WO2010047269A1 - 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法 - Google Patents

樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法 Download PDF

Info

Publication number
WO2010047269A1
WO2010047269A1 PCT/JP2009/067847 JP2009067847W WO2010047269A1 WO 2010047269 A1 WO2010047269 A1 WO 2010047269A1 JP 2009067847 W JP2009067847 W JP 2009067847W WO 2010047269 A1 WO2010047269 A1 WO 2010047269A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
thermoplastic resin
resin molding
rubber
cavity
Prior art date
Application number
PCT/JP2009/067847
Other languages
English (en)
French (fr)
Inventor
栗原文夫
高見正光
Original Assignee
テクノポリマー株式会社
日本レックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社, 日本レックス株式会社 filed Critical テクノポリマー株式会社
Priority to EP09821966.0A priority Critical patent/EP2347877A4/en
Priority to CN2009801416971A priority patent/CN102202855A/zh
Priority to US13/125,351 priority patent/US20110304079A1/en
Publication of WO2010047269A1 publication Critical patent/WO2010047269A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • B29C33/405Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1616Cooling using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • B29C35/0894Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds provided with masks or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/006Degassing moulding material or draining off gas during moulding

Definitions

  • the present invention relates to a rubber mold for resin molding, a resin molding apparatus, and a resin molding method for obtaining a molded article of a thermoplastic resin.
  • thermoplastic resin there are various molding methods such as injection molding, blow molding, extrusion molding, and press molding as methods for obtaining a resin molded product having a predetermined shape using a thermoplastic resin.
  • a resin molded product made of a thermoplastic resin is molded by a vacuum casting method using a rubber molding die (rubber die) such as silicone rubber, a molding die is used.
  • a resin molding method capable of selectively heating a thermoplastic resin is disclosed.
  • Patent Document 2 discloses a resin molding apparatus in which a filter that reduces the transmission amount of electromagnetic waves having a wavelength exceeding 2 ⁇ m is made of water and the temperature of the filter can be prevented by circulating water. Has been.
  • a rubber mold such as silicone rubber is made of rubber, it undergoes severe thermal deterioration after being used to mold a thermoplastic resin. For example, it must be replaced when used for several tens of shots (molding). Become. Therefore, the amount of rubber material used for manufacturing the mold is increased. In order to improve the dimensional accuracy of the molded product, the mold is held for a predetermined time after filling the cavity of the mold with the thermoplastic resin. Therefore, further measures are required to prevent the mold from opening with a simple structure.
  • an object of the present invention is to provide a rubber mold for resin molding, a resin molding apparatus, and a resin molding method capable of obtaining a molded article of stable dimensional accuracy made of a thermoplastic resin.
  • the first invention is a rubber mold formed by forming a cavity for pressurizing and filling a molten thermoplastic resin
  • the rubber mold comprises a core mold made of a rubber material and forming the cavity, and a base mold mold made of a rubber material and having a shape in which the core mold is disposed,
  • the core mold is a combination of a plurality of split mold portions on a split surface for opening the cavity
  • the base mold has at least a lower surface portion and a pair of first side surface portions that are erected from opposite sides of the lower surface portion, and the plurality of divided mold portions include the pair of first side surface portions.
  • a rubber mold for resin molding characterized by being formed on both sides in the direction of combination.
  • the rubber mold for resin molding of the present invention comprises a core mold and a base mold mold having a shape in which the core mold is disposed.
  • the molten thermoplastic resin can be filled into a cavity formed in a core mold.
  • the base mold mold can be used a larger number of shots (molding) than the core mold. Therefore, it is possible to use the base mold mold for a long time compared to the core mold, and when replacing a deteriorated rubber mold, the amount of rubber material newly used for manufacturing a replacement rubber mold is reduced. Can be made.
  • the cavity can be easily formed by transferring the shape of the sample (master model) of the molded product. Therefore, it is easy to form a cavity in the core mold. Furthermore, by forming the pair of first side surface portions in the base mold on both sides in the direction in which the plurality of divided mold portions are combined, at the time of molding the thermoplastic resin, the pair of first side surface portions is divided into a plurality of portions. The mold part can be held so as not to open the mold. Thereby, the mold opening of the rubber mold can be prevented by a simple structure, and the dimensional accuracy of a molded product obtained by cooling the thermoplastic resin in the cavity can be improved.
  • the rubber mold for resin molding of the present invention it is possible to reduce the amount of the rubber material used for manufacturing the replacement rubber mold and prevent the rubber mold from being opened by a simple structure. In addition, it is possible to obtain a molded article having a stable dimensional accuracy made of a thermoplastic resin.
  • a second invention is a resin molding apparatus comprising the rubber mold for resin molding and light generating means for generating light including a wavelength region of 0.78 to 2 ⁇ m,
  • the resin molding apparatus is configured to heat the thermoplastic resin filled in the cavity by irradiating the light from the surface of the base mold with the light generating means.
  • the resin molding apparatus of the present invention irradiates light including a wavelength region of 0.78 to 2 ⁇ m from the surface of the base mold when filling the cavity in the cavity of the rubber core.
  • the thermoplastic resin can be selectively heated compared to the core mold and the base mold mold due to the difference in physical properties between the rubber material and the thermoplastic resin constituting the core mold and the base mold mold ( The heating amount of the thermoplastic resin can be increased as compared with the rubber mold).
  • the heating amount of the thermoplastic resin can be increased as compared with the rubber mold).
  • mold can be suppressed, and a thermoplastic resin can be heated effectively. Therefore, when molding a molded article of a thermoplastic resin, it is possible to more effectively prevent thermal deterioration of the core mold and the base mold mold.
  • the core mold and the base mold mold constituting the rubber mold are both made of a rubber material. Therefore, most of the light having a wavelength absorbed by the core mold can be absorbed by the base mold mold, and the core mold can be hardly heated. In particular, when the core mold and the base mold mold are made of the same rubber material, it is considered that almost all light having a wavelength absorbed by the core mold can be absorbed by the base mold mold.
  • the mold opening of the rubber mold is prevented with a simple structure, and the thermal degradation of the rubber mold is effectively prevented, so that the stable dimensional accuracy made of the thermoplastic resin is achieved.
  • a molded product can be obtained.
  • a rubber mold for resin molding having water supply means for injecting the cooling water into the interior, When the thermoplastic resin is filled into the cavity, the mold space is evacuated by the vacuum means, the plurality of divided mold parts are clamped, and the light generating means Irradiating the light from the surface of the base mold, heating the thermoplastic resin filling the cavity, After filling the thermoplastic resin, the resin molding apparatus is configured to cool the core mold by injecting the cooling water into the mold space by the water supply means. is there.
  • the resin molding apparatus of the present invention is formed between the outer surface of the core mold and the inner surface of the base mold mold by vacuum means when filling the cavity in the cavity mold of the rubber mold.
  • the mold space is evacuated and the plurality of divided mold parts are clamped. Thereby, even when the pressure at the time of filling the thermoplastic resin is applied to the plurality of divided mold parts, it is possible to prevent the plurality of divided mold parts from opening the mold.
  • the thermoplastic resin can be selectively heated as compared with the core mold and the base mold mold. Thereby, the temperature rise of a core type
  • the cooling water is injected into the mold space by the water supply means.
  • the core mold can be cooled, and in particular, the thermoplastic resin heated and melted through the core mold can be cooled. Therefore, the time until the molded product of the thermoplastic resin after cooling is taken out can be shortened, and the molding cycle of the molded product can be shortened.
  • the resin molding apparatus of the present invention it is possible to more effectively prevent the plurality of split mold parts constituting the core mold from being opened, and shorten the molding cycle of the thermoplastic resin molded product. be able to.
  • the rubber mold is prevented from opening by a simple structure, and the thermal deterioration of the rubber mold is effectively prevented, so that the rubber mold is stably formed. A molded product with dimensional accuracy can be obtained. Also in the present invention, the other functions and effects similar to those of the second invention can be obtained.
  • a fourth invention uses a resin molding apparatus having the rubber mold for resin molding and a light generating means for generating light including a wavelength region of 0.78 to 2 ⁇ m,
  • the structure similar to that of the second aspect of the present invention prevents the rubber mold from being opened with a simple structure, and effectively prevents the rubber mold from being thermally deteriorated.
  • a molded article having a stable dimensional accuracy made of resin can be obtained.
  • a rubber mold for resin molding Using a resin molding device having water supply means for injecting the cooling water into the inside, When the thermoplastic resin is filled into the cavity, the mold space is evacuated by the vacuum means, the plurality of divided mold parts are clamped, and the light generating means A heating step of irradiating the light from the surface of the base mold and heating the thermoplastic resin filling the cavity; Next, after filling the thermoplastic resin, a cooling step is performed in which the cooling water is injected into the mold space by the water supply means to cool the core mold. Is in the way.
  • the resin molding method of the present invention it is possible to more effectively prevent mold opening of the plurality of divided mold parts constituting the core mold by the same configuration as that of the third invention.
  • the molding cycle of the molded product can be shortened.
  • the rubber mold is prevented from opening by a simple structure, and the thermal deterioration of the rubber mold is effectively prevented, thereby stably forming the thermoplastic resin.
  • a molded product with dimensional accuracy can be obtained.
  • Cross-sectional explanatory drawing which shows the rubber mold
  • Cross-sectional explanatory drawing which shows the formation state of the mold space in the rubber mold for resin molding in an Example in the state seen from the direction of the 1st side part.
  • Cross-sectional explanatory drawing which shows the rubber die for resin molding in the Example seen from the top.
  • mold in the Example seeing from the direction of the 2nd side part.
  • Cross-sectional explanatory drawing which shows the resin molding apparatus provided with the rubber die for resin molding in the Example in the state seen from the direction of the 2nd side part.
  • Cross-sectional explanatory drawing which shows the rubber mold
  • the graph which shows the light transmittance
  • the light (electromagnetic wave) irradiated to the thermoplastic resin through the rubber mold includes not only light in a wavelength region of 0.78 to 2 ⁇ m but also light in other regions. It may be. In this case, it is preferable that the light irradiated to the thermoplastic resin through the rubber mold contains more light in the wavelength region of 0.78 to 2 ⁇ m than light in other regions.
  • the plurality of split mold parts can be a pair of split mold parts, and can also be three or more split mold parts.
  • the split mold part does not need to be split into symmetrical shapes, and can be split by various split surfaces (split surfaces such as wavy, uneven, and saw-shaped).
  • the pair of first side surface portions in the base mold does not necessarily cover the entire outer surface in the direction in which the plurality of split mold portions in the core mold are combined. The part may be covered.
  • the light generating means can be used not only as one set but also as a set of a plurality of sets. That is, depending on the shape of the molded product (or cavity), it may be preferable to irradiate light from both sides or from the top, bottom, left, and right.
  • the thermoplastic resin is preferably an amorphous thermoplastic resin.
  • the cooling rate of the thermoplastic resin is slower than that of the mold because the mold is made of rubber. Therefore, the crystallinity of the thermoplastic resin may increase during cooling, which may reduce the dimensional accuracy of the resin molded product or the impact resistance of the resin molded product.
  • the thermoplastic resin an amorphous thermoplastic resin, it is possible to prevent a decrease in dimensional accuracy and a decrease in impact resistance of the resin molded product.
  • amorphous thermoplastic resins examples include styrene resins such as styrene / acrylonitrile copolymers, styrene / maleic anhydride copolymers, styrene / methyl methacrylate copolymers, and ABS resins (acrylonitrile / butadiene / styrene resins).
  • thermoplastic resin acrylonitrile, ethylene-propylene-diene, styrene resin
  • ASA resin acrylate, styrene, acrylonitrile resin
  • other rubber-modified thermoplastic resins or polymethyl methacrylate, polycarbonate resin (PC), PC / rubber A modified thermoplastic resin alloy or the like can be used.
  • PC polycarbonate resin
  • PC / rubber A modified thermoplastic resin alloy or the like can be used.
  • the rubber-modified thermoplastic resin is not particularly limited, but is preferably one containing one or more polymers obtained by graft polymerization of vinyl monomers in the presence of a rubbery polymer.
  • the rubbery polymer is not particularly limited, but polybutadiene, butadiene / styrene copolymer, butadiene / acrylonitrile copolymer, ethylene / propylene copolymer, ethylene / propylene / non-conjugated diene copolymer, ethylene / butene. -1 copolymer, ethylene / butene-1 / non-conjugated diene copolymer, acrylic rubber, silicone rubber, and the like. These can be used alone or in combination of two or more.
  • the rubber polymer polybutadiene, butadiene / styrene copolymer, ethylene / propylene copolymer, ethylene / propylene / nonconjugated diene copolymer, acrylic rubber is preferably used, and the rubber-modified thermoplastic is used.
  • the resin for example, ABS resin, AES resin, ASA resin or the like can be used. Among these, it is more preferable to use an ABS resin.
  • the rubber mold is preferably made of silicone rubber. In this case, it is easy to produce the rubber mold, and the thermoplastic resin can be selectively heated by the light containing the wavelength region of 0.78 to 2 ⁇ m with little heating of the rubber mold.
  • the hardness of the silicone rubber is preferably 25 to 80 in JIS-A standard measurement.
  • the reason why the thermoplastic resin can be selectively heated by the light including the wavelength region of 0.78 to 2 ⁇ m as compared with the rubber mold is considered as follows. . That is, the light having a wavelength region of 0.78 to 2 ⁇ m irradiated on the surface of the rubber mold is transmitted through the rubber mold and absorbed by the thermoplastic resin more than the ratio absorbed by the rubber mold. I think. For this reason, it is considered that light energy including light having a wavelength region of 0.78 to 2 ⁇ m is preferentially absorbed by the thermoplastic resin, and the thermoplastic resin can be selectively heated.
  • the base mold mold is formed by the remaining pair of second side surfaces standing from the opposite sides of the lower surface portion, together with the pair of first side surfaces, and the lower surface portion. It is preferable to form in a square frame shape surrounding. In this case, the base mold can be formed in a box shape, and the mold opening of the plurality of divided mold portions in the core mold can be more effectively prevented.
  • the plurality of split mold parts A mold space is formed for performing at least one of evacuation for preventing mold opening and injection of cooling water for cooling the plurality of divided mold parts. It is preferable to form the contact portion that maintains a contact state between the outer side surface and the inner side surfaces of the pair of first side surface portions. In this case, when the thermoplastic resin is filled into the cavity of the rubber mold core mold, the mold space is evacuated.
  • the contact portion can maintain the contact state between the outer surface of the core mold and the inner surfaces of the pair of first side surface portions.
  • thermoplastic resin after filling the cavity with the thermoplastic resin, cooling water is injected into the mold space.
  • the core mold can be cooled, and in particular, the thermoplastic resin heated and melted through the core mold can be cooled. Therefore, the time until the molded product of the thermoplastic resin after cooling is taken out can be shortened, and the molding cycle of the molded product can be shortened.
  • the cooling water can be circulated. It is also possible to open the upper part of the mold space and allow the cooling water injected from the lower part of the mold space to overflow from above.
  • a rubber spacer can be disposed inside the base mold die adjacent to the core die. In this case, even when the size of the core mold is different, it is possible to prevent a gap from being formed in the base mold by changing the thickness of the spacer.
  • thermoplastic resin is injected into the cavity from the injection port, and the molded product molded into the injection port can be taken out integrally with the molded product of the thermoplastic resin molded into the cavity.
  • the resin molding apparatus injects the thermoplastic resin into the cavity, and clamping means for clamping the outer surfaces of the pair of first side surface portions in the base mold. It is preferable to have an injection nozzle for the purpose. In this case, the sandwiching means can more effectively prevent the plurality of split mold parts from opening through the base mold. Further, the thermoplastic resin can be injected into the cavity at a predetermined pressure by the injection nozzle.
  • a particulate thermoplastic resin is introduced into the cavity, and then the light is emitted from the surface of the base mold die by the light generating means. It is preferable to heat and melt the particulate thermoplastic resin in the cavity, and then fill the space left in the cavity with the molten thermoplastic resin.
  • a particulate thermoplastic resin and a molten thermoplastic resin are used in molding a molded article of a thermoplastic resin. The particulate thermoplastic resin is put into the cavity and heated and melted, and the remaining space in the cavity is filled with the molten thermoplastic resin.
  • thermoplastic resin in a particle state can be disposed and heated and melted at the tip portion, details, and the like of the cavity that are difficult to be filled with the thermoplastic resin. Then, the filling pressure of the molten thermoplastic resin can be lowered to fill the entire cavity with the thermoplastic resin. Therefore, mold opening of the plurality of split mold parts can be more effectively prevented, and a molded article of a thermoplastic resin having excellent dimensional accuracy can be formed.
  • the rubber mold 2 for resin molding in this example is formed with a cavity 213 for pressurizing and filling a molten thermoplastic resin 5.
  • the rubber mold 2 includes a core mold 21 made of a rubber material and formed with a cavity 213, and a base mold mold 22 made of a rubber material and having a shape in which the core mold 21 is disposed in the interior 220.
  • the core mold 21 is formed by combining a plurality of split mold portions 211 (a pair of split mold portions 211 in this example) on a split surface 212 for opening the cavity 213.
  • the base mold 22 has at least a lower surface portion 221 and a pair of first side surface portions 222 erected from opposite sides of the lower surface portion 221, and the pair of first side surface portions 222 is replaced with a pair of split mold portions. 211 is formed on both sides in the direction of combination.
  • the resin molding apparatus 1 of this example includes a rubber mold 2 for resin molding and a light generating means 3 for generating light including a wavelength region of 0.78 to 2 ⁇ m. is there.
  • the resin molding apparatus 1 then heats the thermoplastic resin 5 filled in the cavity 213 by irradiating light having a wavelength region of 0.78 to 2 ⁇ m from the surface of the base mold 22 by the light generating means 3. It is configured.
  • the resin molding method is to mold a molded product of the thermoplastic resin 5 with the same configuration as the resin molding apparatus 1.
  • the rubber mold 2 for resin molding in this example is made of silicone rubber as a rubber material.
  • the rubber mold 2 is manufactured by placing a master model (manufactured product, etc.) of a molded product to be molded in a liquid silicone rubber, curing the silicone rubber, and taking out the master model from the cured silicone rubber. be able to.
  • the rubber mold 2 is made of rubber, it is possible to easily and arbitrarily form a dividing surface (parting surface) 212 for performing mold opening when taking out a molded product after molding.
  • the thermoplastic resin 5 an ABS resin that is an amorphous thermoplastic resin and a rubber-modified thermoplastic resin is used as the thermoplastic resin 5.
  • the base mold die 22 of this example has a lower surface together with a pair of first side surface portions 222 by a pair of remaining second side surface portions 223 erected from opposite remaining sides of the lower surface portion 221.
  • a square frame shape surrounding the portion 221 is formed.
  • the base mold die 22 of this example is formed in such a size that the lower surface portion 221, the first side surface portion 222 and the second side surface portion 223 are in close contact with the lower surface of the core mold 21 and the four outer surfaces.
  • a spacer made of silicone rubber as a rubber material is disposed in the interior 220 of the base mold 22 adjacent to the core mold 21 so that the base mold 22 and the core mold 21 are brought into close contact with each other. it can.
  • the mold space 23 is formed leaving a contact portion 231 that maintains a contact state between the outer side surface of the core mold 21 and the inner side surfaces of the pair of first side surface portions 222.
  • the mold space 23 of this example is configured by lattice grooves formed in the vertical direction and the horizontal direction perpendicular thereto.
  • the contact portion 231 is formed as a remaining portion that is left between the grooves constituting the lattice-shaped grooves.
  • the mold space 23 of this example is formed on the inner side surface of the pair of first side surface portions 222 of the base mold die 22. Further, the mold space 23 of this example is formed as a closed space that closes the upper gap between the core mold 21 and the base mold mold 22 when the core mold 21 is disposed inside the base mold mold 22. .
  • the mold space 23 can be configured by a groove or the like in which a part of the inner surface of the first side surface portion 222 is in contact with the outer surface of the core mold 21 in addition to the lattice-shaped grooves. Further, the mold spaces (lattice grooves) 23 formed in the pair of first side surface portions 222 are communicated with each other by a lower groove 232 formed in the lower surface portion 221 of the base mold 22. In addition, the base mold 22 is formed with a communication hole 24 that communicates the outside with the mold space 23.
  • the base mold die 22 of this example is formed in a square frame shape by the pair of first side surface portions 222 and the pair of second side surface portions 223. Therefore, in order to facilitate the removal of the core mold 21 from the base mold mold 22, for example, a removal hole can be formed in the bottom surface portion of the base mold mold 22 (not shown).
  • an injection port 214 for injecting the thermoplastic resin 5 into the cavity 213 is formed at an upper position of the split surface 212 in the pair of split mold portions 211.
  • the inlet 214 is formed across both the pair of split mold portions 211. Then, the thermoplastic resin 5 is injected into the cavity 213 from the injection port 214, and the molded product molded into the injection port 214 can be taken out integrally with the molded product of the thermoplastic resin 5 molded into the cavity 213. .
  • the resin molding apparatus 1 of this example includes a rubber mold 2 for resin molding, the light generating means 3, a vacuum means 41 for evacuating the mold space 23, and a mold space 23.
  • the light generating means 3 of this example is configured using a halogen lamp 31 that emits light including a wavelength region of 0.78 to 2 ⁇ m (corresponding to a near infrared wavelength region).
  • the halogen lamp 31 has a light intensity peak in the wavelength range of 0.78 to 2 ⁇ m (in this example, about 0.9 ⁇ m).
  • the light distribution direction of light is indicated by an arrow X.
  • the light generating means 3 of this example includes a halogen lamp (light source) 31 that emits light including a wavelength region of 0.78 to 2 ⁇ m, a reflector 32 that distributes and reflects the light emitted from the halogen lamp 31, and the reflector 32. And a relay reflecting mirror 33 for further reflecting the light reflected from the light and guiding it to the rubber mold 2.
  • the relay reflecting mirror 33 is configured to be rotatable, and its reflecting surface faces a direction C2 that is inclined with respect to a rotation center axis C1 for rotating the relay reflecting mirror 33.
  • the light generating means 3 distributes and reflects the light distributed from the reflector 32 to the relay reflecting mirror 33, and rotates the relay reflecting mirror 33 around the rotation center axis C1 to thereby repeat the relay reflecting mirror.
  • the light reflected by 33 is irradiated on the rubber mold 2 so as to draw a circle.
  • the vacuum means 41 of this example is constituted by a vacuum pump, and the vacuum pump is connected to the communication hole 24 in the base mold 22.
  • the water supply means 42 of this example is constituted by a water supply pump, and is connected to the communication hole 24 in the base mold die 22 by switching to the vacuum pump.
  • the cooling water W injected into the mold space 23 by the water supply means 42 can flow out from the communication hole 24, and can also flow out from another communication hole formed separately from the communication hole 24.
  • the clamping means 43 of this example is configured to clamp the upper part of the outer side surface of the pair of first side surface portions 222.
  • the injection nozzle 44 of this example is arranged at the injection port 214 in the core mold 21 so as to inject the molten thermoplastic resin 5 into the cavity 213 at a predetermined pressure (for example, a pressure of 0.2 to 10 MPa). It is configured.
  • a predetermined pressure for example, a pressure of 0.2 to 10 MPa.
  • an injection nozzle for introducing the particulate thermoplastic resin 5 into the cavity 213 can also be arranged at the injection port 214 of the core mold 21 (not shown).
  • the resin molding apparatus 1 of this example When filling the cavity 213 with the thermoplastic resin 5, the resin molding apparatus 1 of this example performs vacuum drawing in the mold space 23 by the vacuum means 41 as shown in FIG. As shown in FIG. 5, the portion 211 is clamped, and the light generating means 3 irradiates light including a wavelength region of 0.78 to 2 ⁇ m from the surface of the base mold 22 to fill the cavity 213. After the plastic resin 5 is heated and filled with the thermoplastic resin 5, as shown in FIG. 6, the cooling water W is injected into the mold space 23 by the water supply means 42 to cool the core mold 21. It is configured to do.
  • a filter that reduces the amount of light having a wavelength exceeding 2 ⁇ m can be disposed between the light generating means 3 and the rubber mold 2.
  • This filter can be made of quartz glass or the like. In this case, the filter can make it difficult for the rubber mold 2 to be irradiated with light having a wavelength easily absorbed by the rubber mold 2, and the temperature rise of the rubber mold 2 can be more effectively prevented. .
  • the split mold portion 211 can be divided into three or more depending on the shape of the molded product of the thermoplastic resin 5 to be molded.
  • one of the pair of split mold portions 211 can be further split.
  • the pair of first side surface portions 222 and the pair of second side surface portions 223 are formed, not only the dividing surface 212 is formed and divided in the direction in which the first side surface portions 222 face each other, but also the second The dividing surface 212 can also be formed and divided in the direction in which the side surface portions 223 face each other.
  • the core mold 21 is disposed inside the base mold mold 22 as shown in FIG. 4, and the vacuum means 41 is connected to the communication hole 24 of the base mold mold 22 as shown in FIG. 1.
  • the mold space 23 is evacuated.
  • the pressure around the base mold die 22 can be made to act on the base mold die 22 by setting the pressure around the base mold die 22 to an atmospheric pressure state. it can. Thereby, a pair of mold part 211 can be clamped.
  • the pair of split mold portions 211 can be prevented from opening the mold. Further, when the core mold 21 is disposed inside the base mold 22, the pair of first side surfaces 222 in the base mold 22 is clamped by the clamping means 43. Therefore, it is possible to effectively prevent the pair of split mold portions 211 from opening the mold.
  • a charging nozzle is disposed at the injection port 214 of the core mold 21, and the particulate thermoplastic resin 5 is charged into the cavity 213 from the charging nozzle.
  • the light generating means 3 irradiates light including a wavelength region of 0.78 to 2 ⁇ m from the surface of the base mold 22 to heat the thermoplastic resin 5 in a particle state in the cavity 213. Melt.
  • the remaining space in the cavity 213 is filled with the molten thermoplastic resin 5.
  • the filling amount of the molten thermoplastic resin 5 to be newly filled can be reduced, and the filling pressure of the molten thermoplastic resin 5 can be lowered. Therefore, the mold opening of the pair of split mold portions 211 can be more effectively prevented, and a molded product of the thermoplastic resin 5 with excellent dimensional accuracy can be molded.
  • the thermoplastic resin 5 can be selectively heated compared to the core mold 21 and the base mold mold 22 (the amount of heating of the thermoplastic resin 5 can be increased compared to the rubber mold 2). Thereby, the temperature rise of the core mold 21 and the base mold mold 22 can be suppressed, and the thermoplastic resin 5 can be effectively heated. Therefore, when the molded product of the thermoplastic resin 5 is molded, the core mold 21 and the base mold mold 22 can be effectively prevented from being thermally deteriorated.
  • FIG. 7 shows the transmission of light in each silicone rubber, with wavelength (nm) on the horizontal axis and light transmittance (%) on the vertical axis for transparent silicone rubber and translucent silicone rubber. It is a graph which shows a rate. In the figure, it can be seen that each silicone rubber transmits light having a wavelength between 200 and 2200 (nm). For this reason, when near infrared light having a wavelength region is irradiated on the surface of the rubber mold 2 made of silicone rubber, most of the near infrared light can be transmitted through the rubber mold 2 and absorbed by the thermoplastic resin 5.
  • thermoplastic resin 5 heating by the light generating means 3 is stopped, and the cooling means is replaced with the vacuum means 41 with respect to the communication hole 24 of the base mold 22.
  • the water supply means 42 is connected, and the cooling water W is injected into the mold space 23 by the water supply means 42 to cool the core mold 21.
  • the thermoplastic resin 5 heated and melted through the core mold 21 can be cooled. Therefore, the time until the molded product of the thermoplastic resin 5 after cooling can be shortened, and the molding cycle of the molded product can be shortened.
  • the molded product in the cavity 213 can be taken out by taking out the core mold 21 from the base mold mold 22 and opening a pair of split mold portions 211 constituting the core mold 21.
  • the rubber mold 2 for resin molding of this example includes the core mold 21 and the base mold mold 22 having a shape in which the core mold 21 is disposed in the interior 220.
  • the molten thermoplastic resin 5 can be filled into the cavity 213 formed in the core mold 21.
  • the core mold 21 can be subject to heat degradation due to the filling of the thermoplastic resin 5, and the base mold 22 can be used more times than the core mold 21. . Therefore, it becomes possible to use the base mold 22 for a long period of time as compared with the core mold 21, and when replacing the deteriorated rubber mold 2, the rubber material newly used for manufacturing the replacement rubber mold 2 The amount used can be reduced.
  • a core mold 21 having a cavity 213 that matches the shape of each molded product is prepared, and the base mold 22 is used in common, while the core mold 21 is used. Only can be exchanged according to each variety. This also makes it possible to reduce the amount of rubber material used newly for manufacturing the rubber mold 2 when the deteriorated rubber mold 2 is replaced.
  • the cavity 213 can be easily formed by transferring the shape of the sample (master model) of the molded product. Therefore, it is easy to form the cavity 213 in the core mold 21.
  • the pair of first side portions 222 in the base mold 22 on both sides in the direction in which the pair of split mold portions 211 are combined, the pair of first side portions is formed when the thermoplastic resin 5 is molded.
  • the pair of split mold portions 211 can be held by 222 so as not to open the mold. Thereby, the mold opening of the rubber mold 2 can be prevented by a simple structure, and the dimensional accuracy of the molded product obtained by cooling the thermoplastic resin 5 in the cavity 213 can be improved.
  • the core mold 21 and the base mold mold 22 are both made of silicone rubber, which is the same rubber material. Therefore, it is considered that the base mold 22 serves as a filter, and the base mold 22 can absorb almost all of the light having the wavelength absorbed by the core 21. Thereby, the core mold 21 can be made more difficult to be heated.
  • the amount of rubber material used for manufacturing the replacement rubber mold 2 can be reduced. It is possible to prevent the rubber mold 2 from being opened by a simple structure, and to effectively prevent the rubber mold 2 from being thermally deteriorated, so that a molded product having a stable dimensional accuracy made of the thermoplastic resin 5 can be obtained. . Moreover, the molding cycle of the molded article of the thermoplastic resin 5 can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 樹脂成形用のゴム型2は、溶融状態の熱可塑性樹脂を加圧して充填するためのキャビティ213を形成してなる。ゴム型2は、ゴム材料からなると共にキャビティ213を形成してなる中子型21と、ゴム材料からなると共に中子型21を内部に配置する形状を有するベースモールド型22とからなる。中子型21は、キャビティ213を開放するための分割面212において一対の分割型部211を組み合わせてなる。ベースモールド型22は、下面部221と、一対の分割型部211が組み合わさる方向の両側に形成した一対の第1側面部222とを有している。

Description

樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法
 本発明は、熱可塑性樹脂の成形品を得るための樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法に関する。
 熱可塑性樹脂を用いて所定形状の樹脂成形品を得る方法としては、一般的には、射出成形、ブロー成形、押出成形、プレス成形等の種々の成形方法がある。
 これに対し、例えば、特許文献1においては、シリコーンゴム等のゴム製の成形型(ゴム型)を用いて、熱可塑性樹脂からなる樹脂成形品を真空注型法により成形する際に、成形型に対して熱可塑性樹脂を選択的に加熱することができる樹脂成形方法が開示されている。この樹脂成形方法においては、成形型のキャビティ内に溶融状態の熱可塑性樹脂を充填する際に、0.78~2μmの波長領域を含む電磁波を、成形型を介して熱可塑性樹脂に照射し、成形型を構成するゴムと熱可塑性樹脂との物性の違いにより、ゴム製の成形型に比べて、熱可塑性樹脂を積極的に加熱することができる。
 また、例えば、特許文献2においては、波長が2μmを超える電磁波の透過量を減少させるフィルターを水から構成し、水の循環をさせることによりフィルターの温度上昇を防ぐことができる樹脂成形装置が開示されている。
特開2007-216447号公報 特開2008-44271号公報
 しかしながら、シリコーンゴム等のゴム製の成形型は、ゴム製であるが故に熱可塑性樹脂の成形に用いた後の熱劣化が激しく、例えば数十回のショット(成形)に用いると交換が必要になる。そのため、成形型の製造に用いるゴム材料の使用量が多くなってしまう。
 また、成形品の寸法精度を向上させるためには、成形型のキャビティ内に熱可塑性樹脂を充填した後、所定時間、成形型の保圧を行っている。そのため、成形型の型開きを簡単な構造によって防止するためには更なる工夫が必要とされる。
 本発明は、かかる従来の問題点に鑑みてなされたもので、交換用のゴム型の製造に用いるゴム材料の使用量を低減させることができ、ゴム型の型開きを簡単な構造によって防止して、熱可塑性樹脂からなる安定した寸法精度の成形品を得ることができる樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法を提供しようとするものである。
 第1の発明は、溶融状態の熱可塑性樹脂を加圧して充填するためのキャビティを形成してなるゴム型であって、
 該ゴム型は、ゴム材料からなると共に上記キャビティを形成してなる中子型と、ゴム材料からなると共に上記中子型を内部に配置する形状を有するベースモールド型とからなり、
 上記中子型は、上記キャビティを開放するための分割面において複数の分割型部を組み合わせてなり、
 上記ベースモールド型は、下面部と該下面部の互いに対向する両側辺から立設した一対の第1側面部とを少なくとも有すると共に、該一対の第1側面部を、上記複数の分割型部が組み合わさる方向の両側に形成してなることを特徴とする樹脂成形用のゴム型にある。
 本発明の樹脂成形用のゴム型は、中子型と中子型を内部に配置する形状を有するベースモールド型とからなる。
 そして、溶融状態の熱可塑性樹脂は、中子型に形成したキャビティ内に充填することができる。これにより、熱可塑性樹脂の充填による熱の劣化の対象を中子型のみとすることができ、ベースモールド型は中子型よりも多くのショット(成形)回数使用することができる。そのため、中子型に比べてベースモールド型を長期間使用することが可能になり、劣化したゴム型を交換する際に、新たに交換用のゴム型の製造に用いるゴム材料の使用量を低減させることができる。
 また、多品種の成形品の成形を行う際には、各成形品の形状に合わせたキャビティを有する中子型を準備し、ベースモールド型は共通して用いる一方、中子型のみ各品種に応じて交換することができる。これによっても、劣化したゴム型を交換する際に、新たにゴム型の製造に用いるゴム材料の使用量を低減させることができる。
 また、本発明のゴム型の中子型においては、成形品のサンプル(マスターモデル)の形状を転写することによって容易にキャビティを形成することができる。そのため、中子型にキャビティを形成することが容易である。
 さらに、ベースモールド型における一対の第1側面部を、複数の分割型部が組み合わさる方向の両側に形成していることにより、熱可塑性樹脂の成形時には、一対の第1側面部によって複数の分割型部が型開きしないように保持することができる。これにより、ゴム型の型開きを簡単な構造によって防止して、キャビティ内の熱可塑性樹脂を冷却して得た成形品の寸法精度を向上させることができる。
 それ故、本発明の樹脂成形用のゴム型によれば、交換用のゴム型の製造に用いるゴム材料の使用量を低減させることができ、ゴム型の型開きを簡単な構造によって防止して、熱可塑性樹脂からなる安定した寸法精度の成形品を得ることができる。
 第2の発明は、上記樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段とを有する樹脂成形装置であって、
 上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱するよう構成してあることを特徴とする樹脂成形装置にある。
 本発明の樹脂成形装置は、ゴム型の中子型におけるキャビティ内に熱可塑性樹脂を充填する際には、0.78~2μmの波長領域を含む光をベースモールド型の表面から照射する。このとき、中子型及びベースモールド型を構成するゴム材料と熱可塑性樹脂との物性の違いにより、中子型及びベースモールド型に比べて、熱可塑性樹脂を選択的に加熱することができる(ゴム型に比べて熱可塑性樹脂の加熱量を多くすることができる)。これにより、中子型及びベースモールド型の温度上昇を抑制して、熱可塑性樹脂を効果的に加熱することができる。そのため、熱可塑性樹脂の成形品を成形する際に、中子型及びベースモールド型の熱劣化をより効果的に防止することができる。
 また、ゴム型を構成する中子型及びベースモールド型はいずれもゴム材料から構成されている。そのため、中子型に吸収される波長の光の多くをベースモールド型に吸収させることができ、中子型が加熱され難くすることができる。特に、中子型とベースモールド型とを同じゴム材料から構成した場合には、中子型に吸収される波長の光のほぼすべてをベースモールド型に吸収させることができると考える。
 それ故、本発明の樹脂成形装置によれば、ゴム型の型開きを簡単な構造によって防止すると共に、ゴム型の熱劣化を効果的に防止して、熱可塑性樹脂からなる安定した寸法精度の成形品を得ることができる。
 第3の発明は、上記樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段と、上記型空間内の真空引きを行う真空手段と、上記型空間内に上記冷却水を注入するための給水手段とを有する樹脂成形装置であって、
 上記キャビティ内に上記熱可塑性樹脂の充填を行う際には、上記真空手段によって上記型空間内の真空引きを行って、上記複数の分割型部の型締めを行うと共に、上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱し、
 上記熱可塑性樹脂の充填を行った後には、上記給水手段によって上記型空間内に上記冷却水を注入して、上記中子型を冷却するよう構成してあることを特徴とする樹脂成形装置にある。
 本発明の樹脂成形装置は、ゴム型の中子型におけるキャビティ内に熱可塑性樹脂を充填する際には、真空手段によって中子型における外側面とベースモールド型における内側面との間に形成した型空間内の真空引きを行って、複数の分割型部の型締めを行う。これにより、熱可塑性樹脂を充填する際の圧力が複数の分割型部に加わるときでも、この複数の分割型部が型開きをしてしまうことを防止することができる。
 また、0.78~2μmの波長領域を含む光をベースモールド型の表面から照射することにより、中子型及びベースモールド型に比べて、熱可塑性樹脂を選択的に加熱することができる。これにより、中子型及びベースモールド型の温度上昇を抑制して、熱可塑性樹脂を効果的に加熱することができる。
 そして、キャビティ内への熱可塑性樹脂の充填を行った後には、給水手段によって型空間内に冷却水を注入する。これにより、中子型を冷却することができ、特に、中子型を介して加熱溶融した熱可塑性樹脂を冷却することができる。そのため、冷却後の熱可塑性樹脂の成形品を取り出すまでの時間を短縮することができ、成形品の成形サイクルを短縮することができる。
 それ故、本発明の樹脂成形装置によれば、中子型を構成する複数の分割型部の型開きをより効果的に防止することができ、熱可塑性樹脂の成形品の成形サイクルを短縮することができる。また、本発明においても、上記第2の発明と同様に、ゴム型の型開きを簡単な構造によって防止すると共に、ゴム型の熱劣化を効果的に防止して、熱可塑性樹脂からなる安定した寸法精度の成形品を得ることができる。また、本発明においても、その他は上記第2の発明と同様の作用効果を得ることができる。
 第4の発明は、上記樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段とを有する樹脂成形装置を用い、
 上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱する加熱工程を行うことを特徴とする樹脂成形方法にある。
 本発明の樹脂成形方法によれば、上記第2の発明と同様の構成によって、ゴム型の型開きを簡単な構造によって防止すると共に、ゴム型の熱劣化を効果的に防止して、熱可塑性樹脂からなる安定した寸法精度の成形品を得ることができる。
 第5の発明は、上記樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段と、上記型空間内の真空引きを行う真空手段と、上記型空間内に上記冷却水を注入するための給水手段とを有する樹脂成形装置を用い、
 上記キャビティ内に上記熱可塑性樹脂の充填を行う際には、上記真空手段によって上記型空間内の真空引きを行って、上記複数の分割型部の型締めを行うと共に、上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱する加熱工程と、
 次いで、上記熱可塑性樹脂の充填を行った後には、上記給水手段によって上記型空間内に上記冷却水を注入して、上記中子型を冷却する冷却工程とを行うことを特徴とする樹脂成形方法にある。
 本発明の樹脂成形方法によれば、上記第3の発明と同様の構成により、中子型を構成する複数の分割型部の型開きをより効果的に防止することができ、熱可塑性樹脂の成形品の成形サイクルを短縮することができる。また、本発明においても、上記第3の発明と同様に、ゴム型の型開きを簡単な構造によって防止すると共に、ゴム型の熱劣化を効果的に防止して、熱可塑性樹脂からなる安定した寸法精度の成形品を得ることができる。
実施例における、真空手段を接続した状態の樹脂成形用のゴム型を、第2側面部の方向から見た状態で示す断面説明図。 実施例における、樹脂成形用のゴム型における型空間の形成状態を、第1側面部の方向から見た状態で示す断面説明図。 実施例における、樹脂成形用のゴム型を、上方から見た状態で示す断面説明図。 実施例における、ベースモールド型から中子型を取り外した状態の樹脂成形用のゴム型を、第2側面部の方向から見た状態で示す説明図。 実施例における、樹脂成形用のゴム型を備えた樹脂成形装置を、第2側面部の方向から見た状態で示す断面説明図。 実施例における、給水手段を接続した状態の樹脂成形用のゴム型を、第2側面部の方向から見た状態で示す断面説明図。 実施例における、シリコーンゴムにおける光の透過率を示すグラフ。
 上述した第1~第5の発明における好ましい実施の形態につき説明する。
 第1の発明において、上記ゴム型を介して上記熱可塑性樹脂に照射する光(電磁波)としては、波長が0.78~2μmの領域の光だけでなく、これ以外の領域の光も含まれていてもよい。この場合において、ゴム型を介して熱可塑性樹脂に照射する光は、波長が0.78~2μmの領域の光を、これ以外の領域の光よりも多く含むことが好ましい。
 また、上記複数の分割型部は、一対の分割型部とすることができ、3つ以上の分割型部とすることもできる。また、分割型部は、対称形状に分割する必要はなく、種々の分割面(波状、凹凸状、のこぎり状等の分割面)によって分割することができる。
 また、上記ベースモールド型における上記一対の第1側面部は、上記中子型における上記複数の分割型部が組み合わさる方向の外側面の全体を必ずしも覆っている必要はなく、上記外側面の一部を覆っていてもよい。
 また、第2~第5の発明において、上記光発生手段は、1組として用いるだけでなく、複数組をセットにして用いることができる。すなわち、成形品(あるいはキャビティ)の形状によっては、両側又は上下左右から光を照射した方が好ましい場合がある。
 また、上記熱可塑性樹脂は、非晶性熱可塑性樹脂であることが好ましい。
 ところで、熱可塑性樹脂の冷却速度は、成形型がゴム製であるため、金型の場合に比べて遅くなる。そのため、冷却中に熱可塑性樹脂の結晶性が高くなることがあり、これによって、樹脂成形品の寸法精度が低下したり、樹脂成形品の耐衝撃性が低下したりすることがある。これに対し、熱可塑性樹脂を非晶性熱可塑性樹脂にしたことにより、上記樹脂成形品の寸法精度の低下及び耐衝撃性の低下等を防止することができる。
 非晶性熱可塑性樹脂としては、例えば、スチレン・アクリロニトリル共重合体、スチレン・無水マレイン酸共重合体、スチレン・メタクリル酸メチル共重合体等のスチレン系樹脂、ABS樹脂(アクリロニトリル・ブタジエン・スチレン樹脂)、AES樹脂(アクリロニトリル・エチレン-プロピレン-ジエン・スチレン樹脂)、ASA樹脂(アクリレート・スチレン・アクリロニトリル樹脂)等のゴム変性熱可塑性樹脂、又はポリメタクリル酸メチル、ポリカーボネート樹脂(PC)、PC/ゴム変性熱可塑性樹脂アロイ等を用いることができる。その中でも、特にゴム変性熱可塑性樹脂を用いることが好ましい。
 ゴム変性熱可塑性樹脂としては、特に限定されないが、ゴム質重合体の存在下にビニル系単量体をグラフト重合させた重合体を1種又は2種以上含むものが好ましい。
 上記ゴム質重合体としては、特に限定されないが、ポリブタジエン、ブタジエン・スチレン共重合体、ブタジエン・アクリロニトリル共重合体、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、エチレン・ブテン-1共重合体、エチレン・ブテン-1・非共役ジエン共重合体、アクリルゴム、シリコーンゴム等が挙げられ、これらは1種単独で、又は2種以上を組み合わせて用いることができる。
 また、上記ゴム質重合体としては、ポリブタジエン、ブタジエン・スチレン共重合体、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、アクリルゴムを用いることが好ましく、上記ゴム変性熱可塑性樹脂としては、例えば、ABS樹脂、AES樹脂、ASA樹脂等を用いることができる。その中でも、特にABS樹脂を用いることがさらに好ましい。
 また、上記ゴム型は、シリコーンゴムからなることが好ましい。
 この場合には、ゴム型の作製が容易であると共に、上記0.78~2μmの波長領域を含む光により、ゴム型をほとんど加熱することなく熱可塑性樹脂を選択的に加熱することができる。
 また、シリコーンゴムの硬度は、JIS-A規格測定において25~80であることが好ましい。
 第2~第5の発明において、上記0.78~2μmの波長領域を含む光により、ゴム型に比べて、熱可塑性樹脂を選択的に加熱することができる理由としては、以下のように考える。
 すなわち、ゴム型の表面に照射された0.78~2μmの波長領域を含む光は、ゴム型に吸収される割合に比べて、ゴム型を透過して熱可塑性樹脂に吸収される割合が多いと考える。そのため、0.78~2μmの波長領域を含む光による光のエネルギーが熱可塑性樹脂に優先的に吸収されて、熱可塑性樹脂を選択的に加熱することができると考える。
 また、第1の発明において、上記ベースモールド型は、上記下面部の残りの互いに対向する両側辺から立設した残りの一対の第2側面部によって、上記一対の第1側面部と共に上記下面部を囲む四角枠形状に形成することが好ましい。
 この場合には、ベースモールド型を箱形状に形成することができ、中子型における複数の分割型部の型開きを一層効果的に防止することができる。
 また、上記中子型における上記複数の分割型部が組み合わさる方向の外側面と、上記ベースモールド型における上記一対の第1側面部の内側面との間には、上記複数の分割型部の型開きを防止するための真空引きと、上記複数の分割型部を冷却するための冷却水の注入との少なくとも一方を行うための型空間を形成し、該型空間は、上記中子型における上記外側面と上記一対の第1側面部の内側面との接触状態を保つ接触部を残して形成することが好ましい。
 この場合には、ゴム型の中子型におけるキャビティ内に熱可塑性樹脂を充填する際には、型空間内の真空引きを行う。そして、型空間内が真空状態である一方、ベースモールド型の周辺の圧力を大気圧以上の状態にすることにより、ベースモールド型に中子型を押圧する力を作用させることができる。これにより、複数の分割型部の型締めを行うことができる。そのため、熱可塑性樹脂を充填する際の圧力が複数の分割型部に加わるときでも、この複数の分割型部が型開きをしてしまうことを防止することができる。
 また、上記型締めを行うときには、上記接触部によって中子型における外側面と一対の第1側面部の内側面との接触状態を保つことができる。
 また、この場合には、キャビティ内への熱可塑性樹脂の充填を行った後には、型空間内に冷却水を注入する。これにより、中子型を冷却することができ、特に、中子型を介して加熱溶融した熱可塑性樹脂を冷却することができる。そのため、冷却後の熱可塑性樹脂の成形品を取り出すまでの時間を短縮することができ、成形品の成形サイクルを短縮することができる。
 また、上記型空間は、冷却水を注入する空間として用いる場合には、当該冷却水を循環させるようにすることができる。また、型空間の上方を開放しておき、型空間の下方から注入した冷却水を上方から溢れさせるようにすることもできる。
 また、上記ベースモールド型の内部には、上記中子型に隣接してゴム製のスペーサを配置することもできる。この場合には、中子型のサイズが異なるときでも、スペーサの厚みを変更することによって、ベースモールド型内に隙間が形成されないようにすることができる。
 また、上記複数の分割型部における上記分割面の上部位置には、上記熱可塑性樹脂を上記キャビティ内に注入するための注入口を形成することが好ましい。
 この場合には、注入口からキャビティ内に熱可塑性樹脂を注入し、注入口に成形された成形物は、キャビティ内に成形した熱可塑性樹脂の成形品と一体的に取り出すことができる。
 また、第2、第3の発明において、上記樹脂成形装置は、上記ベースモールド型における上記一対の第1側面部の外側面を挟持する挟持手段と、上記熱可塑性樹脂を上記キャビティ内に注入するための注入ノズルとを有していることが好ましい。
 この場合には、挟持手段によって、ベースモールド型を介して複数の分割型部が型開きをしてしまうことをより一層効果的に防止することができる。また、注入ノズルによって、キャビティ内へ所定の圧力で熱可塑性樹脂を注入することができる。
 また、第4、第5の発明において、上記加熱工程においては、粒子状態の熱可塑性樹脂を上記キャビティ内に投入し、次いで、上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内における上記粒子状態の熱可塑性樹脂を加熱して溶融させ、次いで、上記キャビティにおいて残された空間に、溶融状態の熱可塑性樹脂を充填することが好ましい。
 この場合には、熱可塑性樹脂の成形品を成形するに当たり、粒子状態の熱可塑性樹脂と溶融状態の熱可塑性樹脂とを用いる。粒子状態の熱可塑性樹脂をキャビティ内に投入して加熱溶融させておき、キャビティにおいて残された空間に、溶融状態の熱可塑性樹脂を充填する。これにより、熱可塑性樹脂の充填が行い難いキャビティの先端部分、細部等に、粒子状態の熱可塑性樹脂を配置して加熱溶融させることができる。そして、溶融状態の熱可塑性樹脂の充填圧力を低くして、キャビティの全体に熱可塑性樹脂を充填することができる。そのため、複数の分割型部の型開きをより効果的に防止することができ、寸法精度の優れた熱可塑性樹脂の成形品を成形することができる。
 以下に、本発明の樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法にかかる実施例につき、図面を参照して説明する。
 本例の樹脂成形用のゴム型2は、図1~図4に示すごとく、溶融状態の熱可塑性樹脂5を加圧して充填するためのキャビティ213を形成してなる。ゴム型2は、ゴム材料からなると共にキャビティ213を形成してなる中子型21と、ゴム材料からなると共に中子型21を内部220に配置する形状を有するベースモールド型22とからなる。中子型21は、キャビティ213を開放するための分割面212において複数の分割型部211(本例では一対の分割型部211)を組み合わせてなる。ベースモールド型22は、下面部221と下面部221の互いに対向する両側辺から立設した一対の第1側面部222とを少なくとも有すると共に、一対の第1側面部222を、一対の分割型部211が組み合わさる方向の両側に形成してなる。
 本例の樹脂成形装置1は、図5に示すごとく、樹脂成形用のゴム型2と、0.78~2μmの波長領域を含む光を発生させる光発生手段3とを有して構成してある。そして、樹脂成形装置1は、光発生手段3によってベースモールド型22の表面から0.78~2μmの波長領域を含む光を照射して、キャビティ213内に充填する熱可塑性樹脂5を加熱するよう構成してある。また、樹脂成形方法は、樹脂成形装置1と同様の構成によって、熱可塑性樹脂5の成形品を成形する。
 以下に、本例の樹脂成形用のゴム型2、樹脂成形装置1及び樹脂成形方法につき、図1~図7を参照して詳説する。
 本例の樹脂成形用のゴム型2は、ゴム材料としてのシリコーンゴムからなる。このゴム型2は、成形する成形品のマスターモデル(手作りの現物等)を液状のシリコーンゴム内に配置し、このシリコーンゴムを硬化させ、硬化後のシリコーンゴムからマスターモデルを取り出すことによって作製することができる。また、ゴム型2は、ゴム製であるため、成形後の成形品を取り出す際の型開きを行うための分割面(パーティング面)212を簡単にかつ任意に形成することができる。
 本例においては、熱可塑性樹脂5として、非晶性熱可塑性樹脂であると共にゴム変性熱可塑性樹脂であるABS樹脂を用いる。
 図3に示すごとく、本例のベースモールド型22は、下面部221の残りの互いに対向する両側辺から立設した残りの一対の第2側面部223によって、一対の第1側面部222と共に下面部221を囲む四角枠形状に形成してある。本例のベースモールド型22は、下面部221、第1側面部222及び第2側面部223が、中子型21の下面及び4つの外側面に密着する大きさに形成してある。
 なお、ベースモールド型22の内部220には、中子型21に隣接して、ゴム材料としてのシリコーンゴムからなるスペーサを配置して、ベースモールド型22と中子型21とを密着させることもできる。
 図1~図3に示すごとく、本例のゴム型2においては、中子型21における一対の分割型部211が組み合わさる方向の外側面と、ベースモールド型22における一対の第1側面部222の内側面との間に、一対の分割型部211の型開きを防止するための真空引きと、一対の分割型部211を冷却するための冷却水Wの注入とを行うための型空間23が形成してある。この型空間23は、中子型21における外側面と一対の第1側面部222の内側面との接触状態を保つ接触部231を残して形成してある。
 本例の型空間23は、上下方向とこれに直交する横方向とに形成した格子状溝によって構成してある。そして、接触部231は、格子状溝を構成する溝の間に残された残部として形成されている。本例の型空間23は、ベースモールド型22の一対の第1側面部222における内側面に形成してある。また、本例の型空間23は、ベースモールド型22の内部220に中子型21を配置したときに、中子型21とベースモールド型22との上部隙間を塞ぐ閉塞空間として形成されている。
 型空間23は、格子状溝以外にも、第1側面部222における内側面の一部が中子型21の外側面に当接するようにした溝等から構成することができる。また、一対の第1側面部222に形成した互いに対向する型空間(格子状溝)23同士は、ベースモールド型22の下面部221に形成した下部溝232によって連通されている。
 また、ベースモールド型22には、その外部と型空間23とを連通する連通穴24が形成されている。
 なお、上記のごとく、本例のベースモールド型22は、一対の第1側面部222及び一対の第2側面部223によって四角枠形状に形成してある。そのため、ベースモールド型22からの中子型21の取出を容易にするため、例えば、ベースモールド型22の底面部には、取出用穴を形成することができる(図示略)。
 図1、図4に示すごとく、一対の分割型部211における分割面212の上部位置には、熱可塑性樹脂5をキャビティ213内に注入するための注入口214が形成してある。この注入口214は、一対の分割型部211の両方に跨って形成してある。そして、注入口214からキャビティ213内に熱可塑性樹脂5を注入し、注入口214に成形された成形物は、キャビティ213内に成形した熱可塑性樹脂5の成形品と一体的に取り出すことができる。
 図5に示すごとく、本例の樹脂成形装置1は、上記樹脂成形用のゴム型2と、上記光発生手段3と、型空間23内の真空引きを行う真空手段41と、型空間23内に冷却水Wを注入するための給水手段42と、ベースモールド型22における一対の第1側面部222の外側面を挟持する挟持手段43と、熱可塑性樹脂5をキャビティ213内に注入するための注入ノズル44とを有している。
 本例の光発生手段3は、0.78~2μmの波長領域(ほぼ近赤外線の波長領域に相当する。)を含む光を発するハロゲンランプ31を用いて構成してある。このハロゲンランプ31は、0.78~2μmの波長領域内に(本例では約0.9μmに)光強度のピークを有するものを用いた。図5においては、光の配光方向を矢印Xによって示す。
 本例の光発生手段3は、0.78~2μmの波長領域を含む光を発するハロゲンランプ(光源)31と、ハロゲンランプ31から発した光を配光して反射するリフレクタ32と、リフレクタ32から反射された光をさらに反射させてゴム型2へ導くための中継反射鏡33とを有している。中継反射鏡33は、回動可能に構成してあり、その反射面が、中継反射鏡33を回動させるための回動中心軸線C1に対して傾斜する方向C2を向いている。
 そして、光発生手段3は、リフレクタ32から配光して反射された光が中継反射鏡33に導かれ、中継反射鏡33を回動中心軸線C1の回りに回動させることによって、中継反射鏡33によって反射した光を、円を描くようにゴム型2に照射するよう構成してある。
 図1に示すごとく、本例の真空手段41は、真空ポンプによって構成してあり、真空ポンプは、ベースモールド型22における連通穴24に接続される。
 図6に示すごとく、本例の給水手段42は、給水ポンプによって構成してあり、真空ポンプと切り替えて、ベースモールド型22における連通穴24に接続される。給水手段42によって型空間23内に注入した冷却水Wは、連通穴24から流出させることができ、また、連通穴24とは別に形成した他の連通穴から流出させることもできる。
 図1に示すごとく、本例の挟持手段43は、一対の第1側面部222の外側面の上側部分を挟持するよう構成してある。本例の注入ノズル44は、中子型21における注入口214に配置し、所定の圧力(例えば、0.2~10MPaの圧力)で溶融状態の熱可塑性樹脂5をキャビティ213内に注入するよう構成してある。また、本例においては、中子型21における注入口214には、粒子状態の熱可塑性樹脂5をキャビティ213内に投入するための投入ノズルも配置することができる(図示略)。
 本例の樹脂成形装置1は、キャビティ213内に熱可塑性樹脂5の充填を行う際には、図1に示すごとく、真空手段41によって型空間23内の真空引きを行って、一対の分割型部211の型締めを行うと共に、図5に示すごとく、光発生手段3によってベースモールド型22の表面から0.78~2μmの波長領域を含む光を照射して、キャビティ213内に充填する熱可塑性樹脂5を加熱し、かつ、熱可塑性樹脂5の充填を行った後には、図6に示すごとく、給水手段42によって型空間23内に冷却水Wを注入して、中子型21を冷却するよう構成してある。
 また、図示は省略するが、光発生手段3とゴム型2との間には、波長が2μmを超える光の透過量を減少させるフィルターを配置することができる。このフィルターは、石英ガラス等から構成することができる。この場合には、フィルターによって、ゴム型2に吸収されやすい波長が2μmを超える光がゴム型2に照射され難くすることができ、ゴム型2の温度上昇をより効果的に防止することができる。
 また、図示は省略するが、分割型部211は、成形する熱可塑性樹脂5の成形品の形状によっては、3つ以上に分割することができる。例えば、一対の分割型部211の一方をさらに分割することができる。また、一対の第1側面部222及び一対の第2側面部223を形成しているときには、第1側面部222同士が対向する方向に分割面212を形成して分割するだけでなく、第2側面部223同士が対向する方向にも分割面212を形成して分割することもできる。
 次に、上記樹脂成形用のゴム型2を用いた樹脂成形方法、及び本例による作用効果について説明する。
 まず、加熱工程として、図4に示すごとく、中子型21をベースモールド型22の内部220に配置し、図1に示すごとく、ベースモールド型22の連通穴24には真空手段41を接続して、型空間23の真空引きを行う。そして、型空間23内が真空状態になったときには、ベースモールド型22の周辺の圧力を大気圧状態にすることにより、ベースモールド型22には中子型21を押圧する力を作用させることができる。これにより、一対の分割型部211の型締めを行うことができる。そして、熱可塑性樹脂5を充填する際の圧力が一対の分割型部211に加わるときでも、この一対の分割型部211が型開きをしてしまうことを防止することができる。
 また、中子型21をベースモールド型22の内部220に配置したときには、挟持手段43によって、ベースモールド型22における一対の第1側面部222を挟持する。そのため、一対の分割型部211が型開きをすることを効果的に防止することができる。
 次いで、図示は省略するが、中子型21の注入口214に投入ノズルを配置し、投入ノズルからキャビティ213内に粒子状態の熱可塑性樹脂5を投入する。次いで、図5に示すごとく、光発生手段3によってベースモールド型22の表面から0.78~2μmの波長領域を含む光を照射して、キャビティ213内における粒子状態の熱可塑性樹脂5を加熱して溶融させる。
 次いで、キャビティ213において残された空間に、溶融状態の熱可塑性樹脂5を充填する。これにより、新たに充填する溶融状態の熱可塑性樹脂5の充填量を少なくすることができ、溶融状態の熱可塑性樹脂5の充填圧力を低くすることができる。そのため、一対の分割型部211の型開きをより効果的に防止することができ、寸法精度の優れた熱可塑性樹脂5の成形品を成形することができる。
 また、上記0.78~2μmの波長領域を含む光をベースモールド型22の表面から照射したときには、中子型21及びベースモールド型22を構成するゴム材料と熱可塑性樹脂5との物性の違いにより、中子型21及びベースモールド型22に比べて、熱可塑性樹脂5を選択的に加熱することができる(ゴム型2に比べて熱可塑性樹脂5の加熱量を多くすることができる)。これにより、中子型21及びベースモールド型22の温度上昇を抑制して、熱可塑性樹脂5を効果的に加熱することができる。そのため、熱可塑性樹脂5の成形品を成形する際に、中子型21及びベースモールド型22の熱劣化を効果的に防止することができる。
 ここで、図7は、透明のシリコーンゴムと半透明のシリコーンゴムについて、横軸に波長(nm)をとり、縦軸に光の透過率(%)をとって、各シリコーンゴムにおける光の透過率を示すグラフである。同図において、各シリコーンゴムは、200~2200(nm)の間の波長の光を透過させることがわかる。そのため、この波長の領域である近赤外線をシリコーンゴム製のゴム型2の表面に照射すると、当該近赤外線の多くを、ゴム型2を透過させて熱可塑性樹脂5に吸収させることができる。
 次いで、図6に示すごとく、熱可塑性樹脂5の充填を行った後には、光発生手段3による加熱を中止し、冷却工程として、ベースモールド型22の連通穴24に対して真空手段41に替えて給水手段42を接続し、給水手段42によって型空間23内に冷却水Wを注入して中子型21を冷却する。これにより、特に、中子型21を介して加熱溶融した熱可塑性樹脂5を冷却することができる。そのため、冷却後の熱可塑性樹脂5の成形品を取り出すまでの時間を短縮することができ、成形品の成形サイクルを短縮することができる。
 なお、キャビティ213内における成形品は、中子型21をベースモールド型22から取り出し、中子型21を構成する一対の分割型部211を開けることによって取り出すことができる。
 上記のごとく、本例の樹脂成形用のゴム型2は、中子型21と中子型21を内部220に配置する形状を有するベースモールド型22とからなる。
 そして、溶融状態の熱可塑性樹脂5は、中子型21に形成したキャビティ213内に充填することができる。これにより、熱可塑性樹脂5の充填による熱の劣化の対象を中子型21のみとすることができ、ベースモールド型22は中子型21よりも多くのショット(成形)回数使用することができる。そのため、中子型21に比べてベースモールド型22を長期間使用することが可能になり、劣化したゴム型2を交換する際に、新たに交換用のゴム型2の製造に用いるゴム材料の使用量を低減させることができる。
 また、多品種の成形品の成形を行う際には、各成形品の形状に合わせたキャビティ213を有する中子型21を準備し、ベースモールド型22は共通して用いる一方、中子型21のみ各品種に応じて交換することができる。これによっても、劣化したゴム型2を交換する際に、新たにゴム型2の製造に用いるゴム材料の使用量を低減させることができる。
 また、本例のゴム型2の中子型21においては、成形品のサンプル(マスターモデル)の形状を転写することによって容易にキャビティ213を形成することができる。そのため、中子型21にキャビティ213を形成することが容易である。
 さらに、ベースモールド型22における一対の第1側面部222を、一対の分割型部211が組み合わさる方向の両側に形成していることにより、熱可塑性樹脂5の成形時には、一対の第1側面部222によって一対の分割型部211が型開きしないように保持することができる。これにより、ゴム型2の型開きを簡単な構造によって防止して、キャビティ213内の熱可塑性樹脂5を冷却して得た成形品の寸法精度を向上させることができる。
 また、本例のゴム型2は、中子型21及びベースモールド型22を、いずれも同じゴム材料であるシリコーンゴムから構成している。そのため、ベースモールド型22がフィルターの役割を果たし、中子型21に吸収される波長の光のほぼすべてをベースモールド型22に吸収させることができると考える。これにより、中子型21がより加熱され難くすることができる。
 それ故、本例の樹脂成形用のゴム型2、並びにこれを用いた樹脂成形装置1及び樹脂成形方法によれば、交換用のゴム型2の製造に用いるゴム材料の使用量を低減させることができ、ゴム型2の型開きを簡単な構造によって防止すると共に、ゴム型2の熱劣化を効果的に防止して、熱可塑性樹脂5からなる安定した寸法精度の成形品を得ることができる。また、熱可塑性樹脂5の成形品の成形サイクルを短縮することができる。

Claims (10)

  1.  溶融状態の熱可塑性樹脂を加圧して充填するためのキャビティを形成してなるゴム型であって、
     該ゴム型は、ゴム材料からなると共に上記キャビティを形成してなる中子型と、ゴム材料からなると共に上記中子型を内部に配置する形状を有するベースモールド型とからなり、
     上記中子型は、上記キャビティを開放するための分割面において複数の分割型部を組み合わせてなり、
     上記ベースモールド型は、下面部と該下面部の互いに対向する両側辺から立設した一対の第1側面部とを少なくとも有すると共に、該一対の第1側面部を、上記複数の分割型部が組み合わさる方向の両側に形成してなることを特徴とする樹脂成形用のゴム型。
  2.  請求項1において、上記ベースモールド型は、上記下面部の残りの互いに対向する両側辺から立設した残りの一対の第2側面部によって、上記一対の第1側面部と共に上記下面部を囲む四角枠形状に形成してあることを特徴とする樹脂成形用のゴム型。
  3.  請求項1又は2において、上記中子型における上記複数の分割型部が組み合わさる方向の外側面と、上記ベースモールド型における上記一対の第1側面部の内側面との間には、上記複数の分割型部の型開きを防止するための真空引きと、上記複数の分割型部を冷却するための冷却水の注入との少なくとも一方を行うための型空間が形成してあり、
     該型空間は、上記中子型における上記外側面と上記一対の第1側面部の内側面との接触状態を保つ接触部を残して形成してあることを特徴とする樹脂成形用のゴム型。
  4.  請求項1~3のいずれか一項において、上記複数の分割型部における上記分割面の上部位置には、上記熱可塑性樹脂を上記キャビティ内に注入するための注入口が形成してあることを特徴とする樹脂成形用のゴム型。
  5.  請求項1~4のいずれか一項に記載の樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段とを有する樹脂成形装置であって、
     上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱するよう構成してあることを特徴とする樹脂成形装置。
  6.  請求項3に記載の樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段と、上記型空間内の真空引きを行う真空手段と、上記型空間内に上記冷却水を注入するための給水手段とを有する樹脂成形装置であって、
     上記キャビティ内に上記熱可塑性樹脂の充填を行う際には、上記真空手段によって上記型空間内の真空引きを行って、上記複数の分割型部の型締めを行うと共に、上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱し、
     上記熱可塑性樹脂の充填を行った後には、上記給水手段によって上記型空間内に上記冷却水を注入して、上記中子型を冷却するよう構成してあることを特徴とする樹脂成形装置。
  7.  請求項5又は6において、上記樹脂成形装置は、上記ベースモールド型における上記一対の第1側面部の外側面を挟持する挟持手段と、上記熱可塑性樹脂を上記キャビティ内に注入するための注入ノズルとを有していることを特徴とする樹脂成形装置。
  8.  請求項1~4のいずれか一項に記載の樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段とを有する樹脂成形装置を用い、
     上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱する加熱工程を行うことを特徴とする樹脂成形方法。
  9.  請求項3に記載の樹脂成形用のゴム型と、0.78~2μmの波長領域を含む光を発生させる光発生手段と、上記型空間内の真空引きを行う真空手段と、上記型空間内に上記冷却水を注入するための給水手段とを有する樹脂成形装置を用い、
     上記キャビティ内に上記熱可塑性樹脂の充填を行う際には、上記真空手段によって上記型空間内の真空引きを行って、上記複数の分割型部の型締めを行うと共に、上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内に充填する上記熱可塑性樹脂を加熱する加熱工程と、
     次いで、上記熱可塑性樹脂の充填を行った後には、上記給水手段によって上記型空間内に上記冷却水を注入して、上記中子型を冷却する冷却工程とを行うことを特徴とする樹脂成形方法。
  10.  請求項8又は9において、上記加熱工程においては、粒子状態の熱可塑性樹脂を上記キャビティ内に投入し、次いで、上記光発生手段によって上記ベースモールド型の表面から上記光を照射して、上記キャビティ内における上記粒子状態の熱可塑性樹脂を加熱して溶融させ、次いで、上記キャビティにおいて残された空間に、溶融状態の熱可塑性樹脂を充填することを特徴とする樹脂成形方法。
PCT/JP2009/067847 2008-10-21 2009-10-15 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法 WO2010047269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09821966.0A EP2347877A4 (en) 2008-10-21 2009-10-15 RUBBER MOLD FOR RESIN MOLDING, RESIN MOLDING DEVICE, AND RESIN MOLDING METHOD
CN2009801416971A CN102202855A (zh) 2008-10-21 2009-10-15 树脂成形用的橡胶模具、树脂成形装置及树脂成形方法
US13/125,351 US20110304079A1 (en) 2008-10-21 2009-10-15 Mold for molding resin, apparatus for molding resin, and method for molding resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008271246A JP2010099861A (ja) 2008-10-21 2008-10-21 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法
JP2008-271246 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010047269A1 true WO2010047269A1 (ja) 2010-04-29

Family

ID=42119309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067847 WO2010047269A1 (ja) 2008-10-21 2009-10-15 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法

Country Status (5)

Country Link
US (1) US20110304079A1 (ja)
EP (1) EP2347877A4 (ja)
JP (1) JP2010099861A (ja)
CN (1) CN102202855A (ja)
WO (1) WO2010047269A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073674A1 (ja) * 2010-11-30 2012-06-07 テクノポリマー株式会社 光照射成形装置及び光照射成形方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285143B1 (ko) 2008-03-31 2013-07-12 테크노 폴리머 가부시키가이샤 열가소성 수지 성형품의 제조방법 및 열가소성 수지 입자 조성물
KR20140054058A (ko) * 2011-08-18 2014-05-08 모멘티브 퍼포먼스 머티리얼즈 게엠베하 조사 및 성형 유닛
CN105033193B (zh) * 2015-08-15 2018-05-15 重庆市合川区云天机械制造有限公司 防烫伤的制作砂型模具的装置
CN109049281A (zh) * 2018-09-27 2018-12-21 安徽省安美利特环保材料科技有限公司 一种具有多色图案的真空石及制备工艺
CN110303633A (zh) * 2019-05-14 2019-10-08 嘉兴济铭商贸有限公司 一种丁苯橡胶手机壳

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114845A (ja) * 1992-10-02 1994-04-26 Toshiba Silicone Co Ltd シリコーンゴム型
JPH07178754A (ja) * 1993-12-22 1995-07-18 Nippon Retsukusu Kk 樹脂成形方法
JP2001138346A (ja) * 1999-11-11 2001-05-22 Kanto Auto Works Ltd 真空シール機構部付き型構造
JP2002160266A (ja) * 2000-11-24 2002-06-04 Ebara Corp 成形品の3次元形状成形方法及び成形装置
JP2007216447A (ja) 2006-02-15 2007-08-30 Techno Polymer Co Ltd 樹脂成形方法及び樹脂成形装置
JP2008044271A (ja) 2006-08-18 2008-02-28 Techno Polymer Co Ltd 樹脂成形装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889668A (en) * 1987-10-05 1989-12-26 Dow Corning Corporation Fixed-volume, trapped rubber molding method
JP2972105B2 (ja) * 1994-12-28 1999-11-08 信越化学工業株式会社 熱可塑性樹脂の射出成形方法
CN1387987A (zh) * 2001-05-25 2003-01-01 神基科技股份有限公司 利用阳模替换模芯作出不同外观造型的应用方法
US20060145370A1 (en) * 2004-12-30 2006-07-06 Lawton Bruce E Optical tool assembly
JP4252586B2 (ja) * 2006-07-10 2009-04-08 テクノポリマー株式会社 樹脂成形装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114845A (ja) * 1992-10-02 1994-04-26 Toshiba Silicone Co Ltd シリコーンゴム型
JPH07178754A (ja) * 1993-12-22 1995-07-18 Nippon Retsukusu Kk 樹脂成形方法
JP2001138346A (ja) * 1999-11-11 2001-05-22 Kanto Auto Works Ltd 真空シール機構部付き型構造
JP2002160266A (ja) * 2000-11-24 2002-06-04 Ebara Corp 成形品の3次元形状成形方法及び成形装置
JP2007216447A (ja) 2006-02-15 2007-08-30 Techno Polymer Co Ltd 樹脂成形方法及び樹脂成形装置
JP2008044271A (ja) 2006-08-18 2008-02-28 Techno Polymer Co Ltd 樹脂成形装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2347877A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073674A1 (ja) * 2010-11-30 2012-06-07 テクノポリマー株式会社 光照射成形装置及び光照射成形方法
US9682497B2 (en) 2010-11-30 2017-06-20 Jsr Corporation Light irradiation molding apparatus and light irradiation molding method

Also Published As

Publication number Publication date
JP2010099861A (ja) 2010-05-06
EP2347877A1 (en) 2011-07-27
EP2347877A4 (en) 2013-09-04
US20110304079A1 (en) 2011-12-15
CN102202855A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2010047269A1 (ja) 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法
KR100950873B1 (ko) 수지 성형 방법 및 수지 성형 장치
JP4234143B2 (ja) 樹脂成形方法及び樹脂成形装置
JP5652169B2 (ja) 熱可塑性樹脂成形品の成形方法
JP5160284B2 (ja) 樹脂成形方法
JP5790778B2 (ja) 成形装置、及び熱可塑性成形品の製造方法
JP5349403B2 (ja) 光照射成形装置及び方法
JP4956270B2 (ja) 樹脂成形方法及び樹脂成形装置
JP4252586B2 (ja) 樹脂成形装置
JP4363727B2 (ja) プラスチック成形加工方法
CN101304857B (zh) 树脂成型方法及树脂成型装置
WO2012073674A1 (ja) 光照射成形装置及び光照射成形方法
WO2009101890A1 (ja) 射出成形方法
JP2010179621A (ja) 射出成形用型と射出成形品の製造方法
JP5384249B2 (ja) 熱可塑性樹脂成形品の再成形方法
JP2008194910A (ja) 樹脂成形装置及び樹脂成形方法
JP2008044271A (ja) 樹脂成形装置
JP5120752B2 (ja) 射出成形装置
JP2007216448A (ja) 樹脂成形方法及び樹脂成形装置
JP2011143635A (ja) 樹脂成形用のゴム型、樹脂成形装置及び樹脂成形方法
JP4234142B2 (ja) 樹脂成形方法及び樹脂成形装置
JP2011189549A (ja) 光照射成形用のゴム型、光照射成形装置及び光照射成形方法
JP2000263613A (ja) 熱可塑性樹脂成形品の射出圧縮成形方法
KR20120055085A (ko) 사출 성형품의 품질 향상을 위한 디지털 금형 온도 제어 장치를 포함하는 다층형 금형 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141697.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009821966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13125351

Country of ref document: US