WO2010047173A1 - かご形誘導電動機及びかご形誘導電動機駆動システム - Google Patents

かご形誘導電動機及びかご形誘導電動機駆動システム Download PDF

Info

Publication number
WO2010047173A1
WO2010047173A1 PCT/JP2009/064584 JP2009064584W WO2010047173A1 WO 2010047173 A1 WO2010047173 A1 WO 2010047173A1 JP 2009064584 W JP2009064584 W JP 2009064584W WO 2010047173 A1 WO2010047173 A1 WO 2010047173A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
induction motor
cage induction
slots
Prior art date
Application number
PCT/JP2009/064584
Other languages
English (en)
French (fr)
Inventor
和雄 西濱
三上 浩幸
忠弘 下薗
慶一郎 開發
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2010534745A priority Critical patent/JPWO2010047173A1/ja
Priority to US13/125,492 priority patent/US8816559B2/en
Publication of WO2010047173A1 publication Critical patent/WO2010047173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors

Definitions

  • the present invention relates to a squirrel-cage induction motor with an improved slot area ratio between a stator and a rotor, and a squirrel-cage induction motor drive system for driving a squirrel-cage induction motor.
  • the squirrel-cage induction motor can be reduced in size and efficiency.
  • the core area is used for the same characteristics by setting the slot area of the stator to 0.45 to 0.65 with respect to the area of the circle whose diameter is the outer diameter of the stator.
  • a technique is disclosed in which the amount can be reduced by 25%, the amount of conductive wire used can be reduced by 18%, and the output characteristics can be increased by 145% when the dimensions are the same (see Patent Document 2).
  • Patent Document 1 is a technique related to a double-feed type squirrel-cage induction motor.
  • the magnitude of the secondary current varies greatly as the induction current according to the operating state. Since the current ratio between the stator winding and the rotor winding varies depending on the operating condition, the area ratio between the stator slot and the rotor slot is uniquely determined only by the current ratio between the stator winding and the rotor winding. hard.
  • Patent Document 2 is a technique related to the slot area of the stator, but only by adjusting the slot area of the stator, the starting characteristics of the induction motor are improved (starting torque is improved) and the steady characteristics are improved ( It is difficult to achieve both high efficiency.
  • the present invention has been made in view of such problems, and by appropriately setting the area ratio between the fixed slot and the rotor slot, the torque characteristics at the time of start-up and the efficiency at the time of steady operation can be improved. It is an object of the present invention to provide a squirrel-cage induction motor and a squirrel-cage induction motor drive system for driving the squirrel-cage induction motor.
  • a squirrel-cage induction motor includes a stator core, a plurality of stator slots provided radially at a predetermined interval in the circumferential direction of the stator core, and the fixing of these stator cores.
  • a plurality of stator windings respectively housed in the rotor slots, a rotor core, a plurality of rotor slots provided radially at predetermined intervals in the circumferential direction of the rotor core, and these rotor slots
  • Each of the stator windings and the rotor conductors are made of a conductive material mainly composed of copper, and each of the rotor slots has a plurality of rotor slots.
  • the area ratio of the total area of the plurality of stator slots to the total area is 2.3 or more and 8.0 or less (preferably 2.7 or more and 8.0 or less).
  • the present invention uses a conductive material of copper or a copper alloy for the stator winding and the rotor conductor in order to simultaneously improve the starting characteristics and the steady characteristics of the cage induction motor.
  • the area ratio of the total area of the stator slots to the total area of the rotor slots is 2.3 or more and 8.0 or less (preferably 2.7 or more and 8.0 or less).
  • a conductive material of copper or a copper alloy is used for at least the rotor conductor, and the area ratio of the total area of the stator slots to the total area of the rotor slots is 2.3 or more and 8
  • the area ratio of the total area of the stator slots to the total area of the rotor slots is 2.3 or more and 8
  • the squirrel-cage induction motor according to the present invention uses a conductive material such as copper having a low electrical resistivity for the stator winding and the rotor conductor so as to achieve high efficiency and to have a predetermined electrical resistance at the start.
  • a desired starting torque is ensured, and both the starting characteristics (starting torque) and the steady characteristics (efficiency) are improved.
  • the ratio (area ratio) of the total area of the fixed slots to the total area of the rotor slots is set within a predetermined range.
  • FIG. 1 is a partial sectional view of a squirrel-cage induction motor according to each embodiment of the present invention.
  • a stator 10 of a squirrel-cage induction motor includes a stator core 11 and a large number of stator slots installed at equal intervals in the circumferential direction near the inner periphery of the stator core 11. 12 and a stator winding 13 embedded in these stator slots 12.
  • the area of one stator slot 12 is S1, and the number of stator slots 12 is N1.
  • the rotor 20 is embedded in a rotor core 21, a large number of rotor slots 22 arranged at equal intervals in the circumferential direction near the outer periphery of the rotor core 21, and these rotor slots 22.
  • the rotor conductor 23 is provided.
  • the area of one rotor slot 22 is S2, and the number of slots of the rotor slot 22 is N2.
  • the stator winding 13 and the rotor conductor 23 are each made of copper conductive material, and the total area (S1) of the stator slot 12 with respect to the total area (S2 ⁇ N2) of the rotor slot 22
  • the area ratio is the ratio of (N1) (that is, (S1 * N1) / (S2 * N2))
  • the area ratio is 2.7 or more and 8.0 or less.
  • the rotor conductor 23 23 is proportional to the starting torque (that is, if the electric resistance of the rotor conductor 23 is reduced to reduce the loss, the starting torque is lowered), so the conductive material is simply changed to a conductive material having a low electric resistivity. Then (for example, just changing the conductive material from aluminum to copper), the starting characteristics (starting torque) are deteriorated. That is, in the squirrel-cage induction motor, if the electrical resistance of the rotor conductor 23 is reduced to improve the efficiency, the starting torque is reduced.
  • the rotor conductor 23 By devising the cross-sectional shape, utilizing the skin effect that is the bias of the current distribution, the frequency of the inverter is increased only at the time of starting to increase the electrical resistance of the rotor conductor 23, and the starting characteristics (starting torque) are improved.
  • a technique for achieving this is known (for example, see Japanese Patent Application Laid-Open No. 2004-248361).
  • FIG. 2 is a diagram showing the ratio of the electrical resistance at startup to the steady state (at the time of rated rotation) of the rotor conductor 23 using copper as the conductor material, and the horizontal axis indicates the height (cm) of the rotor conductor 23.
  • the vertical axis represents the ratio of electrical resistance of the rotor conductor 23 (pu: per unit). Note that the electrical resistance of the copper rotor conductor 23 in a steady state is 1 p.u.
  • the characteristic (a) indicated by the solid line is the ratio of the electrical resistance of the copper rotor conductor 23 at the start-up to the normal time (at the rated rotation), and the characteristic (b) indicated by the broken line is the characteristic at the normal time. It is the ratio of the electrical resistance of the aluminum rotor conductor 23 in the steady state to the electrical resistance of the copper rotor conductor 23. As can be seen from FIG. 2, when the height of the rotor conductor 23 in the radial direction of the rotor 20 (hereinafter simply referred to as the height of the rotor conductor 23) is 19 mm or less, the electrical resistance of the aluminum rotor conductor 23 is reduced.
  • the ratio of the electrical resistance of the copper rotor conductor 23 is smaller than the ratio, but if the height of the rotor conductor 23 exceeds 19 mm, the copper rotor conductor 23 is greater than the ratio of the electrical resistance of the aluminum rotor conductor 23. The ratio of electrical resistance will be larger.
  • the electric resistance at the time of startup is the electric Since the resistance is smaller than the resistance, it is difficult to improve the starting characteristics (starting torque) by utilizing the skin effect at the time of starting the squirrel-cage induction motor as in the technique of JP-A-2004-248361. I found out.
  • each embodiment according to the present invention even when the height of the rotor conductor 23 is 19 mm or less, a cage shape that can achieve both improvement in starting characteristics (starting torque) and improvement in steady characteristics (efficiency).
  • An induction motor is realized. That is, in the squirrel-cage induction motor of each embodiment according to the present invention, instead of relying on the skin effect of the rotor conductor 23 to improve the starting characteristics, the cross-sectional area of the rotor conductor 23 is reduced and the starting torque is reduced.
  • the starting characteristic was improved by increasing the electric resistance of the proportional rotor conductor 23. Thereby, even if the height of the rotor conductor 23 is 19 mm or less and the skin effect is reduced, the starting characteristics can be improved.
  • the rotor conductor 23 is simply made 19 mm or less in height and the cross-sectional area of the rotor conductor 23 is reduced to increase the electrical resistance, the electrical resistance of the rotor conductor 23 is increased even in a steady state. Loss generated in the rotor conductor 23 increases, and the efficiency at the steady state (at the time of rated rotation) decreases. Therefore, by reducing the cross-sectional area of the rotor conductor 23, the outer diameter of the rotor 20 and the inner diameter of the stator 10 are reduced, so that the area of the stator 10 is increased, and the stator slot 12 and the stator windings are increased. By increasing the cross-sectional area of the wire 13, the electrical resistance of the stator winding 13 is reduced. As a result, the loss generated in the stator winding 13 is reduced, and the efficiency can be improved.
  • FIG. 3 is a characteristic diagram of the efficiency of the squirrel-cage induction motor according to the first embodiment of the present invention with respect to the IE3 standard.
  • the horizontal axis indicates the ratio of the total area of the stator slots 12 to the total area of the rotor slots 22 ( pu), and the vertical axis represents the efficiency (%) relative to the IE3 standard.
  • the IE3 standard is an efficiency standard for rotating electrical machines (motors) defined by the international standard IEC 60034-30, and an efficiency level is defined for each output capacity of the rotating electrical machine as an IE3 standard level. Therefore, in the characteristic diagram shown in FIG. 3, the efficiency with respect to the IE3 standard on the vertical axis is 0.0% or more, which is the efficiency at or above the IE3 standard level.
  • the height of the rotor conductor 23 is 19 mm or less.
  • each plot in FIG. 3 is the efficiency with respect to IE3 specification of the efficiency measured value calculated
  • a squirrel-cage induction motor that can achieve an efficiency equal to or higher than the efficiency level of the IE3 standard (IE3 standard level) can be evaluated as a highly efficient squirrel-cage induction motor. It is possible to realize a highly efficient squirrel-cage induction motor by manufacturing a squirrel-cage induction motor having an area ratio of the total area of the stator slot 12 to the total area of 2.3 to 8.0. It becomes.
  • FIG. 4 is a characteristic diagram of the starting torque with respect to the JIS C4210 standard of the squirrel-cage induction motor according to the first embodiment of the present invention.
  • the horizontal axis represents the area ratio (p.u) of the total area of the stator slot 12 to the total area of the rotor slot 22, and the vertical axis represents the starting torque (%) for the JIS C4210 standard.
  • JIS C4210 is an international standard indicating the electrical characteristics of a low-voltage three-phase squirrel-cage induction motor, and the level of starting torque for each rated output is defined in the standard.
  • Each plot in FIG. 4 describes only the characteristics of the prototype of the cage induction motor that exceeds the efficiency of the IE3 standard level in FIG.
  • each plot of FIG. 4 is the actual measurement value calculated
  • a squirrel-cage induction motor that can realize a starting torque exceeding the standard defined in JIS C4210 can be evaluated as a squirrel-cage induction motor with good starting characteristics (starting torque).
  • starting torque By manufacturing a squirrel-cage induction motor having an area ratio of the total area of the stator slot 12 to the total area of 2.7 or more, a squirrel-cage induction motor with good starting characteristics (starting torque) can be realized. .
  • the ratio of the total area of the stator slot 12 to the total area of the rotor slot 22 is 2.7 to 8 based on the characteristic chart of the efficiency with respect to the area ratio of FIG. 3 and the characteristic chart of the starting torque with respect to the area ratio of FIG.
  • a squirrel-cage induction motor that achieves both starting characteristics (securing starting torque) and steady characteristics (higher efficiency).
  • a squirrel-cage induction motor that satisfies the electrical standard IEC60034-30 IE3 standard and JIS C4210 standard is a squirrel-cage induction motor that has cleared the technical level of commercialization.
  • Second Embodiment a squirrel-cage induction motor that uses a variable frequency inverter as a power source is assumed.
  • a squirrel-cage induction system that uses AC power at a commercial frequency without using a variable frequency inverter.
  • a squirrel-cage induction motor drive system that is directly supplied to the motor will be described.
  • a three-phase squirrel-cage induction motor is fixed by using a three-phase alternating current received from a commercial three-phase alternating current power supply with a power receiving board as it is, without using a commercial frequency inverter (that is, via a variable frequency inverter).
  • a switch for supplying to the child winding 13 is provided. That is, the squirrel-cage induction motor in the second embodiment can secure a starting torque that is equal to or higher than the rated torque by setting the area ratio to 2.7 or more and 8.0 or less. It is possible to start with a commercial frequency power source (ie, commercial power source). Furthermore, since no variable frequency inverter is used, the loss of the variable frequency inverter is eliminated, and as a result, the efficiency of the squirrel-cage induction motor drive system can be improved.
  • FIG. 5 is a partial cross-sectional view of a rotor slot and rotor conductors 231 to 234 of a squirrel-cage induction motor according to a third embodiment of the present invention.
  • the cross-sectional structures of the rotor conductors 231 to 234 in the configurations of the first and second embodiments described above are shown in FIGS. 5 (a), 5 (b), and 5 (c), respectively. ), As shown in FIG.
  • the rotor slot 221 provided in the rotor core 211 has a fully closed structure having no open portion on the outer peripheral side. Both sides are semicircular.
  • the rotor slot 221 is formed, for example, by die casting copper.
  • the rotor slot 221 since the rotor slot 221 has a fully closed structure, since there is no opening, molten copper does not flow out to the outer peripheral side of the rotor slot 221, so that the squirrel-cage induction motor can be easily manufactured. Become.
  • both the outer peripheral side and the inner peripheral side of the rotor slot 221 have a semicircular structure, the concentration of stress in the rotor slot 221 is reduced, resulting in a sturdy structure.
  • the rotor slot 222 provided in the rotor core 212 is partially opened on the outer peripheral side, and the rotor conductor is placed in the rotor slot 222 excluding the opening (semi-closed portion).
  • This is a semi-closed structure in which H.232 is formed.
  • the semi-closed portion is an air layer, a material (for example, urethane foam) having substantially the same permeability as air may be used.
  • the permeability of the semi-closed portion can be reduced, so that the magnetic flux leaking in the circumferential direction can be reduced. it can.
  • the reactive current component due to the leakage magnetic flux in the circumferential direction is reduced and the power factor is improved.
  • the current of the stator winding 13 (see FIG. 1) can be reduced. Can be improved.
  • FIG. 5C shows a semi-closed structure in which a part of the outer peripheral side of the rotor slot 223 provided in the rotor core 213 is opened, and a conductor (such as copper) is placed in the rotor slot 223 including the semi-closed portion.
  • a conductor such as copper
  • the rotor slot 224 provided in the rotor core 214 has a rectangular shape, and the rotor conductor 234 is driven and inserted into the rotor slot 224 to manufacture the rotor 20 (see FIG. 1). ing.
  • the rotor slot 224 is rectangular, but it may be other shapes such as a trapezoid.
  • the rotor conductor 234 is joined by a short-circuit ring at both ends thereof, and a method such as brazing, welding, or friction stir welding can be employed for joining.
  • H is the height of the rotor conductors 231 to 234, and all are 19 mm or less.
  • the height of the rotor conductor 23 is H in FIG.
  • a copper conductive material is used for the rotor conductor 23 (see FIG. 1).
  • a copper alloy is used instead of copper, or the electrical resistivity is copper.
  • Other conductive materials substantially equivalent to the above may be used.
  • the electrical resistivity of the rotor conductor 23 is larger than that of copper, the area ratio that can provide a cage induction motor that achieves both start characteristics (starting torque securing) and steady characteristics (high efficiency) is as follows. The shift is made from the first embodiment to the smaller one than 2.7 to 8.0 in the third embodiment.
  • the electrical resistivity also changes depending on the temperature.
  • the electrical resistivity of copper is 1.7241 ⁇ ⁇ cm at 20 ° C.
  • the electrical resistivity at an arbitrary temperature T is 1.7241 ( 1 + 0.00393 (T ⁇ 20)). Therefore, at an extremely low temperature of ⁇ 196 ° C. such as in liquefied nitrogen, the electrical resistivity of copper is 0.37 ⁇ ⁇ cm, which is the highest highest in the JEC-2137-2000 standard, which is the standard of the Electrical Society of Japan.
  • the electrical resistivity of copper is about 3.28 ⁇ ⁇ cm.
  • FIG. 6 is an efficiency characteristic diagram of a two-pole machine with respect to the IE3 standard of a squirrel-cage induction motor according to a fifth embodiment of the present invention.
  • (Pu) is represented, and the vertical axis represents efficiency (%) with respect to the IE3 standard.
  • the height of the rotor conductor 23 is 19 mm or less.
  • the outer diameter of the stator core 11 with respect to the outer diameter of the rotor core 21 is defined as an outer diameter ratio, as shown in FIG. If it is 86 or more and 1.96 or less, the efficiency of the cage induction motor satisfies the IE3 standard level, and a highly efficient cage induction motor can be realized.
  • each plot of FIG. 6 is the actual measurement value calculated
  • FIG. 7 is a characteristic diagram of the starting torque of a two-pole machine with respect to the JIS C4210 standard of a squirrel-cage induction motor according to a fifth embodiment of the present invention.
  • the vertical axis represents the starting torque (%) with respect to the JIS C4210 standard.
  • the outer diameter ratio is 1.87 or more
  • a squirrel-cage induction motor that satisfies the standard for starting torque in JIS C4210 and secures a desired starting torque can be realized.
  • the external ratio at this time is 1.96 or less as shown in FIG.
  • FIG. 8 is an efficiency characteristic diagram of a 4-pole machine with respect to the IE3 standard of a squirrel-cage induction motor according to a sixth embodiment of the present invention.
  • (Pu) is represented, and the vertical axis represents efficiency (%) with respect to the IE3 standard.
  • the height of the rotor conductor 23 is 19 mm or less.
  • the outer diameter ratio is 1.69 or more (see FIG. 8) 1 .78 or less (see FIG. 8)
  • the efficiency of the cage induction motor satisfies the IE3 standard level, and a highly efficient cage induction motor can be realized.
  • FIG. 8 shows actual measurement values obtained by measuring a plurality of squirrel-cage induction motor prototypes.
  • FIG. 9 is a characteristic diagram of the starting torque of a 4-pole machine with respect to the JIS C4210 standard of a squirrel-cage induction motor according to a sixth embodiment of the present invention.
  • the horizontal axis represents the stator slot 12 with respect to the rotor slot 22 of the 4-pole machine.
  • the vertical axis represents the starting torque (%) with respect to the JIS C4210 standard.
  • FIG. 9 shows actual measurement values obtained by manufacturing a large number of cage induction motors and measuring them. At this time, the external ratio was 1.78 or less (see FIG. 8).
  • FIG. 10 is an efficiency characteristic diagram of a 6-pole machine with respect to the IE3 standard of the cage induction motor according to the seventh embodiment of the present invention.
  • (Pu) is represented, and the vertical axis represents efficiency (%) with respect to the IE3 standard.
  • the height of the rotor conductor 23 is 19 mm or less.
  • the outer diameter ratio of the stator core 11 with respect to the outer diameter of the rotor core 21 is an outer diameter ratio
  • the outer diameter ratio is 1.52 or more and 1.68 or less. Satisfies the efficiency of the standard level and can realize a highly efficient squirrel-cage induction motor.
  • the plot of FIG. 10 is the actual value calculated
  • FIG. 11 is a characteristic diagram of the starting torque of a 6-pole machine according to the JIS C4210 standard of a squirrel-cage induction motor according to a seventh embodiment of the present invention.
  • the horizontal axis represents the stator slot 12 with respect to the rotor slot 22 of the 6-pole machine.
  • the vertical axis represents the starting torque (%) with respect to the JIS C4210 standard.
  • an induction motor having an outer diameter ratio of 1.53 or more, satisfying the starting torque of the JIS C4210 standard, and ensuring a good starting torque can be realized.
  • the characteristic diagram of the efficiency with respect to the external ratio of the 6-pole machine in FIG. 10 and the characteristic diagram of the starting torque with respect to the external ratio of the 6-pole machine in FIG. By setting the outer diameter ratio to 1.53 or more and 1.68 or less, it is possible to realize a squirrel-cage induction motor that is highly compatible with starting characteristics (ensuring starting torque) and steady characteristics (higher efficiency). .
  • the conductor material of the stator winding 13 in the first to seventh embodiments is made of aluminum.
  • the electrical resistivity of aluminum is 1.64 times that of copper
  • the total area of the stator slot 12 is increased by 1.64 times that of the first to seventh embodiments.
  • the electrical resistivity also changes depending on the temperature.
  • the electrical resistivity of aluminum is 2.8265 ⁇ ⁇ cm at 20 ° C.
  • the electrical resistivity at an arbitrary temperature T is 2.8265 ( 1 + 0.0040 (T ⁇ 20)). Therefore, the electrical resistivity is 0.57 ⁇ ⁇ cm at a cryogenic temperature of ⁇ 196 ° C. such as in liquefied nitrogen, which is the highest maximum allowable temperature in the JEC-2137-2000 standard, which is the standard of the electrical standard research committee of the Institute of Electrical Engineers of Japan.
  • the electrical resistivity is about 5.43 ⁇ ⁇ cm.
  • the rotor conductor 23 in the first to seventh embodiments described above is made of aluminum.
  • the electrical resistivity of aluminum is 1.64 times that of copper
  • the area of the rotor slot 22 is increased by 1.64 times that of the first to seventh embodiments.
  • ⁇ 11th Embodiment In the tenth embodiment described above, aluminum is used as the material of the rotor conductor 23, but an aluminum alloy may be used, or another conductor having an electrical resistivity equivalent to that of aluminum may be used. For example, by using an alloy of aluminum and copper, the electrical resistivity is smaller than that of aluminum, and higher efficiency can be achieved than the cage induction motor of the tenth embodiment.
  • the electrical resistivity of the rotor conductor 23 is smaller than that of aluminum, the area ratio that can realize a cage induction motor that achieves both starting characteristics (securing start torque) and steady characteristics (higher efficiency) is 10th. It shifts to a larger side than the area ratio of 1.6 or more and 4.9 or less in the embodiment.
  • the electrical resistivity also changes depending on the temperature.
  • the electrical resistivity of aluminum is 2.8265 ⁇ ⁇ cm at 20 ° C.
  • the electrical resistivity at an arbitrary temperature T is 2.8265 ( 1 + 0.0040 (T ⁇ 20)). Therefore, the electrical resistivity is 0.57 ⁇ ⁇ cm at a cryogenic temperature of ⁇ 196 ° C. such as in liquefied nitrogen, which is the highest maximum allowable temperature in the JEC-2137-2000 standard, which is the standard of the electrical standard research committee of the Institute of Electrical Engineers of Japan.
  • the electrical resistivity is about 5.43 ⁇ ⁇ cm.
  • the stator winding 13 and the rotor conductor 23 in the first to seventh embodiments described above are made of aluminum.
  • the electrical resistivity of aluminum is 1.64 times the electrical resistivity of copper, but the areas of the stator slot 12 and the rotor slot 22 are both the first to the seventh embodiments. Since the area ratio does not change even when multiplied by 1.64, the area ratio is set to 2.7 or more and 8.0 or less as in the first to seventh embodiments.
  • a cage induction motor that achieves a high degree of balance between high-performance and steady-state characteristics (high efficiency).
  • ⁇ 13th Embodiment In the twelfth embodiment described above, aluminum is used for the stator winding 13 and the rotor conductor 23. However, an aluminum alloy may be used, and another conductor having an electrical resistivity substantially equivalent to that of aluminum may be used. For example, by using an alloy of aluminum and copper, the electrical resistivity is smaller than that of aluminum, and the efficiency can be further increased as compared with the squirrel-cage induction motor of the twelfth embodiment.
  • the area ratio that can realize a cage induction motor that achieves both start characteristics (ensure start torque) and steady characteristics (high efficiency) is The area ratio is shifted to a smaller side than the area ratio of 2.7 to 8.0 in the twelfth embodiment.
  • the area ratio that can realize a cage induction motor that achieves both starting characteristics (securing starting torque) and steady characteristics (higher efficiency) is: The area ratio is shifted to a larger side than the area ratio of 2.7 to 8.0 in the twelfth embodiment.
  • the electrical resistivity also changes depending on the temperature.
  • the electrical resistivity of aluminum is 2.8265 ⁇ ⁇ cm at 20 ° C.
  • the electrical resistivity at an arbitrary temperature T is 2.8265 ( 1 + 0.0040 (T ⁇ 20)). Therefore, the electrical resistivity is 0.57 ⁇ ⁇ cm at a cryogenic temperature of ⁇ 196 ° C. such as in liquefied nitrogen, which is the highest maximum allowable temperature in the JEC-2137-2000 standard, which is the standard of the electrical standard research committee of the Institute of Electrical Engineers of Japan.
  • the electrical resistivity is about 5.43 ⁇ ⁇ cm.
  • a self-starting permanent magnet motor (also referred to as an MS motor), which is a modification of the cage induction motor described in the first to thirteenth embodiments, will be described.
  • the structure of the self-starting permanent magnet motor is a well-known technique and is not particularly illustrated, referring to FIG. 1, the rotor 20 includes a rotor core 21 and a predetermined direction in the circumferential direction of the rotor core 21.
  • a plurality of rotor slots 22 provided radially at intervals, a rotor conductor 23 housed in each of these rotor slots 22 for generating torque at start-up, and further on the inner peripheral side of the rotor slot 22 A permanent magnet that is installed and generates torque in a steady state.
  • the configuration on the stator 10 side may be the same as the configuration shown in FIG.
  • a self-starting permanent magnet motor having such a configuration has the same operational effects as those of the first to thirteenth embodiments described above. Therefore, the starting characteristics (securing start torque) and the steady characteristics (higher efficiency) It is possible to realize a self-starting permanent magnet motor that can achieve both of the above.
  • the squirrel-cage induction motor according to each embodiment of the present invention is a motor winding allowable temperature standard according to JEC (Japanese Electrotechnical Committee), IEC (International Electrotechnical Commission: Based on various standards such as motor efficiency standards by the International Electrotechnical Commission) and motor torque standards by JIS (International Organization of Standardization), the efficiency and torque characteristics that satisfy these standards can be realized.
  • JEC Japanese Electrotechnical Committee
  • IEC International Electrotechnical Commission: Based on various standards such as motor efficiency standards by the International Electrotechnical Commission
  • motor torque standards by JIS International Organization of Standardization
  • the area ratio is 2.3 or more and 8.0 or less (preferably 2.7 or more and 8.0 or less). It is possible to improve both the starting characteristics (starting torque) of the squirrel-cage induction motor and the steady-state characteristics (higher efficiency). As described above, the allowable temperature, efficiency, and torque determined by international standards are used as reference values, and the efficiency and starting torque exceeding the reference values are realized, thereby improving the efficiency and starting torque.
  • a squirrel-cage induction motor can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)

Abstract

 かご形誘導電動機は、固定子鉄心(11)と、この固定子鉄心(11)の円周方向に設けられた複数の固定子スロット(12)と、固定子スロット(12)に収納された複数の固定子巻線(13)と、回転子鉄心(21)と、この回転子鉄心(21)の円周方向に設けられた複数の回転子スロット(22)と、回転子スロット(22)に収納された複数の回転子導体(23)とを備えたかご形誘導電動機において、固定子巻線(13)及び回転子導体(23)は銅を主成分とする導電性材料で構成され、かつ、複数の回転子スロット(22)の総面積に対する複数の固定子スロット(12)の総面積の面積比が、2.3以上8.0以下であることにより、始動時のトルク特性の向上と定常時の高効率化とを両立させる。

Description

かご形誘導電動機及びかご形誘導電動機駆動システム
 本発明は、固定子と回転子のスロット面積比を改良したかご形誘導電動機、及びかご形誘導電動機を駆動するためのかご形誘導電動機駆動システムに関する。
 従来、かご形誘導電動機の小型化、高効率化を図るために様々な構造改良がなされてきた。例えば、二重給電型のかご形誘導電動機において、固定子スロットと回転子スロットの面積比を、固定子巻線と回転子巻線の電流比と等しくすることにより、固定子巻線と回転子巻線の電流密度を等しくして小型化及び高効率化を図る技術が開示されている(特許文献1参照)。この技術によれば、固定子巻線と回転子巻線の電流密度を同じにすることにより、両巻線の温度上昇を比較的等しくすることができるので、発生トルクの減少を回避することができるため、結果的に、かご形誘導電動機の小型化、高効率化を図ることが可能となる。また、小型コンデンサ型誘導電動機において、固定子のスロット面積を、径が固定子の外径となる円の面積に対して0.45~0.65とすることにより、同一特性に対して鉄心使用量を25%低減し、かつ導線使用量を18%低減し、さらに、同一寸法の場合は出力特性を145%増加させることができる技術が開示されている(特許文献2参照)。
特開2007-166796号公報 特開昭60-39352号公報
 しかしながら、前記特許文献1の技術は二重給電形かご形誘導電動機に関する技術であるが、一般のかご形誘導電動機では、二次電流の大きさは運転状態に応じて誘導電流として大きく変化することから、運転状態によって固定子巻線と回転子巻線の電流比が変化するため、固定子巻線と回転子巻線の電流比だけでは固定子スロットと回転子スロットの面積比を一意に決め難い。一方、前記特許文献2の技術は、固定子のスロット面積に関する技術であるが、固定子のスロット面積の調整だけでは、誘導電動機における始動特性の改善(始動トルクの向上)と定常特性の改善(高効率化)とを両立させることは難しい。
 本発明は、このような問題点に鑑みてなされたものであり、固定スロットと回転子スロットの面積比を適正に設定することにより、始動時のトルク特性の向上と定常時の高効率化とを両立させることができるかご形誘導電動機、及びかご形誘導電動機を駆動するためのかご形誘導電動機駆動システムを提供することを課題とする。
 前記課題を解決するために、本発明のかご形誘導電動機は、固定子鉄心と、この固定子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の固定子スロットと、これらの固定子スロットにそれぞれ収納された複数の固定子巻線と、回転子鉄心と、この回転子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の回転子スロットと、これらの回転子スロットにそれぞれ収納された複数の回転子導体とを備えたかご形誘導電動機において、固定子巻線及び回転子導体は銅を主成分とする導電性材料で構成され、かつ、複数の回転子スロットの総面積に対する複数の固定子スロットの総面積の面積比が、2.3以上8.0以下(好ましくは、2.7以上8.0以下)である構成を採っている。
 この構成によれば、本発明はその一面において、かご型誘導電動機の始動特性及び定常特性を同時に改善するために、固定子巻線及び回転子導体に銅または銅合金の導電性材料を使用し、かつ、回転子スロットの総面積に対する固定子スロットの総面積の面積比を2.3以上8.0以下(好ましくは、2.7以上8.0以下)としている。
 本発明のかご形誘導電動機によれば、少なくとも回転子導体に銅または銅合金の導電性材料を使用し、回転子スロットの総面積に対する固定子スロットの総面積の面積比を2.3以上8.0以下(好ましくは、2.7以上8.0以下)の範囲で適切に選択することにより、始動特性(始動トルク)の向上と定常特性の改善(高効率化)とを両立させることができる。
本発明による各実施形態に係るかご形誘導電動機の部分断面図である。 導体材料として銅を用いた回転子導体の定常時に対する起動時の電気抵抗の比を示す図である。 本発明による第1実施形態に係るかご形誘導電動機の効率特性図である。 本発明による第1実施形態に係るかご形誘導電動機の始動トルク特性図である。 本発明による第3実施形態に係るかご形誘導電動機の回転子スロット及び回転子導体の部分断面図である。 本発明による第5実施形態に係るかご形誘導電動機の2極機の効率特性図である。 本発明による第5実施形態に係るかご形誘導電動機の2極機の始動トルク特性図である。 本発明による第6実施形態に係るかご形誘導電動機の4極機の効率特性図である。 本発明による第6実施形態に係るかご形誘導電動機の4極機の始動トルク特性図である。 本発明による第7実施形態に係るかご形誘導電動機の6極機の効率特性図である。 本発明による第7実施形態に係るかご形誘導電動機の6極機の始動トルク特性図である。
 本発明によるかご形誘導電動機は、電気抵抗率の低い銅などの導電性材料を固定子巻線及び回転子導体に用いて高効率化を図り、かつ、始動時に所定の電気抵抗となるようにして所望の始動トルクを確保し、始動特性(始動トルク)と定常特性(効率)の向上とを両立させている。そのために、回転子スロットの総面積に対する固定スロットの総面積の比率(面積比)が所定の範囲になるようにしている。
 以下、本発明による各実施形態に係るかご形誘導電動機について、適宜図面を参照しながら詳細に説明する。
 図1は、本発明による各実施形態に係るかご形誘導電動機の部分断面図である。
 図1に示すように、かご形誘導電動機の固定子10は、固定子鉄心11と、この固定子鉄心11の内周近くで円周方向に等間隔を置いて設置された多数の固定子スロット12と、これらの固定子スロット12に埋め込まれた固定子巻線13とを備えている。なお、1個の固定子スロット12の面積はS1、固定子スロット12のスロット数はN1である。
 一方、回転子20は、回転子鉄心21と、この回転子鉄心21の外周近くで円周方向に等間隔を置いて設置された多数の回転子スロット22と、これらの回転子スロット22に埋め込まれた回転子導体23とを備えている。なお、1個の回転子スロット22の面積はS2、回転子スロット22のスロット数はN2である。
 本発明による各実施形態では、固定子巻線13及び回転子導体23はそれぞれ銅製の導電性材料であり、回転子スロット22の総面積(S2×N2)に対する固定子スロット12の総面積(S1×N1)の比率(つまり、(S1×N1)/(S2×N2))を面積比としたとき、その面積比が2.7以上8.0以下となる構成となっている。
 かご形誘導電動機の効率を向上させるためには、回転子導体23の電気抵抗を小さくして、回転子導体23で発生する損失を小さくしたいが、かご形誘導電動機の起動時においては回転子導体23の電気抵抗は始動トルクに比例するため(つまり、回転子導体23の電気抵抗を小さくして損失を小さくすると始動トルクが低下するため)、単に電気抵抗率の小さい導電性材料に変更しただけでは(たとえば、導電性材料をアルミニウムから銅に変更しただけでは)、始動特性(始動トルク)が悪化してしまう。すなわち、かご形誘導電動機において、回転子導体23の電気抵抗を小さくして効率を向上させようとすると始動トルクが低下してしまう。
 このような高効率化と始動トルクの向上とはトレードオフの関係にあるので、これらの特性の双方を改善するために、可変周波数インバータを電源としたかご形誘導電動機において、回転子導体23の断面形状を工夫することで、電流分布の偏りである表皮効果を利用して、始動時のみインバータの周波数を高くして回転子導体23の電気抵抗を大きくし、始動特性(始動トルク)の向上を図る技術が知られている(例えば、特開2004-248361号公報参照)。しかし、表皮効果を利用して、始動時のみ回転子導体23の電気抵抗を大きくして始動特性(始動トルク)の改善を図ることはできるが、回転子導体23の断面積が小さい場合は表皮効果の影響が小さくなり、必然的に始動トルクの改善幅も小さくなってしまう。また、かご形誘導電動機の駆動電流の周波数が低いときは(例えば、商用電源でかご形誘導電動機を駆動しているときは)、表皮効果の影響が小さくなり、始動トルクの改善幅も小さくなってしまう。
 図2は、導体材料として銅を用いた回転子導体23の定常時(定格回転時)に対する起動時の電気抵抗の比を示す図であり、横軸に回転子導体23の高さ(cm)、縦軸に回転子導体23の電気抵抗の比(p.u:per unit)を表わしている。なお、定常時における銅の回転子導体23の電気抵抗を1p.uとしている。
 図2において、実線で示す特性(a)は、定常時(定格回転時)に対する起動時の銅の回転子導体23の電気抵抗の比であり、破線で示す特性(b)は、定常時の銅の回転子導体23の電気抵抗に対する定常時のアルミニウムの回転子導体23の電気抵抗の比である。図2から分かるように、回転子20の径方向における回転子導体23の高さ(以下、単に、回転子導体23の高さという)が19mm以下では、アルミニウムの回転子導体23の電気抵抗の比より銅の回転子導体23の電気抵抗の比の方が小さいが、回転子導体23の高さが19mmを超えると、アルミニウムの回転子導体23の電気抵抗の比より銅の回転子導体23の電気抵抗の比の方が大きくなってしまう。
 言い換えると、図1に示す回転子導体23を、たとえばアルミニウムから銅に変更した場合は、回転子導体23の高さが19mm以下では、起動時の電気抵抗が、アルミニウムを用いた定常時の電気抵抗よりも小さくなるため、前記特開2004-248361号公報の技術のように、かご形誘導電動機の起動時において、表皮効果を利用して始動特性(始動トルク)の改善を図ることは困難であることが分かった。
 そこで、本発明による各実施形態では、回転子導体23の高さが19mm以下であっても、始動特性(始動トルク)の改善と定常特性(効率)の改善とを両立させることができるかご形誘導電動機を実現している。すなわち、本発明による各実施形態のかご形誘導電動機では、回転子導体23の表皮効果に頼って始動特性を改善しようとするのではなく、回転子導体23の断面積を小さくし、始動トルクに比例する回転子導体23の電気抵抗を大きくすることによって始動特性の改善を図った。それにより、回転子導体23の高さが19mm以下となり、表皮効果が小さくなる場合であっても、始動特性の改善を図ることが可能となる。
 ところが、単に、回転子導体23の高さを19mm以下にして、その回転子導体23の断面積を小さくして電気抵抗を大きくすると、定常時においても回転子導体23の電気抵抗が大きくなり、回転子導体23で発生する損失が増加して定常時(定格回転時)の効率が低下してしまう。そこで、回転子導体23の断面積を小さくした分、回転子20の外径、及び固定子10の内径を小さくすることで、固定子10の面積を大きくし、固定子スロット12及び固定子巻線13の断面積を大きくすることによって、固定子巻線13の電気抵抗が小さくなり、その結果、固定子巻線13に発生する損失が低減されて、効率を向上させることができる。
《第1実施形態》
 図3は、本発明による第1実施形態に係るかご形誘導電動機のIE3規格に対する効率の特性図であり、横軸に回転子スロット22の総面積に対する固定子スロット12の総面積の面積比(p.u)を表わし、縦軸にIE3規格に対する効率(%)を表わしている。
 IE3規格とは、国際標準規格IEC60034-30で定義された回転電機(モータ)の効率規格であり、IE3規格レベルとして回転電機の出力容量ごとに効率レベルが規定されている。したがって、図3に示す特性図では、縦軸におけるIE3規格に対する効率が0.0%以上である場合が、IE3規格レベル以上の効率である。なお、ここでは回転子導体23の高さは19mm以下としている。
 図3から分かるように、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比が2.3以上8.0以下の範囲において、かご形誘導電動機の効率はIEC60034-30のIE3規格の効率レベル(IE3規格レベル)以上であるため、面積比が2.3以上8.0以下の範囲にある場合において、高効率なかご形誘導電動機を実現することができる。なお、図3における各プロットは、多数のかご形誘導電動機の試作機の測定によって求めた効率実測値のIE3規格に対する効率である。
 すなわち、一つの技術的レベルとして、IE3規格の効率レベル(IE3規格レベル)以上の効率を実現できるかご形誘導電動機は、高効率なかご形誘導電動機として評価することができるので、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比が2.3以上8.0以下の範囲にあるかご形誘導電動機を製作することによって、高効率なかご形誘導電動機を実現することが可能となる。
 図4は、本発明による第1実施形態に係るかご形誘導電動機のJIS C4210規格に対する始動トルクの特性図である。この特性図では、横軸に回転子スロット22の総面積に対する固定子スロット12の総面積の面積比(p.u)を表わし、縦軸にJIS C4210規格に対する始動トルク(%)を表わしている。JIS C4210は、低圧三相かご型誘導電動機の電気特性を示す国際標準規格であり、その規格の中に定格出力ごとの始動トルクのレベルが規定されている。なお、図4の各プロットは、図3でIE3規格レベルの効率を上回っているかご型誘導電動機の試作機の特性のみを記載している。
 図4に示すように、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比が2.7以上の場合において、JIS C4210規格における始動トルクの規格レベル以上であり、良好な始動トルクを確保したかご型誘導電動機を実現することができる。なお、図4の各プロットは、図3で用いたかご型誘導電動機の試作機を測定して求めた実測値である。
 一つの技術的レベルとして、JIS C4210に定める規格以上の始動トルクを実現できるかご形誘導電動機は、始動特性(始動トルク)の良好なかご形誘導電動機として評価することができるので、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比が2.7以上にあるかご形誘導電動機を製作することによって、始動特性(始動トルク)の良好なかご形誘導電動機を実現することができる。
 すなわち、図3の面積比に対する効率の特性図及び図4の面積比に対する始動トルクの特性図により、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比を2.7以上8.0以下とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を実現することができる。言い換えると、電気標準規格であるIEC60034-30のIE3規格及びJIS C4210規格を満足するかご形誘導電動機は、商品化の技術的レベルをクリアしたかご形誘導電動機であるので、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比が2.7以上8.0以下の範囲にあるかご形誘導電動機を実現することにより、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を提供することができる。
《第2実施形態》
 前述の第1実施形態においては可変周波数インバータを電源としたかご形誘導電動機を想定したが、第2実施形態においては、可変周波数インバータを介することなく、商用周波数のままの交流電力をかご形誘導電動機に直接供給する、かご形誘導電動機駆動システムについて説明する。
 第2実施形態における電源装置としては、商用三相交流電源から受電盤で受電した三相交流を、商用電源のまま(つまり、可変周波数インバータを介することなく)、三相かご形誘導電動機の固定子巻線13に供給するための開閉器を備えている。すなわち、第2実施形態におけるかご形誘導電動機は、面積比を2.7以上8.0以下とすることで定格トルク以上の始動トルクを確保することができるため、可変周波数インバータを介することなく、商用周波数の電源(つまり、商用電源)で起動することが可能である。さらに、可変周波数インバータを介することがないため、可変周波数インバータの損失がなくなり、結果的に、かご形誘導電動機駆動システムの効率を向上させることができる。
《第3実施形態》
 図5は、本発明による第3実施形態に係るかご形誘導電動機の回転子スロット及び回転子導体231~234の部分断面図である。第3実施形態では、前述の第1実施形態及び第2実施形態の構成において、回転子導体231~234の断面構造を、それぞれ、図5(a)、図5(b)、図5(c)、図5(d)に示すように構成した。
 図5(a)に示す第1例では、回転子鉄心211に設けた回転子スロット221の外周側に開口している部分がない全閉構造であって、回転子スロット221の外周側及び内周側ともに半円構造としてある。回転子スロット221は、例えば、銅をダイカストすることによって形成する。このように、回転子スロット221を全閉構造とすることで、開口部がないために溶かした銅が回転子スロット221の外周側へ流れ出すことがなくなるので、かご形誘導電動機の製造がしやすくなる。また、回転子スロット221の外周側及び内周側ともに半円構造としているため、回転子スロット221に応力の集中が少なくなって頑丈な構造となる。
 図5(b)に示す第2例では、回転子鉄心212に設けた回転子スロット222の外周側が一部開口し、開口部(半閉部分)を除いた回転子スロット222内に回転子導体232を形成した半閉構造である。半閉部分は空気層となっているが、透磁率が空気とほぼ同等な材料(例えば、発泡ウレタン)としてもよい。このように、回転子スロット222の外周側の一部を開口して半閉構造とすることで、半閉部分の透磁率を小さくすることができるので、円周方向に漏れる磁束を減らすことができる。その結果、円周方向の漏れ磁束による無効電流成分が減少して力率が改善されるので、結果的に、固定子巻線13(図1参照)の電流を低減することができるため、効率の向上化を図ることができる。
 図5(c)は、回転子鉄心213に設けた回転子スロット223の外周側が一部開口している半閉構造で、半閉部分を含めた回転子スロット223内に、導体(銅など)を用いて回転子導体233を形成している。回転子鉄心213の外周側に治具を当てダイカストすることで製造することができるため、半閉部分の銅をダイカスト後に削り取ることが不要となり、電機子巻線の製造が容易になる。
 図5(d)は、回転子鉄心214に設けた回転子スロット224の形状を矩形とし、回転子スロット224に回転子導体234を打ち込み挿入して、回転子20(図1参照)を製作している。図5(d)では回転子スロット224を矩形としているが、台形など他の形状としてもよい。回転子導体234は、その両端で短絡環により接合されているが、接合には、ロウ付け、溶接、または摩擦撹拌接合などの方法を採ることができる。
 なお、図5に示す各例において、Hは回転子導体231~234の高さであり、すべて19mm以下とする。なお、第1実施形態及び第2実施形態においても、回転子導体23の高さを図5におけるHとしている。
《第4実施形態》
 前記した第1実施形態から第3実施形態においては、回転子導体23(図1参照)には銅の導電材料を用いているが、銅の代わりに銅合金を用いたり、電気抵抗率が銅とほぼ同等な他の導電材料を用いたりしてもよい。たとえばアルミニウムと銅の合金を用いることで、融点が銅よりも低く押さえられ、ダイカストの回転子導体23を製造することが容易となる。また、回転子導体23の電気抵抗率が銅よりも大きい場合は、始動特性(始動トルク確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を提供できる面積比は、第1実施形態から第3実施形態における2.7以上8.0以下よりも小さい方へシフトする。
 また、電気抵抗率は温度によっても変化し、銅の電気抵抗率は、電気工学ハンドブックによると、20℃では1.7241μΩ・cmであり、任意の温度Tの電気抵抗率は、1.7241(1+0.00393(T-20))で計算できる。したがって、液化窒素中などの極低温の-196℃では、銅の電気抵抗率は0.37μΩ・cmであり、電気学会の電気規格調査会標準規格であるJEC-2137-2000規格で最も高い最高許容温度の250℃では、銅の電気抵抗率は3.28μΩ・cm程度となる。
《第5実施形態》
 図6は、本発明による第5実施形態に係るかご形誘導電動機のIE3規格に対する2極機の効率特性図であり、横軸に2極機の回転子スロット22に対する固定子スロット12の外形比(p.u)を表わし、縦軸にIE3規格に対する効率(%)を表わしている。
 なお、回転子導体23の高さは19mm以下としている。前述の第1実施形態から第4実施形態において、回転子鉄心21の外径に対する固定子鉄心11の外径を外径比としたとき、図6に示すように、その外径比を1.86以上1.96以下とすると、かご形誘導電動機の効率はIE3規格レベルを満足していて、高効率なかご形誘導電動機を実現することができる。なお、図6の各プロットは、多数のかご形誘導電動機の試作機を製作して測定により求めた実測値である。
 図7は、本発明による第5実施形態に係るかご形誘導電動機のJIS C4210規格に対する2極機の始動トルクの特性図であり、横軸に2極機の回転子スロット22に対する固定子スロット12の外形比(p.u)を表わし、縦軸にJIS C4210規格に対する始動トルク(%)を表わしている。
 図7に示すように、外径比が1.87以上のとき、JIS C4210における始動トルクの規格を満足していて、所望の始動トルクを確保したかご型誘導電動機を実現することができる。なお、このときの外形比は、図6に示すように1.96以下とする。
 すなわち、図6の2極機の外形比に対する効率の特性図、及び図7の2極機の外形比に対するに対する始動トルクの特性図により、2極機の回転子スロット22に対する固定子スロット12の外形比を1.87以上(図7参照)1.96以下(図6参照)とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを高度に両立させたかご形誘導電動機を実現することができる。
《第6実施形態》
 図8は、本発明による第6実施形態に係るかご形誘導電動機のIE3規格に対する4極機の効率特性図であり、横軸に4極機の回転子スロット22に対する固定子スロット12の外形比(p.u)を表わし、縦軸にIE3規格に対する効率(%)を表わしている。
 なお、回転子導体23の高さは19mm以下としている。前記した第1実施形態から第4実施形態において、回転子鉄心21の外径に対する固定子鉄心11の外径を外径比としたとき、外径比を1.69以上(図8参照)1.78以下(図8参照)とすると、かご形誘導電動機の効率はIE3規格レベルを満足し、高効率なかご形誘導電動機を実現することができる。なお、図8は、複数のかご形誘導電動機の試作機を製作して測定により求めた実測値である。
 図9は、本発明による第6実施形態に係るかご形誘導電動機のJIS C4210規格に対する4極機の始動トルクの特性図であり、横軸に4極機の回転子スロット22に対する固定子スロット12の外形比(p.u)を表わし、縦軸にJIS C4210規格に対する始動トルク(%)を表わしている。
 図9に示すように、外径比が1.72以上のとき、JIS C4210規格の始動トルクを満足し、所望の始動トルクを確保した誘導電動機を実現することができる。なお、図9は、多数のかご形誘導電動機を製作して測定により求めた実測値である。なお、このとき、外形比は1.78以下であった(図8参照)。
 すなわち、図8の4極機の外形比に対する効率の特性図、及び図9の4極機の外形比に対するに対する始動トルクの特性図により、4極機の回転子スロット22に対する固定子スロット12の外形比を1.72以上(図9参照)1.78以下(図8参照)とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを高度に両立させたかご形誘導電動機を実現することができる。
《第7実施形態》
 図10は、本発明による第7実施形態に係るかご形誘導電動機のIE3規格に対する6極機の効率特性図であり、横軸に6極機の回転子スロット22に対する固定子スロット12の外形比(p.u)を表わし、縦軸にIE3規格に対する効率(%)を表わしている。
 なお、回転子導体23の高さは19mm以下としている。第1実施形態から第4実施形態において、回転子鉄心21の外径に対する固定子鉄心11の外径を外径比としたとき、外径比を1.52以上1.68以下とすると、IE3規格レベルの効率を満足し、高効率なかご形誘導電動機を実現することができる。なお、図10のプロットは、多数のかご形誘導電動機を製作して測定により求めた実測値である。
 図11は、本発明による第7実施形態に係るかご形誘導電動機のJIS C4210規格に対する6極機の始動トルクの特性図であり、横軸に6極機の回転子スロット22に対する固定子スロット12の外形比(p.u)を表わし、縦軸にJIS C4210規格に対する始動トルク(%)を表わしている。
 図11に示すように、外径比が1.53以上で、JIS C4210規格の始動トルクを満足し、良好な始動トルクを確保した誘導電動機を実現することができる。
 すなわち、図10の6極機の外形比に対する効率の特性図、及び図11の6極機の外形比に対するに対する始動トルクの特性図により、6極機の回転子スロット22に対する固定子スロット12の外径比を1.53以上1.68以下とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを高度に両立させたかご形誘導電動機を実現することができる。
《第8実施形態》
 本実施形態は、前記した第1実施形態から第7実施形態における固定子巻線13の導体材料をアルミニウムで構成したものである。電気工学ハンドブックによると、アルミニウムの電気抵抗率は銅の電気抵抗率の1.64倍であることから、固定子スロット12の総面積を第1実施形態から第7実施形態の1.64倍して、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比を4.4以上13.1以下とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを高度に両立させたかご形誘導電動機を実現することができる。
《第9実施形態》
 前記した第8実施形態においては固定子巻線13にアルミニウムを用いているが、アルミニウム合金を用いてもよく、電気抵抗率がアルミニウムと同等な導体を用いてもよい。たとえばアルミニウムと銅の合金を用いることで、電気抵抗率はアルミニウムよりも小さくなり、第8実施形態よりも更に高効率なかご形誘導電動機を実現することができる。固定子巻線13の電気抵抗率がアルミニウムよりも小さい場合は、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を実現できる面積比は、第8実施形態における4.4以上13.1以下よりも更に小さくなる。
 また、電気抵抗率は温度によっても変化し、電気工学ハンドブックによると、アルミニウムの電気抵抗率は、20℃では2.8265μΩ・cmであり、任意の温度Tの電気抵抗率は、2.8265(1+0.0040(T-20))で計算できる。したがって、液化窒素中などの極低温の-196℃では電気抵抗率は0.57μΩ・cmであり、電気学会の電気規格調査会標準規格であるJEC-2137-2000規格で最も高い最高許容温度の250℃では、電気抵抗率は5.43μΩ・cm程度となる。
《第10実施形態》
 本実施形態は、前記した第1実施形態から第7実施形態における回転子導体23をアルミニウムで構成したものである。電気工学ハンドブックによると、アルミニウムの電気抵抗率は銅の電気抵抗率の1.64倍であることから、回転子スロット22の面積を第1実施形態から第7実施形態の1.64倍し、回転子スロット22の総面積に対する固定子スロット12の総面積の面積比を1.6以上4.9以下とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを高度に両立させたかご形誘導電動機を実現することができる。
《第11実施形態》
 前記した第10実施形態では、回転子導体23の材質にアルミニウムを用いているが、アルミニウム合金でもよく、また、電気抵抗率がアルミニウムと同等な他の導体でもよい。たとえばアルミニウムと銅の合金を用いることで、電気抵抗率はアルミニウムよりも小さくなり、第10実施形態のかご型誘導電動機よりも高効率化を図ることができる。回転子導体23の電気抵抗率がアルミニウムよりも小さい場合は、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を実現できる面積比は、第10実施形態における面積比1.6以上4.9以下よりも更に大きい側にシフトする。
 また、電気抵抗率は温度によっても変化し、電気工学ハンドブックによると、アルミニウムの電気抵抗率は、20℃では2.8265μΩ・cmであり、任意の温度Tの電気抵抗率は、2.8265(1+0.0040(T-20))で計算できる。したがって、液化窒素中などの極低温の-196℃では電気抵抗率は0.57μΩ・cmであり、電気学会の電気規格調査会標準規格であるJEC-2137-2000規格で最も高い最高許容温度の250℃では、電気抵抗率は5.43μΩ・cm程度となる。
《第12実施形態》
 本実施形態は、前記した第1実施形態から第7実施形態における固定子巻線13及び回転子導体23をアルミニウムで構成している。電気工学ハンドブックによると、アルミニウムの電気抵抗率は銅の電気抵抗率の1.64倍であるが、固定子スロット12及び回転子スロット22の面積を、共に、第1実施形態から第7実施形態の1.64倍しても、面積比は変化しないため、第1実施形態から第7実施形態のように、面積比を2.7以上8.0以下とすることで、始動特性(始動トルクの確保)と定常特性(高効率化)とを高度に両立させたかご形誘導電動機を実現することができる。
《第13実施形態》
 前記した第12実施形態においては固定子巻線13及び回転子導体23にアルミニウムを用いているが、アルミニウム合金でもよく、電気抵抗率がアルミニウムと実質的に同等な他の導体でもよい。たとえばアルミニウムと銅の合金を用いることで、電気抵抗率はアルミニウムよりも小さくなり、第12実施形態のかご形誘導電動機よりも更に高効率化を図ることができる。固定子巻線13の電気抵抗率がアルミニウムよりも小さい場合は、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を実現できる面積比は、第12実施形態における面積比2.7以上8.0以下よりも更に小さい側にシフトする。また、回転子導体23の電気抵抗率がアルミニウムよりも小さい場合は、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させたかご形誘導電動機を実現できる面積比は、第12実施形態における面積比2.7以上8.0以下よりも更に大きい側にシフトする。
 また、電気抵抗率は温度によっても変化し、電気工学ハンドブックによると、アルミニウムの電気抵抗率は、20℃では2.8265μΩ・cmであり、任意の温度Tの電気抵抗率は、2.8265(1+0.0040(T-20))で計算できる。したがって、液化窒素中などの極低温の-196℃では電気抵抗率は0.57μΩ・cmであり、電気学会の電気規格調査会標準規格であるJEC-2137-2000規格で最も高い最高許容温度の250℃では、電気抵抗率は5.43μΩ・cm程度となる。
《第14実施形態》
 本実施形態では、前記した第1実施形態から第13実施形態で述べたかご形誘導電動機の変形である自己始動形永久磁石電動機(MSモータとも言う)について説明する。
 自己始動形永久磁石電動機の構造については周知の技術であるので特に図示しないが、図1を参照すると、回転子20が、回転子鉄心21と、この回転子鉄心21の円周方向に所定の間隔をもって放射状に設けられた複数の回転子スロット22と、これらの回転子スロット22にそれぞれ収納されていて始動時にトルクを発生させる回転子導体23と、更に、回転子スロット22の内周側に設置されていて、定常時にトルクを発生させる永久磁石とを備えて構成されている。なお、固定子10側の構成は図1に示す構成と同じでよい。
 このような構成の自己始動形永久磁石電動機であっても、前記した第1実施形態から第13実施形態と同じ作用効果を奏するので、始動特性(始動トルクの確保)と定常特性(高効率化)とを両立させることができる自己始動形永久磁石電動機を実現することが可能である。
《まとめ》
 以上述べたように、本発明による各実施形態におけるかご形誘導電動機は、JEC(Japanese Electrotechnical Committee:電気学会・電気規格調査会標準規格)による電動機巻線の許容温度規格、IEC(International Electrotechnical Commission:国際電気標準会議)による電動機の効率規格、及びJIS(International Organization of Standardization:国際標準規格)による電動機のトルク規格などの各種規格に準拠して、それらの規格をクリアする効率及びトルク特性を実現できるように、回転子スロットの総面積と固定スロットの総面積との面積比を決定して、かご形誘導電動機の高効率化と始動トルクの向上とを両立させている。具体的には、固定子巻線及び回転子導体に銅を用いたとき、前記面積比を2.3以上8.0以下(好ましくは、2.7以上8.0以下)としたときに、かご形誘導電動機の始動特性(始動トルク)の向上と定常特性の改善(高効率化)とを両立させることができる。このように、国際規格などで決められた許容温度、効率、及びトルクを基準値として、その基準値を上回った効率及び始動トルクを実現させることによって、高効率化と始動トルクの向上を図ったかご形誘導電動機を提供することが可能となる。
 10 固定子
 11 固定子鉄心
 12 固定子スロット
 13 固定子巻線
 20 回転子
 21、211、212、213、214 回転子鉄心
 22、221、222、223、224 回転子スロット
 23、231、232、233、234 回転子導体
 

Claims (11)

  1.  固定子鉄心と、この固定子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の固定子スロットと、これらの固定子スロットにそれぞれ収納された複数の固定子巻線と、回転子鉄心と、この回転子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の回転子スロットと、これらの回転子スロットにそれぞれ収納された複数の回転子導体とを備えたかご形誘導電動機において、
     前記固定子巻線及び前記回転子導体は銅を主成分とする導電性材料で構成され、かつ、前記複数の回転子スロットの総面積に対する前記複数の固定子スロットの総面積の面積比は、2.3以上8.0以下であることを特徴とするかご形誘導電動機。
  2.  固定子鉄心と、この固定子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の固定子スロットと、これらの固定子スロットにそれぞれ収納された複数の固定子巻線と、回転子鉄心と、この回転子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の回転子スロットと、これらの回転子スロットにそれぞれ収納された複数の回転子導体とを備えたかご形誘導電動機において、
     前記固定子巻線及び前記回転子導体は銅を主成分とする導電性材料で構成され、かつ、前記複数の回転子スロットの総面積に対する前記複数の固定子スロットの総面積の面積比は、2.7以上8.0以下であることを特徴とするかご形誘導電動機。
  3.  前記固定子巻線及び前記回転子導体は、電気抵抗率が0.37μΩ・cm以上3.28μΩ・cm以下の導電性材料が用いられていることを特徴とする請求の範囲第1項に記載のかご形誘導電動機。
  4.  磁極の極数が2であるとき、前記回転子鉄心の外径に対する前記固定子鉄心の外径の径比は、1.87以上1.96以下であることを特徴とする請求の範囲第1項に記載のかご形誘導電動機。
  5.  磁極の極数が4であるとき、前記回転子鉄心の外径に対する前記固定子鉄心の外径の径比は、1.72以上1.78以下であることを特徴とする請求の範囲第1項に記載のかご形誘導電動機。
  6.  磁極の極数が6であるとき、前記回転子鉄心の外径に対する前記固定子鉄心の外径の径比は、1.53以上1.68以下であることを特徴とする請求の範囲第1項に記載のかご形誘導電動機。
  7.  固定子鉄心と、この固定子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の固定子スロットと、これらの固定子スロットにそれぞれ収納された複数の固定子巻線と、回転子鉄心と、この回転子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の回転子スロットと、これらの回転子スロットにそれぞれ収納された複数の回転子導体とを備えたかご形誘導電動機において、
     前記固定子巻線はアルミニウムを主成分とする導電性材料で構成され、前記回転子導体は銅を主成分とする導電性材料で構成され、かつ、前記複数の回転子スロットの総面積に対する前記複数の固定子スロットの総面積の面積比は、4.4以上13.1以下であることを特徴とするかご形誘導電動機。
  8.  前記固定子巻線は、電気抵抗率が0.57μΩ・cm以上5.43μΩ・cm以下の導電性材料が用いられ、
     前記回転子導体は、電気抵抗率が0.37μΩ・cm以上3.28μΩ・cm以下の導電性材料が用いられている
     ことを特徴とする請求の範囲第7項に記載のかご形誘導電動機。
  9.  前記回転子導体の円周方向の高さは19mm以下であることを特徴とする請求の範囲第8項に記載のかご形誘導電動機。
  10.  回転子が、前記回転子鉄心と、この回転子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の前記回転子スロットと、これらの回転子スロットにそれぞれ収納され、始動時にトルクを発生させる前記回転子導体と、定常時にトルクを発生させる永久磁石とで構成され、
     固定子が、前記固定子鉄心と、この固定子鉄心の円周方向に所定の間隔をもって放射状に設けられた複数の前記固定子スロットと、これらの固定子スロットにそれぞれ収納された前記固定子巻線とで構成された自己始動型電動機であることを特徴とする請求の範囲第9項に記載のかご形誘導電動機。
  11.  請求の範囲第1項に記載のかご形誘導電動機と、そのかご形誘導電動機に三相交流電力を給電する三相交流電源とを備えたかご形誘導電動機駆動システムにおいて、
     前記三相交流電源は商用電源であって、その商用電源から直接に前記固定子巻線へ電力を供給または遮断するための開閉器を備えていることを特徴とするかご形誘導電動機駆動システム。
     
PCT/JP2009/064584 2008-10-23 2009-08-20 かご形誘導電動機及びかご形誘導電動機駆動システム WO2010047173A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010534745A JPWO2010047173A1 (ja) 2008-10-23 2009-08-20 かご形誘導電動機及びかご形誘導電動機駆動システム
US13/125,492 US8816559B2 (en) 2008-10-23 2009-08-20 Squirrel cage induction motor and squirrel cage induction motor driving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008272718 2008-10-23
JP2008-272718 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010047173A1 true WO2010047173A1 (ja) 2010-04-29

Family

ID=42119222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064584 WO2010047173A1 (ja) 2008-10-23 2009-08-20 かご形誘導電動機及びかご形誘導電動機駆動システム

Country Status (3)

Country Link
US (1) US8816559B2 (ja)
JP (1) JPWO2010047173A1 (ja)
WO (1) WO2010047173A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182942A (ja) * 2011-03-02 2012-09-20 Toyota Industries Corp 回転電機
JP2013005697A (ja) * 2011-06-22 2013-01-07 Hitachi Industrial Equipment Systems Co Ltd 誘導電動機
JP2013009549A (ja) * 2011-06-27 2013-01-10 Sumitomo Heavy Ind Ltd モータのシリーズ
US9083225B2 (en) 2011-03-02 2015-07-14 Kabushiki Kaisha Toyota Jidoshokki Rotary electric machine
WO2022071195A1 (ja) * 2020-09-30 2022-04-07 Ntn株式会社 転がり軸受および電動機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375718B (zh) * 2014-08-28 2018-04-17 上海海立电器有限公司 异步感应电动机的定转子冲片组件以及异步感应电动机
EP3706288A1 (de) * 2019-03-06 2020-09-09 Siemens Aktiengesellschaft Blechpaket für eine elektrische maschine
US10855153B2 (en) * 2019-04-16 2020-12-01 Sf Motors, Inc. Electric vehicle induction machine
US11973370B2 (en) * 2021-03-15 2024-04-30 Anhui Meizhi Precision Manufacturing Co., Ltd. Motor, compressor and refrigeration device
JP2022144359A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 回転電機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039352A (ja) * 1983-08-12 1985-03-01 Hitachi Ltd 小形コンデンサ誘導電動機用コア
JP2004248361A (ja) * 2003-02-12 2004-09-02 Hitachi Ltd 回転電機及びかご形誘導電動機駆動システム
JP2007159400A (ja) * 2005-12-05 2007-06-21 Johnson Electric Sa ユニバーサルモータ及びその固定子用ラミネーション
JP2007166796A (ja) * 2005-12-14 2007-06-28 Daikin Ind Ltd 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597646A (en) * 1970-01-26 1971-08-03 Peter John Lawrenson Dynamoelectric machines
US3778652A (en) * 1972-08-08 1973-12-11 Carrier Corp Rotor structure with squirrel cage winding
US4566179A (en) * 1983-05-19 1986-01-28 Display Components, Inc. Core element for electrodynamic rotary machine
SE462310B (sv) * 1988-10-14 1990-05-28 Asea Brown Boveri Kortsluten asynkronmotor foer frekvensomriktardrift
JP2704666B2 (ja) * 1989-12-21 1998-01-26 アイチ―エマソン電機株式会社 誘導電動機
US5585709A (en) * 1993-12-22 1996-12-17 Wisconsin Alumni Research Foundation Method and apparatus for transducerless position and velocity estimation in drives for AC machines
JPH0819230A (ja) * 1994-06-24 1996-01-19 Hitachi Koki Co Ltd 高周波モータ
US7692350B2 (en) * 2007-02-28 2010-04-06 Emerson Electric Co. Horizontal axis washing machine having 4 pole 36 slot motor
JP4528825B2 (ja) * 2007-12-21 2010-08-25 日立アプライアンス株式会社 自己始動型永久磁石同期電動機及びこれを用いた圧縮機
JP4792066B2 (ja) * 2008-07-29 2011-10-12 株式会社日立製作所 交流励磁同期発電機及び交流励磁同期発電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039352A (ja) * 1983-08-12 1985-03-01 Hitachi Ltd 小形コンデンサ誘導電動機用コア
JP2004248361A (ja) * 2003-02-12 2004-09-02 Hitachi Ltd 回転電機及びかご形誘導電動機駆動システム
JP2007159400A (ja) * 2005-12-05 2007-06-21 Johnson Electric Sa ユニバーサルモータ及びその固定子用ラミネーション
JP2007166796A (ja) * 2005-12-14 2007-06-28 Daikin Ind Ltd 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182942A (ja) * 2011-03-02 2012-09-20 Toyota Industries Corp 回転電機
US9083225B2 (en) 2011-03-02 2015-07-14 Kabushiki Kaisha Toyota Jidoshokki Rotary electric machine
JP2013005697A (ja) * 2011-06-22 2013-01-07 Hitachi Industrial Equipment Systems Co Ltd 誘導電動機
JP2013009549A (ja) * 2011-06-27 2013-01-10 Sumitomo Heavy Ind Ltd モータのシリーズ
WO2022071195A1 (ja) * 2020-09-30 2022-04-07 Ntn株式会社 転がり軸受および電動機

Also Published As

Publication number Publication date
JPWO2010047173A1 (ja) 2012-03-22
US8816559B2 (en) 2014-08-26
US20110210692A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2010047173A1 (ja) かご形誘導電動機及びかご形誘導電動機駆動システム
JP3474660B2 (ja) 3相電動機
KR101247085B1 (ko) 유도 모터 회로용 두 전도체 권선
CN110663158B (zh) 用于交流电机的双磁相材料环
US9214839B2 (en) Three-phase dynamoelectric machines and stators with phase windings formed of different conductor material(s)
US20080054733A1 (en) Slotless Ac Induction Motor
RU109934U1 (ru) Машина асинхронная вращающаяся
US20120086288A1 (en) Electric rotating machine
JP2009505614A (ja) 5相ジェネレータ
JP2020512806A (ja) 最適化された構成を伴う回転電気機械
Simsir et al. A comparison of torque capabilities of axial flux and radial flux type of brushless DC (BLDC) drives for wide speed range applications
CN108306473B (zh) 一种异步起动永磁同步电机绕组的设置方法
KR101843587B1 (ko) 다상의 다이나모 일렉트릭 머신 및 다른 전도체 물질로 형성된 위상 권선들을 갖는 고정자
JP2003143822A (ja) 誘導電動機
JP2007166797A (ja) 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機
Endert et al. Increased power density of permanent magnet synchronous machines by use of concentrated bar windings
JPH09215286A (ja) かご形誘導電動機およびその製造方法
KR20100058343A (ko) 단상 유도 모터
EP2355307B1 (en) Multi-speed induction motor
Sashidhar et al. Novel toroidal winding for efficiency improvement of a line-start induction motor
Spargo et al. Synchronous reluctance motors with toroidal windings
JP2003189565A (ja) 誘導電動機
JP2002034182A (ja) 電動機の回転子及び電動機の回転子の製造方法及び誘導電動機及び同期型電動機
JP2004248361A (ja) 回転電機及びかご形誘導電動機駆動システム
KR200387956Y1 (ko) 16슬릿과 6극구조의 교류 인덕션 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13125492

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09821873

Country of ref document: EP

Kind code of ref document: A1