WO2007034717A1 - ヘリオスタットの反射鏡支持装置 - Google Patents

ヘリオスタットの反射鏡支持装置 Download PDF

Info

Publication number
WO2007034717A1
WO2007034717A1 PCT/JP2006/318139 JP2006318139W WO2007034717A1 WO 2007034717 A1 WO2007034717 A1 WO 2007034717A1 JP 2006318139 W JP2006318139 W JP 2006318139W WO 2007034717 A1 WO2007034717 A1 WO 2007034717A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
reflector
support device
turntable
lattice frame
Prior art date
Application number
PCT/JP2006/318139
Other languages
English (en)
French (fr)
Inventor
Yutaka Tamaura
Original Assignee
Solar Hytech Co., Ltd.
Utamura, Motoaki
Suzuki, Seiichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Hytech Co., Ltd., Utamura, Motoaki, Suzuki, Seiichi filed Critical Solar Hytech Co., Ltd.
Publication of WO2007034717A1 publication Critical patent/WO2007034717A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a reflector support device for a heliostat (a solar tracking mirror device) that is used when sunlight is collected to generate thermal energy.
  • a heliostat a solar tracking mirror device
  • solar thermal energy is very promising as an alternative to fossil fuels because of its abundance (potential energy resources).
  • Solar energy is also a different force about LkWZm 2 depending on the location, the thermal energy of the sunlight can be sufficiently utilized as a source energy for operating the thermochemical reaction plant or a power plant or the like.
  • the thermal energy of the sunlight In order to utilize solar thermal energy as an energy source, it must be converted efficiently into chemical energy and electrical energy.To increase the conversion efficiency, the amount of energy per unit area is collected by collecting sunlight. I have to increase it.
  • the heliostat In order to collect sunlight and efficiently obtain thermal energy, the heliostat must track the position of the sun accurately.
  • the energy obtained by concentrating sunlight is theoretically proportional to the total area of the mirror surface of the heliostat, so as a problem when installing a heliostat, in order to obtain a large amount of energy, the heliostat It is necessary to increase the mirror surface area or increase the number of heliostats.
  • the beam that supports the mirror and the mechanism for operating it also become a huge heavy object, and it is hard to set up so that it accurately tracks the sun. Foundation work is required.
  • each host computer can be used based on the solar orbit (known) and the position of each heliostat (known; accuracy of installation position and attitude is required).
  • the power that was mainly used to control the heliostats centrally
  • wired or wireless communication equipment is required to control the attitude of the heliostats.
  • the host computer breaks down or when radio interference occurs during wireless communication, the entire light collection system is affected and the position and orientation of the heliostat cannot be controlled. Problems arise.
  • the target of three or more known locations is automatically used using sensors such as CCD and CMOS, which are two-dimensional visual sensors installed in Heliostats.
  • sensors such as CCD and CMOS, which are two-dimensional visual sensors installed in Heliostats.
  • the process of measuring the relative relationship between the heliostat and the target, and the process of calculating the position and orientation of the heliostat with respect to the condensing part (condensing point) with known measurement force and the solar orbit are performed.
  • a heliostat has been developed that can automatically track the sun and reflect it back to the light collector even if the tuat is installed in any position and orientation.
  • each heliostat independently calculates the position and orientation with respect to a known light collecting section, and the device on the heliostat that is known from the value and the observation results so far The value of the solar orbit stored in advance is controlled by the sun tracking, so there is no need for centralized control and the necessary equipment is not required.
  • each heliostat automatically collects sunlight and obtains thermal energy as a completely independent robot. be able to.
  • Patent Document 5 as the structure of the heliostat, as shown in FIG. 2, a reflecting mirror is supported on a bifurcated arm 25 pivotally supported on a base 1, and the vertical axis 5a of the arm 25 is based on the basic axis 5a.
  • the shape supported by the base 1 and the reflecting mirror 4 supported by the horizontal shaft 5b horizontally mounted on the bifurcated portion of the arm 25 is schematically illustrated, the above problem is specifically described as an actual problem. The structural solution corresponding to the situation remains unresolved.
  • Patent Document 1 CIEMAT (Spain), Patent No. P9901275
  • Patent Document 2 Japanese Patent No. 2951297
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-146310
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-37037
  • Patent Document 5 PCT / JP2005 / 4432
  • the problem to be solved is that it is not affected by the ground of the installation site, strong winds, or natural phenomena such as earthquakes as much as possible, and automatically tracks the sun with less force and collects sunlight.
  • the structure of the reflector support device of the heliostat that can be reflected on the surface is still unsolved.
  • the present invention has the same combination of small reflecting mirrors in a lattice frame that holds a lifting shaft in a horizontal posture on a turntable having a pivot shaft supported by a base and is fixed to the lifting shaft.
  • the mirror is supported and supported by a flat surface, and the mirror surface support of the reflector is stable and lightweight, and a plurality of reflectors are supported on the same plane in a balanced manner.
  • the biggest feature is that it can be adjusted.
  • the rectangular lattice frame is supported on the elevation axis on the turntable, and the reflecting mirror is attached to the lattice frame via the block. Therefore, the weight is light and the influence of the wind is small. In order to support the center of the lattice frame in the longitudinal direction and turn or lift it, it can be driven with relatively little power while maintaining a balance.
  • the turntable is attached to the base, and the base is a heavy object mainly made of concrete, so it does not easily fall down due to the effects of strong winds or earthquakes, and can maintain a certain posture.
  • FIG. 1 is a diagram showing a configuration of a tower type solar light collecting system.
  • FIG. 2 is a diagram schematically showing the configuration of a heliostat.
  • FIG. 3 is a side view showing one embodiment of a reflector support device for a heliostat according to the present invention.
  • FIG. 4 is a main part enlarged view showing a part of a turning drive mechanism.
  • FIG. 5 is a front view showing one embodiment of a reflector support device for a heliostat according to the present invention.
  • FIG. 6 is a perspective view of an essential part showing one embodiment of a reflector support device for a heliostat according to the present invention.
  • FIG. 7 is a diagram showing an example of arrangement of reflecting mirrors on the reflecting mirror support device of the heliostat according to the present invention.
  • FIG. 8 is a schematic diagram showing a control procedure of a turning angle and an elevation angle.
  • Control unit 16 Solar cell module
  • the bearing strength is high because a plurality of locations in the axial direction of the hoisting shaft that supports the lattice frame to which the reflecting mirror is attached, at least three locations on one side in the lateral direction are supported by the bearing portion.
  • the reflector is attached to the lattice frame using a synthetic resin foam block, so the pair of reflectors that are lightweight and strong enough to ensure the flatness of the mirror surface.
  • the pair of reflectors that are lightweight and strong enough to ensure the flatness of the mirror surface.
  • the tower type condensing system is a combination of a condensing unit 21 and a number of heliostats 22.
  • Each heliostat 22 tracks the sun, receives sunlight L on the mirror surface of the reflecting mirror 4, and reflects the reflected light R to the condensing unit 21.
  • the condensing unit 21 is provided with a heat exchanger or a reaction furnace for converting sunlight into heat energy, and the reflected light R of received sunlight is condensed on heat exchangers.
  • the heliostat reflector support device of the present invention is a practical example of the heliostat reflector support device schematically shown in FIG.
  • the mirror support device of the heliostat according to the present invention has a base 1, a turntable 2, a lattice frame 3, and a set of reflectors 4, 4,. .
  • the base 1 is a reflector support base having a weight and a size necessary for stably supporting the pair of heliostat reflectors 4.
  • the base 1 has an iron frame having an iron top cover.
  • the concrete is filled with concrete and solidified.
  • the turntable 2 is supported on the upper surface, and the turning shaft 5 of the turntable 2 is supported in the shaft hole.
  • the turntable 2 is rotatably installed on the base 1 via a thrust bearing and is driven to rotate in the horizontal direction by the turning shaft driving motor 7. is there.
  • the swing axis drive motor 7 is attached to a bracket 6 that projects from a part of the side surface of the base 1, and the rotation of the swing axis drive motor 7 is rotated via a rotation transmission mechanism 8 including a gear 8a and a belt 8b. 2 is transmitted to the pair of tires 9a and 9b pressed against the upper and lower surfaces.
  • the drive method of the turntable 2 is not limited to this example, but the turntable 2 can be driven with a small torque by applying a rotational feed to the outer peripheral edge of the turntable 2.
  • a bearing portion 11 of a lifting shaft 10 that supports the lattice frame 3 is installed on the upper surface of the turntable 2, a bearing portion 11 of a lifting shaft 10 that supports the lattice frame 3 is installed.
  • the bearing portion 11 is an alternative to the bifurcated arm shown in FIG. 2, and in this embodiment, a key point on the overhanging arm 12 projecting in the left-right direction through the rotation center O-O of the turntable 2 is used. It is fixed to.
  • the bearing unit 11 is installed at least three places on one side of the turn arm 12 on the outer, middle, and inner sides of the turn arm 12 that protrudes left and right toward the outer periphery. It has been done.
  • the inner bearing part is identified as l la
  • the intermediate bearing part is defined as l lb
  • the outer bearing part is identified as 11 c.
  • the lattice frame 3 is held on the turntable 2 so that the elevation angle in the vertical direction can be adjusted.
  • the grid frame 3 includes a plurality of thick vertical beams 3 a arranged in parallel to the direction perpendicular to the elevation axis 10, and spans between the vertical beams 3 a in parallel with the elevation axis 10.
  • the vertical beam 3a is integrally fixed to the elevating shaft 10 with a plurality of thin horizontal beams 3b.
  • a lattice is formed by the intersection of the vertical beam 3 a and the horizontal beam 3 b, and this lattice becomes a support surface of the reflector 4.
  • the reflecting mirror 4 is a plane mirror, and the set of reflecting mirrors 4 is a group of a plurality of mirrors arranged vertically and horizontally with a fixed interval between them. Each reflecting mirror 4 is connected via a block 13. It is installed in line on the lattice frame 3.
  • the set of reflecting mirrors 4 is arranged with 16 pieces on one side of the rotating shaft 5 in total, 32 pieces vertically and horizontally.
  • FIG. 7 shows an example of the arrangement of the reflecting mirror 4 corresponding to FIG. 6, and the illustration of the pivot shaft 10 and the lattice frame 3 is omitted.
  • the turntable 2 is suppressed to the minimum weight and size necessary as a support device for the reflector 4.
  • a disc having the smallest possible diameter is used with the distance between the two bearing portions 1 la-1 la located on the inner side, which is arranged on the left and right sides of the center of the elevating shaft 10, as the outer diameter.
  • the elevation angle of the reflecting mirror 4 protruding left and right can be increased as the weight is simply reduced.
  • the overhanging arm 12 is a flat plate having a certain width, and includes an upper overhanging arm 12a and a lower overhanging arm 12b which are stacked one above the other as shown in FIG.
  • the upper overhanging arm 12a has a length between the outer bearing portions (11c 11c), and has a bearing portion ll (l la, 1 lb, 11c) attached to the upper surface.
  • the overhanging arm 12b has a length between the bearing portions (l ib-ib) located between them for weight reduction, and is attached to the upper surface of the turntable 2.
  • each heliostat includes a solar cell module 16 and a storage battery 17, and the storage battery 17 is housed in a space (not shown) formed in the base 1.
  • the heliostat according to the present invention has at least three heliostats 22 arranged around the target 19a, 19b, 19c and the sensor 18 by using at least three targets 19a, 19b, 19c. Is to control.
  • the attitude of the heliostat 22 is controlled by the control device 15.
  • the targets 19a, 19b, and 19c are set at positions determined as positioning targets of the heliostat 22, and it is assumed that the coordinates in the stationary coordinate system are known.
  • the sensor 18 is arbitrarily set with respect to a target that is a force stationary coordinate system that is installed in the heliostat 22, and is therefore referred to as a “dynamic coordinate system”.
  • Sensor 18, Helio The position and orientation of the dynamic coordinate system fixed to Stat 22 are given, and then the rotation angle OC and elevation angle ⁇ are given to the dynamic coordinate system fixed to Heliostat 22, so that Since the content of force control autonomously controlled by the control device 15 unique to 22 is outside the scope of the present invention, description thereof is omitted.
  • the turning angle and elevation angle of the reflector are controlled by the electric power obtained from the power source (solar power generation module 16, storage battery 17) provided in each heliostat. For this reason, it is required to execute the function with low power.
  • the present invention is as light and compact as possible.
  • the reflecting mirror 4 uses a combination of small reflecting mirrors to ensure the flatness of the sunlight receiving surface.
  • the reflecting mirror 4 is shown as an example in which a total of 32 pieces are combined, 16 pieces on one side with the center of the pivot shaft 5 being sandwiched.
  • the number of reflectors is not limited to 32. It is advantageous to construct a solar light receiving surface for each heliostat by combining several units as one unit.
  • a reflector unit of a module with a fixed size is configured by combining a total of four reflectors, two vertically and horizontally, for example, four units of lm modules and an 8m 2 solar light receiving surface Can be formed.
  • Each reflecting mirror 4 is supported by the block 13 and held on the lattice frame 3.
  • the block 13 has a synthetic resin foam block having a hole 20 penetrating the block in parallel to the mounting surface of the reflecting mirror. Is used.
  • the perforated synthetic resin foam block a commercially available perforated foamed polystyrene block does not need to be specially manufactured.
  • a perforated foam block is not only advantageous for light weight, but the deformation of the block that occurs when the block is glued, bolted or otherwise attached to the grid frame in the hole 20 It is absorbed and the influence on the reflecting mirror is prevented, which is advantageous for ensuring the flatness of the mirror surface of the reflecting mirror 4.
  • the mirror surface of the same size is flat compared to the case where a single mirror is formed, and the reflectors 4, 4,. As a result, a load resistance from wind power with good ventilation can be reduced.
  • the elevation axis 10 is arranged at a position where the moments of the lattice frame 3 and the moments of the reflectors acting on both the moment and the moment balance, and the lattice frame 3 and the reflector 4 are connected. Support Thus, the elevation angle of the set of the reflectors 4 can be controlled by rotating the elevation axis 10 with a small power. Further, since the lifting shaft 10 is held across at least three bearing portions l la, l ib, 11c established at a key point on the overhanging arm 12, the lattice frame 3 including the reflecting mirror 4 is The support load is distributed to each bearing portion, and no stagnation occurs in the elevation shaft 10, so that accuracy in controlling the elevation angle can be obtained.
  • the overhanging arm 12 includes an upper overhanging arm 12a straddling between both bearing portions (11c-11c) (six in the embodiment) located on the outside, and a bearing portion (l ib- l ib)
  • the turntable 2 is fixed to the lower extension arm 12b by using a disk with a diameter necessary to support between the two inner bearings (11a-11a).
  • the distance between these two bearing parts in the case of the example, using a disk with a diameter of about lm, swivel up to a maximum of eight reflectors with a side of 50 cm, that is, a mirror surface of 4 meters. And control the elevation angle without restricting the tilt angle of the lattice frame.

Abstract

 ヘリオスタットの反射鏡支持装置の構造を実用化する。基台1と、ターンテーブル2と、格子枠3と、反射鏡4の組とを有している。基台1は、ヘリオスタットの反射鏡4の組を安定に支えるに必要な重量と大きさを備えた鏡の支持台であり、ターンテーブル2は、反射鏡4の水平方向の旋回角を調整するものであり、旋回軸5を中心として基台1上に回転可能に設置されている。格子枠3は反射鏡4の組を支えて上下方向の俯仰角を調整するものであり、ターンテーブル2上に支えられた俯仰軸10によって上下方向に仰角を調整可能に保持されている。反射鏡4の組は、複数の反射鏡を1組とし、反射鏡の相互間に一定の間隔を置いてそれぞれブロック13を介して格子枠3上に設置されている。

Description

明 細 書
ヘリオスタツトの反射鏡支持装置
技術分野
[0001] 本発明は、太陽光を集光して熱エネルギーを生成する際に使用するへリオスタツト ( 太陽追尾鏡装置)の反射鏡支持装置に関するものである。
背景技術
[0002] 再生可能な自然エネルギーの中で、太陽熱エネルギーはその賦存量 (潜在的なェ ネルギー資源量)の多さから、化石燃料に替わるエネルギーとして非常に有望視され ている。太陽エネルギー量は、場所によっても異なる力 約 lkWZm2であり、太陽光 の熱エネルギーは、熱化学反応プラントや発電プラント等を運転するためのエネルギ 一源として十分に活用が可能である。太陽熱エネルギーをエネルギー源として活用 するためには、化学エネルギーや電気エネルギーに効率良く変換しなければならな いが、その変換効率を高めるには、太陽光を集光して単位面積当たりのエネルギー 量を増やさなければならな 、。
[0003] ところで、太陽は、地球の自転により、時間の経過とともに地上のある点に対する位 置が変化するため、太陽光^^光し、太陽エネルギーを効率良く集めるためには、 太陽を追尾しなければならな 、。太陽を追尾する装置をへリオスタツトと 、う。
[0004] 従来のへリオスタツトの太陽追尾システムでは、有線および無線通信による各ヘリ ォスタツトの集中制御や、ヘリオスタツト上に設置された 2枚の光センサーの輝度差を 用いた制御が行われてきた。
[0005] 太陽光を集光して効率的に熱エネルギーを得るためには、ヘリオスタツトに太陽の 位置を正確に追尾させなければならな 、。太陽光の集光によって得られるエネルギ 一は、理論的にはヘリオスタツトの鏡面の総面積に比例するため、ヘリオスタツトを設 置する場合の課題として、大量のエネルギーを得るためには、ヘリオスタツトの鏡面の 面積を大きくするか、ヘリオスタツトの個数を増やす必要がある。しかし、広大な鏡面 面積を有するヘリオスタツトを製作する場合、鏡を支持する梁やそれを動作させる機 構も巨大な重量物となり、それが正確に太陽を追尾するように設営するには堅固な 基礎工事が必要となる。
[0006] また、ヘリオスタツトの個数を増やすことで得られる熱エネルギーを増やす場合には 、ヘリオスタツトの個数に応じた数の基礎工事を行う必要がある。太陽光を集光するこ とで大量の熱エネルギーを得る際には、いずれの場合も、ヘリオスタツトの設置を簡 便化する技術が非常に重要となる。
[0007] 多数のへリオスタツトを用いて集光太陽熱エネルギーを得る場合には、個々のヘリ ォスタツトに太陽を追尾させ、各々のへリオスタツトに受光させた太陽光の反射光があ る一点に集光するように各へリオスタツトの姿勢を制御する必要がある。
[0008] 従来、ヘリオスタツトの姿勢を制御する集光システムとして、太陽軌道 (既知)および 各へリオスタツトの位置 (既知;設置位置および姿勢の精度が必要)を元に、ホストコ ンピュータを用いて各へリオスタツトを集中制御する方法が主として行われていた力 この様な方法によるときには、ヘリオスタツトの姿勢制御のために有線もしくは無線通 信の設備を必要とする。また、ホストコンピュータが故障した際や、無線通信の使用 時で電波障害などが生じた際には、集光システム全体が影響を受けて、ヘリオスタツ トの位置や姿勢を制御できな 、と 、う問題が生じる。
[0009] また、集光太陽光による熱エネルギーを効率良く得ようとする場合、通年で太陽光 が多く得られる場所に集光装置を設置する必要がある。しかし、そのような場所は地 理的に砂漠地帯が多ぐ土地が砂状もしくは脆弱な地盤である。そこで、最初にヘリ ォスタツトを正確に設置しても、経時的な地盤変化によりへリオスタツトの位置や姿勢 力 Sずれることがある。
[0010] また、堅固な地盤にヘリオスタツトを設置した場合でも、強風や地震などの影響によ り設置位置および姿勢が変化してしまう可能性があり、定期的な保守や点検等が必 要である。長期的な使用時のランニングコストを考える上では、その手間を如何に減 らすことができるかが重要な課題である。また、センサーのみを用いて太陽を追尾す る装置では、雲などにより太陽光が捕捉できない場合には誤差が生じるという問題が ある。
[0011] このような問題点を解決するため、ヘリオスタツトが搭載する 2次元視覚センサーで ある CCDや CMOS等のセンサーを用いて 3点以上の既知の場所の目標を自動的 に順次捉え、ヘリオスタツトと目標との相対関係を測定する処理と、測定値力 既知 の集光部 (集光点)および太陽軌道に対するヘリオスタツトの位置および姿勢を計算 する処理とを行い、ヘリオスタツトを任意の位置および姿勢で設置しても、自動的に 太陽を追尾して太陽光を集光部に反射させることができるヘリオスタツトが開発された
(特許文献 5参照)。この装置は、以下の効果が期待されている。すなわち、
[0012] (1)設置の課題に対する効果として、従来のような厳密な測量や整地作業、そして堅 固な基礎工事を行う必要が無くなる。大量の集光太陽熱エネルギーを得る際には数 百力も数千のへリオスタツト群が必要であるが、その設置の労力はごく僅かとなる。 (2)集中制御の課題に対する効果として、個々のへリオスタツトが独立して既知の集 光部に対する位置および姿勢を計算し、その値と、これまでの観測結果により既知で 、ヘリオスタツト上の装置にあらかじめ記憶された太陽軌道の値力 太陽追尾制御す るため、集中制御する必要が無ぐそれに要する設備が不要となる。また、ヘリオスタ ットに太陽電池を併設して、太陽追尾制御に必要な電力を得ることで、各へリオスタツ トは完全に独立したロボットとして自動的に太陽光を集光して熱エネルギーを得ること ができる。
[0013] (3)定期的な保守 ·点検の課題に対する効果として、基準となる目標物の位置を定期 的に測定し、必要であれば修正することもある力 数百力 数千に及ぶヘリオスタツト をメンテナンスする従来のシステムに比べて、数点の目標物をメンテナンスするだけ でよぐ労力 ·時間*費用のすべてを大幅に削減できる。
(4)天候の問題に対する効果として、 3点以上の目標物から測定および計算された ヘリオスタツトの位置 '姿勢、および既知の太陽軌道を基に、雲などの影響で一時的 に太陽の位置がわ力もない場合でも太陽を追尾した制御が可能である、
といった効果である。
[0014] 特許文献 5においては、ヘリオスタツトの構造として、図 2に示すように基台 1上に軸 支された二叉状のアーム 25に反射鏡を支え、アーム 25の垂直軸 5aが基台 1に支持 され、反射鏡 4は、アーム 25の二叉部分に横架された水平軸 5bに支持された形態を 模式的に図示しているが、現実の問題として上記の課題に具体的に対応する構造上 の解決手段は未解決のままになって ヽた。 特許文献 1 : CIEMAT (Spain)、 Patent No. P9901275
特許文献 2:特許第 2951297号公報
特許文献 3 :特開 2000— 146310公報
特許文献 4:特開 2004— 37037公報
特許文献 5: PCT/JP2005/4432
発明の開示
発明が解決しょうとする課題
[0015] 解決しょうとする問題点は、設置場所の地盤、強風や、地震などの自然現象の影響 をできるだけ受けず、し力も少ない動力で自動的に太陽を追尾して太陽光を集光部 に反射させることができるヘリオスタツトの反射鏡支持装置の構造が未解決になって いた点である。
課題を解決するための手段
[0016] 本発明は、基台に支えられた旋回軸を備えるターンテーブル上に俯仰軸を水平姿 勢に保持させ、さらに俯仰軸に固定した格子枠に、小型の反射鏡の組合わせを同一 平面に保たせて支持させたものであり、反射鏡の鏡面支持の安定ィヒ及び軽量ィ匕を 図り、複数枚の反射鏡をバランスよく同一平面状に支えて、反射鏡の旋回角および 仰角の調整を可能とした点を最大の特徴とする。
発明の効果
[0017] 本発明によれば、ターンテーブル上の俯仰軸に長方形の格子枠を支え、この格子 枠にブロックを介して反射鏡を取り付けたため、軽量であり、風の影響を受けることが 少なぐ格子枠の長手方向の中心を支えて旋回或いは俯仰させるためにバランスを 保って比較的小さな動力で駆動することができる。また、ターンテーブルは、基台に 取り付けられ、基台はコンクリートを主体とする重量物であるため、強風や地震の影 響によって容易に転倒することはなく一定の姿勢を保つことができる。
図面の簡単な説明
[0018] [図 1]タワー型太陽光集光システムの構成を示す図である。
[図 2]ヘリオスタツトの構成を模式的に示す図である。 [図 3]本発明によるへリオスタツトの反射鏡支持装置の 1実施例を示す側面図である。
[図 4]旋回駆動機構の部分を示す要部拡大図である。
[図 5]本発明によるへリオスタツトの反射鏡支持装置の 1実施例を示す正面図である。
[図 6]本発明によるへリオスタツトの反射鏡支持装置の 1実施例を示す要部の斜視図 である。
[図 7]本発明によるへリオスタツトの反射鏡支持装置に反射鏡の配置例を示す図であ る。
[図 8]旋回角、仰角の制御要領を示す略示図である。
符号の説明
1 基台
2 ターンテーブル
3 格子枠
3a 縦桟
3b 横桟
4 反射鏡
5 旋回軸
6 ブラケット
7 モータ
8 回転伝動機構
8a ギア
8b ベノレト
9a, 9b タイヤ
10 俯仰軸
11 軸受け部
12 張出し腕
13 ブロック
14 俯仰駆動用モータ
15 制御装置 16 太陽電池モジュール
17 蓄電池
18 センサー
19a, 19b, 19c 目標物
20 孔
発明を実施するための最良の形態
[0020] 本発明において、反射鏡が取り付けられた格子枠を支える俯仰軸の軸方向の複数 箇所、少なくとも中央力 左右方向の片側 3箇所が軸受け部によって支えられている ため、その支持強度が大きぐ橈みは生ぜず、また、反射鏡は、合成樹脂発泡体プロ ックを用いて格子枠に取り付けられているため、軽量でし力も反射鏡の組は、鏡面の 平面性を確保しやすぐまた、各反射鏡の間には隙間が形成されるために、風力の 影響をうけることが少ない。
実施例 1
[0021] 本発明の説明に先立ち、ヘリオスタツトを用いた太陽光集光システムの一例として 特許文献 5に記載されたタワー型集光システムの基本構造を示す。図 1において、タ ヮー型集光システムは、集光部 21と多数のへリオスタツト 22との組合せである。各へ リオスタツト 22は、太陽を追尾しつつ太陽光 Lを反射鏡 4の鏡面に受光し、その反射 光 Rを集光部 21に反射するものである。集光部 21には、太陽光を熱エネルギーに変 換するための熱交換器もしくは反応炉等が設置され、受光した太陽光の反射光 Rは 熱交^^等に集光される。
[0022] 本発明のへリオスタツトの反射鏡支持装置は、図 2に模式的に示すヘリオスタツトの 反射鏡支持装置を実用レベルに具体ィ匕したものである。本発明によるへリオスタツト の反射鏡支持装置は、図 3に示すように、基台 1と、ターンテーブル 2と、格子枠 3と、 反射鏡 4、 4· · ·の組とを有するものである。基台 1は、ヘリオスタツトの反射鏡 4の組を 安定に支えるに必要な重量と大きさを備えた反射鏡の支持台であり、この実施例に おいては、鉄製の上蓋を有する鉄枠にコンクリートを充填して固化したものである。上 面にターンテーブル 2を支え、ターンテーブル 2の旋回軸 5を軸孔内に支持している [0023] ターンテーブル 2は、図 4に示すように、スラストベアリングを介して基台 1の上に回 転可能に設置され、旋回軸駆動用モータ 7にて水平方向に回転駆動されるものであ る。旋回軸駆動用モータ 7は、基台 1の側面一部に張出したブラケット 6に取り付けら れ、旋回軸駆動用モータ 7の回転をギア 8a、ベルト 8bを含む回転伝動機構 8を介し てターンテーブル 2の上下面に圧接された対のタイヤ 9a、 9bに伝えられる。ターンテ 一ブル 2の駆動方法はこの例に限らないが、ターンテーブル 2の外周縁に回転送りを 与えることによって、小さいトルクで駆動できる。
[0024] ターンテーブル 2の上面には、格子枠 3を支える俯仰軸 10の軸受け部 11が設置さ れる。軸受け部 11は、図 2に示す二叉状のアームに代わるものであり、この実施例で は、ターンテーブル 2の回転中心 O— Oを通って左右方向に張出した張り出し腕 12 上の要所に固定されている。図 5において、軸受け部 11は、ターンテーブルの回転 中心 O— O力も外周方向に向けて左右に張出した張出し腕 12上の外側と、中間と、 内側とに位置して少なくとも片側 3箇所に設置されたものである。以下内側に位置す る軸受け部を l la、中間に位置する軸受け部を l lb、外側に位置する軸受け部を 11 cとして区別する。
[0025] 一方、格子枠 3は、ターンテーブル 2上に上下方向の仰角を調整可能に保持され ている。格子枠 3は、図 6に示すように、俯仰軸 10と直交する方向に平行に配列され た複数本の太い縦桟 3aと、各縦桟 3a間に跨って俯仰軸 10と平行に張り渡された複 数本の細い横桟 3bとからなり、縦桟 3aは、俯仰軸 10に一体的に固定されたものであ る。
[0026] 格子枠 3には、縦桟 3aと横桟 3bとの交差によって格子が形成され、この格子が反 射鏡 4の支持面となる。反射鏡 4は平面鏡であり、反射鏡 4の組は、相互間に一定の 間隔を置いて縦横に配列された複数の鏡の組であり、それぞれの反射鏡 4は、ブロッ ク 13を介して格子枠 3上に整列して設置される。この実施例において、反射鏡 4の組 は、図 7に示すように旋回軸 5をはさんでその片側に 16枚ずつ、計 32枚を縦横に配 置している。なお図 7は、図 6に対応した反射鏡 4の配置例を図示したものであって、 旋回軸 10、格子枠 3の図示を省略した。
[0027] ターンテーブル 2は、反射鏡 4の支持装置として必要最小限度の重量、大きさに抑 えるために、俯仰軸 10の中心を挟んで左右に配置されたもつとも内側に位置する両 軸受け部 1 la— 1 la間の距離を外径として可能な限り小径の円板を用いて 、る。タ ーンテーブル 2は外径が小さいほど、単に重量が小さくなるだけでなぐ左右に張出 している反射鏡 4の仰角を大きくとることができる。
[0028] 張出し腕 12は一定の幅の平板であり、図 5に示すように上下に積層された上段の 張出し腕 12aと、下段の張出し腕 12bとからなっている。上段の張出し腕 12aは、外 側に位置する両軸受け部間(11c 11c)の長さを有し、上面に軸受け部 l l (l la、 1 lb、 11c)が取り付けられたものであり、下段の張出し腕 12bは重量軽減のため、中 間に位置する両軸受け部間(l ib— l ib)の長さを有し、ターンテーブル 2の上面に 取り付けられて 、るものである。
[0029] 俯仰軸 10の軸端には、俯仰駆動用モータ 14が取り付けられている。図 8において 、ターンテーブル 2を支える前記旋回軸 5は、反射鏡 4の組の旋回角 )に応じて転 回する軸であり、旋回駆動用モータ 7で駆動され、俯仰軸 10は、反射鏡の仰角( β ) に応じて転回する軸であり、俯仰駆動用モータ 14で駆動される。なお、ヘリオスタツト の姿勢 (各反射鏡の旋回角、仰角)の制御は、各へリオスタツトが個別に備え、基台 1 に収納された制御装置 15によって制御される。また、電源に関しても、共通電源から 配線を通じて各へリオスタツトに給電することも可能ではある力 個々のへリオスタツト にそれぞれ別個に電源を備えるのが有利である。このため、各へリオスタツトは、太陽 電池モジュール 16及び蓄電池 17を備え、蓄電池 17は基台 1に形成された空間(図 示略)内に収められている。
[0030] 本発明によるへリオスタツトは、図 1に示すように、少なくとも 3以上の目標物 19a、 1 9b、 19cとセンサー 18を用いてその周囲に配置されたすベてのヘリオスタツト 22の 姿勢を制御するものである。ヘリオスタツト 22の姿勢は、制御装置 15によって制御さ れる。 目標物 19a、 19b、 19cは、ヘリオスタツト 22の位置決めの目標として決められ た位置に設置されたものであり、静止座標系における座標が既知であることを前提と する。
[0031] センサー 18は、ヘリオスタツト 22に設置されるものである力 静止座標系である目 標に対し、任意に設定されることからこれを「動座標系」という。センサー 18は、へリオ スタツト 22に固定した動座標系の位置 ·姿勢を与え、さらにへリオスタツト 22に固定し た動座標系において旋回角 OCと仰角 βを与えることにより、静止座標系における位 置 ·姿勢がそれぞれへリオスタツト 22に固有の制御装置 15によって自律的に制御さ れる力 制御の内容は本発明の範囲外であるので説明は省略する。
[0032] この実施例においては、それぞれのヘリオスタツトに備えた電源 (太陽発電モジュ ール 16、蓄電池 17)から得られる電力をもって反射鏡の旋回角、俯仰角を制御する 。このため、小電力で機能を実行することが要求されるが、このような要求を満たすた め、本発明においては、可能な限り軽量化、小型化を図っているのである。反射鏡 4 には、小型の反射鏡の組合せを用いて太陽光受光面の平面性を確保して 、る。
[0033] この実施例において、反射鏡 4は、図 7に示すように旋回軸 5の中央をはさんでその 片側に 16枚ずつ、計 32枚を組合わせた例を図示したが、勿論、反射鏡の組は 32枚 に限るものではない。何枚かを 1ユニットとしてその数ユニットの組合せをもって、それ ぞれのへリオスタツトごとの太陽光受光面を構成するのが有利である。
[0034] 例えば、縦横 2枚、計 4枚の反射鏡の組合せで一定の大きさのモジュールの反射 鏡ユニットを構成すれば、例えば、 lmモジュールを 4ユニットで、 8m2の太陽光受光 面を形成できる。また、各反射鏡 4は、ブロック 13に支えて格子枠 3上に保持されるが 、ブロック 13には、反射鏡の取付面と平行にブロックを貫通する孔 20を有する合成 榭脂発泡体ブロックを用いる。有孔の合成樹脂発泡体ブロックは特別に製作する必 要はなぐ市販の有孔の発泡スチロールブロックを用いることができる。有孔の発泡 体ブロックを用いることは、単に軽量ィ匕に有利であるだけでなぐブロックを接着、ボ ルト止めその他の方法で格子枠に取り付ける際にブロックに生じる歪の変形が孔 20 内に吸収されて反射鏡への影響が阻止され、反射鏡 4の鏡面の平面性を確保する 上に有利である。また小型の反射鏡の組合わせによるときには、同じ大きさの鏡面を 1枚の反射鏡で形成するのに比べて平面性が得やすぐ互いに隣接する反射鏡 4, 4 、 · · ·の相互間に隙間が形成されるため、風通しがよぐ風力から受ける負荷抵抗を 減少できる。
[0035] また、俯仰軸 10には、格子枠 3のモーメントと、反射鏡のモーメントとが作用する力 両モーメントがバランスする位置に俯仰軸 10を配置して格子枠 3と反射鏡 4とを支え ることによって、小さな動力で俯仰軸 10を転回させて反射鏡 4の組の俯仰角を制御 できる。さらに、俯仰軸 10は、張出し腕 12上の要所に設立した少なくとも片側 3本以 上の軸受け部 l la、 l ib, 11cに跨って保持されるため、反射鏡 4を含む格子枠 3の 支持荷重が各軸受け部に分散されて俯仰軸 10に橈みが生ぜず、したがって、俯仰 角の制御に精度が得られる。
[0036] さらに、張出し腕 12は、外側に位置する両軸受け部(11c— 11c) (実施例では 6本 )間に跨る上段の張出し腕 12aと、中間に位置する軸受け部(l ib— l ib) (実施例で は 4本)間に跨る下段の張り出し腕 12bとの 2本で構成することによって、上段の張出 し腕 12aに橈みを生じさせることなく重量を軽減でき、また、ターンテーブル 2には、 最低限、内側の 2本の軸受け部(11a— 11a)間を支えるに必要な直径の円板を用い て下段の張出し腕 12bを固定するため、ターンテーブルには、内側の 2本の軸受け 部間の距離、実施例の場合には、直径約 lmの円板を用いて一辺が 50cmの反射鏡 を最大 8枚分の長さ、すなわち 4メートルの鏡面を支えて旋回させると共に、格子枠の 傾き角度を制約することなぐ仰角を制御できる。
産業上の利用可能性
[0037] 太陽光は、再生可能なエネルギー源として、エネルギー量が膨大で、環境汚染の ないクリーンなエネルギー源である。本発明によれば、通年で太陽光が多く得られる 砂漠のような土地が砂状または脆弱な地盤であっても、また、地震や強風などの影響 で設置姿勢が変化してしまうような場所であっても、地盤の変化や、強風の影響をう けることが少なぐ基本的に強固な基礎工事を必要とすることなく設置できる。

Claims

請求の範囲
[1] 基台と、ターンテーブルと、格子枠と、反射鏡の組とを有するヘリオスタツトの反射 鏡支持装置であって、
基台は、ヘリオスタツトの反射鏡の組を安定に支えるに必要な重量と大きさを備えた 反射鏡の支持台であり、
ターンテーブルは、反射鏡の水平方向の旋回角を調整するものであり、旋回軸を 中心として基台上に回転可能に設置され、
格子枠は、反射鏡の組を支えて上下方向の俯仰角を調整するものであり、ターンテ 一ブル上に支えられた俯仰軸によって仰角を調整可能に保持され、
反射鏡の組は、相互間に一定の間隔を置いて縦横に配列された複数の反射鏡か らなり、それぞれの反射鏡は、ブロックを介して格子枠上に設置されているものである ことを特徴とするヘリオスタツトの反射鏡支持装置。
[2] 張出し腕と、軸受け部とを有し、
張出し腕は、ターンテーブル上に、その回転中心を通って外周両側に張出して固 定されたものであり、
軸受け部は、前記俯仰軸を回転可能に支持する軸受けであり、ターンテーブルの 回転中心力 外周方向に向けて張出し腕上の外側と、中間と、内側とに位置して少 なくとも片側 3箇所に設置され、
それぞれの軸受け部は、俯仰軸の要所を支えて俯仰軸の長さ方向の橈みを阻止 するものであることを特徴とする請求の範囲第 1項に記載のへリオスタツトの反射鏡支 持装置。
[3] ターンテーブルは、俯仰軸の中央を挟んで左右に配置されたもつとも内側に位置 する両軸受け部間の距離を外径とする円板であり、
張出し腕は一定の幅の平板であり、上下に積層された上段の張出し腕と、下段の 張出し腕とからなり、
上段の張出し腕は、外側に位置する両軸受け部間の長さを有し、上面に軸受け部 が取り付けられたものであり、
下段の張出し腕は中間に位置する両軸受け部間の長さを有し、ターンテーブルの 上面に取り付けられているものであることを特徴とする請求の範囲第 1項に記載のへ リオスタツトの反射鏡支持装置。
[4] 格子枠は、複数本の縦桟と横桟との組合わせによって構成され、
複数本の縦桟は、俯仰軸と直角方向に平行に配列してそれぞれ中央部分が俯仰 軸に回動可能に支持され、
複数本の横桟は、俯仰軸と平行に配列して縦桟に取り付けられ、
縦桟と横桟とが交差して反射鏡の支持面を形成するものであることを特徴とする請 求の範囲第 1項に記載のへリオスタツトの反射鏡支持装置。
[5] 反射鏡の組合せは、一定の大きさのモジュールの反射鏡ユニットを組合わせて格 子枠上に設置されているものであることを特徴とする請求の範囲第 1項に記載のヘリ ォスタツトの反射鏡支持装置。
[6] 前記ブロックは、合成樹脂発泡体ブロックであり、反射鏡の取付面と平行にブロック を貫通する孔を有し、
ブロックの孔は、格子枠にブロックを取り付けた際にブロックに生じる歪の反射鏡へ の影響を阻止するものであることを特徴とする請求の範囲第 1項に記載のへリオスタ ットの反射鏡支持装置。
[7] 反射鏡の組は、俯仰軸の中央及び回転中心をはさんでその前後及び両側の格子 枠の部分に左右対称に取り付けられているものであることを特徴とする請求の範囲第 1項に記載のへリオスタツトの反射鏡支持装置。
PCT/JP2006/318139 2005-09-26 2006-09-13 ヘリオスタットの反射鏡支持装置 WO2007034717A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005277901 2005-09-26
JP2005-277901 2005-09-26

Publications (1)

Publication Number Publication Date
WO2007034717A1 true WO2007034717A1 (ja) 2007-03-29

Family

ID=37888768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318139 WO2007034717A1 (ja) 2005-09-26 2006-09-13 ヘリオスタットの反射鏡支持装置

Country Status (1)

Country Link
WO (1) WO2007034717A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101594A (ja) * 2008-10-27 2010-05-06 Mitsui Eng & Shipbuild Co Ltd 太陽光集光用ヘリオスタットの制御方法及びその装置
EP2223019A1 (en) * 2007-11-26 2010-09-01 Esolar, Inc. Heliostat array layouts for multi-tower central receiver solar power plants
WO2011001448A3 (en) * 2009-07-01 2012-08-02 Ravindra Patwardhan A solar central receiver system employing common positioning mechanism for heliostats
WO2013014998A1 (ja) * 2011-07-26 2013-01-31 住友重機械工業株式会社 集光器及びこれを備えた集光装置
JP2013026519A (ja) * 2011-07-22 2013-02-04 Daikin Ind Ltd 電気二重層キャパシタ用電解液、電気二重層キャパシタ、及び、モジュール
WO2013076320A1 (es) * 2011-11-23 2013-05-30 Jonas Villarrubia Ruiz Armadura para múltiples heliostatos o paneles fotovoltaicos con ajuste independiente y arrastre automático
CN103968569A (zh) * 2014-05-27 2014-08-06 成都博昱新能源有限公司 一种大型塔式定日镜太阳能集热支架
CN105485936A (zh) * 2016-01-15 2016-04-13 徐盛之 二维跟踪太阳能聚光装置
US9534812B2 (en) 2012-02-29 2017-01-03 Mitsubishi Heavy Industries, Ltd. Solar concentrator, and heat collection apparatus and solar thermal power generation apparatus including same
US9664416B2 (en) 2012-03-28 2017-05-30 Mitsubishi Heavy Industries, Ltd. Method for manufacturing mirror structure, mirror structure, light collection device having same, heat collection facility, and solar thermal power generation facility
CN113280718A (zh) * 2021-04-28 2021-08-20 浙江中控太阳能技术有限公司 一种应用于定日镜主梁焊接件的支座检测工装

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200839A (ja) * 1995-01-26 1996-08-06 Brother:Kk 太陽の光と熱を利用する装置
JP2005060589A (ja) * 2003-08-18 2005-03-10 Tsuruhiko Kiuchi 廃棄物の炭化システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200839A (ja) * 1995-01-26 1996-08-06 Brother:Kk 太陽の光と熱を利用する装置
JP2005060589A (ja) * 2003-08-18 2005-03-10 Tsuruhiko Kiuchi 廃棄物の炭化システム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223019A4 (en) * 2007-11-26 2013-03-20 Esolar Inc HELIOSTAT ARRANGEMENT LAYOUTS FOR SOLAR ENERGY EQUIPMENT WITH MULTIPLE TOWERS AND CENTRAL RECEIVER
EP2223019A1 (en) * 2007-11-26 2010-09-01 Esolar, Inc. Heliostat array layouts for multi-tower central receiver solar power plants
US10041700B1 (en) 2007-11-26 2018-08-07 Esolar, Inc. Heliostat array layouts for multi-tower central receiver solar power plants
US8656907B2 (en) 2007-11-26 2014-02-25 Esolar, Inc. Heliostat array layouts for multi-tower central receiver solar power plants
JP2010101594A (ja) * 2008-10-27 2010-05-06 Mitsui Eng & Shipbuild Co Ltd 太陽光集光用ヘリオスタットの制御方法及びその装置
WO2011001448A3 (en) * 2009-07-01 2012-08-02 Ravindra Patwardhan A solar central receiver system employing common positioning mechanism for heliostats
JP2013026519A (ja) * 2011-07-22 2013-02-04 Daikin Ind Ltd 電気二重層キャパシタ用電解液、電気二重層キャパシタ、及び、モジュール
JP2013029537A (ja) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd 集光器及びこれを備えた集光装置
WO2013014998A1 (ja) * 2011-07-26 2013-01-31 住友重機械工業株式会社 集光器及びこれを備えた集光装置
WO2013076320A1 (es) * 2011-11-23 2013-05-30 Jonas Villarrubia Ruiz Armadura para múltiples heliostatos o paneles fotovoltaicos con ajuste independiente y arrastre automático
US9534812B2 (en) 2012-02-29 2017-01-03 Mitsubishi Heavy Industries, Ltd. Solar concentrator, and heat collection apparatus and solar thermal power generation apparatus including same
US9664416B2 (en) 2012-03-28 2017-05-30 Mitsubishi Heavy Industries, Ltd. Method for manufacturing mirror structure, mirror structure, light collection device having same, heat collection facility, and solar thermal power generation facility
CN103968569A (zh) * 2014-05-27 2014-08-06 成都博昱新能源有限公司 一种大型塔式定日镜太阳能集热支架
CN105485936A (zh) * 2016-01-15 2016-04-13 徐盛之 二维跟踪太阳能聚光装置
WO2017121178A1 (zh) * 2016-01-15 2017-07-20 徐盛之 二维跟踪太阳能聚光装置
CN105485936B (zh) * 2016-01-15 2018-03-13 徐盛之 二维跟踪太阳能聚光装置
CN113280718A (zh) * 2021-04-28 2021-08-20 浙江中控太阳能技术有限公司 一种应用于定日镜主梁焊接件的支座检测工装
CN113280718B (zh) * 2021-04-28 2022-06-24 浙江可胜技术股份有限公司 一种应用于定日镜主梁焊接件的支座检测工装

Similar Documents

Publication Publication Date Title
WO2007034717A1 (ja) ヘリオスタットの反射鏡支持装置
US7923624B2 (en) Solar concentrator system
US8365719B2 (en) Multi-receiver heliostat system architecture
CA2794602C (en) High efficiency counterbalanced dual axis solar tracking array frame system
US7705277B2 (en) Sun tracking solar panels
KR101421467B1 (ko) 태양광 자동 추적 장치
KR101403129B1 (ko) 태양광 추종이 가능한 태양광 발전 장치
CN101908840B (zh) 用于跟踪并聚集变化型光线的装置
CN102027298B (zh) 太阳跟踪设备
US8338771B2 (en) Apparatus for tracking and condensing sunlight of sliding type
US20120325314A1 (en) Solar Power Collection Using High-Focus-Accuracy Mirror Array
US9074797B2 (en) Assembling and aligning a two-axis tracker assembly in a concentrated photovoltaic system
US20100258110A1 (en) Modular Pivotable Solar Collector Arrangement
US9847750B2 (en) Coaxial drive tracking system for use with photovoltaic systems
RU2377474C1 (ru) Установка для ориентации фотоэлектрической батареи на солнце
US20120325313A1 (en) Solar-Tower System With High-Focus-Accuracy Mirror Array
CN101291123A (zh) 光伏系统
CN102043228B (zh) 一种自旋-仰角跟踪模式定日镜的稳定支撑装置
WO2005098327A1 (ja) ヘリオスタットとその制御方法
KR101131482B1 (ko) 고효율 태양광 발전시스템
US20210194417A1 (en) Elevated dual-axis photovoltaic solar tracking assembly
US20230231511A1 (en) Photovoltaic plant, in particular a ground photovoltaic plant
CN106339009A (zh) 双面双玻太阳能电池板跟踪支架
US9239172B2 (en) Solar concentrator with support system and solar tracking
EP2461117A9 (en) Structure for lifting and mounting heliostats and trolley for moving said heliostat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP