WO2010050107A1 - 太陽光集光用ヘリオスタットの制御方法及びその装置 - Google Patents

太陽光集光用ヘリオスタットの制御方法及びその装置 Download PDF

Info

Publication number
WO2010050107A1
WO2010050107A1 PCT/JP2009/004238 JP2009004238W WO2010050107A1 WO 2010050107 A1 WO2010050107 A1 WO 2010050107A1 JP 2009004238 W JP2009004238 W JP 2009004238W WO 2010050107 A1 WO2010050107 A1 WO 2010050107A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
reflecting mirrors
focal point
sunlight
link
Prior art date
Application number
PCT/JP2009/004238
Other languages
English (en)
French (fr)
Inventor
江澤一明
川口隆
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to AU2009309208A priority Critical patent/AU2009309208B2/en
Priority to CN2009801423759A priority patent/CN102197267B/zh
Priority to US13/058,950 priority patent/US20110146663A1/en
Priority to ES201190013A priority patent/ES2387710B1/es
Publication of WO2010050107A1 publication Critical patent/WO2010050107A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • G02B19/008Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector adapted to collect light from a complete hemisphere or a plane extending 360 degrees around the detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1822Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors comprising means for aligning the optical axis
    • G02B7/1827Motorised alignment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/131Transmissions in the form of articulated bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/136Transmissions for moving several solar collectors by common transmission elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/17Spherical joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a solar condensing heliostat control method and apparatus for tracking the sun and condensing reflected light at an arbitrary point (focal point).
  • the heliostat that condenses sunlight is composed of a plurality of reflecting mirrors (facets), and is configured to reflect and condense sunlight to a heat receiving part or the like and generate electricity with the heat. Or it is comprised as a center reflector type solar thermal power generation plant which re-reflects the reflected light reflected by the facet with a large reflector (center reflector) and collects it on the heat receiving part.
  • a center reflector type solar thermal power generation plant which re-reflects the reflected light reflected by the facet with a large reflector (center reflector) and collects it on the heat receiving part.
  • an invention has been proposed in which the heliostat is configured to track the movement of sunlight (see, for example, Patent Document 1).
  • FIG. 14 shows a side view of an example of a heliostat used for solar thermal power generation
  • the conventional heliostat 5 has a plurality of facets 20, and the facets 20 are installed on a mount 47.
  • a plurality of (three in FIG. 14) are installed on the turning mechanism 45.
  • the installed facets 20 have bases connected by a link mechanism 46, and the link mechanism 46 allows the conventional heliostat 5 to operate as an undulation 44, and the swing mechanism 45 to perform a swing 43 operation.
  • the conventional heliostat 5 tracks the sun, and is configured to reflect and condense sunlight to an arbitrary place (for example, a heat receiving part or a reflecting mirror in solar thermal power generation).
  • FIG. 15 is a schematic plan view showing the state of the facet 20 mounted on the conventional heliostat 5.
  • a plurality of facets 20 are installed in a fixed number (14 in FIG. 15) in combination. Yes.
  • the facet 20 described here has a side of about 450 mm.
  • the heliostat described in Patent Document 1 is configured to track sunlight by rotating on the X axis and the Y axis, as shown in FIG. 3 of Patent Document 1, and the X axis of the heliostat. Since the facets move around the intersection of the Y axis and the Y axis, the phenomenon that the focus position formed by the reflected light of each facet shifts (coma aberration) occurs, and the light collection efficiency decreases.
  • the conventional heliostat 5 shown in FIG. 14 is also the same, and since the turning 43 is performed with the center of the turning mechanism 45 as a base point, the focal length of the facet 20 at a position away from the center is shifted. is doing.
  • FIG. 8 is a schematic diagram in which a plurality of (three in FIG. 8) facets 20 are installed on the heliostat 5, and shows how the heliostat operates with the undulation turning center O as a base point.
  • the angle of the facet 20 is adjusted in advance so that the sunlight S irradiated from the sun 40 is reflected and the reflected light R forms a focal point F at, for example, a heat receiving part or a reflecting mirror.
  • FIG. 9 shows the state when the sun 40 moves.
  • the angle of the sunlight S irradiating the facet 20 changes as the sun 40 moves, and the helio The stat 5 performs turning and undulation operations.
  • the left facet 20 shown in FIG. 9 moves upward by the facet movement distance d, and similarly to the right This facet 20 also moves by the facet movement distance d downward in the figure. Therefore, as shown in FIG. 9, the reflected light R does not form a focal point at a place where it should become the focal point F such as the heat receiving portion, and the reflected light R is diffused by the moving distance e from the focal point. This phenomenon is called coma, and even when the heliostat 5 is installed so that the reflected light R intersects at the focal point F, the reflected light R does not intersect at the focal point F due to the turning and undulation operations. It is.
  • the light collection efficiency is reduced, and particularly in solar thermal power plants using the heliostats on the scale of hundreds or thousands, the reduction in light collection efficiency reduces the power generation efficiency of the plant. I have the problem of drastically reducing it.
  • the present invention has been made to solve the above-described problems, and the object thereof is to realize a high concentration ratio of sunlight without causing a shift in the sunlight collection point (focal point), and to turn by a turning mechanism. It is providing the control method and apparatus of the sunlight condensing heliostat which implement
  • Another object of the present invention is to provide a high-efficiency solar power plant by reducing the cost of installation work by adopting an equipment configuration that facilitates installation and facet adjustment work when installed in a solar power plant. .
  • a heliostat control method includes a solar concentrating heliostat having a plurality of reflecting mirrors, tracking a moving sun, reflecting sunlight, and determining in advance.
  • each of the plurality of facets is controlled to have a center when the facets are undulated and swiveled (tilted). That is, as shown in FIG. 10, each facet 20 is configured to have a center of undulation and rotation, thereby preventing the occurrence of coma aberration for the control method in which the facet moving distance d is zero. Can do.
  • control is performed so that the position of the focal point formed by reflected light is kept constant with respect to the movement of the sun (light source), but the principle is the same as the control for moving the focal point. belongs to.
  • the reflecting mirrors are operated in conjunction with each other while maintaining the center coordinates of the reflecting mirrors.
  • This configuration makes it possible to suppress even the coma aberration that occurs at the end of the facet, since the center of the facet is the center of undulation and rotation (tilting).
  • the facet is assumed to be 450 mm to 1000 mm square.
  • the center of facet undulation is the corner of the facet, the distance from the center of undulation to the other corner is increased. The moving distance d is generated.
  • this control method uses the center of the facet as the undulating turning center, the movement distance d of the facet is made as close to zero as possible, so that the occurrence of coma aberration can be suppressed to an extremely small range.
  • the above-described heliostat control method is characterized in that a focal point formed by a plurality of the reflecting mirrors can move on a celestial sphere having an arbitrary radius without generating coma.
  • the direction of a plurality of the reflecting mirrors is controlled in conjunction with two different link mechanisms.
  • facet posture control is simplified because the facet control performed to guide the reflected light in an arbitrary direction is performed simultaneously on a plurality of facets using at least two different vector directions. It can be realized easily and reliably with a simple mechanism.
  • a heliostat for achieving the above object is a solar light collecting heliostat configured so that a plurality of reflecting mirrors have a focal point, and the plurality of reflecting mirrors are respectively arranged via respective tilting mechanisms.
  • the two tilt mechanisms are connected by two different directions of the first axis link (X-axis link) and the second axis link (Y-axis link), and the plurality of tilt mechanisms are linked by the link. And changing the direction.
  • the first axis link (X axis link) and the second axis link (Y axis link) are rod-like links, and are provided in directions perpendicular to each other, and each is a driving device.
  • the focal positions of the plurality of reflecting mirrors can be moved through the respective links and tilting mechanisms by controlling the driving device.
  • a plurality of tilt mechanisms are connected by links orthogonal to the first axis link (X axis link) and the second axis link (Y axis link), so the relationship between the operation amount of the driving device and the moving distance of the focal point. Can be easily calculated, and facet control itself can be easily performed. Furthermore, by using a bar-shaped link, it becomes possible to secure a wide range of facet movement, especially in large-scale solar power plants, because it is possible to track the movement of the sun over a wide range, improving the power generation efficiency be able to.
  • a solar thermal power plant for achieving the above object is characterized in that a plurality of the above-described heliostats are arranged, and solar power is generated by concentrating sunlight on a heat receiving part using molten salt as a heat medium. To do.
  • the area efficiency of the installation of the heliostat in the solar thermal power plant can be improved, and the reflected light can be concentrated on the heat receiving portion or the reflecting mirror, so that a solar thermal power plant with extremely high power generation efficiency is provided. Can do. Further, since the tilting of the plurality of facets is performed by the biaxial link mechanism, the equipment can be easily transported and installed to the site where the solar thermal power plant is installed, so that the installation cost of the power plant can be reduced. .
  • control method and apparatus for a heliostat of the present invention it is possible to realize a high concentration rate of sunlight without causing a deviation in the sunlight collection point (focal point) and to prevent the turning by the turning mechanism. It is possible to provide a solar condensing heliostat control method and apparatus that achieve high area arrangement efficiency.
  • FIG. 1 is a partially enlarged view of a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first embodiment of the present invention.
  • FIG. 3 is a side view of the second embodiment of the present invention.
  • FIG. 4 is a side view of the second embodiment of the present invention.
  • FIG. 5 is a side view of the third embodiment of the present invention.
  • FIG. 6 is a schematic view showing a state in operation of the third embodiment of the present invention.
  • FIG. 7 is a side view of the fourth embodiment of the present invention.
  • FIG. 8 is a schematic view showing the relationship between sunlight and reflected light in a conventional heliostat.
  • FIG. 9 is a schematic view showing generation of coma aberration in a conventional heliostat.
  • FIG. 10 is a schematic view showing the relationship between sunlight and reflected light in the heliostat of the present invention.
  • FIG. 11 is a schematic view showing the movement locus of the focal point in the heliostat of the present invention.
  • FIG. 12 is a schematic view of a solar thermal power plant using the heliostat of the present invention.
  • FIG. 13 is a schematic view of a solar thermal power plant using a conventional heliostat.
  • FIG. 14 is a schematic view showing a conventional heliostat.
  • FIG. 15 is a schematic plan view showing a facet installed on a conventional heliostat.
  • FIG. 1 shows a partially enlarged view of a heliostat 1A according to the first embodiment of the present invention
  • FIG. 2 shows a perspective view of a heliostat 1A composed of nine facets 20.
  • Each facet 20 is fixed to a tilting mechanism 10A by facet bolts 19, and the tilting mechanism 10A is installed on a gantry 16A.
  • the tilting mechanism 16A is connected in the X-axis direction by the X-axis link 11A via the X-axis arm portion 13, and in the Y-axis direction, the Y-axis link 12A is connected via the universal joint 15 and the cylinder mechanism 14A. And are configured to move in conjunction with each other.
  • FIG. 2 shows an example in which a plurality of facets 20 are combined to form a heliostat 1A.
  • nine facets 20 are connected by links in the X-axis direction and the Y-axis direction, respectively.
  • An X-axis drive device 17 and a Y-axis drive device 18 are connected to the end of the link, respectively.
  • the link mechanism is moved, and the inclination of the facet 20 is controlled by two axes.
  • the facet 20 is adjusted to have a focal point at an arbitrary point in advance.
  • the link mechanism By moving all the facets 20 from the state by the link mechanism at the same time, only the position of the focal point is obtained while the reflected light remains focused. Can move. Thereby, for example, in a solar thermal power generation plant, even if the sun moves, the reflected light always has a focal point on the heat receiving portion or the reflecting mirror, so that no coma occurs or the power generation efficiency is extremely low with minimum coma. It becomes possible to provide a high plant. Further, by configuring the link mechanism as shown in FIG. 2, the movable region of the facet 20 can be increased, and it is possible to widen the range in which the sun can be tracked in the solar thermal power plant, thereby improving the power generation efficiency. Can do.
  • the facet 20 can be tilted to nearly 90 degrees in all directions.
  • a giant solar thermal power plant with a size of several hundred meters square or more, it is necessary to tilt the facet 20 greatly, and if the movable area of the facet 20 becomes large, the position where the heat receiving portion or the reflecting mirror is installed is lowered. Therefore, it is possible to reduce the construction cost of the solar thermal power plant.
  • FIG. 3 shows a schematic front view of a heliostat 1B according to a second embodiment of the present invention
  • FIG. 4 shows a schematic side view.
  • the heliostat 1B is configured such that a facet 20 having a tilting mechanism 10B on the lower side rotates in the left-right direction shown in FIG. 3 about the Y-axis link 12B.
  • the plurality of tilting mechanisms 10B are connected by an X-axis link 11B that is a link mechanism, and are configured to connect a plurality of facets 20 in the left-right direction (X-axis direction) in FIG. . Further, the undulation in the Y-axis direction perpendicular to the X-axis direction in FIG.
  • FIG. 5 shows an outline of a heliostat 3A according to the third embodiment of the present invention
  • FIG. 6 shows a state when tracking sunlight.
  • the heliostat 3A includes a plurality of facets 20 each having a columnar support member 36 below, and the plurality of facets 20 are arranged so as to have a focal point.
  • the support member 36 is an extendable cylinder mechanism 34.
  • the neck portion constituted by a spherical joint is rotatably supported by an intermediate fixing plate 32 via a rotation mechanism 31.
  • the neck rotation mechanism 31 can be realized by a joint with two degrees of freedom other than the spherical joint.
  • the upper surface of the support member 36 is connected to the facet 20 via an attachment angle adjusting mechanism 30.
  • the attachment angle of the facet 20 is adjusted by the attachment angle adjustment mechanism 30.
  • the lower portion of the support member 36 is connected by a link mechanism 35, and the link mechanism 35 moves on a plane, so that the inclination of the plurality of facets 20 can be adjusted in conjunction with each other.
  • the link mechanism 35 moves on a so-called XY-axis plane on the plane, the support member 36 and the link mechanism 35 are connected using a joint that can operate with two axes of XY, but preferably a spherical joint is used. To do. As shown in FIG.
  • the link mechanism 35 moves on the upper surface of the bottom plate 33, so that the facet 20 can change the mirror surface direction as apparent from the direction of the normal line n of the facet.
  • the movement of the link mechanism 35 is realized by extending the cylinder mechanism 34.
  • the heliostat 3 ⁇ / b> A has the above-described configuration, and an overview is that a heliostat having two layers of a bottom plate 33 and an intermediate fixing plate 32 and a support member 36 extending below the facet 20 are forested. It has become.
  • the facet 20 is projected from the intermediate fixing plate 32 as if it were the head.
  • FIG. 7 shows a schematic view of a heliostat 3B according to a fourth embodiment of the present invention, which uses a support member 36 that does not expand and contract instead of the extendable cylinder mechanism of the third embodiment.
  • a support member 36 that does not expand and contract instead of the extendable cylinder mechanism of the third embodiment.
  • the structure without the cylinder mechanism 34 can simplify the structure of the heliostat 3B. For example, when a solar thermal power plant is constructed on a desert, it is possible to reduce the risk of failure due to sand or heat.
  • FIG. 10 is a schematic diagram showing the state of sunlight S and reflected light R in heliostats 1A and 1B to which the control method and apparatus of the present invention are applied. Since the undulation turning center O of the facet 20 is located in each facet 20, even when the facet 20 moves following the sun 40, the shift of the reflected light R at the focus F as shown in FIG. The travel distance e) from is not generated. In particular, in a solar thermal power generation plant, the distance of the facet 20 from the focal point may be several hundred meters to several thousand meters depending on the scale of the plant.
  • FIG. 11 schematically shows the movement locus of the focal point F in a state where no coma aberration occurs.
  • the focal point F moves on the celestial sphere 41 with a constant focal length. This shows that the coma aberration is zero.
  • the reflected light R is always focused on the heat receiving portion or the reflecting mirror (center reflector), that is, the focus F is in a fixed state, and the sun as a light source is tracked. become. Since this is similarly affected by the coma aberration, the present invention is used to collect the reflected light R at a certain position without the influence of the coma aberration with respect to the movement of the sun. . That is, it is possible to provide a heliostat control method and apparatus that achieves a high concentration rate of sunlight.
  • FIG. 13 shows a schematic diagram of a solar thermal power plant 6 in which a conventional heliostat 5 is installed.
  • the conventional heliostat 5 is turned by a turning mechanism 45, so that the heliostat turning range 42 shown in FIG. 13 needs to be installed so as not to overlap.
  • the heliostats 1A and 1B of the present invention do not have a conventional turning mechanism, as shown in FIG. Realizes area placement efficiency. That is, it is possible to greatly increase the number of heliostats that can be installed on the heat receiving unit or the center reflector installed at the focal point F, and it is possible to realize a significant improvement in power generation efficiency in the solar thermal power plant 2. became.
  • the present invention realizes a high concentration ratio of sunlight that does not cause a deviation in the sunlight collection point (focal point F), and realizes a high area arrangement efficiency by adopting a configuration in which the turning by the turning mechanism is not performed. It is possible to provide a light condensing heliostat control method and apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 太陽光の集光ポイント(焦点)にずれが生じない高い集光率を持つ高太陽光集光能率を実現し、旋回機構による旋回を行なわないため高面積配置効率を実現した太陽光集光用ヘリオスタットの制御方法及びその装置を提供する。  複数の反射鏡を有した太陽光集光用ヘリオスタットに、移動する太陽を追尾させ、太陽光を反射させ、予め定めた焦点に集光させる制御方法であって、前記複数の反射鏡を予め定めた距離に焦点を持つように調整する工程と、それぞれが連動して傾動するように構成した前記複数の反射鏡で太陽を追尾し、かつ前記反射鏡の反射光が任意の点で焦点を持つように制御する工程からなり、それぞれの前記反射鏡の予め定めた点の座標を固定した状態を維持しながら、それぞれの反射鏡を連動して動作させる。

Description

太陽光集光用ヘリオスタットの制御方法及びその装置
 本発明は、太陽を追尾し反射光を任意の点(焦点)に集光するための太陽光集光用ヘリオスタットの制御方法及びその装置に関するものである。
 近年、石油資源の枯渇及びその価格の高騰が憂慮され、また、地球温暖化の原因の1つである石油資源から新たなエネルギー資源への移行が研究されている。新たなエネルギー源の1つとして、太陽光を集光してエネルギーとして使用する太陽熱発電がある。
 この太陽熱発電において、太陽光を集光するヘリオスタットは、複数の反射鏡(ファセット)から構成されており、受熱部等に太陽光を反射・集光し、その熱で発電を行なうよう構成されているか、ファセットで反射した反射光を大型反射鏡(センターリフレクター)で再反射し受熱部に集光するセンターリフレクター型太陽熱発電プラントとして構成されている。ここで、発電効率を上げるために、ヘリオスタットは太陽光の動きを追尾する構成とする発明が提案されている(例えば特許文献1参照)。
 図14は太陽熱発電に使用されるヘリオスタットの1例の側面図を示しており、従来型ヘリオスタット5は、複数のファセット20を有しており、前記ファセット20を架台47に設置して構成したものを、旋回機構45条に複数台(図14では3台)設置されている。設置されたファセット20は台座をリンク機構46で連結されており、このリンク機構46により、従来型ヘリオスタット5は起伏44の動作を行い、前記旋回機構45により旋回43の動作を行なうように構成されている。この動作により従来型ヘリオスタット5は太陽を追尾し、太陽光を任意の場所(例えば太陽熱発電における受熱部又は反射鏡等)に反射・集光するよう構成している。
 図15は従来型ヘリオスタット5に搭載されているファセット20の様子を示した平面概略図であり、通常、複数枚のファセット20は一定の枚数毎(図15では14枚)組み合わせて設置されている。ここで記載しているファセット20は1辺が450mm程度となっている。
特開2004-37037号公報
 しかしながら、特許文献1に記載のヘリオスタットは、特許文献1の図3に示す様に、X軸上及びY軸上を回転させることで太陽光を追尾する構成であり、前記ヘリオスタットのX軸及びY軸の交点を中心としてファセットが移動するため、各ファセットの反射光が形成する焦点の位置がずれる現象(コマ収差)が発生し、集光効率が低下する問題を有している。図14に示した前記従来型ヘリオスタット5も同様であり、旋回機構45の中心を基点として旋回43を行なうために、中心から離れた位置にあるファセット20の焦点距離がずれてしまう問題を有している。
 この焦点がずれる現象(コマ収差)に関して図8及び図9を参照して説明する。図8はヘリオスタット5に複数(図8では3枚)のファセット20が設置されている模式図を示しており、起伏旋回中心Oを基点としてヘリオスタットが動作する様子を示している。
 太陽40から照射される太陽光Sを反射し、反射光Rが例えば受熱部又は反射鏡等に焦点Fを形成するように予めファセット20の角度は調整して設置されている。図9は太陽40が移動した際の様子を示しており、太陽40が移動することでファセット20に照射する太陽光Sの角度が変わり、これに伴い集光する焦点位置を修正するためにヘリオスタット5が旋回及び起伏の動作を行なう。
 この時、ヘリオスタット2の旋回又は起伏が前記起伏旋回中心Oを基点に行なわれるため、図9に示す左方のファセット20は図の上方にファセットの移動距離dだけ移動し、同様に右方のファセット20も図の下方にファセットの移動距離dだけ移動してしまう。そのため、図9に示すように反射光Rは、受熱部等の焦点Fとなるべき場所で焦点を形成しなくなり、焦点からの移動距離eだけ反射光Rが拡散した状態となってしまう。この現象をコマ収差と呼び、ヘリオスタット5を設置する際に焦点Fで反射光Rが交わるように調整したとしても、旋回及び起伏の動作により焦点Fで反射光Rが交わらなくなってしまうというものである。
 前述のコマ収差のため、集光効率が低下してしまい、特に前記ヘリオスタットを数百台、数千台の規模で利用する太陽熱発電のプラントでは、集光効率の低下がプラントの発電効率を大幅に低下させてしまうという問題を抱えている。
 そこで、本発明は上記の問題を解決するためになされたものであり、その目的は、太陽光の集光ポイント(焦点)にずれが生じない太陽光の高集光率を実現し、旋回機構による旋回を行なわない構成とすることで高面積配置効率を実現した太陽光集光用ヘリオスタットの制御方法及びその装置を提供することにある。
 また、太陽熱発電プラントに据え付ける際に、据付及びファセットの調整作業が容易に行える機器構成とすることで、据付工事のコストダウンを実現し、さらに、高効率の太陽熱発電プラントを提供することにある。
 上記の目的を達成するための本発明に係るヘリオスタット制御方法は、複数の反射鏡を有した太陽光集光用ヘリオスタットに、移動する太陽を追尾させ、太陽光を反射させ、予め定めた焦点に集光させる制御方法であって、前記複数の反射鏡を予め定めた距離に焦点を持つように調整する工程と、それぞれが連動して傾動するように構成した前記複数の反射鏡で太陽を追尾し、かつ前記反射鏡の反射光が任意の点で焦点を持つように制御する工程からなり、それぞれの前記反射鏡の予め定めた点の座標を固定した状態を維持しながら、それぞれの反射鏡を連動して動作させることを特徴とする。
 この構成により、複数のファセットそれぞれに、ファセットを起伏及び旋回させる(傾動させる)際の中心がある制御としたため、コマ収差の発生を抑制することが可能となる。即ち、図10に示すように各々のファセット20が、起伏及び旋回の中心を持つように構成することで、ファセットの移動距離dをゼロとする制御方法のため、コマ収差の発生を防止することができる。
 また、複数のファセットを連動させて太陽を追尾するように制御することで、初期段階で任意の位置に焦点を有するように調整した後は、これを容易に維持することが可能となる。
 ここで、太陽熱発電においては、太陽(光源)の移動に対して、反射光が形成する焦点の位置を一定に保つように制御を行っているが、上記の焦点を移動させる制御と原理は同様のものである。
 上記のヘリオスタット制御方法において、それぞれの前記反射鏡の中心の座標を固定した状態を維持しながら、それぞれの反射鏡を連動して動作させることを特徴とする。
 この構成により、ファセットの中心を起伏及び旋回させる(傾動させる)中心としたため、ファセットの端部において発生するコマ収差さえも抑制することが可能となった。本発明では、ファセットは450mmから1000mm四方のものを想定しているが、例えば、ファセットの起伏旋回中心をファセットの隅とした場合、起伏旋回中心から他端の隅までの距離が大きくなり、ファセットの移動距離dが発生してしまう。
 これに対して、この制御方法はファセットの中心を起伏旋回中心とするため、ファセットの移動距離dを極力ゼロに近づけるため、コマ収差の発生を極めて小さい範囲に抑制することができる。
 上記のヘリオスタット制御方法において、複数の前記反射鏡により形成される焦点が、任意の半径を有した天球面上にコマ収差を発生することなく移動可能としたことを特徴とする。
 上記のヘリオスタット制御方法において、複数の前記反射鏡の方向を、異なる2つのリンク機構で連動させて制御することを特徴とする。
 この構成により、反射光を任意の方向に導くために行うファセットの制御を、少なくとも異なる2つの異なるベクトル方向を有するリンク機構で、かつ複数のファセットに対して同時に行うため、ファセットの姿勢制御を単純な機構で容易かつ確実に実現することができる。
 上記の目的を達成するためのヘリオスタットは、複数の反射鏡が焦点を有するように配列して構成した太陽光集光用ヘリオスタットにおいて、複数の反射鏡を、それぞれの傾動機構を介してそれぞれの架台に設置し、複数の前記傾動機構を2つの異なる方向の第1軸リンク(X軸リンク)及び第2軸リンク(Y軸リンク)で連結し、前記リンクにより前記複数の傾動機構が連動して向きを変えることを特徴とする。
 この構成により、複数の傾動機構を第1軸リンク及び第2リンクの異なる方向の2軸で連結するため、複数のファセットを同時に傾動させ、反射光の焦点を維持したまま制御すること容易にできる。
 上記のヘリオスタットにおいて、前記第1軸リンク(X軸リンク)及び第2軸リンク(Y軸リンク)が、棒状のリンクであり、互いに直角に交わる方向に設けられており、かつそれぞれが駆動装置に連結されており、前記駆動装置を制御することで、それぞれのリンク及び傾動機構を介して前記複数の反射鏡の焦点位置を移動可能に構成したことを特徴とする。
 この構成により、第1軸リンク(X軸リンク)及び第2軸リンク(Y軸リンク)の直交したリンクで複数の傾動機構を連結するため、前記駆動装置の作動量と焦点の移動距離の関係を計算することが容易となり、ファセットの制御自体を容易に行うことができる。さらに、棒状のリンクを利用することで、ファセットの可動領域を広く確保することが可能となり、特に大型の太陽熱発電プラントでは、太陽の動きを広い範囲で追尾が可能なため、発電効率を向上させることができる。
 上記の目的を達成するための太陽熱発電プラントは、上記のヘリオスタットを複数基配置し、溶融塩を熱媒とする受熱部に太陽光を集光することで、太陽熱発電を行なうことを特徴とする。
 この構成により、太陽熱発電プラントにおけるヘリオスタットの設置の面積効率が向上し、かつ、反射光を受熱部又は反射鏡等に集中させることができるため、極めて発電効率の高い太陽熱発電プラントを提供することができる。また、複数のファセットの傾動を2軸のリンク機構により行うため、太陽熱発電プラントを設置する現地への機材の運搬、据付が容易に行えるため、発電プラントの据付コストを低減させることが可能となる。
 本発明のヘリオスタットの制御方法及びその装置によれば、太陽光の集光ポイント(焦点)にずれが生じない太陽光の高集光率を実現し、旋回機構による旋回を行なわない構成とすることで高面積配置効率を実現した太陽光集光用ヘリオスタットの制御方法及びその装置を提供することができる。
 また、太陽熱発電プラントに据え付ける際に、据付及びファセットの調整作業が容易に行える機器構成とすることで、据付工事のコストダウンを実現し、さらに、高効率の太陽熱発電プラントを提供することができる。
図1は本発明の第1の実施例の部分拡大図である。 図2は本発明の第1の実施例の概略図である。 図3は本発明の第2の実施例の側面図である。 図4は本発明の第2の実施例の側面図である。 図5は本発明の第3の実施例の側面図である。 図6は本発明の第3の実施例の作動時の様子を示した概略図である。 図7は本発明の第4の実施例の側面図である。 図8は従来のヘリオスタットにおける太陽光と反射光の関係を示した概略図である。 図9は従来のヘリオスタットにおけるコマ収差の発生を示した概略図である。 図10は本発明のヘリオスタットにおける太陽光と反射光の関係を示した概略図である。 図11は本発明のヘリオスタットにおける焦点の移動軌跡を示した概略図である。 図12は本発明のヘリオスタットを利用した太陽熱発電プラントの概略図である。 図13は従来のヘリオスタットを利用した太陽熱発電プラントの概略図である。 図14は従来のヘリオスタットを示した概略図である。 図15は従来のヘリオスタットに設置されたファセットを示した平面概略図である。
 以下、本発明を図に示す実施形態を参照して具体的に説明する。
 図1は本発明の第1の実施例であるヘリオスタット1Aの部分拡大図を示しており、図2は9つのファセット20から成るヘリオスタット1Aの斜視図を示している。各ファセット20はファセットボルト19により傾動機構10Aに固定されており、前記傾動機構10Aは架台16Aに設置されている。また、前記傾動機構16AはX軸方向に、それぞれX軸腕部13を介してX軸リンク11Aにより連結されており、Y軸方向に、ユニバーサルジョイント15及びシリンダ機構14Aを介してY軸リンク12Aにより連結され、互いに連動して動くよう構成している。ここで、前記ファセット20は、予め任意の点に焦点を持つように、ファセットボルト19により取付角度を調整されている。
 図2は複数のファセット20を組み合わせて、ヘリオスタット1Aとする場合の1例を示しており、ここでは9つのファセット20を、X軸方向及びY軸方向にそれぞれリンクにより連結しており、そのリンクの端部にはX軸駆動装置17及びY軸駆動装置18をそれぞれ連結している。
 この駆動装置17、18を作動させることで、リンク機構を動かし、ファセット20の傾きを2軸で制御するよう構成している。ファセット20は予め、任意の点に焦点を持つように調整されており、その状態から全てのファセット20を同時にリンク機構により動かすことで、反射光は焦点を結んだまま、その焦点の位置のみを動かすことができる。これにより、例えば、太陽熱発電プラントにおいて、太陽が動いても、常に反射光は受熱部又は反射鏡等に焦点を持つため、コマ収差が発生せず、又は最小のコマ収差で、発電効率の極めて高いプラントを提供することが可能となる。
 また、リンク機構を図2のように構成することにより、ファセット20の可動領域が大きく取れ、太陽熱発電プラントにおいて、太陽を追尾可能とする範囲を広くすることが可能となり、発電効率を向上することができる。さらに傾動機構10Aの形状を変更することで、ファセット20を全方向に90度近くまで傾動可能な構成とすることが可能となる。特に数百メートル四方以上の大きさとなる巨大太陽熱発電プラントでは、ファセット20を大きく傾ける必要があり、また、ファセット20の可動領域が大きくなれば、受熱部又は反射鏡等を設置する位置を低くすることが可能となるため、太陽熱発電プラントの建造費のコストダウンを実現することも可能である。
 図3は本発明の第2の実施例であるヘリオスタット1Bの正面概略図を示しており、図4は側方概略図を示している。ヘリオスタット1Bは、下方に傾動機構10Bを有したファセット20が、Y軸リンク12Bを中心とし図3に示す左右方向に回転するよう構成している。複数の傾動機構10Bはリンク機構であるX軸リンク11Bで連結されており、図3の左右方向(X軸方向)にある複数のファセット20を連結し、連動して起伏するよう構成している。
 また、図3のX軸方向に垂直なY軸方向(図3の紙面に対する奥手前方向又は図4の左右方向)の起伏は、図4に示す様に、Y軸リンク12Bに複数のファセット20からそれぞれ連結したリンクにより実現することができる。
 この実施例によりリンク機構をコンパクトに形成することができるため、ヘリオスタット1B自体の構造を小さくすることが可能であり、これに伴いヘリオスタット1Bの製造及び運搬コストを削減することができる。
 図5は本発明の第3の実施例であるヘリオスタット3Aの概略を示しており、図6は太陽光を追尾した際の様子を示している。ヘリオスタット3Aは、下方に柱状の支持部材36を有したファセット20を複数具備し、前記複数のファセット20が焦点を有するように配列しており、前記支持部材36が伸縮自在のシリンダ機構34で構成され、球面接手で構成された首部は回転機構31を介して、中間固定板32により回転可能に支持されている。首部の回転機構31は、前記球面接手以外には2自由度の接手によっても実現することができる。
 前記支持部材36の上部は取付角度調整機構30を介してファセット20が接続されており、複数のファセット20の反射光が任意の距離で焦点を持つように、ヘリオスタットを設置する際に、前記取付角度調整機構30によりファセット20の取付角度が調整される。前記支持部材36の下部はリンク機構35により連結されており、前記リンク機構35が平面上を移動することで、複数のファセット20の傾きを連動させて調整することを可能としている。また、前記リンク機構35は平面上の所謂XY軸平面を移動するため、前記支持部材36とリンク機構35の連結はXYの2軸で動作可能な接手を使用するが、望ましくは球面接手を使用する。
 図6に示すように、リンク機構35が底板33の上面を移動することで、ファセット20は、ファセットの法線nの方向を見ても明らかなように、鏡面方向を変えることができる。このリンク機構35の移動は、シリンダ機構34が伸びることで実現されている。また、太陽熱発電プラント等で実施する場合には、ファセット20が太陽を追尾する際に、前記リンク機構35を制御することで、常に受熱部又は反射鏡等の焦点に太陽光を集光することを可能としている。前記ヘリオスタット3Aは上記の構成となっており、概観は底板33と中間固定板32の2層を有したヘリオスタットに、ファセット20の下方に支持部材36が伸びたものが、林立したようになっている。そして、中間固定板32からは、頭部であるかのようなファセット20が突出している状態である。
 図7は本発明の第4の実施例であるヘリオスタット3Bの概略図を示しており、これは、第3の実施例の伸縮自在のシリンダ機構の変わりに、伸縮しない支持部材36を用いた場合の実施例である。支持部材36は、首部の回転機構31を中間固定板32に支持されているため、伸縮性のない支持部材36を用いる場合は、リンク機構35が底板33から浮き上がるように、3次元空間を移動するようになる。
 シリンダ機構34を使用しない構成により、ヘリオスタット3Bの構造を単純化することができ、例えば太陽熱発電プラントが砂漠上に建設されている場合、砂や熱による故障等のリスクを低減することが可能であり、前記ヘリオスタット3Bを数百、数千台使用する太陽熱発電プラントではメンテナンスの必要性が低いヘリオスタットであることが、極めて重要となる。即ち、メンテナンスの必要量に応じて、発電コストが大きく影響されるため、この実施例により発電コストを低下することができる。
(本発明の実施による効果)
 図10は本発明の制御方法及びその装置を適応したヘリオスタット1A、1Bにおける太陽光Sと反射光Rの様子を示した概略図である。ファセット20の起伏旋回中心Oが、それぞれのファセット20にあるため、太陽40を追尾してファセット20が移動した場合であっても、図9に示すような焦点Fにおける反射光Rのずれ(焦点からの移動距離e)は発生しない。特に太陽熱発電プラントでは、プラントの規模により、焦点からファセット20の距離が数百メートルから数千メートルまで離れる場合があり、この時は、ファセットの移動距離dが僅かなものであったとしても、焦点からの移動距離eは巨大なものとなるため、コマ収差の発生しない(e≒0)となる本発明のヘリオスタット制御方法及びその装置により、高効率の太陽熱発電プラントを提供することが可能となった。
 図11はコマ収差の発生しない状態における、焦点Fの移動軌跡を模式的に示したものである。ファセット20の傾動により焦点Fの位置を移動させた場合、前記焦点Fは焦点距離を一定とした天球41上を移動することになる。これが、コマ収差がゼロの状態を示したものである。
 ただし、太陽熱発電プラントにおいては、反射光Rは受熱部又は反射鏡(センターリフレクター)等に常に集光するよう構成し、つまり焦点Fは固定された状態であり、光源である太陽を追尾することになる。これも、コマ収差の影響を同様に受けるため、本発明を利用することで、太陽の移動に対して、コマ収差の影響がなく一定の位置に反射光Rを集光することを可能としている。即ち、太陽光の高集光率を実現したヘリオスタット制御方法及びその装置の提供が可能となる。
(太陽熱発電プラントにおける敷設)
 図13は従来型ヘリオスタット5を設置した太陽熱発電プラント6の概略図を示している。従来型ヘリオスタット5は図14に示す様に、旋回機構45により旋回するため、図13に示すヘリオスタット旋回範囲42が重ならないように設置する必要があった。
 これに対して、本発明のヘリオスタット1A、1Bは従来のような旋回機構を具備しないため、図12に示す様に、隣接するヘリオスタットの間隔を詰めて配置することが可能であり、高面積配置効率を実現している。即ち、焦点Fに設置した受熱部又はセンターリフレクターに対して設置可能なヘリオスタットの数を大幅に増加させることが可能となり、太陽熱発電プラント2における発電効率の大幅な向上を実現することが可能となった。
 以上、本発明により、太陽光の集光ポイント(焦点F)にずれが生じない太陽光の高集光率を実現し、旋回機構による旋回を行なわない構成とすることで高面積配置効率を実現した太陽光集光用ヘリオスタットの制御方法及びその装置を提供することできる。
 また、太陽熱発電プラントに据え付ける際に、据付及びファセットの調整作業が容易に行える機器構成とすることで、据付工事のコストダウンを実現し、さらに、高効率の太陽熱発電プラントを提供することができる。
1A、1B XY駆動式ヘリオスタット
2 太陽熱発電プラント
3A、3B XY駆動式ヘリオスタット
10 傾動機構
11 X軸リンク
12 Y軸リンク
13 X軸腕部
14 シリンダ機構
15 ユニバーサルジョイント
16 架台
17 X軸駆動装置
18 Y軸駆動装置
19 ファセットボルト
20 ファセット(反射鏡)

Claims (7)

  1.  複数の反射鏡を有した太陽光集光用ヘリオスタットに、移動する太陽を追尾させ、太陽光を反射させ、予め定めた焦点に集光させる制御方法であって、
     前記複数の反射鏡を予め定めた距離に焦点を持つように調整する工程と、それぞれが連動して傾動するように構成した前記複数の反射鏡で太陽を追尾し、かつ前記反射鏡の反射光が任意の点で焦点を持つように制御する工程からなり、それぞれの前記反射鏡の予め定めた点の座標を固定した状態を維持しながら、それぞれの反射鏡を連動して動作させることを特徴とするヘリオスタット制御方法。
  2.  それぞれの前記反射鏡の中心の座標を固定した状態を維持しながら、それぞれの反射鏡を連動して動作させることを特徴とする請求項1に記載のヘリオスタットの制御方法。
  3.  複数の前記反射鏡により形成される焦点が、任意の半径を有した天球面上にコマ収差を抑制するように移動することを特徴とする請求項1又は2に記載のヘリオスタット制御方法。
  4.  複数の前記反射鏡の方向を、異なる2つのリンク機構で連動させて制御することを特徴とする請求項1乃至3のいずれか1つに記載のヘリオスタット制御方法。
  5.  複数の反射鏡が焦点を有するように配列して構成した太陽光集光用ヘリオスタットにおいて、複数の反射鏡を、それぞれの傾動機構を介してそれぞれの架台に設置し、複数の前記傾動機構を2つの異なる方向の第1軸リンク及び第2軸リンクで連結し、前記リンクにより前記複数の傾動機構が連動して向きを変えることを特徴とするヘリオスタット。
  6.  前記第1軸リンク及び第2軸リンクが、棒状のリンクであり、互いに直角に交わる方向に設けられており、かつそれぞれが駆動装置に連結されており、前記駆動装置を制御することで、それぞれのリンク及び傾動機構を介して前記複数の反射鏡の焦点位置を移動可能に構成したことを特徴とする請求項5に記載のヘリオスタット。
  7.  請求項5又は6に記載のヘリオスタットを複数基配置し、溶融塩を熱媒とする受熱部に太陽光を集光することで、太陽熱発電を行なうことを特徴とする太陽熱発電プラント。
PCT/JP2009/004238 2008-10-27 2009-08-28 太陽光集光用ヘリオスタットの制御方法及びその装置 WO2010050107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2009309208A AU2009309208B2 (en) 2008-10-27 2009-08-28 Method for controlling heliostat used for condensing of sunlight and device thereof
CN2009801423759A CN102197267B (zh) 2008-10-27 2009-08-28 太阳光聚光用定日镜的控制方法及其装置
US13/058,950 US20110146663A1 (en) 2008-10-27 2009-08-28 Method for controlling heliostat used for condensing of sunlight and device thereof
ES201190013A ES2387710B1 (es) 2008-10-27 2009-08-28 Método para controlar un heliostato utilizado para condensar la luz solar y dispositivo para el mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-275263 2008-10-27
JP2008275263A JP4473332B2 (ja) 2008-10-27 2008-10-27 太陽光集光用ヘリオスタットの制御方法及びその装置

Publications (1)

Publication Number Publication Date
WO2010050107A1 true WO2010050107A1 (ja) 2010-05-06

Family

ID=42128481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004238 WO2010050107A1 (ja) 2008-10-27 2009-08-28 太陽光集光用ヘリオスタットの制御方法及びその装置

Country Status (6)

Country Link
US (1) US20110146663A1 (ja)
JP (1) JP4473332B2 (ja)
CN (1) CN102197267B (ja)
AU (1) AU2009309208B2 (ja)
ES (1) ES2387710B1 (ja)
WO (1) WO2010050107A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042888A1 (en) * 2010-10-01 2012-04-05 Tokyo Institute Of Technology Cross linear type solar heat collecting apparatus
CN102830715A (zh) * 2012-08-17 2012-12-19 浙江中控太阳能技术有限公司 一种光斑实时可调的定日镜及其调节方法
JP5342053B1 (ja) * 2012-10-02 2013-11-13 信博 松本 凹面鏡と凸レンズとによる太陽光集熱装置
CN103713649A (zh) * 2013-12-27 2014-04-09 合肥工业大学 一种反射式多平面镜太阳能聚光跟踪控制系统及控制方法
WO2014061281A1 (ja) * 2012-10-18 2014-04-24 株式会社SolarFlame 太陽熱集熱装置および太陽熱集熱方法
JP2014081182A (ja) * 2012-10-18 2014-05-08 Solarflame Corp 太陽熱集熱装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900434A (zh) * 2009-05-31 2010-12-01 北京智慧剑科技发展有限责任公司 一种太阳能分布式点聚焦光学镜跟踪热管利用系统
JP4527803B1 (ja) * 2009-11-06 2010-08-18 浩光 久野 平面的拡張が容易な軽量薄型の太陽光集光器
JP4698761B1 (ja) 2010-10-22 2011-06-08 三井造船株式会社 太陽光集光用のヘリオスタット及びその制御方法
CN102147518A (zh) * 2011-03-07 2011-08-10 何秋蓉 定日镜装置及相应的定日镜系统
US9746207B1 (en) * 2011-03-16 2017-08-29 Solarreserve Technology, Llc Tracking modules including tip/tilt adjustability and construction features
JP5021831B1 (ja) * 2011-10-17 2012-09-12 浩光 久野 2軸追尾方式の太陽光集光器
CN102419013B (zh) * 2011-12-07 2013-01-09 中国科学院电工研究所 一种联动小型定日镜系统
WO2013129177A1 (ja) 2012-02-29 2013-09-06 三菱重工業株式会社 集光装置、これを備えている集熱設備及び太陽熱発電設備
CN102621996A (zh) * 2012-04-15 2012-08-01 苏州金山太阳能科技有限公司 联动式单轴太阳能追踪器系统及其转动传动机构
CN102789046B (zh) * 2012-07-30 2014-08-13 中国科学技术大学 一种多平面反射镜太阳能聚光装置
US20140053825A1 (en) * 2012-08-25 2014-02-27 Suzhou Jinshan Solar Science and Technologies Co., Ltd. Ganged single axis solar tracker and its drive system
JP6220518B2 (ja) * 2013-01-09 2017-10-25 株式会社SolarFlame 太陽熱集熱装置
FR2998656A1 (fr) * 2012-11-26 2014-05-30 Yuma Sas Systeme d'orientation pour dispositif de captage d'energie solaire
ITAN20130094A1 (it) * 2013-05-15 2014-11-16 Iside S R L Dispositivo di inseguimento solare e concentrazione per celle fotovoltaiche
KR101455931B1 (ko) * 2013-05-15 2014-10-28 현대산업개발 주식회사 통합구동방식을 이용한 자연채광방법
KR101472677B1 (ko) * 2013-05-21 2014-12-12 현대산업개발 주식회사 축분리형 자연채광장치 및 이를 이용한 자연채광방법
JP6135318B2 (ja) * 2013-06-14 2017-05-31 株式会社リコー 集光装置
DE102013017037A1 (de) * 2013-10-15 2015-04-16 Fachhochschule Aachen Vorrichtung zur Reflektion von einfallendem Licht
CN106051612B (zh) * 2016-06-28 2019-07-12 重庆大学 一种集光系统
CN106547062B (zh) * 2017-01-18 2023-06-06 西部国际绿色能源斯特林(贵州)智能装备制造有限公司 一种太阳能聚光碟片自动调光系统
CN106526783B (zh) * 2017-01-18 2023-06-06 西部国际绿色能源斯特林(贵州)智能装备制造有限公司 一种太阳能聚光碟片手动调光装置
CN106707457B (zh) * 2017-01-18 2023-06-06 西部国际绿色能源斯特林(贵州)智能装备制造有限公司 一种太阳能聚光碟片调光系统
CN106556912B (zh) * 2017-01-18 2023-06-06 西部国际绿色能源斯特林(贵州)智能装备制造有限公司 一种太阳能聚光碟片自动调光装置
CN107145473B (zh) * 2017-05-16 2020-05-08 东方电气集团东方锅炉股份有限公司 一种定日镜面型微弧角度的计算方法
CN107370451A (zh) * 2017-06-28 2017-11-21 贵州绿卡能科技实业有限公司 低日照地区高效光伏发电站
KR101985461B1 (ko) * 2017-09-15 2019-06-03 한국에너지기술연구원 샌드위치 구조의 반사경을 갖는 헬리오스타트 및 이를 포함하는 타워형 태양열 발전 시스템
US10151512B1 (en) * 2017-10-17 2018-12-11 King Saud University Solar heating apparatus
CN108459390B (zh) * 2018-04-19 2020-05-01 亚太兆业有限公司 聚能装置
CN112578820A (zh) * 2019-09-29 2021-03-30 何开浩 塔式太阳能发电系统的太阳光跟踪装置及跟踪方法
US11914374B1 (en) * 2020-10-07 2024-02-27 National Technology & Engineering Solutions Of Sandia, Llc Solar mirror soiling and heliostat inspection from a mobile imaging system and mobile platform
CN113250131B (zh) * 2021-06-11 2022-06-24 东北大学 一种辅助除冰雪设备
DE102021211619A1 (de) * 2021-10-14 2023-04-20 Carl Zeiss Smt Gmbh EUV- Mehrfachspiegelanordnung
CN114236743B (zh) * 2021-12-16 2023-09-29 北京环境特性研究所 一种平面反射镜阵列的校准系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129913U (ja) * 1990-04-11 1991-12-26
WO2005098327A1 (ja) * 2004-03-30 2005-10-20 Solar Hytech Co., Ltd. ヘリオスタットとその制御方法
JP2008503709A (ja) * 2004-06-24 2008-02-07 ヘリオダイナミクス リミテッド 太陽エネルギー収集システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1111239A (en) * 1914-04-16 1914-09-22 Henry D Smelser Device for concentrating the rays of the sun.
US2471954A (en) * 1946-05-27 1949-05-31 Harvey Walter James Reflecting and focusing apparatus with pivotally adjustable spaced apart reflecting members for heat and light rays
US3466119A (en) * 1965-04-10 1969-09-09 Giovanni Francia Multiple mirrored apparatus utilizing solar heat
US4218114A (en) * 1975-12-19 1980-08-19 Bunch Jesse C Heliostat apparatus
US4056313A (en) * 1976-06-15 1977-11-01 Arbogast Porter R Multiple mirrored apparatus utilizing solar energy
US4110010A (en) * 1977-07-07 1978-08-29 Hilton Richard D Ganged heliostat
US4102326A (en) * 1977-09-28 1978-07-25 Sommer Warren T Central receiver solar collector using mechanically linked mirrors
US4172443A (en) * 1978-05-31 1979-10-30 Sommer Warren T Central receiver solar collector using analog coupling mirror control
US4317031A (en) * 1978-08-02 1982-02-23 Max Findell Central focus solar energy system
CN1033316A (zh) * 1987-10-26 1989-06-07 王殿军 定焦点聚光型太阳能接收装置
US5417052A (en) * 1993-11-05 1995-05-23 Midwest Research Institute Hybrid solar central receiver for combined cycle power plant
AU5430300A (en) * 2000-06-26 2002-01-08 Mikio Kinoshita Solar radiation reflecting device and solar energy system using the solar radiation reflecting device
AUPR356601A0 (en) * 2001-03-07 2001-04-05 University Of Sydney, The Solar energy reflector array
JP3701264B2 (ja) * 2002-07-05 2005-09-28 三鷹光器株式会社 太陽光集光システム用のヘリオスタットおよびその制御方法
DE102004018151A1 (de) * 2004-04-08 2005-10-27 Neff, Siegfried Vorrichtung zur Ausrichtung eines Solarmoduls
US7677241B2 (en) * 2004-09-22 2010-03-16 Energy Innovations, Inc. Apparatus for redirecting parallel rays using rigid translation
WO2007034717A1 (ja) * 2005-09-26 2007-03-29 Solar Hytech Co., Ltd. ヘリオスタットの反射鏡支持装置
US8122878B1 (en) * 2006-10-20 2012-02-28 Energy Innovations, Inc. Solar concentrator with camera alignment and tracking
JP2008138898A (ja) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd 暖房装置
CN100551991C (zh) * 2008-04-23 2009-10-21 广东宏达工贸集团有限公司 一种碳酸熔融盐传热蓄热介质及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129913U (ja) * 1990-04-11 1991-12-26
WO2005098327A1 (ja) * 2004-03-30 2005-10-20 Solar Hytech Co., Ltd. ヘリオスタットとその制御方法
JP2008503709A (ja) * 2004-06-24 2008-02-07 ヘリオダイナミクス リミテッド 太陽エネルギー収集システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042888A1 (en) * 2010-10-01 2012-04-05 Tokyo Institute Of Technology Cross linear type solar heat collecting apparatus
JP2013539000A (ja) * 2010-10-01 2013-10-17 国立大学法人東京工業大学 クロスライン型太陽熱集光装置
CN102830715A (zh) * 2012-08-17 2012-12-19 浙江中控太阳能技术有限公司 一种光斑实时可调的定日镜及其调节方法
JP5342053B1 (ja) * 2012-10-02 2013-11-13 信博 松本 凹面鏡と凸レンズとによる太陽光集熱装置
WO2014054816A1 (ja) * 2012-10-02 2014-04-10 Matsumoto Nobuhiro 凹面鏡と凸レンズとによる太陽光集熱装置。
WO2014061281A1 (ja) * 2012-10-18 2014-04-24 株式会社SolarFlame 太陽熱集熱装置および太陽熱集熱方法
JP2014081182A (ja) * 2012-10-18 2014-05-08 Solarflame Corp 太陽熱集熱装置
US10006666B2 (en) 2012-10-18 2018-06-26 Solarflame Corporation Solar heat collecting apparatus and solar heat collecting method
CN103713649A (zh) * 2013-12-27 2014-04-09 合肥工业大学 一种反射式多平面镜太阳能聚光跟踪控制系统及控制方法

Also Published As

Publication number Publication date
ES2387710B1 (es) 2013-05-27
ES2387710A1 (es) 2012-09-28
JP2010101594A (ja) 2010-05-06
AU2009309208B2 (en) 2013-01-24
AU2009309208A1 (en) 2010-05-06
JP4473332B2 (ja) 2010-06-02
CN102197267B (zh) 2013-12-04
US20110146663A1 (en) 2011-06-23
CN102197267A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4473332B2 (ja) 太陽光集光用ヘリオスタットの制御方法及びその装置
JP5145427B2 (ja) 光追尾装置
KR101421467B1 (ko) 태양광 자동 추적 장치
JP4471999B2 (ja) 取付姿勢測定装置
JP5669758B2 (ja) 太陽光集光装置および太陽熱回収設備
JP4698761B1 (ja) 太陽光集光用のヘリオスタット及びその制御方法
CN102667361B (zh) 用于聚集太阳热能的方法及系统
CN108474395B (zh) 间隙减小装置和具有间隙减小结构的定日镜
US20110000515A1 (en) Solar central receiver system employing common positioning mechanism for heliostats
CN102183837B (zh) 二次聚光装置、系统及具有该系统的太阳能热发电系统
JP2004037037A (ja) 太陽光集光システム用のヘリオスタットおよびその制御方法
CN103459942A (zh) 曲面定日镜
AU2006343171A1 (en) Hyperbolic solar trough field system
US8030605B2 (en) Method and device for the utilization of solar energy
JP3855160B2 (ja) 太陽放射集中装置
CN110140016A (zh) 混合型成组定日镜
AU2017215575A1 (en) Layout and structure of light condensing reflectors of tower-mounted light condensing system and tracking method therefor
JP2013257070A (ja) ヘリオスタット及びその制御方法
JP3855165B2 (ja) 太陽放射集中装置
JP2012169570A (ja) 太陽光発電装置
CN106026879A (zh) 二轴太阳能聚光器跟踪机构和具有其的太阳能发电装置
ES2370939T3 (es) Procedimiento y dispositivo para el uso de energía solar.
JP2014135365A (ja) 太陽光集光発電装置
CN103828070B (zh) 薄膜太阳能电池的激光结晶化及多晶化效率的改进
TW200949173A (en) Solar tracking device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142375.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009309208

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009309208

Country of ref document: AU

Date of ref document: 20090828

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13058950

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201190013

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201190013

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823224

Country of ref document: EP

Kind code of ref document: A1