B2 (ja) |
JP (1) | JPWO2010050571A1 (ja) |
KR (1) | KR20110074974A (ja) |
CN (1) | CN102203860A (ja) |
TW (1) | TW201021039A (ja) |
WO (1) | WO2010050571A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120113784A1 (en) * | 2010-11-09 | 2012-05-10 | Atsushi Ikeda | Optical pickup |
US8750083B2 (en) | 2008-10-30 | 2014-06-10 | Sanyo Electric Co., Ltd. | Optical pickup apparatus and disc apparatus including the same |
CN110085533A (zh) * | 2019-04-30 | 2019-08-02 | 歌尔股份有限公司 | 一种led光斑对称性的检测方法及检测装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130256286A1 (en) * | 2009-12-07 | 2013-10-03 | Ipg Microsystems Llc | Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths |
WO2013103057A1 (ja) * | 2012-01-06 | 2013-07-11 | 三菱電機株式会社 | 光ヘッド装置及び光ディスク装置 |
CN103988259A (zh) * | 2012-10-11 | 2014-08-13 | 松下电器产业株式会社 | 光信息装置、倾斜检测方法、计算机、播放机以及刻录机 |
CN113885284B (zh) * | 2021-09-27 | 2023-01-31 | 青岛海信激光显示股份有限公司 | 光源组件与投影设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001222825A (ja) * | 1999-12-03 | 2001-08-17 | Hitachi Ltd | 光検出器、光ピックアップ及びそれを用いた光学的情報再生装置 |
JP2006004499A (ja) * | 2004-06-16 | 2006-01-05 | Hitachi Ltd | 光ピックアップ装置および光ディスク装置 |
JP2006216106A (ja) * | 2005-02-02 | 2006-08-17 | Tdk Corp | 回折格子、受光素子及びそれらを用いた光ヘッド並びに光記録再生装置 |
JP2007122779A (ja) * | 2005-10-25 | 2007-05-17 | Sony Corp | 光ピックアップ及び光ディスク装置 |
JP2007141425A (ja) * | 2005-10-17 | 2007-06-07 | Sanyo Electric Co Ltd | 光ピックアップ装置および光ディスク装置 |
JP2007317331A (ja) * | 2006-05-29 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置 |
JP2008176899A (ja) * | 2006-12-18 | 2008-07-31 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置 |
JP2008192199A (ja) * | 2007-02-01 | 2008-08-21 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6567355B2 (en) * | 1999-12-03 | 2003-05-20 | Hitachi, Ltd. | Optical detector, optical pickup and optical information reproducing apparatus using optical pickup |
JP4106208B2 (ja) * | 2001-10-04 | 2008-06-25 | シャープ株式会社 | 光ピックアップ装置 |
JP3666860B2 (ja) * | 2002-04-24 | 2005-06-29 | 松下電器産業株式会社 | 光ピックアップ装置 |
US7317672B2 (en) * | 2002-09-06 | 2008-01-08 | Matsushita Electric Industrial Co., Ltd. | Optical head |
JP4841401B2 (ja) | 2005-11-21 | 2011-12-21 | 三洋電機株式会社 | 光ピックアップ装置 |
JP4518009B2 (ja) | 2005-11-29 | 2010-08-04 | 旭硝子株式会社 | 3波長用回折素子、位相板付3波長用回折素子および光ヘッド装置 |
JP2007334999A (ja) * | 2006-06-15 | 2007-12-27 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置及び光ディスク装置 |
JP2008204517A (ja) * | 2007-02-19 | 2008-09-04 | Hitachi Media Electoronics Co Ltd | 光ヘッドおよび光学的情報記録再生装置 |
JP2009043383A (ja) * | 2007-08-10 | 2009-02-26 | Sanyo Electric Co Ltd | 光ピックアップ装置 |
TW201021039A (en) | 2008-10-30 | 2010-06-01 | Sanyo Electric Co | Optical pickup device and optical disc device equipped with same |
-
2009
- 2009-09-24 TW TW098132317A patent/TW201021039A/zh unknown
- 2009-10-29 WO PCT/JP2009/068621 patent/WO2010050571A1/ja active Application Filing
- 2009-10-29 KR KR1020117007361A patent/KR20110074974A/ko not_active Application Discontinuation
- 2009-10-29 JP JP2010535841A patent/JPWO2010050571A1/ja active Pending
- 2009-10-29 CN CN2009801438097A patent/CN102203860A/zh active Pending
-
2011
- 2011-04-27 US US13/095,624 patent/US8750083B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001222825A (ja) * | 1999-12-03 | 2001-08-17 | Hitachi Ltd | 光検出器、光ピックアップ及びそれを用いた光学的情報再生装置 |
JP2006004499A (ja) * | 2004-06-16 | 2006-01-05 | Hitachi Ltd | 光ピックアップ装置および光ディスク装置 |
JP2006216106A (ja) * | 2005-02-02 | 2006-08-17 | Tdk Corp | 回折格子、受光素子及びそれらを用いた光ヘッド並びに光記録再生装置 |
JP2007141425A (ja) * | 2005-10-17 | 2007-06-07 | Sanyo Electric Co Ltd | 光ピックアップ装置および光ディスク装置 |
JP2007122779A (ja) * | 2005-10-25 | 2007-05-17 | Sony Corp | 光ピックアップ及び光ディスク装置 |
JP2007317331A (ja) * | 2006-05-29 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置 |
JP2008176899A (ja) * | 2006-12-18 | 2008-07-31 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置 |
JP2008192199A (ja) * | 2007-02-01 | 2008-08-21 | Matsushita Electric Ind Co Ltd | 光ピックアップ装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8750083B2 (en) | 2008-10-30 | 2014-06-10 | Sanyo Electric Co., Ltd. | Optical pickup apparatus and disc apparatus including the same |
US20120113784A1 (en) * | 2010-11-09 | 2012-05-10 | Atsushi Ikeda | Optical pickup |
CN110085533A (zh) * | 2019-04-30 | 2019-08-02 | 歌尔股份有限公司 | 一种led光斑对称性的检测方法及检测装置 |
CN110085533B (zh) * | 2019-04-30 | 2022-01-21 | 歌尔光学科技有限公司 | 一种led光斑对称性的检测方法及检测装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010050571A1 (ja) | 2012-03-29 |
TW201021039A (en) | 2010-06-01 |
KR20110074974A (ko) | 2011-07-05 |
US20120182850A1 (en) | 2012-07-19 |
CN102203860A (zh) | 2011-09-28 |
US8750083B2 (en) | 2014-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7542382B2 (en) | Optical pick-up head, optical information apparatus, and optical information reproducing method | |
US7283439B2 (en) | Optical disk apparatus using mechanism for controlling spherical aberration | |
JP4859529B2 (ja) | 光ピックアップ装置および光ディスク装置 | |
WO2010050571A1 (ja) | 光ピックアップ装置およびそれを備える光ディスク装置 | |
US20070041287A1 (en) | Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer | |
US8000188B2 (en) | Optical pickup apparatus and optical disc apparatus including the same | |
KR100546351B1 (ko) | 호환형 광픽업 및 이를 채용한 광 기록 및/또는 재생기기 | |
JP5378120B2 (ja) | 光ピックアップ装置及びそれを用いた光ディスク装置 | |
JP5542459B2 (ja) | 光ピックアップ装置及びそれを用いた光ディスク装置 | |
JP4462298B2 (ja) | 光ヘッドおよび光ディスク装置 | |
JP2005310298A (ja) | 光ピックアップおよび光情報処理装置 | |
JP4505979B2 (ja) | 光ヘッド、受発光素子および光記録媒体記録再生装置 | |
KR20130062776A (ko) | 광디스크 장치 및 그 동작 방법 | |
JP2011100537A (ja) | 光ピックアップ装置の対物光学素子、光ピックアップ装置及び光情報記録再生装置 | |
JP2006196054A (ja) | 光ピックアップ | |
JP2006120211A (ja) | 光ピックアップ、光ディスク装置、光検出装置および光ピックアップの信号生成方法 | |
JP2008282486A (ja) | 光ヘッドの製造方法、光ヘッド及び光記録再生装置 | |
JP2011134441A (ja) | 光ピックアップ装置および光ディスク装置 | |
JP2010118135A (ja) | ピックアップ装置の制御方法ならびにディスク装置およびその設定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980143809.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823681 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010535841 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117007361 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09823681 Country of ref document: EP Kind code of ref document: A1 |