WO2010044551A2 - 응집핵이 결합된 고분자 지지체 - Google Patents

응집핵이 결합된 고분자 지지체 Download PDF

Info

Publication number
WO2010044551A2
WO2010044551A2 PCT/KR2009/005402 KR2009005402W WO2010044551A2 WO 2010044551 A2 WO2010044551 A2 WO 2010044551A2 KR 2009005402 W KR2009005402 W KR 2009005402W WO 2010044551 A2 WO2010044551 A2 WO 2010044551A2
Authority
WO
WIPO (PCT)
Prior art keywords
resin
nucleus
microglobulin
amyloid
polymer support
Prior art date
Application number
PCT/KR2009/005402
Other languages
English (en)
French (fr)
Other versions
WO2010044551A3 (ko
WO2010044551A9 (ko
Inventor
이윤식
백승렬
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to JP2011530933A priority Critical patent/JP2012505204A/ja
Priority to US13/122,829 priority patent/US20110259830A1/en
Priority to EP09820701A priority patent/EP2345700A4/en
Publication of WO2010044551A2 publication Critical patent/WO2010044551A2/ko
Publication of WO2010044551A9 publication Critical patent/WO2010044551A9/ko
Publication of WO2010044551A3 publication Critical patent/WO2010044551A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a polymer support in which aggregated nuclei are bound. More specifically, the present invention relates to a polymer support, a method for preparing the same, and a method for removing ⁇ -2-microglobulin using the aggregated nucleus for aggregation of biomaterials.
  • Amyloid refers to a fibrous protein aggregate formed by inducing water-insoluble supramolecular protein structures by forming water-soluble protein cross ⁇ -sheet conformation between proteins. Amyloid protein is commonly found in patients with degenerative diseases such as Parkinson's disease, dementia and mad cow disease.
  • Dialysis-associated genetic diseases include carpal tunnel syndrome, arthritis, cervical arthritis, and osteocytes that cause fractures.
  • the concentration of ⁇ -2-microglobulin in serum is known to be 60 times higher than that of the general population, and the concentration of ⁇ -2-microglobulin, which is present in the patient's body, is normal. It has been reported that a lowering alleviates the extent of the disease associated with dialysis related genetics.
  • ⁇ - in the serum by improving the hemodialysis machine to improve the efficiency of ⁇ -2-microglobulin removal or by installing a secondary chromatography (column) showing adsorption capacity exclusively for the removal of ⁇ -2-microglobulin on the hemodialysis machine.
  • the antibody When the antibody is introduced into the polymer support to selectively remove ⁇ -2-microglobulin, it has high affinity and specificity for ⁇ -2-microglobulin. However, since antibodies are expensive to produce and have low stability, they are easily damaged when stored at room temperature for a long time (Shabunina et al., Immunoabsorbent for removal of ⁇ 2-microglobulin from human blood plasma. Bulletin of experimental biology and medicine , 2001, 132, 984-986).
  • the ⁇ -2-microglobulin removal column marketed under the name Luxell TM , uses a polymeric support in which carbon chains are introduced into cellulose beads in order to enhance affinity by introducing hydrophobicity, but in addition to ⁇ -2-microglobulin, The disadvantage is that proteins are also removed.
  • the inventors of the present invention notice that amyloid formation is further promoted when the amyloid protein monomer coexists with the fibrous structure already made of the same kind of protein, thereby producing amyloid with the protein to be removed and agglomeration prepared from the amyloid.
  • the present invention has been completed by inventing a polymer support having an amyloid aggregate nucleus that can selectively remove a protein to be removed by binding a nucleus to a polymer support.
  • the basic object of the present invention is to provide a polymer support in which agglomeration nuclei for biomaterial aggregation are combined.
  • Still another object of the present invention is to prepare an activated polymer support resin by reacting i) a carboxyl group-introduced polymer resin with any one selected from the group consisting of N-hydroxysuccinimide, glutaraldehyde and epoxy; And ii) reacting the activated polymer support resin with the amyloid agglomeration nucleus to introduce the amyloid agglomeration nucleus on the surface of the polymer resin.
  • Still another object of the present invention is to provide a method for removing a ⁇ -2-microglobulin, comprising contacting a polymer support having an amyloid aggregate nucleus of ⁇ -2-microglobulin with a fluid containing ⁇ -2-microglobulin.
  • the basic object of the present invention described above can be achieved by providing a polymer support to which agglomeration nuclei for biomaterial aggregation are bound.
  • the biomaterial can be separated or removed by binding a segregation nucleus (seed) capable of aggregation of the biomaterial to the polymer support.
  • the size of the aggregated nucleus is preferably 1 nm to 10 ⁇ m.
  • the agglomeration nucleus for biomaterial aggregation may be an amyloid agglutination nucleus.
  • Amyloid seed in the context of the present invention refers to an amyloid flake having a critical size or structure that allows it to elongate rapidly to form larger amyloid by providing a scaffold suitable for amyloid formation.
  • the polymer support in which the amyloid agglutinating nucleus is bound allows to selectively remove only the protein to be removed through the protein aggregation effect.
  • the protein aggregation nucleus effect refers to a phenomenon in which amyloid formation is further promoted when the amyloid protein monomer coexists with the fibrous structure already made of the same protein.
  • the degree of amyloid formation in the presence of agglutinating nuclei is much faster than that in the absence of agglutinating nuclei, and there is a big difference in the amount of amyloid, the final product produced.
  • the amyloid aggregate nucleus may be an amyloid aggregate nucleus of ⁇ -2-microglobulin, but any protein that can form amyloid may be used without limitation.
  • a polystyrene resin PEG- g -PS (polyethylene glycol- g -polystyrene) resin, the resin TentaGel TM, TM PEGA resin, resins such as CLEAR TM PEG chain resins, epoxy resins, phenol resins, phenoxy with Solid supports such as cy resin, melamine resin, polyester resin, cellulose resin, agarose resin, chitosan resin, PMMA resin and silica beads can be used, and preferably polystyrene resin can be used.
  • Still another object of the present invention is to prepare an activated polymer support resin by reacting i) a carboxyl group-introduced polymer resin with any one selected from the group consisting of N-hydroxysuccinimide, glutaraldehyde and epoxy. step; And ii) reacting the activated polymer support resin with the amyloid agglomeration nucleus to introduce the amyloid agglomeration nucleus on the surface of the polymer resin. Can be achieved.
  • the polymer resin used in the method of preparing a polymer support in which the agglomerate nucleus is bound to the biomaterial aggregation of the present invention may be a resin having a PEG chain such as polystyrene resin, PEG- g- PS resin, TentaGel TM resin, PEGA TM resin, CLEAR TM resin, Solid phase supports such as epoxy resins, phenolic resins, phenoxy resins, melamine resins, polyester resins, cellulose resins, agarose resins, chitosan resins, PMMA resins and silica beads can be used, and preferably polystyrene resins can be used. .
  • a resin having a PEG chain such as polystyrene resin, PEG- g- PS resin, TentaGel TM resin, PEGA TM resin, CLEAR TM resin
  • Solid phase supports such as epoxy resins, phenolic resins, phenoxy resins, melamine resins, polyester
  • the polymer resin in which the carboxyl group is introduced may be prepared by a conventional method as described in Example 2 of the present specification.
  • the solvent of step i) of the method for preparing a polymer support body in which the agglomerate nucleus for agglutination of the biomaterial is combined is dichloromethane or dimethylformamide.
  • 4-dimethyl-aminopyridine may be used as the catalyst of step i).
  • reaction temperature of step i) is 0 °C to 50 °C
  • reaction time is preferably 2 hours to 48 hours.
  • the agglomeration nucleus for biomaterial aggregation in step ii) may be an amyloid agglutinating nucleus, and the amyloid agglutinating nucleus may be an amyloid agglutination nucleus of ⁇ -2-microglobulin.
  • the size of the amyloid aggregate nucleus is preferably 1 nm to 10 ⁇ m.
  • Another object of the present invention described above comprises the step of contacting the polymer support to which the amyloid aggregate nucleus of ⁇ -2-microglobulin is bound with a fluid containing ⁇ -2-microglobulin, removing the ⁇ -2-microglobulin.
  • ⁇ -2-microglobulin easily forms amyloid in vivo
  • amyloid is produced only under acidic conditions, and in order to form amyloid under neutral conditions, it is possible to add various factors that promote fibrosis. have.
  • the efficiency of ⁇ -2-microglobulin removal may be improved by accelerating the amyloid formation of ⁇ -2-microglobulin according to fluid flow. Can be promoted.
  • ⁇ -2-microglobulin is bound to the amyloid aggregate nucleus of ⁇ -2-microglobulin to induce stable amyloid formation, so that ⁇ -2-microglobulin in the body can be removed, and hemodialysis is performed using the support. In the process, it can be used as an auxiliary column with a hemodialyzer to effectively remove ⁇ -2-microglobulin.
  • the size of the amyloid aggregate nucleus of the ⁇ -2-microglobulin is preferably 1 nm to 10 ⁇ m.
  • Polymer supports used in the ⁇ -2-microglobulin removal method of the present invention include resins having PEG chains such as polystyrene resin, PEG- g- PS resin, TentaGel TM resin, PEGA TM resin, CLEAR TM resin, epoxy resins, and phenolic resins.
  • Solid phase supports such as, phenoxy resins, melamine resins, polyester resins, cellulose resins, agarose resins, chitosan resins, PMMA resins and silica beads can be used, and preferably polystyrene resins can be used.
  • Block bovine serum albumin (bovine calf serum, fetal bovine serum, etc.), horse serum, human serum, skim milk, etc. to prevent other proteins from adsorbing before reacting the protein to the immobilized antibody. Treatment is done with a blocking solution.
  • a surface grafted with a substance such as PEG or chitosan may have an effect of preventing other proteins from adsorbing.
  • the fluid containing ⁇ -2-microglobulin When the fluid containing ⁇ -2-microglobulin is brought into contact with the polymer support of the present invention, it is preferable to further add a phosphate buffer solution to prevent a sudden change in pH.
  • the pH is preferably maintained at 6.0 to 8.0. This can maintain an environment similar to the conditions in the human body.
  • amyloid aggregate nucleus of the present invention can be selectively removed using only the polymer support to which it is bound.
  • ⁇ -2-microglobulin may be selectively removed from blood to prevent abnormal accumulation of ⁇ -2-microglobulin in the body during hemodialysis of renal failure patients. This can prevent and treat dialysis-related genetic diseases.
  • 1 is a graph showing ⁇ -2-microglobulin amyloid formation using thioflavin-T.
  • Figure 2 is an electron micrograph of the amyloid agglomerate nucleus of the present invention prepared by sonication method.
  • Figure 3 is one embodiment of a method for conjugating ⁇ -2-microglobulin aggregate nuclei to Hi core beads according to the present invention.
  • Figure 4 is a photograph confirming the bead and ⁇ -2-microglobulin binding of the protein agglutinating nucleus of the present invention by electron microscopy.
  • FIG. 5 is a photograph showing fluorescence confirming ⁇ -2-microglobulin binding of beads to which protein aggregate nuclei of the present invention are fixed.
  • A Hi core beads
  • B Hi core beads without agglutinating nuclei reacted with ⁇ -2-microglobulin
  • C Hi core beads with agglomerated nuclei reacted with ⁇ -2-microglobulin for 1 day
  • D 3-day reaction of Hi- core beads with aggregated nuclei with ⁇ -2-microglobulin
  • E 3-day reaction of Hi- core beads with aggregated nucleus with ⁇ -synuclein (another protein)
  • Figure 6 shows the effect of removing ⁇ -2-microglobulin over time of protein aggregate nucleus beads.
  • the purified ⁇ -2-microglobulin monomer was added to 20 mM chloride phosphate buffer containing 0.15 M sodium chloride at pH 2.5 at a concentration of 1 mg / ml, and maintained at 37 ° C. for at least 2 weeks to proceed with amyloid production. .
  • Amyloid fibril formation was confirmed using thioflavin-T, a fluorescent dye widely used to measure the degree of amyloid formation of proteins (FIG. 1). After confirming that a sufficiently mature amyloid was made, it was poured into small pieces using a sonication method and filtered to prepare an amyloid seed of about 10 nm in length (FIG. 2).
  • HiCore Resin (Bid Tech Co., Ltd.) modified with a polystyrene resin, which is widely used as a solid phase synthesis and a support material, was used.
  • a carboxyl group was introduced by reacting succinic anhydride with an amine functional group of HiCore beads at room temperature for 24 hours in a solvent of N-methyl-2-pyrrolidone.
  • N-hydroxysuccinimide (4-dimethyl-aminopyridine) was catalyzed using N, N'-diisopropyl-carbodiimide (N, N'-diisopropyl-carbodiimide). N-hydroxysuccinimide) was introduced.
  • Pretreatment to minimize nonspecific protein adsorption on the surface of the polymer support by reacting the polymer beads immobilized with the aggregated nucleus of Example 2 (0.4 mmol NH 2 / g bead) at room temperature for 1 hour in a 1% bovine serum albumin (BSA) solution I went through the process.
  • the BSA treated beads were added to 200 ml of 20 mM chloride phosphate buffer (pH 7.5) containing 1 mg / ml of ⁇ -2-microglobulin. The amount of ⁇ -2-microglobulin bound to the aggregated nuclei was measured over time while reacting in a 37 ° C. stirred incubator in this state.
  • ⁇ -2-microglobulin selectively binds to polymer beads in which aggregated nuclei are immobilized with time. It was confirmed that ⁇ -2-microglobulin binds well to the polymer support even in the environment of pH 6.5 and pH 7.0.
  • ⁇ -2-microglobulin monomer fluorescently labeled with FITC fluorescein isothiocyanate
  • FITC fluorescein isothiocyanate
  • protein-immobilized beads were reacted for 3 days at 37 ° C. in 20 mM phosphate buffer (pH 7.4), followed by ⁇ 2-microglobulin was identified using confocal microscopy (FIG. 4).
  • FIG. 4 is a confocal micrograph after reacting beads without agglutinating nuclei with a ⁇ -2-microglobulin monomer to which fluorescence is introduced for 72 hours, and a center photograph of FIG. 4 is a beads incorporating agglutinating nuclei. Is a confocal micrograph after reacting with the fluorescence-induced ⁇ -2-microglobulin monomer for 24 hours, and the right photo of FIG. 4 shows the bead-incorporated bead-induced beads for 72 hours in the ⁇ -2-microglobulin monomer. Confocal micrograph after reaction with globulin monomer.
  • control group without agglutinating nuclei showed a slight fluorescence due to slight adsorption and weak autofluorescence emitted by the polymer support, despite the reaction for 3 days, whereas the beads with agglutinated nuclei were reacted for 24 hours. It was confirmed that ⁇ -2-microglobulin selectively binds by showing a very clear fluorescence later.
  • beads with protein aggregated nuclei were added to 20 mM phosphate buffer solution at pH 7.4 containing ⁇ -2-microglobulin and reacted with a stirrer at 37 ° C.
  • the concentration of 2-microglobulin monomers was analyzed by the Bradford assay method.
  • FIG. 5 it was confirmed that ⁇ -2-microglobulin remaining in the solution gradually decreased with time, and that the aggregated nucleation immobilization beads had the ability to remove ⁇ -2-microglobulin.
  • the removal rate was calculated for each section and represented by a bar graph. As a result, it was observed that the removal rate gradually increased over time. This means that the agglutination nucleus effect of amyloid formation is shown as it is in the immobilized support state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Polymers & Plastics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Urology & Nephrology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 응집핵이 결합된 고분자 지지체에 관한 것이다. 보다 상세하게는, 본 발명은 생체물질 응집용 응집핵이 결합된 고분자 지지체, 이의 제조 방법 및 이를 이용한 β-2-마이크로글로불린 제거 방법에 대한 것이다.

Description

응집핵이 결합된 고분자 지지체
본 발명은 응집핵이 결합된 고분자 지지체에 관한 것이다. 보다 상세하게는, 본 발명은 생체물질 응집용 응집핵이 결합된 고분자 지지체, 이의 제조 방법 및 이를 이용한 β-2-마이크로글로불린 제거 방법에 대한 것이다.
아밀로이드(amyloid)란 수용성 단백질이 단백질 상호간 교차된 베타구조(cross β-sheet conformation)를 형성함으로써 비수용성의 초분자 단백질구조물을 유도하여 형성된 섬유상 단백질 응집체를 말한다. 아밀로이드 단백질은 파킨슨병과 치매, 광우병 등의 퇴행성 질환 환자에게서 공통으로 발견된다.
신장에 이상이 있는 환자의 경우 몸속의 노폐물을 제거하는 기능이 원활하지 못해 혈액 투석을 통해 이를 제거하게 된다. 그러나 신장에 비해 혈액 투석기는 각종 노폐물의 제거 효율이 떨어지고, 특히 I형 주조직적합복합체(major histocampatibility complex, class I)의 일부인 β-2-마이크로글로불린(β-2-microglobulin) 단백질의 경우 혈액 투석기에 의해 완전히 제거되지 못하고 몸속에 축적되어 결국 아밀로이드를 형성함으로써 관절 조직 등에 침착된다. 이 증상을 투석관련 유전분증(dialysis-related amyloidosis)이라 한다. 투석관련 유전분증에 따른 질환으로는 손목 터널 증후군, 관절염, 경추 관절염, 골절을 유발하는 골낭종 등이 있다.
장기적으로 혈액 투석을 받는 환자의 경우 혈청 속 β-2-마이크로글로불린의 농도가 일반인에 비해 60배 이상 높아진다고 알려져 있으며, 환자 몸속에 높은 농도로 존재하고 있는 β-2-마이크로글로불린의 농도를 정상에 가깝게 낮춰줄 경우 투석관련 유전분증에 따른 질환의 정도가 완화된다고 보고되어 있다. 이에 혈액 투석기를 개량하여 β-2-마이크로글로불린 제거 효율을 높이는 방법 또는 혈액 투석기에 β-2-마이크로글로불린 제거 전용의 흡착능을 나타내는 보조크로마토그래피 (컬럼)를 설치하는 방법 등을 통해 혈청 속 β-2-마이크로글로불린의 농도를 정상에 가깝게 낮추기 위한 노력이 활발히 이루어져 왔다(Humes HD et al., The future of hemodialysis membranes, Kidney Int., 2006, 69, 1115-1119; Furuyoshi S et al., New adsorbent for extracorporeal removal of β2-microglobulin. In:Amyloid and amyloidosis, New York: Plenum Press, 1988, 629-634; Ameer et al., A novel immunoadsorption device for removing of β2-microglobulin from whole blood, Kidney International, 2001, 59, 1544-550).
LuxellTM과 같은 종래의 상용화된 컬럼은 아가로스(agarose)나 셀룰로오스(cellulose) 고분자 유래의 비드를 충전한 관으로서 β-2-마이크로글로불린을 제거하는 방식으로 크기 차이에 의한 단백질 분리 및 소수성을 이용한 단백질 흡착을 이용한 것이다. 이는 결합 친화력이 떨어져서 제거되는 β-2-마이크로글로불린의 양이 충분하지 않고, 비특이적으로 비슷한 크기의 다른 단백질도 함께 제거되는 단점이 있다.
β-2-마이크로글로불린을 선택적으로 제거하기 위해 고분자 지지체에 항체를 도입한 경우 β-2-마이크로글로불린에 대한 높은 친화력과 특이성을 지닌다. 그러나 항체는 생산하는 데 드는 비용이 높고 안정성이 떨어지기 때문에, 장기간 상온에서 보관하면 쉽게 상하는 문제점이 있다(Shabunina et al., Immunoabsorbent for removal of β2-microglobulin from human blood plasma. Bulletin of experimental biology and medicine, 2001, 132, 984-986).
LuxellTM이란 이름으로 시판되는 β-2-마이크로글로불린 제거 컬럼의 경우 소수성을 도입하여 친화력을 증진시키기 위하여 셀룰로오즈 비드에 탄소 사슬을 도입한 고분자 지지체를 사용하고 있으나, β-2-마이크로글로불린 이외에 다른 유용한 단백질도 함께 제거된다는 단점이 있다.
따라서 당업계에서는 β-2-마이크로글로불린에만 선택적으로 결합하여 제거함으로써 다른 유용한 단백질은 제거하지 아니하면서 혈액으로부터 β-2-마이크로글로불린에만을 제거할 수 있는 고분자 지지체가 요구되고 있다.
본 발명의 발명자들은 아밀로이드성 단백질 단량체가 이미 동종의 단백질로 만들어진 섬유상 구조와 공존할 때, 아밀로이드의 형성이 더욱 촉진된다는 점에 착안하여, 제거하고자 하는 단백질로 아밀로이드를 제조하고 상기 아밀로이드로부터 제조된 응집핵을 고분자 지지체에 결합하여 제거하고자 하는 단백질을 선택적으로 제거할 수 있는 아밀로이드 응집핵이 결합된 고분자 지지체를 발명함으로써 본 발명을 완성하기에 이르렀다.
본 발명의 기본적인 목적은 생체물질 응집용 응집핵이 결합된 고분자 지지체를 제공하는 것이다.
본 발명의 또 다른 목적은 i) 카르복시기가 도입된 고분자 수지를 N-하이드록시숙신이미드, 글루타르알데히드 및 에폭시로 이루어진 군에서 선택되는 어느 하나와 반응시켜 활성화된 고분자 지지체 수지를 제조하는 단계; 그리고 ii) 상기 활성화된 고분자 지지체 수지와 아밀로이드 응집핵을 반응시켜 상기 고분자 수지의 표면에 상기 아밀로이드 응집핵을 도입하는 단계를 포함하는, 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 β-2-마이크로글로불린의 아밀로이드 응집핵이 결합된 고분자 지지체를 β-2-마이크로글로불린이 함유된 유체와 접촉시키는 단계를 포함하는, β-2-마이크로글로불린 제거 방법을 제공하는 것이다.
전술한 본 발명의 기본적인 목적은 생체물질 응집용 응집핵이 결합된 고분자 지지체를 제공함으로써 달성될 수 있다.
본 발명에 따르면, 생체물질을 응집시킬 수 있는 응집핵(seed)을 고분자 지지체에 결합시킴으로써 상기 생체물질을 분리 또는 제거할 수 있다. 상기 응집핵의 크기는 1 nm 내지 10 μm인 것이 바람직하다.
특히, 상기 생체물질 응집용 응집핵은 아밀로이드 응집핵일 수 있다. 본 발명의 명세서에서 아밀로이드 응집핵(amyloid seed)이란 아밀로이드 형성에 적합한 골격(scaffold)을 제공함으로써 빠르게 신장하여 보다 큰 아밀로이드를 형성하게 하는 임계 크기 또는 구조를 갖는 아밀로이드 조각을 지칭한다.
특히, 아밀로이드 응집핵이 결합된 고분자 지지체는 단백질 응집 효과를 통하여 제거하고자 하는 단백질 만을 선택적으로 제거할 수 있게 한다. 단백질 응집핵 효과란 아밀로이드성 단백질 단량체가 이미 동종의 단백질로 만들어진 섬유상 구조와 공존할 때, 아밀로이드의 형성이 더욱 촉진되는 현상을 의미한다. 응집핵이 존재할 때의 아밀로이드 형성 정도는 응집핵이 존재하지 않을 때와 비교했을 때 아밀로이드의 형성 속도가 훨씬 빠르며, 만들어지는 최종 산물인 아밀로이드의 양에서도 큰 차이를 나타낸다. 상기 아밀로이드 응집핵은 β-2-마이크로글로불린의 아밀로이드 응집핵일 수 있지만, 아밀로이드를 형성할 수 있는 단백질이라면 제한 없이 사용될 수 있다.
본 발명의 고분자 지지체로서, 폴리스티렌 레진, PEG-g-PS(polyethylene glycol-g-polystyrene) 레진, TentaGelTM 레진, PEGATM 레진, CLEARTM 레진 등 PEG 사슬을 가진 레진, 에폭시 레진, 페놀 레진, 페녹시 레진, 멜라민 레진, 폴리에스테르 레진, 셀룰로오스 레진, 아가로스 레진, 키토산 레진, PMMA 레진 및 실리카 비드 등의 고체상 지지체가 사용될 수 있고, 바람직하게는 폴리스티렌 수지가 사용될 수 있다.
전술한 본 발명의 또 다른 목적은 i) 카르복시기가 도입된 고분자 수지를 N-하이드록시숙신이미드, 글루타르알데히드 및 에폭시로 이루어진 군에서 선택되는 어느 하나와 반응시켜 활성화된 고분자 지지체 수지를 제조하는 단계; 그리고 ii) 상기 활성화된 고분자 지지체 수지와 아밀로이드 응집핵을 반응시켜 상기 고분자 수지의 표면에 상기 아밀로이드 응집핵을 도입하는 단계를 포함하는, 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법을 제공함으로써 달성될 수 있다.
본 발명의 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법에 사용되는 고분자 수지는 폴리스티렌 레진, PEG-g-PS 레진, TentaGelTM 레진, PEGATM 레진, CLEARTM 레진 등 PEG 사슬을 가진 레진, 에폭시 레진, 페놀 레진, 페녹시 레진, 멜라민 레진, 폴리에스테르 레진, 셀룰로오스 레진, 아가로스 레진, 키토산 레진, PMMA 레진 및 실리카 비드 등의 고체상 지지체가 사용될 수 있고, 바람직하게는 폴리스티렌 수지가 사용될 수 있다.
상기 카르복시기가 도입된 고분자 수지는 본 명세서의 실시예 2에 기재된 바와 같이 종래의 방법으로 제조될 수 있다.
본 발명의 생체물질 응집용 응집핵이 결합된 고분자 지짖체 제조 방법의 i)단계의 용매는 디클로로메탄(dichloromethane) 또는 디메틸포름아미드(dimethylformamide)인 이 바람직하다. 또한 상기 i)단계의 촉매로서 4-디메틸-아미노피리딘(4-dimethyl-aminopyridine)이 사용될 수 있다.
또한 상기 i)단계의 반응 온도는 0℃ 내지 50℃이고, 반응 시간은 2시간 내지 48시간인 것이 바람직하다.
상기 ii)단계의 생체물질 응집용 응집핵은 아밀로이드 응집핵일 수 있고, 상기 아밀로이드 응집핵은 β-2-마이크로글로불린의 아밀로이드 응집핵일 수 있다. 또한 상기 아밀로이드 응집핵의 크기는 1 nm 내지 10 μm인 것이 바람직하다.
전술한 본 발명의 또 다른 목적은 β-2-마이크로글로불린의 아밀로이드 응집핵이 결합된 고분자 지지체를 β-2-마이크로글로불린이 함유된 유체와 접촉시키는 단계를 포함하는, β-2-마이크로글로불린 제거 방법을 제공함으로써 달성될 수 있다.
β-2-마이크로글로불린이 생체 내에서 쉽게 아밀로이드를 형성하는 것과 달리, 시험관 내에서는 산성의 조건에서만 아밀로이드가 만들어지며 중성의 조건에서 아밀로이드가 만들어지기 위해서는 섬유화를 촉진시키는 다양한 요소들을 첨가해야 가능하다고 알려져 있다. 그 중 하나로 아밀로이드의 형성을 촉진시키는 효과로써 단백질 응집핵 효과가 있다. 상기 β-2-마이크로글로불린의 아밀로이드 응집핵이 고정된 폴리스티렌 지지체를 컬럼형식으로 활용함으로써 유체 흐름에 따른 β-2-마이크로글로불린의 아밀로이드 형성 가속화 현상을 이용하여 β-2-마이크로글로불린 제거의 효율성을 증진시킬 수 있다.
즉, β-2-마이크로글로불린을 β-2-마이크로글로불린의 아밀로이드 응집핵에 결합시켜 안정적인 아밀로이드 형성을 유도함으로써, 체내의 β-2-마이크로글로불린을 제거할 수 있고, 상기 지지체를 이용하여 혈액 투석과정에서 혈액 투석기와 함께 보조 컬럼으로 사용하여 β-2-마이크로글로불린을 효과적으로 제거할 수 있다. 또한 상기 β-2-마이크로글로불린의 아밀로이드 응집핵의 크기는 1 nm 내지 10 μm가 바람직하다.
본 발명의 β-2-마이크로글로불린 제거 방법에 사용되는 고분자 지지체로서는 폴리스티렌 레진, PEG-g-PS 레진, TentaGelTM 레진, PEGATM 레진, CLEARTM 레진 등 PEG 사슬을 가진 레진, 에폭시 레진, 페놀 레진, 페녹시 레진, 멜라민 레진, 폴리에스테르 레진, 셀룰로오스 레진, 아가로스 레진, 키토산 레진, PMMA 레진 및 실리카 비드 등의 고체상 지지체가 사용될 수 있고, 바람직하게는 폴리스티렌 수지가 사용될 수 있다.
고정화한 항체에 단백질을 반응시키기 전에 다른 단백질이 흡착되는 것을 막기 위하여 소혈청알부민(bovine calf serum, fetal bovine serum 등을 포함한 bovine serum albumin), 말 혈청, 사람 혈청, 탈지유(skim milk) 등의 차단 용액(blocking solution)으로 처리를 한다. 또한 PEG나 키토산 등의 물질이 그라프팅 된 표면을 사용하는 것으로 다른 단백질이 흡착되는 것을 막는 효과를 가져올 수 있다.
상기 β-2-마이크로글로불린이 함유된 유체와 본 발명의 고분자 지지체를 접촉시킬 때, pH의 급격한 변화를 막기 위하여 인산염 완충용액(Phosphate Buffer Solution)을 추가로 첨가하는 것이 바람직하다. 이 때, pH는 6.0 내지 8.0으로 유지하는 것이 바람직하다. 이로써 인체 내의 조건과 비슷한 환경을 유지할 수 있다.
본 발명의 아밀로이드 응집핵이 결합된 고분자 지지체를 이용하여 제거하고자 하는 단백질만을 선택적으로 제거할 수 있게 한다.
특히, β-2-마이크로글로불린을 혈액으로부터 선택적으로 제거하여 신부전증 환자의 혈액투석과정에서 β-2-마이크로글로불린이 비정상적으로 체내에 축적되는 것을 막을 수 있다. 이로써 투석관련 유전분증을 예방 및 치료할 수 있다.
도 1은 티오플라빈-T를 이용한 β-2-마이크로글로불린 아밀로이드 형성을 나타내는 그래프이다.
도 2는 음파 파쇄 방법으로 제조된 본 발명의 아밀로이드 응집핵에 대한 전자현미경 사진이다.
도 3은 본 발명에 따라 Hicore 비드에 β-2-마이크로글로불린 응집핵을 접합시키는 방법에 대한 하나의 실시예이다.
도 4는 본 발명의 단백질 응집핵이 고정된 비드와 β-2-마이크로글로불린 결합을 전자 현미경으로 확인한 사진이다.
도 5는 본 발명의 단백질 응집핵이 고정된 비드의 β-2-마이크로글로불린 결합을 형광으로 확인한 사진이다. (A: Hicore 비드, B: 응집핵이 없는 Hicore 비드를 β-2-마이크로글로불린과 반응시킨 사진, C: 응집핵이 있는 Hicore 비드를 β-2-마이크로글로불린과 1일 반응시킨 사진, D: 응집핵이 있는 Hicore 비드를 β-2-마이크로글로불린과 3일 반응시킨 사진, E: 응집핵이 있는 Hicore 비드를 α-시누클레인(다른 단백질)과 3일 반응시킨 사진)
도 6은 단백질 응집핵 비드의 시간에 따른 β-2-마이크로글로불린 제거 효과를 나타낸다.
이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.
실시예 1. 응집핵으로 사용될 β-2-마이크로글로불린의 아밀로이드 응집핵 제조
정제된 β-2-마이크로글로불린 단량체를 1 mg/ml의 농도로 pH 2.5인 0.15 M의 염화나트륨이 포함되어 있는 20 mM 염화인산염 완충용액에 넣어 37℃에서 2주 이상 유지하여 아밀로이드 생성 반응을 진행시켰다. 아밀로이드원섬유(amyloid fibril)의 형성 여부는 단백질의 아밀로이드 형성 정도를 측정하는데 널리 쓰이는 형광 염료인 티오플라빈-T(Thioflavin-T)를 이용하여 확인하였다(도 1). 충분히 성숙한 아밀로이드가 만들어진 것을 확인한 후, 이를 음파 파쇄(sonication) 방법을 이용하여 작은 조각으로 부슨 뒤 여과처리 하여 길이 10 nm 정도의 아밀로이드 응집핵(amyloid seed)을 제작하였다(도 2).
실시예 2. 고분자 지지체 제조
고분자 지지체로서 고체상 합성 및 지지체 물질로 많이 사용되고 있는 폴리스티렌 수지를 개질한 HiCore 레진(㈜비드테크)을 사용하였다. 먼저, HiCore 비드의 아민 관능기에 무수숙신산(succinic anhydride)를 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 용매 하에 상온에서 24시간 반응시켜 카르복실기를 도입하였다. 여기에 N,N'-디이소프로필-카르보디이미드(N,N'-diisopropyl-carbodiimide)를 이용하여 4-디메틸-아미노피리딘(4-dimethyl-aminopyridine) 촉매 하에 N-하이드록시숙신이미드(N-hydroxysuccinimide)를 도입시켰다. 용매로는 디클로로메탄(dichloromethane)과 디메틸포름아미드(dimethylformamide)를 사용하였고, 온도는 반응 초기에는 얼음 중탕(ice bath)을 이용하여 0 ℃를 유지하였다가 1시간 후 상온으로 꺼내어 18시간 동안 반응시켰다. N-하이드록시숙신이미드 에스테르(N-hydroxysuccinimide ester) 형태로 활성화시킨 뒤, 음파 파쇄에 의해 얻어진 β-2-마이크로글로불린의 응집핵에 존재하는 아민과의 축합 반응을 통하여 화학적으로 결합된 리간드 함유 고분자 지지체를 제조하였다(도 3 참조).
실시예 3. 응집핵과 결합한 고분자 지지체를 사용하여 용액 내의 β-2-마이크로글로불린 제거
실시예 2의 응집핵이 고정화된 고분자 비드(0.4 mmol NH2/g bead)를 1% BSA(bovine serum albumin) 용액에 1시간 동안 실내 온도에서 반응시킴으로써 고분자 지지체 표면의 비특이적 단백질 흡착을 최소화하도록 전처리 과정을 거쳤다. 이렇게 BSA 처리된 비드를 1 mg/ml의 β-2-마이크로글로불린이 들어있는 20 mM 염화인산염 완충용액(pH 7.5) 200 ml에 가하였다. 이 상태로 37℃ 교반 배양기에서 반응시키면서 시간에 따라 응집핵과 결합되는 β-2-마이크로글로불린의 양을 측정하였다. 그 결과, 시간에 따라 응집핵이 고정화된 고분자 비드에 β-2-마이크로글로불린이 선택적으로 결합하는 양상을 정성 및 정량 분석을 통해 확인하였다. pH 6.5와 pH 7.0의 환경에서도 고분자 지지체에 β-2-마이크로글로불린이 잘 결합하는 것을 확인하였다.
1) 형광을 이용한 정성분석
FITC(fluorescein isothiocyanate)로 형광표지 한 β-2-마이크로글로불린 단량체와 단백질 응집핵이 고정화된 비드를 20 mM 인산염 완충용액(pH 7.4) 내에서 37℃에서 3일 동안 반응시킨 후, 비드에 붙은 β-2-마이크로글로불린을 공초점 현미경을 이용하여 확인하였다(도 4).
도 4의 왼쪽 사진은 응집핵이 도입되지 않은 비드를 72 시간 동안 형광이 도입된 β-2-마이크로글로불린 단량체와 반응시킨 후의 공초점 현미경 사진이고, 도 4의 가운데 사진은 응집핵이 도입된 비드를 24 시간 동안 형광이 도입된 β-2-마이크로글로불린 단량체와 반응시킨 후의 공초점 현미경 사진이며, 도 4의 오른쪽 사진은 응집핵이 도입된 비드를 72 시간 동안 형광이 도입된 β-2-마이크로글로불린 단량체와 반응시킨 후의 공초점 현미경 사진이다.
응집핵이 도입되지 않은 대조군은 3일간의 반응에도 불구하고, 고분자 지지체가 방출하는 약한 자가형광과 약간의 흡착으로 인해 미세한 형광을 띄는 반면, 응집핵이 도입된 비드의 경우는 24시간 동안 반응시킨 후에도 매우 선명한 형광을 나타냄으로써 β-2-마이크로글로불린이 선택적으로 결합함을 확인하였다.
2) 정량 분석 결과
정량분석을 위해 단백질 응집핵이 붙어있는 비드를 β-2-마이크로글로불린이 들어있는 pH 7.4 조건의 20 mM 인산염 완충용액에 넣어 37℃에서 교반기로 반응시킨 후, 시간에 따라 용액에 남아있는 β-2-마이크로글로불린 단량체의 농도를 브레드포드 어세이 방법으로 분석하였다. 그 결과 도 5에 나타난 바와 같이 시간에 따라 용액 속에 남은 β-2-마이크로글로불린이 점차 감소하는 것으로 볼 때, 응집핵 고정화 비드가 β-2-마이크로글로불린을 제거할 수 있는 능력이 있음을 확인하였다. 또한 이를 토대로 각 구간대 별로 제거 속도를 계산하여 막대그래프로 나타내었다. 그 결과 시간이 지남에 따라 점차 제거 속도가 증가하는 것을 관찰하였다. 이는 아밀로이드형성의 응집핵 효과가 고정화 지지체 상태에서도 그대로 나타나고 있음을 의미한다.

Claims (21)

  1. 생체물질 응집용 응집핵이 결합된 고분자 지지체.
  2. 제1항에 있어서, 상기 응집핵이 아밀로이드 응집핵인 것임을 특징으로 하는 고분자 지지체.
  3. 제2항에 있어서, 상기 아밀로이드 응집핵이 β-2-마이크로글로불린의 아밀로이드 응집핵인 것임을 특징으로 하는 고분자 지지체.
  4. 제1항에 있어서, 상기 응집핵의 크기가 1 nm 내지 10 μm인 것임을 특징으로 하는 고분자 지지체.
  5. 제1항에 있어서, 상기 고분자가 폴리스티렌 레진, PEG-g-PS 레진, TentaGelTM 레진, PEGATM 레진, CLEARTM 레진, 에폭시 레진, 페놀 레진, 페녹시 레진, 멜라민 레진, 폴리에스테르 레진, 셀룰로오스 레진, 아가로스 레진, 키토산 레진 및 PMMA 레진으로 이루어진 군에서 선택되는 것임을 특징으로 하는 고분자 지지체.
  6. i) 카르복시기가 도입된 고분자 수지를 N-하이드록시숙신이미드, 글루타르알데히드 및 에폭시로 이루어진 군에서 선택되는 어느 하나와 반응시켜 활성화된 고분자 지지체 수지를 제조하는 단계; 그리고
    ii) 상기 활성화된 고분자 지지체 수지와 생체물질 응집용 응집핵을 반응시켜 상기 고분자 수지의 표면에 상기 아밀로이드 응집핵을 도입하는 단계를 포함하는, 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  7. 제6항에 있어서, 상기 고분자 수지가 폴리스티렌 레진, PEG-g-PS 레진, TentaGelTM 레진, PEGATM 레진, CLEARTM 레진, 에폭시 레진, 페놀 레진, 페녹시 레진, 멜라민 레진, 폴리에스테르 레진, 셀룰로오스 레진, 아가로스 레진, 키토산 레진 및 PMMA 레진으로 이루어진 군에서 선택되는 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  8. 제6항에 있어서, 상기 i)단계의 용매가 디클로로메탄(dichloromethane) 또는 디메틸포름아미드(dimethylformamide)인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  9. 제6항에 있어서, 상기 i)단계의 촉매가 4-디메틸-아미노피리딘(4-dimethyl-aminopyridine)인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  10. 제6항에 있어서, 상기 i)단계의 반응 온도가 0℃ 내지 50℃인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  11. 제6항에 있어서, 상기 i)단계의 반응 시간이 2시간 내지 48시간인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  12. 제1항에 있어서, 상기 ii)단계의 생체물질 응집용 응집핵이 아밀로이드 응집핵인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  13. 제12항에 있어서, 상기 ii)단계의 아밀로이드 응집핵이 β-2-마이크로글로불린의 아밀로이드 응집핵인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  14. 제6항에 있어서, 상기 ii)단계의 아밀로이드 응집핵의 크기가 1 nm 내지 10 μm인 것임을 특징으로 하는 생체물질 응집용 응집핵이 결합된 고분자 지지체 제조 방법.
  15. β-2-마이크로글로불린의 아밀로이드 응집핵이 결합된 고분자 지지체를 β-2-마이크로글로불린이 함유된 유체와 접촉시키는 단계를 포함하는, β-2-마이크로글로불린 제거 방법.
  16. 제15항에 있어서, 상기 β-2-마이크로글로불린의 아밀로이드 응집핵의 크기가 1 nm 내지 10 μm인 것임을 특징으로 하는 β-2-마이크로글로불린 제거 방법.
  17. 제15항에 있어서, 상기 β-2-마이크로글로불린의 아밀로이드 응집핵이 결합된 고분자 지지체가 소혈청알부민(bovine serum albumin), 말 혈청, 사람 혈청, 탈지유(skim milk)로 이루어진 군에서 선택되는 것으로 처리된 것임을 특징으로 하는 β-2-마이크로글로불린 제거 방법.
  18. 제15항에 있어서, 상기 고분자가 폴리스티렌 레진, PEG-g-PS 레진, TentaGelTM 레진, PEGATM 레진, CLEARTM 레진, 에폭시 레진, 페놀 레진, 페녹시 레진, 멜라민 레진, 폴리에스테르 레진, 셀룰로오스 레진, 아가로스 레진, 키토산 레진 및 PMMA 레진으로 이루어진 군에서 선택되는 것임을 특징으로 하는 β-2-마이크로글로불린 제거 방법.
  19. 제15항에 있어서, 상기 β-2-마이크로글로불린이 함유된 유체가 인산염 완충용액(Phosphate Buffer Solution)을 추가로 포함하는 것임을 특징으로 하는 β-2-마이크로글로불린 제거 방법.
  20. 제15항에 있어서, pH가 6.0 내지 8.0으로 유지되는 것임을 특징으로 하는 β-2-마이크로글로불린 제거 방법.
  21. 제15항에 있어서, 상기 유체가 포유류의 혈액인 것임을 특징으로 하는 β-2-마이크로글로불린 제거 방법.
PCT/KR2009/005402 2008-10-13 2009-09-23 응집핵이 결합된 고분자 지지체 WO2010044551A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011530933A JP2012505204A (ja) 2008-10-13 2009-09-23 凝集核が結合された高分子支持体
US13/122,829 US20110259830A1 (en) 2008-10-13 2009-09-23 Seed-conjugated polymer support
EP09820701A EP2345700A4 (en) 2008-10-13 2009-09-23 POLYMER SUPPORT RELATED TO AGGLOMERATION CORES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0100385 2008-10-13
KR1020080100385A KR20100041277A (ko) 2008-10-13 2008-10-13 응집핵이 결합된 고분자 지지체

Publications (3)

Publication Number Publication Date
WO2010044551A2 true WO2010044551A2 (ko) 2010-04-22
WO2010044551A9 WO2010044551A9 (ko) 2010-06-17
WO2010044551A3 WO2010044551A3 (ko) 2010-08-05

Family

ID=42107010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005402 WO2010044551A2 (ko) 2008-10-13 2009-09-23 응집핵이 결합된 고분자 지지체

Country Status (5)

Country Link
US (1) US20110259830A1 (ko)
EP (1) EP2345700A4 (ko)
JP (1) JP2012505204A (ko)
KR (1) KR20100041277A (ko)
WO (1) WO2010044551A2 (ko)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642905B2 (ja) * 1986-06-13 1994-06-08 東レ株式会社 血液透析膜
JPH0753177B2 (ja) * 1988-01-12 1995-06-07 宇部興産株式会社 β2―ミクログロブリンの吸着除去方法
JPH0947645A (ja) * 1995-08-08 1997-02-18 Asahi Chem Ind Co Ltd 中空糸分離膜及び血液浄化器
DE69632476T3 (de) * 1995-11-15 2014-05-22 Edwards Lifesciences Corp. Behandlung von dilatierte kardiomyopathie durch entfernung von autoantikoerpern
JP3733658B2 (ja) * 1995-12-28 2006-01-11 東レ株式会社 β2ミクログロブリン除去、検出または測定用材料及びそれを用いた体液浄化カラム
WO1998037421A1 (en) * 1997-02-19 1998-08-27 Regents Of The University Of Minnesota Aβ DEPOSITION INHIBITOR SCREEN USING SYNTHETIC AMYLOID
EP1272509A2 (en) * 2000-04-05 2003-01-08 V.I. Technologies, Inc. Prion-binding peptidic ligands and methods of using same
JP2008508952A (ja) * 2004-08-04 2008-03-27 アスピラ バイオシステムズ, インコーポレイテッド 部分的分子インプリントを用いる体液からの生体分子の捕獲および除去
SG144809A1 (en) * 2007-01-11 2008-08-28 Millipore U K Ltd Benzimidazole compounds and their use as chromatographic ligands

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FURUYOSHI S ET AL.: "New adsorbent for extracorporeal removal of ?2-microglobulin. In:Amyloid and amyloidosis, New York: Plenum Press, 1988, 629-634; Ameer et al., A novel immunoadsorption device for removing of ?2-microglobulin from whole blood", KIDNEY INTERNATIONAL, vol. 59, 2001, pages 1544 - 550
HUMES HD ET AL.: "The future of hemodialysis membranes", KIDNEY INT., vol. 69, 2006, pages 1115 - 1119
SHABUNINA ET AL.: "Immunoabsorbent for removal of ?2-microglobulin from human blood plasma", BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, vol. 132, 2001, pages 984 - 986

Also Published As

Publication number Publication date
JP2012505204A (ja) 2012-03-01
WO2010044551A3 (ko) 2010-08-05
WO2010044551A9 (ko) 2010-06-17
US20110259830A1 (en) 2011-10-27
EP2345700A4 (en) 2013-01-02
EP2345700A2 (en) 2011-07-20
KR20100041277A (ko) 2010-04-22

Similar Documents

Publication Publication Date Title
Anspach Endotoxin removal by affinity sorbents
CN1104276C (zh) 基于聚乙烯醇的磁性聚合物颗粒及其制备方法和用途
US5773224A (en) Immunoselection system for cell elution
US20060258853A1 (en) Adsorbent of high-mobility-group protein and body fluid-purification column
JP2009000536A (ja) 細胞外体液からの特異的生体高分子物質の体外捕獲
CN1196688A (zh) 亲和性膜系统及其应用方法
JP2001512832A (ja) 熱可塑材中に埋め込まれた抗原
US20110250287A1 (en) One step removal of selected molecules from body fluid and tissue
CN101185880B (zh) 一种用于抗体清除的血液净化吸附剂及其制备方法
EP0804494A1 (de) Polymerisationsfähige derivate von polyamiden
CN111671727B (zh) 一种基于疏水相互作用构筑蛋白质/磷脂/胆固醇多元杂合微尺度囊泡的方法
EP2819778B1 (en) Preparation of molecular imprinted polymers by cross-linking
US6080404A (en) Materials and methods for removal of substances from fluids
BRPI0708451A2 (pt) adsorventes para purificação de proteìnas
WO2010044551A9 (ko) 응집핵이 결합된 고분자 지지체
EP1315551B1 (en) One step removal of unwanted molecules from circulating blood
Zhang et al. Synthesis of an affinity adsorbent based on silica gel and its application in endotoxin removal
JPH0622633B2 (ja) 吸着体およびそれを用いた除去装置
Yu et al. The development of immunosorbents for the treatment of systemic lupus erythematosus via hemoperfusion
FI116569B (fi) Menetelmä virusinaktivoidun, tekijä-VIII-pitoisen fraktion valmistamiseksi kromatografisilla menetelmillä
JPH0634633A (ja) 鶏卵抗体固定化担体およびその製造方法
JPH06269499A (ja) 細胞分離方法及びその装置
JP2000219698A (ja) 物質分離材料、物質分離システムおよび物質分離方法
JPS5917387B2 (ja) リンパ球をt細胞とb細胞とに分離する方法および分離器
JPH01127039A (ja) 発熱物質吸着体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820701

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011530933

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009820701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13122829

Country of ref document: US