WO2010049078A1 - Verwendung von helium-sauerstoff-gasgemischen zur behandlung der pulmonalen arteriellen hypertonie - Google Patents

Verwendung von helium-sauerstoff-gasgemischen zur behandlung der pulmonalen arteriellen hypertonie Download PDF

Info

Publication number
WO2010049078A1
WO2010049078A1 PCT/EP2009/007488 EP2009007488W WO2010049078A1 WO 2010049078 A1 WO2010049078 A1 WO 2010049078A1 EP 2009007488 W EP2009007488 W EP 2009007488W WO 2010049078 A1 WO2010049078 A1 WO 2010049078A1
Authority
WO
WIPO (PCT)
Prior art keywords
helium
oxygen gas
gas mixtures
combination
treatment
Prior art date
Application number
PCT/EP2009/007488
Other languages
English (en)
French (fr)
Other versions
WO2010049078A8 (de
Inventor
Hubert Truebel
Eva-Maria Becker
Katja SCHÄFER
Jürgen KOHLMEYER
Original Assignee
Bayer Schering Pharma Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2011121520/15A priority Critical patent/RU2011121520A/ru
Priority to BRPI0919980A priority patent/BRPI0919980A2/pt
Priority to EP09748704A priority patent/EP2349290A1/de
Priority to CN2009801534107A priority patent/CN102271689A/zh
Priority to MX2011004515A priority patent/MX2011004515A/es
Priority to AU2009310107A priority patent/AU2009310107A1/en
Application filed by Bayer Schering Pharma Aktiengesellschaft filed Critical Bayer Schering Pharma Aktiengesellschaft
Priority to JP2011533579A priority patent/JP2012506881A/ja
Priority to CA2741706A priority patent/CA2741706A1/en
Priority to US13/126,639 priority patent/US20120003325A1/en
Publication of WO2010049078A1 publication Critical patent/WO2010049078A1/de
Priority to IL212457A priority patent/IL212457A0/en
Publication of WO2010049078A8 publication Critical patent/WO2010049078A8/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present application relates to the use of helium-oxygen gas mixtures for the treatment and / or prophylaxis of primary and secondary forms of pulmonary hypertension (PH) and the combination of drugs with helium-oxygen gas mixtures, wherein the gas mixtures as carrier gases to improve the introduction of a Medicament for the treatment and / or prophylaxis of pulmonary hypertension serve.
  • PH pulmonary hypertension
  • PAP Primary pulmonary arterial hypertension
  • mPAP pulmonary arterial mean pressure
  • the pathophysiology of pulmonary arterial hypertension is characterized by vasoconstriction and remodeling of the pulmonary vessels.
  • chronic PAH the vascular musculature increases in size, followed by a slow remodeling of the musculature to connective tissue.
  • a secondary PH occurs, inter alia, as a result of lung disease. This can occur as a characteristic feature acutely in the context of an "Adult Respiratory Distress Syndrome" (Kolle et al., N Engl J Med. 1995 Jan 5; 332 (l): 27-37), significantly worsening the prognosis of ARDS and special forms of therapy necessary to prevent right heart failure (Moloney et al., Eur. Respir J. 2003 Apr; 21 (4): 720-7). Similarly, chronic lung disease can be secondarily complicated by the onset of PH and thereby the prognosis Han et al., Circulation, 2007 Dec 18; 116 (25): 2992-3005).
  • pulmonary hypertension includes certain forms of pulmonary hypertension as defined by the World Health Organization (WHO) ⁇ Clinical Classification of Pulmonary Hypertension, Venice, 2003; Simmenau et al, JAm Coli Cardiol (2004), 43, Suppl 1 (12) S5-S12).
  • WHO World Health Organization
  • the standard therapies used to treat acute PH are capable of improving the quality of life, exercise tolerance and prognosis of patients.
  • the applicability of these drugs is limited by the z.T. restricted serious side effects and / or complex application forms.
  • the period of time during which a patient's clinical situation can be improved or stabilized under specific monotherapy is limited.
  • New combination therapies are one of the most promising future treatment options for the treatment of pulmonary arterial hypertension (Ghofrani et al., Herz 2005, 30, 296-302).
  • the exploration of new pharmacological mechanisms for the treatment of PH is of particular interest.
  • New therapies should be combinable with the known ones.
  • Another side effect of a resistance-reducing therapy in secondary PH which can occur especially in a systemic therapy of a secondary PH with inhomogeneous lung injury (eg ARDS and COPD) is a decrease in arterial oxygen content despite successful treatment of pulmonary hypertension by opening pulmonary shunts (Stolz et al., Eur Respir J. 2008 Sep; 32 (3): 619-28.).
  • the object of the present invention to find new methods for the treatment of primary and secondary PH, which do not have the disadvantages presented above.
  • the normal ambient air is composed mainly of the elements nitrogen (about 78% by volume) and oxygen (about 21% by volume). If you replace the nitrogen content by the noble gas helium, you get Heliox - a mixture of helium and oxygen.
  • Helium has some basic other properties compared to nitrogen and oxygen.
  • the noble gas helium (He) is characterized by a lack of color, odor and tastelessness and low solubility in aqueous solutions and fatty substances (eg only 30% of the solubility of oxygen or nitrogen in an oil-water mixture (Brubakk AO, Neumann TS Bennett &Elliof's Physiology and Medicine of Diving, 5th edition, Saunders Verlag, Edinburgh 2003)). Hyperbaric helium exposure therefore does not result in narcotic effects such as those known from nitrogen or xenon. These favorable properties are also found in the mixture of helium with oxygen (Heliox) and thus allow diving below 60m. In commercial diving, the nitrogen contained in the breathing air is completely or partially replaced by helium. As a result, among other things, the formation of gas bubbles during emergence (decompression or caisson disease) can be reduced.
  • the Heliox effect in the respiratory tract depends inter alia on the localization of an obstruction. Although the width of the airways becomes narrower towards the periphery, the increasing number of bronchi in the deeper generations results in a larger overall cross-section and thus lower overall resistance. The major part of the airway resistance is therefore in the upper respiratory tract to the 5th-6. Bronchial generation localized (West JB Respiratory Physiology-the essentials, 5 * edition, 1995, Williams and Wilkins, Baltimore). In many pathological conditions of the lung (e.g., ARDS, COPD), even small respiratory tract infections are present in some cases. significant bottlenecks that can lead to a change in the flow profile. The transition from a laminar to a turbulent flow can be estimated using the Reynolds number (RE).
  • RE is calculated according to:
  • a helium-oxygen mixture can be used in diseases of the lower respiratory tract (eg COPD or asthma) with helium-oxygen gas mixtures.
  • diseases of the lower respiratory tract eg COPD or asthma
  • helium-oxygen gas mixtures eg COPD or asthma
  • the breath-facilitating effect is also the focus here due to the described effect of transferring a turbulent flow into a laminar gas flow in the foreground.
  • the mechanism of action of a more effective deposition of aerosol particles (eg ⁇ 2 mimetics) into more peripheral parts of the lung is also discussed (Anderson et al., Am Rev Respir Dis. 1993; 147: 524-8).
  • helium-oxygen mixtures on the vessel side can lower the resistance can be used for the treatment and / or prophylaxis of pulmonary hypertension, for example in acute (eg ARDS) pulmonary or cardiac (left-sided) atrial or left ventricular) diseases as well as valvular heart disease.
  • helium-oxygen mixtures are therefore suitable not only for the treatment of airway obstruction, but also for the treatment and / or prophylaxis of pulmonary hypertension in chronic obstructive pulmonary disease, interstitial lung disease, sleep apnea syndrome, diseases with alveolar hypoventilation, altitude sickness and suitable for pulmonary developmental disorders.
  • the helium-oxygen mixtures are suitable for the treatment and / or prophylaxis of pulmonary arterial hypertension due to chronic thrombotic and / or embolic diseases, such as thromboembolism of the proximal pulmonary arteries, obstruction of the distal pulmonary arteries and pulmonary embolism.
  • the compounds according to the invention can be used for the treatment and / or prophylaxis of pulmonary arterial hypertension in conjunction with sarcoidosis, histiocytosis X or lymphangioleiomyomatosis as well as pulmonary arterial hypertension caused by external vascular compression (lymph node, tumor, fibrosing mediastinitis).
  • Helium-oxygen mixtures can be used alone or in combination with other active ingredients. Helium-oxygen mixtures can be used in a ratio of 20 to 80% helium. Preferably, a ratio with the highest possible helium content (up to 79%) is used. Particular preference is given to using a ratio of 79% helium / 21% oxygen.
  • Percentages in the present invention are always percentages by volume.
  • compositions containing a helium-oxygen mixture and one or more other active ingredients for the treatment and / or prophylaxis of the aforementioned diseases are pharmaceutical compositions containing a helium-oxygen mixture and one or more other active ingredients for the treatment and / or prophylaxis of the aforementioned diseases.
  • suitable combination active ingredients may be mentioned by way of example and preferably:
  • tyrosine kinase inhibitors in particular tyrosine kinase inhibitors, such as by way of example and preferably sorafenib, imatinib, gefitinib or erlotinib in combination with helium-oxygen mixtures
  • Nitric oxides (NO) in combination with helium-oxygen mixtures Nitric oxides (NO) in combination with helium-oxygen mixtures
  • NO-independent, but heme-dependent stimulators of soluble guanylate cyclase such as in particular the compounds described in WO 00/06568, WO 00/06569, WO 02/42301 and WO 03/095451 in combination with helium-oxygen mixtures
  • the following compounds are listed here:
  • soluble guanylate cyclase such as in particular the compounds described in WO 01/19355, WO 01/19776, WO 01/19778, WO 01/19780, WO 02/070462 and WO 02/070510 in combination with helium -oxygen mixtures
  • Prostacyclin analogs such as, by way of example and by way of preference, hoprost, beraprost, treprostinil or epoprostenol in combination with helium-oxygen mixtures
  • Endothelin receptor antagonists such as by way of example and preferably bosentan, darusentan, ambrisentan or sitaxsentan in combination with helium-oxygen mixtures
  • cGMP cyclic guanosine monophosphate
  • cAMP cyclic adenosine monophosphate
  • PDE phosphodiesterases
  • sildenafil vardenaf ⁇ l
  • tadalafil in combination with helium-oxygen mixtures
  • Antibiotics such as glycoside antibiotics, gyrase inhibitors or penicillins in combination with helium-oxygen mixtures
  • Antiviral substances such as aspirin in combination with helium-oxygen mixtures
  • helium / oxygen mixture ratios preference is given to using helium / oxygen mixture ratios with as high a proportion of helium as possible (up to 79%). It is particularly preferred to use a ratio of 79% helium / 21% oxygen, although in the case of increased oxygen demand of a patient, this proportion may possibly have to be reduced in the helium fraction.
  • Another object of the present invention is the use of helium-oxygen mixtures alone or in combination with one or more of the aforementioned combination active ingredients for the manufacture of a medicament for the treatment and / or prophylaxis of pulmonary hypertension in left atrial or left ventricular diseases, left-sided heart valve diseases, acute lung diseases (eg ARDS), chronic obstructive pulmonary disease, interstitial lung disease, sleep apnea syndrome, diseases with alveolar hypoventilation, altitude sickness, pulmonary developmental disorders, chronic thrombotic and / or embolic diseases such as proximal pulmonary thromboembolism, distal pulmonary artery obstruction and pulmonary embolism with sarcoidosis, histiocytosis X or lymphangioleiomyomatosis as well as a pulmonary artery caused by external vascular compression (lymph nodes, tumors, fibrosing mediastinitis) Hypertension.
  • acute lung diseases eg ARDS
  • Another object of the present invention is a method for the treatment and / or prophylaxis of pulmonary arterial hypertension in humans and animals by administration of helium-oxygen mixtures or a combination of helium-oxygen mixtures with one or more of the aforementioned combination agents.
  • the medicaments to be prepared according to the invention or to be used according to the invention comprise at least one of the compounds according to the invention, usually together with one or more inert, non-toxic, pharmaceutically suitable excipients in combination with helium-oxygen mixtures.
  • the use of Heliox on the one hand independently of the active ingredient can influence the pulmonary vascular resistance and also increase the effect of the inhaled liquid, solid or gaseous active substance.
  • the reinforcement succeeds, for example, by a higher deposition rate, deposition distal to flow obstacles or in poorly ventilated areas.
  • Heliox can be used, and it is also conceivable that an inhalant produced with or without heliox but spent with Heliox in the lungs.
  • the preparation of the combination of heliox and a liquid, solid or gaseous active substance can be carried out by means of commercially available devices (for example 2.4 MHz, Optineb-IR, from Nebu-Tec).
  • Ventilation with Heliox or the combination of Heliox and an active ingredient can be carried out using commercially available ventilators (eg Avea, Viasys-Healthcare).
  • Parenteral administration may be by use of, or in combination with helium-oxygen mixtures, the route of administration via the respiratory tract, e.g. Inhalation medicines (including powder inhalers, nebulizers), nasal drops, solutions or sprays.
  • Inhalation medicines including powder inhalers, nebulizers
  • nasal drops solutions or sprays.
  • the helium-oxygen mixtures are commercially available in a mixing ratio of mostly 79% helium and 21% oxygen.
  • Heliox does not specifically describe this mixing ratio, but only the mixture of helium with oxygen.
  • Each of these helium / oxygen mixtures, wherein a minimum oxygen content of 21% is necessary for physiological reasons, can be converted into the mentioned application forms. This can be done in a manner known per se by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • These adjuvants include, among others. excipients
  • microcrystalline cellulose, lactose, mannitol
  • solvents eg, liquid polyethylene glycols
  • emulsifiers and dispersing or wetting agents for example, sodium dodecyl sulfate, Polyoxysorbitanoleat
  • binders for example, polyvinylpyrrolidone
  • synthetic and natural polymers for example, albumin
  • stabilizers for example, antioxidants such as ascorbic acid
  • dyes eg, inorganic pigments such as iron oxides
  • Flavor and / or odor remedies Flavor and / or odor remedies.
  • the following embodiments illustrate the experimental design, which is based on a model of inhomogeneous, acute lung damage to the surprising and unexpected finding that already the use of helium-oxygen mixtures without additional further active ingredient for PH therapy (eg prostacyclin analogs, sGC activators).
  • PH therapy eg prostacyclin analogs, sGC activators
  • the invention is not limited to the examples, because it was furthermore shown that this resistance-reducing effect of helium-oxygen mixtures in the pulmonary vascular bed can be increased by the additional inhalation of active substances:
  • an ALI / ARDS is used by removal of the pulmonary surfactant by lavage on anesthetized piglets with subsequent intratracheal application of a 20% meconium solution.
  • the animals experience a pronounced gas exchange disorder with secondary pulmonary hypertension.
  • the model described corresponds to the so-called meconium aspiration syndrome.
  • Measurements of various physiological parameters are performed according to a standardized procedure (Geiger et al., Intensive Care Med ; 34: 368-76) in the so-called Göttinger Minipig® (Ellegaard, DK) under adequate analgesic sedation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die vorliegende Anmeldung betrifft die Verwendung von Helium-Sauerstoff-Gasgemischen zur Behandlung und/oder Prophylaxe primärer und sekundärer Formen der pulmonalen Hypertonie (PH) sowie die Kombination von Arzneimitteln mit Helium-Sauerstoff-Gasgemischen, wobei die Gasgemische als Trägergase zur Verbesserung der Einbringung eines Arzneimittels zur Behandlung und/oder Prophylaxe der pulmonalen Hypertonie dienen.

Description

Verwendung von Helium-Sauerstoff-Gasgemischen zur Behandlung der pulmonalen arteriellen Hypertonie
Die vorliegende Anmeldung betrifft die Verwendung von Helium-Sauerstoff-Gasgemischen zur Behandlung und/oder Prophylaxe primärer und sekundärer Formen der pulmonalen Hypertonie (PH) sowie die Kombination von Arzneimitteln mit Helium-Sauerstoff-Gasgemischen, wobei die Gasgemische als Trägergase zur Verbesserung der Einbringung eines Arzneimittels zur Behandlung und/oder Prophylaxe der pulmonalen Hypertonie dienen.
Therapie der primären und sekundären PH
Die primäre Pulmonale Arterielle Hypertonie (PAH) ist eine progrediente Lungenerkrankung, die unbehandelt durchschnittlich innerhalb von 2.8 Jahren nach Diagnosestellung zum Tode führt. Eine zunehmende Verengung der Lungenstrombahn führt zu einer Mehrbelastung des rechten Herzens, die bis zum Rechtsherzversagen gehen kann. Defmitionsgemäß liegt bei einer chronischen pulmonalen Hypertonie ein pulmonal-arterieller Mitteldruck (mPAP) von >25 mmHg in Ruhe oder >30 mmHg unter Belastung vor (Normalwert <20 mmHg). Die Pathophysiologie der pulmonal -arteriellen Hypertonie ist gekennzeichnet durch Vasokonstriktion und Remodeling der Pulmonalgefäße. Bei der chronischen PAH nimmt die Gefäßmuskulatur an Umfang zu, danach folgt ein langsamer Umbau der Muskulatur zu Bindegewebe. Durch diese zunehmende Obliteration der Lungenstrombahn kommt es zu einer progredienten Belastung des rechten Herzens, die zu einer verminderten Auswurfleistung des rechten Herzens führt und letztlich in einem Rechtsherzversagen endet. Mit einer Prävalenz von 1-2 pro einer Million handelt es sich bei PAH um eine äußerst seltene Erkrankung (G.E. D'Alonzo et al., Ann. Intern. Med. 1991, 115, 343- 349). Das mittlere Alter der Patienten wurde auf 36 Jahre geschätzt, nur 10% der Patenten waren über 60 Jahre alt. Deutlich mehr Frauen als Männer sind betroffen.
Eine sekundäre PH tritt u.a. als Folge einer Lungenerkrankung auf. Dies kann als charakteristisches Merkmal akut im Rahmen eines „Adult Respiratory Distress Syndromes" (Kollef et al., N Engl J Med. 1995 Jan 5;332(l):27-37) auftreten, die Prognose des ARDS deutlich verschlechtern und spezielle Therapieformen notwendig machen, um das Rechtsherzversagen zu verhindern (Moloney et al., Eur Respir J. 2003 Apr;21(4):720-7). In ähnlicher Weise können auch chronisch verlaufende Lungenerkrankungen sekundär durch das Auftreten einer PH kompliziert und dadurch die Prognose verschlechtert werden (z.B. „chronic obstructive pulmonary disease (COPD); Han et al., Circulation. 2007 Dec 18;116(25):2992-3005). PH auf dem Boden einer Lungenkrankheit wurde im Rahmen der WHO-PAH-Klassifikation als Gruppe IH zusammengefasst. Ganz allgemein umfasst der Begriff "pulmonale Hypertonie" bestimmte Formen der pulmonalen Hypertonie, wie sie z.B. von der Weltgesundheitsorganisation (WHO) festgelegt worden sind {Clinical Classification of Pulmonary Hypertension, Venedig 2003; Simmenau et al, JAm Coli Cardiol (2004), 43, Suppl 1(12) S5-S12).
Die zur Therapie der akuten PH eingesetzten Standardtherapien (z.B. Prostacyclin- Analoga, Endothelinrezeptor-Antagonisten, Phosphodiesterase-Inhibitoren) sind in der Lage, die Lebens- qualität, die körperliche Belastbarkeit und die Prognose der Patienten zu verbessern. Die Anwendbarkeit dieser Medikamente ist jedoch durch die z.T. gravierenden Nebenwirkungen und/oder aufwendigen Applikationsformen eingeschränkt. Der Zeitraum, über den unter einer spezifischen Monotherapie die klinische Situation der Patienten verbessert oder stabilisiert werden kann, ist begrenzt. Es erfolgt schließlich eine Therapieeskalation und somit eine Kombinationstherapie, bei der mehrere Medikamente gleichzeitig gegeben werden müssen. Neue Kombinationstherapien sind eine der aussichtsreichsten zukünftigen Therapieoptionen zur Behandlung der pulmonalen arteriellen Hypertonie (Ghofrani et al., Herz 2005, 30, 296-302). In diesem Zusammenhang ist die Erkundung neuer pharmakologischer Mechanismen zur Behandlung der PH von besonderem Interesse. Neue Therapien sollten mit den bekannten kombinierbar sein.
Eine weitere Nebenwirkung einer widerstandssenkenden Therapie bei sekundärer PH, die insbesondere bei einer systemischen Therapie einer sekundären PH mit inhomogener Lungenschädigung (z.B. ARDS und COPD) auftreten kann, ist eine Abnahme des arteriellen Sauerstoffgehalts trotz erfolgreicher Therapie des Lungenhochdrucks durch Eröffnung von pulmonalen Kurzschlüssen (Stolz et al., Eur RespirJ. 2008 Sep;32(3):619-28.).
Hinsichtlich der oben aufgeführten Nebenwirkungen bei den bislang bekannten Therapieformen der primären und sekundären PH besteht die Aufgabe der vorliegenden Erfindung neue Methoden zur Behandlung der primären und sekundären PH aufzufinden, die die oben dargestellten Nachteile nicht aufweisen.
Helium-Sauerstoff-Gemische zur Therapie der PH
Die normale Umgebungsluft setzt sich vor allem aus den Elementen Stickstoff (ca. 78 Volumen-%) und Sauerstoff (ca. 21 Volumen-%) zusammen. Ersetzt man den Stickstoffanteil durch das Edelgas Helium, so erhält man Heliox - eine Mischung aus Helium und Sauerstoff.
Helium hat im Vergleich zu Stickstoff und Sauerstoff einige grundlegende andere Eigenschaften. Das Edelgas Helium (He) zeichnet sich durch Färb-, Geruch- und Geschmacklosigkeit sowie eine geringe Löslichkeit in wässrigen Lösungen und fetthaltigen Substanzen (z.B. nur 30% der Löslichkeit von Sauerstoff oder Stickstoff in einem Öl-Wassergemisch (Brubakk AO, Neumann TS. Bennett & Elliof s Physiology and Medicine of Diving. 5th edition, Saunders Verlag, Edinburgh 2003)) aus. Daher kommt es bei einer hyperbaren Heliumexposition nicht zu narkotisierenden Effekten, wie sie z.B. von Stickstoff oder Xenon bekannt sind. Diese günstigen Eigenschaften finden sich auch in der Mischung von Helium mit Sauerstoff (Heliox) und ermöglichen somit das Tauchen unterhalb von 60m. Beim kommerziellen Tauchen wird der in der Atemluft enthaltene Stickstoff ganz oder teilweise durch Helium ersetzt. Hierdurch kann u.a. auch die Bildung von Gasblasen beim Auftauchen (Dekompressions- oder Caisson-Krankheit) vermindert werden.
Durch seine gesättigte Elektronenhülle geht Helium kaum Reaktionen mit anderen Stoffen ein. Daher wird es in der Pulmonologie bei der Fremdgasverdünnungsmethode zur Bestimmung des Lungenvolumens eingesetzt.
Bereits vor dem 2. Weltkrieg untersuchte A. Barach den medizinische Nutzen des Gasgemisches Heliox und erforschte als die Anwendung bei oberen und unteren Atemwegsobstruktionen (Barach, Proc Soc Exp Biol Med 1934;32:462-464; Barach, Ann Intern Med 1935;9:739-765). Im weiteren Verlauf trat Heliox als Atemwegstherapeutikum in den Hintergrund, da Helium während der Kriegszeit vordringlich in der Militärtechnik Nutzen fand und nach dem 2. Weltkrieg neuere therapeutische Optionen, wie inhalative ß2-Mimetika, entwickelt wurden.
Seit den 80er Jahren ist wieder ein zunehmendes Interesse am Einsatz des Gasgemisches Heliox bei schweren oberen und unteren Atemwegsobstruktionen zu verzeichnen.
Die Heliox-Wirkung im Atemtrakt hängt u.a von der Lokalisation einer Obstruktion ab. Die Weite der Atemwege wird zur Peripherie hin zwar enger, jedoch ergibt sich durch die wachsende Anzahl von Bronchien in den tieferen Generationen ein größerer Gesamtquerschnitt und damit ein geringerer Gesamtwiderstand. Der wesentliche Anteil des Atemwegswiderstandes ist demnach in den oberen Atemwegen bis zur 5.-6. Bronchiengeneration lokalisiert (West JB. Respiratory Physiology-the essentials. 5* edition, 1995, Williams and Wilkins, Baltimore). Bei zahlreichen pathologischen Zuständen der Lunge (z.B. ARDS, COPD) finden sich auch in den kleinen Atemwegen z.T. erhebliche Engstellungen, die zu einer Veränderung des Strömungsprofils führen können. Der Übergang einer laminaren in eine turbulente Strömung lässt sich hierbei mit der Reynolds-Zahl (RE) abschätzen. RE berechnet sich nach:
RE = (4*p*V) / π*μ*D
( p: Dichte; V: Volumenstrom; μ: Viskosität; D: Durchmesser der Röhre) - A -
Bei der kritischen Reynolds-Zahl von ~2000 geht eine laminare Strömung zunehmend in eine Übergangsströmung und schließlich (Re > 4000) in eine turbulente Strömung über, so dass vermehrt innere Reibung und Scherkräfte auftreten und höhere Druckgradienten (im Vergleich zur laminaren Strömung) zur Bewegung der Gasströmung nötig sind (West JB. Respiratory Physiology-the essentials. 5* edition, 1995, Williams and Wilkins, Baltimore). Da die Dichte von Helium nur ca. 13% der Stickstoff-Dichte beträgt, verringert sich durch Beimischung von Helium zu einem Gasgemisch die Reynolds-Zahl. Dadurch wird ein Übergang von einer turbulenten in eine laminare Strömung begünstigt. Wenn dieser Übergang hin zu einem laminaren Strömungsprofil auftritt, vermindert sich die Atemarbeit, denn laminare Gasströmungen weisen im Vergleich zu turbulenten Strömungen weniger innere Reibung auf und benötigen daher weniger treibende Kräfte (d.h. auch weniger Atemarbeit) (Jolliet et al., Respir Care Clin N Am. 2002; 8:295-307) um in den Atemwegen bewegt zu werden. Zusammenfassend gibt es zwei Mechanismen, die bei Heliumzumischung eine Gasströmung erleichtern: Zum einen wird eine laminare Strömung wahrscheinlicher und zum anderen wird eine durchgehend turbulente Strömung mit weniger Druck bewegt. Beide Effekte vermindern die Atemarbeit, als die Arbeit, die zum Gasaustausch aufgebracht werden muss.
Ähnlich wie bei Erkrankungen in den oberen Atemwegen (z.B. Enge im Bereich der Stimmlippen), kann ein Helium-Sauerstoff-Gemisch bei Erkrankungen der unteren Atemwege (z.B. COPD oder Asthma) mit Helium-Sauerstoff-Gasgemischen zum Einsatz kommen. Üblicherweise steht hier auch die atemerleichternde Wirkung im Vordergrund durch den beschriebenen Effekt einer Überführung einer turbulenten Strömung in einen laminaren Gasflus im Vordergrund. Daneben wird auch der Wirkmechanismus einer effektiveren Deposition von Aerosolpartikeln (z.B. ß2- Mimetika) in weiter peripher gelegene Anteile der Lunge diskutiert (Anderson et al., Am Rev Respir Dis. 1993; 147: 524-8.).
Im Rahmen von Untersuchungen, die eine bessere Deposition von inhalierbaren Wirkstoffen, bei primärer und sekundärer PH unter Nutzung von Helium-Sauerstoff-Gemischen zum Ziel hatten, fand sich der überraschende und unerwartete Befund, dass bereits der Einsatz von Helium- Sauerstoff-Gemischen ohne zusätzlichen weiteren Wirkstoff zur PH-Therapie (z.B. Prostacyclin- Analoga, sGC-Aktivatoren und -Stimulatoren) zu einer deutlichen Reduktion des pulmonalen Gefäßwiderstands führt. Darüber hinaus verstärkt sich dieser Effekt, wenn zusätzlich inhalierbare Wirkstoffe mit Helium-Sauerstoff-Gemischen kombiniert werden.
Die erfindungsgemäße experimentelle Befund, dass Helium-Sauerstoff-Gemische auf der Gefäßseite den Widerstand senken können, kann für die Behandlung und/oder Prophylaxe der pulmonalen Hypertonie beispielsweise bei akuten (z.B. ARDS) pulmonalen oder kardialen (links- atrialen oder linksventrikulären) Erkrankungen sowie bei Herzklappenerkrankungen eingesetzt werden. Darüber hinaus eignet sich somit Helium-Sauerstoff-Gemische nicht nur zur Behandlung einer Atemwegsobstruktion, sondern auch zur Behandlung und/oder Prophylaxe der pulmonalen Hypertonie bei chronisch-obstruktiver Lungenkrankheit, interstitieller Lungenkrankheit, Schlaf- apnoe-Syndrom, Erkrankungen mit alveolärer Hypoventilation, Höhenkrankheit und pulmonalen Entwicklungsstörungen geeignet.
Weiterhin eignen sich die Helium-Sauerstoff-Gemische zur Behandlung und/oder Prophylaxe der pulmonalen arteriellen Hypertonie aufgrund chronischer thrombotischer und/oder embolischer Erkrankungen, wie beispielsweise Thromboembolie der proximalen Lungenarterien, Obstruktion der distalen Lungenarterien und Lungenembolie. Ferner können die erfϊndungsgemäßen Verbindungen zur Behandlung und/oder Prophylaxe der pulmonalen arteriellen Hypertonie in Verbindung mit Sarkoidose, Histiozytosis X oder Lymphangioleiomyomatose sowie einer durch Gefäßkompression von außen (Lymphknoten, Tumor, fibrosierende Mediastinitis) bedingten pulmonalen arteriellen Hypertonie verwendet werden.
Helium-Sauerstoff-Gemische können allein oder in Kombination mit anderen Wirkstoffen eingesetzt werden. Helium-Sauerstoff-Gemische können in einem Verhältnis von 20 bis 80 % Helium eingesetzt werden. Bevorzugt wird ein Verhältnis mit möglichst hohem Heliumanteil (bis 79%) eingesetzt. Besonders bevorzugt wird ein Verhältnis von von 79% Helium/21% Sauerstoff eingesetzt.
Bei Prozentangaben handelt es sich bei der vorliegenden Erfindung immer um die Angabe von Volumenprozent.
Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend ein Helium- Sauerstoff-Gemisch und einen oder mehrere weitere Wirkstoffe, zur Behandlung und/oder Prophylaxe der zuvor genannten Erkrankungen. Als geeignete Kombinationswirkstoffe seien beispielhaft und vorzugsweise genannt:
Kinase-Inhibitoren, insbesondere Tyrosinkinase-Inhibitoren, wie beispielhaft und vorzugsweise Sorafenib, Imatinib, Gefitinib oder Erlotinib in Kombination mit Helium-Sauerstoff-Gemischen
Nitric Oxide (NO) in Kombination mit Helium-Sauerstoff-Gemischen
NO-unabhängige, jedoch Häm-abhängige Stimulatoren der löslichen Guanylatcyclase, wie insbe- sondere die in WO 00/06568, WO 00/06569, WO 02/42301 und WO 03/095451 beschriebenen Verbindungen in Kombination mit Helium-Sauerstoff-Gemischen Vorzugsweise seien hier die folgenden Verbindungen aufgeführt:
Methyl-4,6-diammo-2-[l-(2-fluorbenzyl)-lH-pyrazolo[3,4-b]pyridin-3-yl]-5-pyrimidinylcarbamat
Figure imgf000007_0001
Methyl-4,6-diamino-2-[l-(2-fluorbenzyl)-lH-pyrazolo[3,4-b]pyridin-3-yl]-5-pyrimi- dinyl(methyl)carbamat
Figure imgf000007_0002
NO- und Häm-unabhängige Aktivatoren der löslichen Guanylatcyclase, wie insbesondere die in WO 01/19355, WO 01/19776, WO 01/19778, WO 01/19780, WO 02/070462 und WO 02/070510 beschriebenen Verbindungen in Kombination mit Helium-Sauerstoff-Gemischen
4-[((4Carboxybutyl)-{2-[(4-phenethylbenzyl)oxy]phenethyl}amino)methyl]benzoesäure
Figure imgf000008_0001
Prostacyclin-Analoga, wie beispielhaft und vorzugsweise Hoprost, Beraprost, Treprostinil oder Epoprostenol in Kombination mit Helium-Sauerstoff-Gemischen
Endothelinrezeptor-Antagonisten, wie beispielhaft und vorzugsweise Bosentan, Darusentan, Ambrisentan oder Sitaxsentan in Kombination mit Helium-Sauerstoff-Gemischen
Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) und/oder cyclischem Adenosinmonophosphat (cAMP) inhibieren, wie beispielsweise Inhibitoren der Phosphodiesterasen (PDE) 1, 2, 3, 4 und/oder 5, insbesondere PDE 5-Inhibitoren wie Sildenafil, Vardenafϊl und Tadalafil in Kombination mit Helium-Sauerstoff-Gemischen
Antibiotika, wie beispielsweise Glycosid- Antibiotika, Gyrase-Hemmer oder Penicilline in Kombination mit Helium-Sauerstoff-Gemischen
Antivirale Substanzen wie beispielsweise Aspirin in Kombination mit Helium-Sauerstoff- Gemischen
Antiproliferative Substanzen bei der Behandlung von Tumoren in Kombination mit Helium- Sauerstoff-Gemischen
Allgemein Wirkstoffe, die eine extrapulmonale (systemische) Wirkung in der o.g. Art und Weise entfalten können in Kombination mit Helium-Sauerstoff-Gemischen.
Für die Inhalation von Wirkstoffen mittels Heliox wird bevorzugt Helium/SauerstoffMischungsverhältnisse mit möglichst hohem Heliumanteil (bis 79%) eingesetzt. Besonders bevorzugt wird ein Verhältnis von 79% Helium/21% Sauerstoff eingesetzt, wobei bei erhöhtem Sauerstoffbedarf eines Patienten dieser Anteil möglicherweise der Heliumanteil reduziert werden muss . Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Helium-Sauerstoff- Gemischen allein oder in Kombination mit einem oder mehreren der zuvor genannten Kombinationswirkstoffe zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe der pulmonalen Hypertonie bei linksatrialen oder linksventrikulären Erkrankungen, linksseitigen Herzklappenerkrankungen, akuten Lungenkrankheiten (z.B. ARDS), chronisch-obstruktiver Lungenkrankheit, interstitieller Lungenkrankheit, Schlafapnoe-Syndrom, Erkrankungen mit alveolärer Hypoventilation, Höhenkrankheit, pulmonalen Entwicklungsstörungen, chronischen thrombotischen und/oder embolischen Erkrankungen wie beispielsweise Thromboembolie der proximalen Lungenarterien, Obstruktion der distalen Lungenarterien und Lungenembolie, in Verbindung mit Sarkoidose, Histiozytosis X oder Lymphangioleiomyomatose sowie einer durch Gefäßkompression von außen (Lymphknoten, Tumor, fibrosierende Mediastinitis) bedingten pulmonalen arteriellen Hypertonie.
Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe der pulmonalen arteriellen Hypertonie bei Menschen und Tieren durch Verabreichung von Helium-Sauerstoff-Gemischen oder einer Kombination von Helium-Sauerstoff-Gemischen mit einem oder mehreren der zuvor genannten Kombinationwirkstoffe.
Die entsprechend der erfindungsgemäßen Verwendung herzustellenden oder erfindungsgemäß zu verwendenden Arzneimittel enthalten mindestens eine der erfindungsgemäßen Verbindungen, üblicherweise zusammen mit einem oder mehreren inerten, nicht-toxischen, pharmazeutisch geeig- neten Hilfsstoffen in Kombination mit Helium-Sauerstoff-Gemischen.
Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend mindestens eine der erfindungsgemäßen Verbindungen in Kombination mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen, zur Behandlung und/oder Prophylaxe der zuvor genannten Erkrankungen in Kombination mit Helium-Sauerstoff-Gemischen.
Bei der Inhalation eines flüssigen, festen oder gasförmigen Wirkstoffes (Inhalat) kann die Anwendung von Heliox zum einen unabhängig vom Wirkstoff den pulmonalen Gefäß-Widerstand beeinflussen und aber auch die Wirkung des inhalierten flüssigen, festen oder gasförmigen Wirkstoffes verstärken. Die Verstärkung gelingt z.B. durch eine höhere Depositionsrate, Deposition distal von Strömungshindernissen oder in schlecht belüfteten Arealen. Für die Herstellung des Inhalates kann Heliox genutzt werden, wobei es auch denkbar ist, dass ein Inhalat mit oder ohne Heliox hergestellt aber mit Heliox in die Lunge verbracht wird. Die Herstellung der Kombination von Heliox und eines flüssigen, festen oder gasförmigen Wirkstoffes kann mit Hilfe im Handel erhältlichen Geräten erfolgen (bspw. 2.4 MHz, Optineb-IR, der Firma Nebu-Tec).
Die Beatmung mit Heliox oder der Kombination aus Heliox und einem Wirkstoff kann mit Hilfe im Handel erhältlichen Beatmungsgeräten erfolgen (bspw. Avea, der Firma Viasys-Healthcare).
Die parenterale Applikation kann unter Verwendung oder in Kombination mit Helium-Sauerstoff- Gemischen eignet sich der Applikationsweg über die Atemwege, z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen oder -sprays.
Die Helium-Sauerstoff-Gemische sind kommerziell erhältlich in einem Mischungsverhältnis von zumeist 79% Helium und 21% Sauerstoff. Der Begriff Heliox beschreibt jedoch nicht speziell diese Mischungsverhältnis, sondern lediglich die Mischung von Helium mit Sauerstoff. Jedes dieser Helium / Sauerstoff-Gemische, wobei ein minimaler Sauerstoffanteil von 21% aus physiologischen Gründen notwendig ist, kann in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nicht-toxischen, phar- mazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe
(beispielsweise mikrokristalline Cellulose, Lactose, Mannitol), Lösungsmittel (z.B. flüssige PoIy- ethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecyl- sulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispiels- weise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und
Geschmacks- und/oder Geruchskorrigentien.
Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei inhalativer Therapie den Helium-Anteil einer Kombination aus Helium und Sauerstoff möglichst groß zu halten, wobei experimentelle Befunde darauf hindeuten, dass der Helium- Anteil zwischen 79% und 25% liegen sollte.
Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mischungsverhältnissen zwischen Helium und Sauerstoff abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als 25% Helium auszukommen Experimenteller Teil
Die nachfolgenden Ausführungsbeispiele erläutern das Versuchsdesign, welches an einem Modell einer inhomogenen, akuten Lungenschädigung zu dem überraschenden und unerwarteten Befund, dass bereits der Einsatz von Helium-Sauerstoff-Gemischen ohne zusätzlichen weiteren Wirkstoff zur PH-Therapie (z.B. Prostacyclin-Analoga, sGC-Aktivatoren und -Stimulatoren) zu einer deutlichen Reduktion des pulmonalen Gefäßwiderstands führt.. Die Erfindung ist nicht auf die Beispiele beschränkt, denn weiterhin zeigte sich dass sich dieser widerstandssenkende Effekt von Helium-Sauerstoff-Gemischen im pulmonalen Gefäßbett durch die zusätzliche Inhalation von Wirkstoffen verstärken lässt:
Zur Induktion eines schweren Lungenschadens, welcher auch bei Neugeborenen Kindern von erheblicher klinischer Relevanz ist, wird ein ALI/ARDS durch Entfernung des pulmonalen Surfactants mittels Lavage am narkotisierten Ferkel mit anschließender intratrachealer Applikation einer 20%-igen Mekonium-Lösung genutzt. Die Tiere erfahren eine ausgeprägte Gasaustauschstörung mit sekundärerer pulmonaler Hypertonie. Das beschriebene Model entspricht dem sog. Mekonium- Aspirations-Syndrom. Zur Erfassung von Medikamenteneffekten erfolgen Messungen verschiedener physiologischer Parameter (Herzfrequenz, Blutdruck in der Körperschlagader und der Pulmonalarterie, Druckverlauf im linken Ventrikel, Herzzeitvolumen, Blutgasanalyse in arteriellem und venösem Blut) nach einem standardisierten Vorgehen (Geiger et al.,. Intensive Care Med. 2008;34:368-76) im sog. Göttinger Minipig® (Ellegaard, DK) unter adäquater Analgosedierung.

Claims

Patentansprüche
1. Helium-Sauerstoff-Gasgemische zur Behandlung von Krankheiten.
2. Helium-Sauerstoff-Gasgemische gemäß Anspruch 1 mit einer Zusammensetzung von 20 bis 79% Helium und 80 bis 21% Sauerstoff.
3. Helium-Sauerstoff-Gasgemische gemäß Ansprüchen 1 und 2 zur Verwendung in einem
Verfahren zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe primärer und sekundärer Formen der pulmonalen Hypertonie (PH).
4. Verwendung von Helium-Sauerstoff-Gasgemischen gemäß Ansprüchen 1 und 2 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe primärer und sekundärer Formen der pulmonalen Hypertonie (PH).
5. Arzneimittel enthaltend Helium-Sauerstoff-Gasgemische gemäß Ansprüchen 1 und 2.
6. Arzneimittel enthaltend Helium-Sauerstoff-Gasgemische gemäß Ansprüchen 1 und 2 in Kombination mit einem inerten, nicht-toxischen, pharmazeutisch geeigneten Hilfsstoff.
7. Helium-Sauerstoff-Gasgemische gemäß Ansprüchen 1 und 2 in Kombination mit einem oder mehreren Arzneimitteln ausgewählt aus der Gruppe
• Kinase-Inhibitoren, insbesondere Tyrosinkinase-Inhibitoren, wie beispielhaft und vorzugsweise Sorafenib, Imatinib, Gefitinib oder Erlotinib
oder
• Nitric Oxide (NO)
oder
• NO-unabhängige, jedoch Häm-abhängige Stimulatoren der löslichen Guanylatcyclase,
oder
• NO- und Häm-unabhängige Aktivatoren der löslichen Guanylatcyclase,
oder
• Prostacyclin-Analoga, wie beispielhaft und vorzugsweise Iloprost, Beraprost,
Treprostinil oder Epoprostenol, oder
Endothelinrezeptor-Antagonisten, wie beispielhaft und vorzugsweise Bosentan, Darusentan, Ambrisentan oder Sitaxsentan,
oder
• Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) und/oder cyclischem Adenosinmonophosphat (cAMP) inhibieren, wie beispielsweise Inhibitoren der Phosphodiesterasen (PDE) 1, 2, 3, 4 und/oder 5, insbesondere PDE 5- Inhibitoren wie Sildenafil, Vardenafϊl und Tadalafil
oder
• Antibiotika, wie beispielsweise Glycosid-Antibiotika, Gyrase-Hemmer oder
Penicilline
oder
• Antivirale Substanzen wie beispielsweise Aspirin
oder
• Antiproliferative Substanzen bei der Behandlung von Tumoren
oder
• Allgemein Wirkstoffe, die eine extrapulmonale (systemische) Wirkung in der o.g. Art und Weise entfalten können.
8. Helium-Sauerstoff-Gasgemische gemäß Ansprüchen 1 und 2 in Kombination mit einem oder mehreren Arzneimitteln ausgewählt aus der Gruppe Methyl-4,6-diamino-2-[l-(2-fluorbenzyl)-lH-pyrazolo[3,4-b]pyridin-3-yl]-5-pyrimidinylcarbamat
Figure imgf000014_0001
Methyl-4,6-diamino-2-[ 1 -(2-fluorbenzyl)- 1 H-pyrazolo[3 ,4-b]pyridin-3 -yl] -5 -pyrimi- dinyl(methyl)carbamat
Figure imgf000014_0002
4-[((4Carboxybutyl)-{2-[(4-phenethylbenzyl)oxy]phenethyl}amino)methyl]benzoesäure
Figure imgf000015_0001
9. Helium-Sauerstoff-Gasgemische in Kombination mit Arzneimitteln gemäß Ansprüchen 7 und 8 zur Behandlung von Krankheiten.
10. Helium-Sauerstoff-Gasgemische in Kombination mit Arzneimitteln gemäß Ansprüchen 7 und 8 zur Verwendung in Verfahren zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe primärer und sekundärer Formen der pulmonalen Hypertonie (PH).
11. Verwendung von Helium-Sauerstoff-Gasgemischen in Kombination mit Arzneimitteln gemäß Ansprüchen 7 und 8 zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe primärer und sekundärer Formen der pulmonalen Hypertonie (PH).
12. Arzneimittel enthaltend Helium-Sauerstoff-Gasgemischen in Kombination mit Arzneimitteln gemäß Ansprüchen 7 und 8 in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
PCT/EP2009/007488 2008-10-31 2009-10-20 Verwendung von helium-sauerstoff-gasgemischen zur behandlung der pulmonalen arteriellen hypertonie WO2010049078A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI0919980A BRPI0919980A2 (pt) 2008-10-31 2009-10-20 uso de misturas de gás hélio-oxigênio para o tratamento de hipertonia arterial pulmonar
EP09748704A EP2349290A1 (de) 2008-10-31 2009-10-20 Verwendung von helium-sauerstoff-gasgemischen zur behandlung der pulmonalen arteriellen hypertonie
CN2009801534107A CN102271689A (zh) 2008-10-31 2009-10-20 氦-氧气体混合物用于治疗肺动脉高压的用途
MX2011004515A MX2011004515A (es) 2008-10-31 2009-10-20 Uso de mezclas gaseosas de helio y oxigeno para el tratamiento de la hipertension arterial pulmonar.
AU2009310107A AU2009310107A1 (en) 2008-10-31 2009-10-20 Use of helium-oxygen gas mixtures for treating pulmonary arterial hypertension
RU2011121520/15A RU2011121520A (ru) 2008-10-31 2009-10-20 Применение гелий-кислородных газовых смесей для лечения легочной артериальной гипертонии
JP2011533579A JP2012506881A (ja) 2008-10-31 2009-10-20 肺動脈高血圧症の処置のためのヘリウム−酸素ガス混合物の使用
CA2741706A CA2741706A1 (en) 2008-10-31 2009-10-20 Use of helium-oxygen gas mixtures for treating pulmonary arterial hypertension
US13/126,639 US20120003325A1 (en) 2008-10-31 2009-10-20 Use of helium-oxygen gas mixtures for treating pulmonary arterial hypertension
IL212457A IL212457A0 (en) 2008-10-31 2011-04-26 Use of helium-oxygen gas mixtures for treating pulmonary arterial hypertension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054205A DE102008054205A1 (de) 2008-10-31 2008-10-31 Verwendung von Helium-Sauerstoff-Gasgemischen zur Behandlung der pulmonalen arteriellen Hypertonie
DE102008054205.9 2008-10-31

Publications (2)

Publication Number Publication Date
WO2010049078A1 true WO2010049078A1 (de) 2010-05-06
WO2010049078A8 WO2010049078A8 (de) 2011-06-03

Family

ID=41416259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/007488 WO2010049078A1 (de) 2008-10-31 2009-10-20 Verwendung von helium-sauerstoff-gasgemischen zur behandlung der pulmonalen arteriellen hypertonie

Country Status (13)

Country Link
US (1) US20120003325A1 (de)
EP (1) EP2349290A1 (de)
JP (1) JP2012506881A (de)
KR (1) KR20110081322A (de)
CN (1) CN102271689A (de)
AU (1) AU2009310107A1 (de)
BR (1) BRPI0919980A2 (de)
CA (1) CA2741706A1 (de)
DE (1) DE102008054205A1 (de)
IL (1) IL212457A0 (de)
MX (1) MX2011004515A (de)
RU (1) RU2011121520A (de)
WO (1) WO2010049078A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3053587A1 (de) 2015-02-05 2016-08-10 Linde AG Kombination von Stickoxid, Helium und Antibiotika zur Behandlung von bakteriellen Lungeninfektionen
RU2826093C1 (ru) * 2023-09-18 2024-09-03 Закрытое акционерное общество "Специальное конструкторское бюро экспериментального оборудования при Институте медико-биологических проблем Российской Академии наук" (ЗАО "СКБ ЭО при ИМБП РАН") Способ лечения артериальной воздушной эмболии

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX355422B (es) * 2012-11-14 2018-04-18 BIAL PORTELA & Cª S A Derivados de 1,3-dihidroimidazol-2-tiona para el uso en el tratamiento de hipertension arterial pulmonar y daño pulmonar.
CN107149781A (zh) * 2017-05-25 2017-09-12 苏州墨维电子科技有限公司 一种用于改变声音的气体配方及其使用方法
WO2022009081A1 (en) 2020-07-06 2022-01-13 Torvald Ranta Foretagsjuridik AB Drug for use against the novel coronavirus disease, covid-19

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727219A2 (de) * 1995-02-16 1996-08-21 The BOC Group plc Medizinische Gasmischungen
WO1998008523A1 (de) * 1996-08-27 1998-03-05 Messer Griesheim Gmbh Wasserstoffhaltiges medikament
EP1064945A1 (de) * 1999-07-02 2001-01-03 Air Liquide Sante (International) Therapeutische Verwendung eines Helium/Oxygen Gemisches, insbesondere für die Behandlung von Asthma
EP1232752A1 (de) * 2000-09-06 2002-08-21 Sociedad Espanola De Carburos Metalicos S.A. Helium-sauerstoff gemisch mit einer therapeutischen verwendung
WO2003095451A1 (de) * 2002-05-08 2003-11-20 Bayer Healthcare Ag Carbamat-substituierte pyrazolopyridine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834047A1 (de) 1998-07-29 2000-02-03 Bayer Ag Substituierte Pyrazolderivate
DE19834044A1 (de) 1998-07-29 2000-02-03 Bayer Ag Neue substituierte Pyrazolderivate
DE19943636A1 (de) 1999-09-13 2001-03-15 Bayer Ag Neuartige Dicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943634A1 (de) 1999-09-13 2001-04-12 Bayer Ag Neuartige Dicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943635A1 (de) 1999-09-13 2001-03-15 Bayer Ag Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943639A1 (de) 1999-09-13 2001-03-15 Bayer Ag Dicarbonsäurederivate mit neuartigen pharmazeutischen Eigenschaften
AR031176A1 (es) 2000-11-22 2003-09-10 Bayer Ag Nuevos derivados de pirazolpiridina sustituidos con piridina
DE10110749A1 (de) 2001-03-07 2002-09-12 Bayer Ag Substituierte Aminodicarbonsäurederivate
DE10110750A1 (de) 2001-03-07 2002-09-12 Bayer Ag Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727219A2 (de) * 1995-02-16 1996-08-21 The BOC Group plc Medizinische Gasmischungen
WO1998008523A1 (de) * 1996-08-27 1998-03-05 Messer Griesheim Gmbh Wasserstoffhaltiges medikament
EP1064945A1 (de) * 1999-07-02 2001-01-03 Air Liquide Sante (International) Therapeutische Verwendung eines Helium/Oxygen Gemisches, insbesondere für die Behandlung von Asthma
EP1232752A1 (de) * 2000-09-06 2002-08-21 Sociedad Espanola De Carburos Metalicos S.A. Helium-sauerstoff gemisch mit einer therapeutischen verwendung
WO2003095451A1 (de) * 2002-05-08 2003-11-20 Bayer Healthcare Ag Carbamat-substituierte pyrazolopyridine

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHOUX C ET AL: "Helium-oxygen mixture: Pre-hospitalization care of acute asthma: Prospective study: SAMU 69 (October 1991-December 1992)", URGENCES MEDICALES, 1994, XP002074498, ISSN: 0923-2524 *
GENTILE MICHAEL A: "The role of inhaled nitric oxide and heliox in the management of acute respiratory failure", RESPIRATORY CARE CLINICS OF NORTH AMERICA, W.B. SAUNDERS, LONDON, US, vol. 12, no. 3, 1 September 2006 (2006-09-01), pages 489 - 500,ix, XP008116410, ISSN: 1078-5337 *
GLUCK E H ET AL: "HELIUM-OXYGEN MIXTURES IN INTUBATED PATIENTS WITH STATUS ASTHMATICUS AND RESPIRATORY ACIDOSIS", CHEST, THE COLLEGE, CHICAGO, IL, US, vol. 98, no. 3, 1 September 1990 (1990-09-01), pages 693 - 698, XP002074496, ISSN: 0012-3692 *
HAN MEILAN K ET AL: "Pulmonary diseases and the heart", CIRCULATION, vol. 116, no. 25, December 2007 (2007-12-01), pages 2992 - 3005, XP002561780, ISSN: 0009-7322 *
HESS D R ET AL: "The history and physics of heliox", RC. RESPIRATORY CARE, DAEDALUS ENTERPRISES, INC, UNITED STATES, vol. 51, no. 6, 1 June 2006 (2006-06-01), pages 608 - 612, XP008082772, ISSN: 0098-9142 *
JOLLIET P Y COL: "Beneficial Effects of Helium-Oxygen Mixtures in Acute Respiratory Failure", 19990101, 1 January 1999 (1999-01-01), pages 244 - 251, XP002902002 *
MYERS TIMOTHY R: "Therapeutic gases for neonatal and pediatric respiratory care", RESPIRATORY CARE, DAEDALUS ENTERPRISES, IRVING, TEXAS, vol. 48, no. 4, 1 April 2003 (2003-04-01), pages 399 - 422;discu, XP008116408, ISSN: 0020-1324 *
PHATAK RAJESH S ET AL: "Heliox with inhaled nitric oxide: a novel strategy for severe localized interstitial pulmonary emphysema in preterm neonatal ventilation.", RESPIRATORY CARE DEC 2008, vol. 53, no. 12, December 2008 (2008-12-01), pages 1731 - 1738, XP008116407, ISSN: 0020-1324 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3053587A1 (de) 2015-02-05 2016-08-10 Linde AG Kombination von Stickoxid, Helium und Antibiotika zur Behandlung von bakteriellen Lungeninfektionen
RU2826093C1 (ru) * 2023-09-18 2024-09-03 Закрытое акционерное общество "Специальное конструкторское бюро экспериментального оборудования при Институте медико-биологических проблем Российской Академии наук" (ЗАО "СКБ ЭО при ИМБП РАН") Способ лечения артериальной воздушной эмболии

Also Published As

Publication number Publication date
MX2011004515A (es) 2011-05-24
KR20110081322A (ko) 2011-07-13
EP2349290A1 (de) 2011-08-03
BRPI0919980A2 (pt) 2015-12-15
CN102271689A (zh) 2011-12-07
JP2012506881A (ja) 2012-03-22
RU2011121520A (ru) 2012-12-10
CA2741706A1 (en) 2010-05-06
DE102008054205A1 (de) 2010-05-06
IL212457A0 (en) 2011-06-30
AU2009310107A1 (en) 2010-05-06
WO2010049078A8 (de) 2011-06-03
US20120003325A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
DE69534755T2 (de) Vorrichtung für die Verabreichung von Phosphodiesterase-Hemmern
DE69133584T4 (de) Vorrichtung zum Behandeln einen Lungengefässverengung und von Asthma
DE69834955T2 (de) Neue Verwendung von Budesonide und Formoterol
DE69428351T3 (de) Systemische effekte der inhalation von stickstoffoxid
DE69526425T2 (de) Verwendung von mometasone-furoat zur behandlung von luftweg- und lungenerkrankungen
EP2110126B9 (de) Inhalative und instillative Verwendung von semifluorierten Alkanen als Wirkstoffträger im intrapulmonalen Bereich
DE60026855T2 (de) Synergistische kombination von roflumilast und salmeterol
DE60027985T2 (de) Behandlung von Lungenhochdruck
DE69018092T2 (de) Aerosolzubereitung von glutathion und verfahren zur erhöhung des glutathionspiegels in der lunge.
DE2851543A1 (de) Inhalationspraeparat
JP2017503801A (ja) 小児における急性呼吸促迫症候群の治療のための吸入一酸化窒素ガスを使用する方法
WO2002098912A2 (de) Luftseitig verabreichte guanylat cyclase c liganden für atemwegserkrankungen
RU2605849C2 (ru) Введение илопроста в виде аэрозольных болюсов
EP1526870B1 (de) Kombination von loteprednoletabonat und dfho zur behandlung von atemwegserkrankungen, allergischen erkrankungen, asthma und copd
DE69326849T2 (de) Verwendung von humanem Atrio-natriuretischem Peptid zur Herstellung eines Medikaments zur Behandlung des Atemunwohlseinsyndroms bei Erwachsenen
WO2010049078A1 (de) Verwendung von helium-sauerstoff-gasgemischen zur behandlung der pulmonalen arteriellen hypertonie
DE60000325T2 (de) Therapeutische Verwendung eines Helium/Oxygen Gemisches, insbesondere für die Behandlung von Asthma
WO2002083222A1 (de) Vorrichtung zur künstlichen beatmung
JP7475065B2 (ja) 薬剤、肺胞の洗浄用の薬液、及び、ネブライザー
EP2581082A1 (de) Pharmazeutische Zusammensetzung zur Behandlung von Status asthmaticus
WO2021254697A1 (de) Metamizolderivate zur prävention und therapie der pulmonalen hypertonie
DE60022070T2 (de) Verwendung von stickstoffoxid zur behandlung von atemwegs-verengungen
EP1216047A2 (de) Neue kombination von loteprednol und beta2-adrenozeptor-agonisten
EP2591777B1 (de) L-NIL als Inhibitor zur Regeneration der Lunge von an COPD leidenden Patienten
DE60027403T2 (de) Verbesserung der Sauerstoffversorgung in Lebewesen mit gestörter Sauerstoffversorgung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153410.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009748704

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3030/DELNP/2011

Country of ref document: IN

Ref document number: 212457

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2741706

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/004515

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011533579

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009310107

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117012299

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011121520

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2009310107

Country of ref document: AU

Date of ref document: 20091020

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13126639

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0919980

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110429