WO2010043215A1 - Verfahren zur herstellung photokatalytisch aktiver titandioxidschichten - Google Patents

Verfahren zur herstellung photokatalytisch aktiver titandioxidschichten Download PDF

Info

Publication number
WO2010043215A1
WO2010043215A1 PCT/DE2009/001474 DE2009001474W WO2010043215A1 WO 2010043215 A1 WO2010043215 A1 WO 2010043215A1 DE 2009001474 W DE2009001474 W DE 2009001474W WO 2010043215 A1 WO2010043215 A1 WO 2010043215A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
titanium dioxide
gases
photocatalytically active
titanium compound
Prior art date
Application number
PCT/DE2009/001474
Other languages
English (en)
French (fr)
Inventor
Thomas Abendroth
Holger Althues
Stefan Kaskel
Ines Dani
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to US13/121,785 priority Critical patent/US8728576B2/en
Priority to EP09771279.8A priority patent/EP2347029B1/de
Publication of WO2010043215A1 publication Critical patent/WO2010043215A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45514Mixing in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • the invention relates to a process for producing photocatalytically active titanium dioxide layers on substrate surfaces. It can be coated a variety of substrate materials, which can also be temperature sensitive.
  • Surfaces coated in this way can also be hydrophilic, so that waterdrop formation on the surface can be avoided, and because of the formation of water film, anti-fogging can be achieved.
  • microbiological growth can be prevented, at least hampered.
  • Sol-gel processes and thermal oxidation processes require very high temperatures and therefore can not be used for the coating of all materials. The time required for this is also high.
  • the layers can also be thermally sprayed, but this causes a low layer quality and rough surfaces.
  • CVD processes under vacuum conditions with and without plasma or photon support have similar disadvantages as the PVD processes.
  • One approach using a CVD method under normal atmospheric pressure is known from EP 1 650 325 A1.
  • a powder formation should be avoided, which is normally unavoidable in such processes and the plant technology and the
  • Layer quality impaired It is proposed therein by means of a gas phase hydrolysis to form a metal oxide layer on a surface.
  • gaseous TiCl 4 and water vapor should be used as gases for titanium dioxide layers, which react chemically with each other on contact.
  • a layer of titanium can be obtained on the surface, which is subsequently calcined at temperatures above 300 ° C. and only then the finally photocatalytically active titanium dioxide layer can be obtained.
  • photocatalytically active titanium dioxide layers can be obtained solely by gas-phase hydrolysis as CVD processes if the gases used for this purpose, namely a titanium compound present in the gas phase and Water vapor are supplied so that they are only separated from each other and only shortly before the surface on which the layer is to be formed to be merged and the contact time is reduced to the impact of the surface by orders of magnitude.
  • the two gaseous components are supplied in such a way that they have a flow velocity of at least 0.5 m / s, preferably at least 2 m / s, and the time between the first contact of the two gases until they impact the substrate surface to be coated is less than 0 , 05 s, preferably less than 0.001 s is maintained.
  • outlet openings of nozzles of a device for supplying the gases through which at least one of the two reacting gases (titanium compound or water vapor) is supplied is kept small to the surface to be coated. In general, this will be a few millimeters. In this case, outlet openings of nozzles for the gaseous titanium compound or outlet openings for water vapor can have this small spacing. But it is also possible to keep the distance from the outlet openings for these two gases so small. In this case, the distance between the outlet openings for
  • Substrate surface equal, only slightly apart be arranged or very far apart. Only the possible reaction time should be shortened. The maximum distance of an outlet opening, which influences the available reaction time, should not exceed 20 mm, preferably 10 mm.
  • the method according to the invention it is possible to produce the desired photocatalytically active titanium dioxide layers in one go. There is no further post-treatment required and the layers can be used immediately afterwards. It is only a preheating of the substrates to be coated required, as was the case with the already known method to avoid condensation of the two gases reacting with each other before hitting the substrate surface. However, the temperatures required for this are significantly smaller than is the case for the calcination. For example, it is also possible to coat polymers or even paper in addition to other materials according to the invention. It can also be coated films.
  • titanium compounds known per se such as, for example, TiCl 4
  • TTIP tetraisopropyl orthotitanate
  • titanium alkoxides or titanium alcoholates such as, for example, titanium ethoxide-Ti (C 2 H 5 O) 4 , titanium n-butoxide-Ti (nC 4 H 9 O) 4 or titanium t-butoxide-Ti (tC 4 H 9 O) 4 are used.
  • the two gaseous components can be supplied with an additional carrier gas.
  • the two Gases can be diluted like this.
  • water vapor can be supplied with the carrier gas as a mixture, the titanium compound with carrier gas as a mixture or the two gas components reacting with one another as such a mixture.
  • a carrier gas should preferably be an inert gas such as nitrogen or argon. It is possible to admix further gaseous components, by means of which a doping of the titanium dioxide layer can be achieved.
  • a suitable chemical compound for this purpose is eg niobium (V) -ethoxide. By niobium doping increased electrical conductivity of a titanium dioxide layer can be achieved.
  • the respective volume flows of the two gas components reacting with one another should be set for the formation of the layer so that water is present in excess. At least a molar ratio of 2 to 1 for water and titanium compound should be maintained. A molar ratio of 10 to 1 is preferred, in which case not all of the water will react.
  • Another partial reaction is a condensation reaction to form the titanium dioxide:
  • This partial reaction is favored by increased temperatures to split off the water.
  • should be to be coated is preheated to substrates so that they have a temperature in the range 100 0 C to 250 0 C. This temperature should be reached at least on the surface to be coated.
  • a device for supplying the gases and a substrate to be coated can be moved relative to one another in order to coat larger areas or to form a predetermined structure of a titanium dioxide layer on a surface.
  • the choice of the feed rate can also influence the layer thickness of the layer. It is also possible to form a plurality of individual titanium dioxide layers one above the other on the substrate surface.
  • a device for supplying the gases should be heated.
  • the temperature should be kept so high that neither water vapor nor the gaseous titanium compound can condense inside the device.
  • the photocatalytically active titanium dioxide layers obtained with the invention achieve very good photocatalytic activity in comparison with titanium dioxide layers produced in a different manner.
  • a Stearinabbaurate can be achieved above 40 nm / h when irradiated with electromagnetic radiation of a wavelength of 366 nm.
  • the layers produced according to the invention are very hydrophilic with a decrease in the water contact angle from 70 ° to 10 ° within a period of 6 minutes when irradiated with a wavelength of 254 nm.
  • the optical refractive index is between 2 and 2.6 with a small extinction coefficient achieved. Which he- Keeping layers are very smooth on the surface.
  • a roughness R a 3.9 nm could be determined.
  • the layers had good adhesion and could be formed with layer thicknesses between 10 and 1000 nm.
  • FIG. 1 shows in a partial sectional view an example of a device for supplying gases, which can be used in carrying out the method according to the invention
  • FIG. 2 shows in a partial sectional view a further example of a device for supplying gases, which can be used in carrying out the method according to the invention
  • FIGS 3a and b in partial cross-sectional views of two further examples of a device for supplying gases which can be used in carrying out the method according to the invention
  • FIG. 4 shows a Raman spectrum of a photocatalytically active titanium dioxide layer produced by the method according to the invention
  • FIG. 5 shows an X-ray diffractogram of a photocatalytically active titanium dioxide layer produced by the method according to the invention. Examples of devices for a supply of gases, which can be used in the method according to the invention, are shown in FIGS.
  • a channel guide With the representation of Figure 1 possibilities for a channel guide are illustrated by the required gases in the direction of the substrate surface can be supplied.
  • a channel is vertically aligned here and its central longitudinal axis is perpendicular to the substrate surface. Through it the volume flow V vert ik a i is supplied.
  • This may be nitrogen alone as a carrier gas.
  • the outlet opening may be formed as a slot nozzle.
  • the distances between the lower edges of outlet openings and the substrate surface of these inclined channels are dimensioned in FIG.
  • the channels over which the volume flow V is guided down are inclined with respect to the substrate surface at an angle of 64 °.
  • a gas mixture of nitrogen was supplied as a carrier gas with steam or TTIP with 5 to 20 slm.
  • the channels were arranged in a row and spaced 3 mm apart.
  • FIGS. 3a and 3b there are a plurality of parallel channels whose longitudinal axes are all aligned perpendicular to the substrate surface.
  • FIG. 3a there are three channels or an annular channel in the interior of which a further middle channel can be arranged.
  • two parallel channels are present, but have different free inner cross sections.
  • a mixture formed with carrier gas and water vapor can be supplied by the two outer channels or the annular channel alone and by the central channel TTIP alone.
  • the TTIP was heated to above its boiling point (232 0 C) and fed in gaseous form. But it can also be done via a bubbler with the aid of carrier gas, in which smaller temperatures up to about 80 0 C are present.
  • Example 1 With the diagrams shown in Figures 4 and 5, also the high proportion of anatase in the formed titanium dioxide layer is detected, which is important for the photocatalytic activity.
  • Example 1 Example 1 :
  • titanium dioxide layers were formed.
  • a device with gas distribution system was placed over a substrate to be coated and the substrate moved during the coating.
  • TTIP with a mass flow of 15 g / h and a carrier gas flow of 20 l / min was directed downwards through the lower channels, whose outlet openings were closest to the substrate surface and had a diameter of 1 mm, to the substrate surface.
  • the flow rate of this gas mixture was 8.66 m / s.
  • Water was directed through the upper channels at 19.4 g / h with a carrier gas flow of 33 l / min as volume in the direction of the surface to be coated.
  • the channels were heated to a temperature of 100 0 C ER.
  • Substrates of glass or stainless steel with a thickness of 1 mm were heated to a temperature of 250 0 C. Coating was 10 cycles, with one cycle split into forward and one return. During the forward movement, the substrate was moved at a speed of 5 mm / s and in the return movement at 30 mm / s.
  • the titanium dioxide layers deposited on a substrate made of stainless steel had an optical refractive index of 2.43 at a wavelength of 550 nm and a wavelength of Layer thickness of 244 nm.
  • the crystallinity (anatase modification) of the titanium dioxide could be detected by Raman spectroscopy.
  • titanium dioxide layers were formed.
  • the device was mounted over a substrate surface to be coated and moved two-dimensionally in an X-Y direction.
  • TTIP with a mass flow of 7.6 g / h in a carrier gas flow of 2 l / min were fed through the lower channels, which are arranged closer to the substrate with their outlet opening than V below .
  • this gas mixture had a flow velocity of 0.56 m / s.
  • 13 g / h of water and 4 l / min carrier gas were supplied as V obe n. This resulted in a flow rate of this gas mixture of 1.12 m / s.
  • the channels were heated to a temperature of 100 ° C. and to substrates of glass or stainless steel to be coated having a thickness of 1 mm to a temperature of 250 ° C.
  • the device was moved meandering over the substrate surface at a speed of 25 mm / s and a pitch of 1.5 mm. The distance of the devices to the surface of the substrate was kept constant in all examples during the formation of the coating.
  • the thus formed titanium dioxide layers on stainless steel have an optical refractive index of 2.41 at a wavelength of 550 nm and a layer thickness of 111 nm.
  • the high crystallinity (anatase modification) of titanium dioxide could be detected by Raman spectroscopy, as shown in FIG.
  • Analogously coated glass substrates had titanium dioxide layers with an optical refractive index of 2.54 at a wavelength of 550 nm and a layer thickness of 82 nm.
  • the crystallinity of the titanium dioxide was detected by X-ray diffractometry (XRD), as shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung photokatalytisch aktiver Titandioxidschichten auf Substratoberflächen. Aufgabe der Erfindung ist es, den Aufwand für die Herstellung photokatalytisch aktiver Titandioxidschichten zu reduzieren und die Auswahl für die Beschichtung geeigneter Substratwerkstoffe zu vergrößern. Beim erfindungsgemäßen Verfahren werden mittels Gasphasen-Hydrolyse eine in der Gasphase vorliegende Titanverbindung und Wasserdampf auf ein vorerwärmtes Substrat gerichtet und durch chemische Reaktion eine Titandioxidschicht auf der Oberfläche des Substrates ausgebildet. Dabei werden die Titanverbindung und Wasserdampf voneinander getrennt so zugeführt, dass eine Strömungsgeschwindigkeit von mindestens 0,5 m/s erreicht und die Zeit zwischen dem ersten Kontakt der beiden Gase bis zum Auftreffen auf die Oberfläche des Substrates kleiner 0,05 s gehalten wird und dabei die photokatalytisch aktive Titandioxidschicht auf der Substratoberfläche ausgebildet wird.

Description

Verfahren zur Herstellung photokatalytisch aktiver Titandioxidschichten
Die Erfindung betrifft ein Verfahren zur Herstellung photokatalytisch aktiver Titandioxidschichten auf Substratoberflächen. Es können dabei unterschiedlichste Substratwerkstoffe beschichtet werden, die auch temperaturempfindlich sein können.
Der Einsatz so beschichteter Elemente ist vielfältig möglich und es können vorteilhafte Wirkungen ausgenutzt werden. So kann ein Selbstreinigungseffekt bei Fenstern oder Fassadenelementen ausgenutzt werden. Bei Wandverkleidungen oder in Fahrzeugkabinen zur Luftreinigung ist eine selbständige Sterilisierung nutzbar. Es können organische Verbindungen durch Reaktion mit Sauerstoff zu Kohlenstoffdioxid und Wasser oxidiert werden, wenn die beschichtete Oberfläche geeigneter elektromagnetischer Strahlung ausgesetzt wird. Photokatalytisch aktives Titandioxid weist hierfür einen hohen Anteil an Titandioxid in der Ana- tas-Modifikation auf. In Folge einer Bandlücke bei 3,2 eV kann elektromagnetische Strahlung mit Wellenlängen unterhalb von 388 nra zur Anregung von Elektro- nen-Loch-Paaren zur Initiierung der Reaktionen genutzt werden.
So beschichtete Oberflächen können auch hydrophil sein, so dass eine Wassertropfenbildung an der Ober- fläche vermieden werden kann und wegen der Wasserfilmbildung ein Beschlagschutz erreichbar ist.
Außerdem kann mikrobiologisches Wachstum verhindert, zumindest jedoch behindert werden.
Für die Ausbildung von den in Rede stehenden Titandioxidschichten sind unterschiedliche Verfahren bekannt und werden auch eingesetzt. In vielen Fällen ist die Herstellung jedoch mit hohem Aufwand und Kosten ver- bunden. So werden solche Beschichtungen mit unterschiedlichsten PVD-Verfahren ausgebildet. Dabei ist der Aufwand wegen der erforderlichen Vakuumtechnik aber erheblich.
Sol-Gel Verfahren und thermische Oxidationsverfahren erfordern sehr hohe Temperaturen und können daher nicht für die Beschichtung aller Werkstoffe eingesetzt werden. Der Zeitaufwand hierfür ist ebenfalls hoch. Die Schichten können auch thermisch aufge- spritzt werden, was aber eine geringe Schichtqualität und raue Oberflächen hervorruft.
CVD-Verfahren unter Vakuumbedingungen mit und ohne Plasma- oder Photonenunterstützung weisen ähnliche Nachteile, wie die PVD-Verfahren auf. Ein Ansatz ein CVD-Verfahren bei normalem Atmosphä- rendruck einzusetzen ist aus EP 1 650 325 Al bekannt. Dabei soll insbesondere eine Pulverbildung vermieden werden, die normalerweise bei solchen Verfahren nicht zu vermeiden ist und die Anlagentechnik sowie die
Schichtqualität beeinträchtigt. Es wird darin vorgeschlagen mit Hilfe einer Gasphasen-Hydrolyse eine Metalloxidschicht auf einer Oberfläche auszubilden. Für Titandioxidschichten sollen dabei insbesondere gas- förmiges TiCl4 und Wasserdampf als Gase eingesetzt werden, die bei Kontakt chemisch miteinander reagieren. Zur Vermeidung der Pulverbildung wird darin vorgeschlagen eine verkürzte Kontaktzeit der beiden miteinander reagierenden Gase auszunutzen, die bei maxi- mal 1 s liegen soll. Dadurch kann auf der Oberfläche eine Schicht mit Titan erhalten werden, die nachfolgend bei Temperaturen oberhalb 300 0C noch kalziniert und dadurch dann erst die letztendlich photokataly- tisch aktive Titandioxidschicht erhalten werden kann.
Es liegt auf der Hand, dass der zusätzliche Verfahrensschritt - Kalzinieren - den Herstellungsaufwand erhöht und auch wegen der hierfür erforderlichen Temperaturen nicht alle Werkstoffe so beschichtet werden können.
Es ist daher Aufgabe der Erfindung den Aufwand für die Herstellung photokatalytisch aktiver Titandioxidschichten zu reduzieren und die Auswahl für die Be- Schichtung geeigneter Substratwerkstoffe zu vergrößern.
Erfindungsgemäß wird diese Aufgabe mit einem Verfahren, das die Merkmale des Anspruchs 1 aufweist, ge- löst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung können mit in untergeordneten An- Sprüchen bezeichneten Merkmalen realisiert werden.
Ausgehend von der aus EP 1 650 325 Al bekannten technischen Lehre hat es sich aber überraschend gezeigt, dass photokatalytisch aktive Titandioxidschichten allein mit Gasphasen-Hydrolyse als CVD-Verfahren erhalten werden können, wenn die hierfür genutzten Gase, nämlich eine in der Gasphase vorliegende Titanverbindung und Wasserdampf so zugeführt werden, dass sie erst voneinander getrennt sind und erst kurz vor der Oberfläche auf der die Schicht ausgebildet werden soll zusammengeführt werden und die Kontaktzeit bis zum Auftreffen auf die Oberfläche um Größenordnungen verringert wird. Die beiden gasförmigen Komponenten werden dabei so zugeführt, dass sie eine Strömungsgeschwindigkeit von mindestens 0,5 m/s, bevorzugt mindestens 2 m/s aufweisen und die Zeit zwischen dem ersten Kontakt der beiden Gase bis zum Auftreffen auf die zu beschichtende Substratoberfläche kleiner als 0,05 s, bevorzugt kleiner 0,001 s gehalten wird.
Dies kann neben der hohen Strömungsgeschwindigkeit dadurch erreicht werden, dass der Abstand zwischen Austrittsöffnungen von Düsen einer Vorrichtung zur Zuführung der Gase, durch die zumindest eines der beiden miteinander reagierenden Gase (Titanverbindung oder Wasserdampf) zugeführt wird, bis zur zu beschichtenden Oberfläche klein gehalten wird. In der Regel werden dies wenige Millimeter sein. Dabei kön- nen Austrittsöffnungen von Düsen für die gasförmige Titanverbindung oder Austrittsöffnungen für Wasserdampf diesen kleinen Abstand aufweisen. Es besteht aber auch die Möglichkeit den Abstand von Austrittsöffnungen für diese beiden Gase so klein zu halten. Dabei kann der Abstand der Austrittsöffnungen zur
Substratoberfläche gleich, nur geringfügig voneinan- der bzw. auch sehr weit voneinander entfernt angeordnet sein. Es soll lediglich die mögliche Reaktionszeit so verkürzt werden. Der maximale Abstand einer Austrittsöffnung, die die zur Verfügung stehende Re- aktionszeit beeinflusst, sollte 20 mm, bevorzugt 10 mm nicht überschreiten.
Mit dem erfindungsgemäßen Verfahren ist es möglich, die gewünschten photokatalytisch aktiven Titandioxid- schichten in einem Zug herzustellen. Es ist keine weitere Nachbehandlung mehr erforderlich und die Schichten sind unmittelbar im Anschluss nutzbar. Es ist lediglich eine Vorerwärmung der zu beschichtenden Substrate erforderlich, wie dies auch bei dem bereits bekannten Verfahren der Fall war, um eine Kondensation der beiden miteinander reagierenden Gase vor dem Auftreffen auf die Substratoberfläche zu vermeiden. Die hierfür erforderlichen Temperaturen sind aber deutlich kleiner, als dies für die Kalzinierung der Fall ist. So können beispielsweise auch Polymere oder auch Papier neben anderen Werkstoffen erfindungsgemäß beschichtet werden. Es können auch Folien so beschichtet werden.
Neben den an sich bekannten geeigneten Titanverbindungen, wie z.B. auch TiCl4, hat es sich als besonders bevorzugt herausgestellt, Tetraisopropylorthoti- tanat, nachfolgend als TTIP bezeichnet, als geeignete Titanverbindung einzusetzen. Es können auch Titanalk- oxide bzw. Titanalkoholate, wie beispielsweise Tita- nethoxid - Ti(C2H5O)4 -, Titan-n-butoxid - Ti(n-C4H9O)4 oder Titan-t-butoxid - Ti (t-C4H9O) 4 eingesetzt werden.
Die beiden gasförmigen Komponenten können mit einem zusätzlichen Trägergas zugeführt werden. Die beiden Gase können so verdünnt werden. Dabei können Wasserdampf mit dem Trägergas als Gemisch, die Titanverbindung mit Trägergas als Gemisch oder die beiden miteinander reagierenden Gaskomponenten als ein solches Gemisch zugeführt werden. Ein Trägergas sollte bevorzugt ein inertes Gas, wie z.B. Stickstoff oder Argon sein. Es können weitere gasförmige Komponenten zugemischt werden, durch die eine Dotierung der Titandioxidschicht erreichbar ist. Eine hierfür geeignete chemische Verbindung ist z.B. Niob (V) -Ethoxid. Durch eine Niobdotierung kann eine erhöhte elektrische Leitfähigkeit einer Titandioxidschicht erreicht werden.
Die jeweiligen Volumenströme der miteinander reagierenden beiden Gaskomponenten sollten für die Ausbildung der Schicht so eingestellt sein, dass Wasser im Überschuss vorhanden ist. Zumindest sollte ein Mol- Verhältnis von 2 zu 1 für Wasser und Titanverbindung eingehalten sein. Es ist ein Mol-Verhältnis von 10 zu 1 bevorzugt, wobei in diesem Fall nicht das gesamte Wasser reagiert.
Wird TTIP als Titanverbindung eingesetzt kann folgen- de Gesamtreaktion über mehrere Zwischenstufen ablaufen:
Ti ( OC3H7 ) 4 + 2H2O -> TiO2 + 4 HOC3H7 Die erste Teilreaktion ist die Hydrolyse des TTI P :
Ti ( OC3H7 J 4 + 4H2O -» Ti ( OH ) 4 + 4 HOC3H7
Es kann dabei angenommen werden, dass für die Ausbil- düng einer hochqualitativen Titandioxidschicht diese Teilreaktion vollständig ablaufen muss, was durch ei- nen Überschuss an Wasser begünstigt werden kann. Dabei kann als unkritisches Nebenprodukt Isopropanol abgespalten werden.
Als weitere Teilreaktion ist eine Kondensationsreaktion unter Bildung des Titandioxids zu betrachten:
Ti(OH)4 -> TiO2 + 2H2O
Diese Teilreaktion ist durch erhöhte Temperaturen zur Abspaltung des Wassers begünstigt.
Zur Abspaltung des Wassers und um die Kondensation von Wasser zu vermeiden, sollten die zu beschichten- den Substrate so vorgewärmt werden, dass sie eine Temperatur im Bereich 100 0C bis 250 0C aufweisen. Diese Temperatur sollte zumindest an der zu beschichtenden Oberfläche erreicht sein.
Eine Vorrichtung zur Zuführung der Gase und ein zu beschichtendes Substrat können relativ zueinander bewegt werden, um größere Flächen zu beschichten bzw. eine vorgegebene Struktur einer Titandioxidschicht auf einer Oberfläche auszubilden. Dabei kann mit der Wahl der Vorschubgeschwindigkeit auch Einfluss auf die Schichtdicke der Schicht genommen werden. Es können auch mehrere einzelne Titandioxidschichten übereinander auf der Substratoberfläche ausgebildet werden.
Auch eine Vorrichtung zur Zuführung der Gase sollte erwärmt sein. Dabei sollte die Temperatur so hoch gehalten sein, dass weder Wasserdampf noch die gasförmige Titanverbindung innerhalb der Vorrichtung kondensieren kann. Vorteilhaft ist es beim erfindungsgemäßen Verfahren, dass lediglich Energie erforderlich ist, um die zwei für die Gasphasen-Hydrolyse erforderlichen Komponenten gasförmig zu halten und das Substrat vorzuwärmen. Es ist keine Reduzierung des Arbeitsdruckes erforderlich und es kann im Bereich des normalen Atmosphärendrucks (1 bar) gearbeitet werden.
Es können große Oberflächen beschichtet werden. Es ist nicht erforderlich, dass eine zu beschichtende Oberfläche eben bzw. weitestgehend eben ausgebildet ist. So besteht die Möglichkeit mit einer hierfür geeigneten Vorrichtung zur Zuführung der Gase auch dreidimensional geformte Oberflächen, Hohlräume oder auch Rohre innen zu beschichten.
Es kann auf eine mechanische und auch thermische Nachbehandlung verzichtet werden. Ein Einsatz eines mit dem Verfahren beschichteten Substrats ist unmit- telbar nach der Ausbildung der Titandioxidschicht möglich. Eine Bildung von Pulver trat bei der Durchführung des erfindungsgemäßen Verfahrens nicht auf.
Die mit der Erfindung erhaltenen photokatalytisch ak- tiven Titandioxidschichten erreichen im Vergleich zu auf andere Art und Weise hergestellte Titandioxidschichten sehr gute photokatalytische Wirksamkeit. So kann eine Stearinabbaurate oberhalb 40 nm/h bei Bestrahlung mit elektromagnetischer Strahlung einer Wellenlänge von 366 nm erreicht werden. Die erfindungsgemäß hergestellten Schichten sind mit einer Abnahme des Wasserkontaktwinkels von 70° auf 10° innerhalb eines Zeitraums von 6 min bei Bestrahlung mit einer Wellenlänge von 254 nm sehr hydrophil. Der op- tische Brechungsindex liegt zwischen 2 und 2,6 bei kleinem erreichten Extinktionskoeffizienten. Die er- haltenen Schichten sind an der Oberfläche sehr glatt. So konnte bei einer erfindungsgemäß hergestellten Titandioxidschicht auf einem Silicium-Wafer, als Substrat, eine Rauheit Ra = 3, 9 nm ermittelt werden. Die Schichten wiesen eine gute Haftung auf und konnten mit Schichtdicken zwischen 10 und 1000 nm ausgebildet werden.
Nachfolgend soll die Erfindung beispielhaft näher er- läutert werden.
Dabei zeigen:
Figur 1 in einer Teilschnittdarstellung ein Bei- spiel einer Vorrichtung zur Zuführung von Gasen, die bei der Durchführung des erfindungsgemäßen Verfahrens einsetzbar ist;
Figur 2 in einer Teilschnittdarstellung ein weite- res Beispiel einer Vorrichtung zur Zuführung von Gasen, die bei der Durchführung des erfindungsgemäßen Verfahrens einsetzbar ist;
Figur 3a und b in Teilschnittdarstellungen zwei weitere Beispiele einer Vorrichtung zur Zuführung von Gasen, die bei der Durchführung des erfindungsgemäßen Verfahrens einsetzbar sind;
Figur 4 ein Ramanspektrum einer mit dem erfin- dungsgemäßen Verfahren hergestellten photokatalytisch aktiven Titandioxidschicht und
Figur 5 ein Röntgendiffraktrogramm einer mit dem erfindungsgemäßen Verfahren hergestellten photokata- lytisch aktiven Titandioxidschicht. In den Figuren 1 bis 3 sind Beispiele für Vorrichtungen für eine Zufuhr von Gasen gezeigt, die beim erfindungsgemäßen Verfahren eingesetzt werden können.
Mit der Darstellung nach Figur 1 sind Möglichkeiten für eine Kanalführung verdeutlicht über die die erforderlichen Gase in Richtung Substratoberfläche zugeführt werden können. Ein Kanal ist hier vertikal ausgerichtet und seine mittlere Längsachse verläuft senkrecht zur Substratoberfläche. Durch ihn wird der Volumenstrom Vvertikai zugeführt. Dies kann allein Stickstoff als Trägergas sein. Die Austrittsöffnung kann als Schlitzdüse ausgebildet sein. Es besteht a- ber auch die Möglichkeit eine Vielzahl solcher Ein- zelkanäle in einer Reihenanordnung vorzusehen. Über die unterschiedlich schräg geneigten weiteren Kanäle können die eigentlich miteinander reagierenden Gaskomponenten zugeführt werden.
Dabei sind die Abstände der Unterkanten von Austrittsöffnungen zur Substratoberfläche dieser geneigten Kanäle in Figur 1 bemaßt. Die Kanäle über die der Volumenstrom Vunten geführt wird sind in Bezug zur Substratoberfläche in einem Winkel von 64° geneigt. Durch diese Kanäle mit einer Anzahl von 49 und einem Durchmesser der Austrittsöffnungen von 1 mm wurde ein Gasgemisch aus Stickstoff als Trägergas mit Wasserdampf oder TTIP mit 5 bis 20 slm zugeführt. Die Kanäle waren in einer Reihe angeordnet und hatten einen Abstand von jeweils 3 mm zueinander.
Diese Parameter treffen auch auf die anderen dargestellten Kanäle zu, über die der Volumenstrom Voben zugeführt werden kann. Lediglich der Neigungswinkel war mit 30° kleiner gewählt. Es waren dabei insgesamt 50 Kanäle in einer Reihe angeordnet. Bei der in Figur 2 gezeigten Vorrichtung sind wieder zwei Reihen von Kanälen, die übereinander angeordnet sind, gewählt worden. Diese sind jedoch im gleichen Winkel von 45° geneigt und es wurden jeweils 75 Kanäle in Abständen von jeweils 2 mm zueinander eingesetzt. Lediglich die Abstände der Austrittsöffnungen zur Substratoberfläche waten in beiden Kanalreihen unterschiedlich.
Bei den in Figuren 3a und 3b gezeigten Möglichkeiten für Vorrichtungen für eine Gaszufuhr sind mehrere parallele Kanäle vorhanden, deren Längsachsen alle senkrecht zur Substratoberfläche ausgerichtet sind. In der Figur 3a sind es drei Kanäle oder ein Ringkanal in dessen Innerem ein weiterer mittlerer Kanal angeordnet sein kann. In der Darstellung von Figur 3b sind zwei parallele Kanäle vorhanden, die aber unterschiedliche freie innere Querschnitte aufweisen.
Bei der Vorrichtung nach Figur 1 kann durch die zwei äußeren Kanäle bzw. den Ringkanal ein Gemisch, das mit Trägergas und Wasserdampf gebildet ist und durch den zentralen Kanal TTIP allein zugeführt werden.
Bei der Darstellung in Figur 3b trifft dies sinngemäß ebenfalls zu, da dort durch den rechten Kanal mit dem größeren freien inneren Querschnitt ebenfalls Trägergas und Wasserdampf und durch den linken Kanal allein TTIP in Gasphase zugeführt werden kann. Bei beiden gezeigten Varianten liegen die Austrittsöffnungen der Kanäle in einer Ebene, so dass ein gleicher Abstand zur Substratoberfläche vorliegt. Der Abstand kann dabei verändert werden. Dies trifft auch auf eine Nei- gung zu. So kann eine Ausrichtung der Gasströmung an eine sich ändernde Oberflächentopografie einer drei- dimensional ausgebildeten Substratoberfläche oder eine dreidimensionale Beschichtung einfach erreicht werden.
Bei Untersuchungen wurde mit Strömungsgeschwindigkeiten im Bereich 2 bis 11 m/s der Gase gearbeitet. Für eine Vorrichtung nach Figur 1 wurden die Parameter der Tabelle 1 berücksichtigt.
Tabelle 1
Figure imgf000014_0001
Mit den sich ergebenden Reynoldszahlen der Gasströme kann nachgewiesen werden, dass laminare Strömungsverhältnisse vorlagen, da die hierfür kritische Rey- noldszahl bei weitem nicht erreicht worden ist.
Das TTIP wurde bis auf oberhalb seiner Siedetemperatur (232 0C) erwärmt und gasförmig zugeführt. Es kann aber auch eine Zuführung über einen Bubbler mit Hilfe von Trägergas erfolgen, bei der kleinere Temperaturen bis zu ca. 80 0C vorliegen.
Mit den in Figuren 4 und 5 gezeigten Diagrammen wird auch der hohe Anteil an Anatas in der ausgebildeten Titandioxidschicht nachgewiesen, der für die photoka- talytische Aktivität bedeutend ist. Bei spiel 1 :
Mit einer Vorrichtung, wie sie in Figur 1 gezeigt ist, wurden Titandioxidschichten ausgebildet. Eine Vorrichtung mit Gasverteilungssystem wurde über einem zu beschichtenden Substrat angeordnet und das Substrat bei der Beschichtung bewegt. Es wurden TTIP mit einem Massenstrom von 15 g/h und einem Trägergasstrom von 20 l/min als Vunten durch die unteren Kanäle, de- ren Austrittsöffnungen am nächsten zur Substratoberfläche angeordnet sind und einen Durchmesser von 1 mm aufwiesen, auf die Substratoberfläche gerichtet. Es ergab sich eine Strömungsgeschwindigkeit dieser Gasmischung von 8,66 m/s. Durch die oberen Kanäle wurde Wasser mit 19,4 g/h mit einem Trägergasstrom von 33 l/min als Voben in Richtung der zu beschichtenden O- berflache gerichtet. Da hier 50 Kanäle eingesetzt waren, deren Austrittsöffnungen ebenfalls einen Durchmesser von 1 mm aufwiesen, ergab sich eine Strömungs- geschwindigkeit dieses Gasgemisches von 14 m/s. Durch den dritten Kanal strömte Stickstoff mit 15 l/min als Vvertikai ebenfalls auf die Oberfläche.
Die Kanäle wurden auf eine Temperatur von 100 0C er- wärmt.
Substrate aus Glas oder Edelstahl mit einer Dicke von 1 mm wurden auf eine Temperatur von 250 0C erwärmt. Die Beschichtung erfolgte mit 10 Zyklen, wobei ein Zyklus in eine Vorwärts- und eine Rückbewegung aufgeteilt war. Bei der Vorwärtsbewegung wurde das Substrat mit einer Geschwindigkeit von 5 mm/s und bei der Rückbewegung mit 30 mm/s bewegt. Die auf einem Substrat aus Edelstahl abgeschiedenen Titandioxid- schichten wiesen einen optischen Brechungsindex von 2,43 bei einer Wellenlänge von 550 nm und einer Schichtdicke von 244 nm auf. Die Kristallinität (Ana- tasmodifikation) des Titandioxids konnte mittels Ra- manspektroskopie nachgewiesen werden. Die photokata- lytische Aktivität wurde durch die Abbaurate von Stearinsäureschichten mit einem Wert von 42,9 nm/h bei Bestrahlung mit elektromagnetischer Strahlung einer Wellenlänge von 366 nm, die von einer UV-Lampe (I= 1 mW/cm2) emittiert worden ist, linear ermittelt.
Beispiel 2:
Mit einer Vorrichtung, wie in Figur 2 gezeigt, wurden Titandioxidschichten ausgebildet. Die Vorrichtung war über einer zu beschichtenden Substratoberfläche ange- bracht und konnte zweidimensional in einer X-Y- Richtung bewegt werden.
Es wurden dabei TTIP mit einem Massenstrom von 7,6 g/h in einem Trägergasstrom von 2 l/min durch die un- teren mit ihrer Austrittsöffnung näher zum Substrat angeordneten Kanäle als Vunten zugeführt. Mit den 75 hierfür eingesetzten Kanälen, deren Austrittsöffnungen einen Durchmesser von 1 mm aufwiesen, ergab sich für diese Gasmischung eine Strömungsgeschwindigkeit von 0,56 m/s. Durch die oberen 75 Kanäle, deren Austrittsöffnungen ebenfalls einen Durchmesser von 1 mm aufwiesen, wurden 13 g/h Wasser und 4 l/min Trägergas, als Voben zugeführt. Dabei ergab sich eine Strömungsgeschwindigkeit dieser Gasmischung von 1,12 m/s. Durch den vertikal ausgerichteten Kanal wurde ein
Gasgemisch Argon/Stickstoff als Vvertikai mit 55 l/min zugeführt. Die Kanäle wurden auf eine Temperatur von 100 0C und zu beschichtende Substrate aus Glas oder Edelstahl mit einer Dicke von 1 mm auf eine Tempera- tur von 250 0C erwärmt. Die Vorrichtung wurde mit einer Geschwindigkeit von 25 mm/s und einer Schrittweite von 1,5 mm mäanderför- mig über die Substratoberfläche bewegt. Der Abstand der Vorrichtungen zur Oberfläche des Substrats wurde bei allen Beispielen während der Ausbildung der Be- schichtung konstant gehalten.
Es konnten homogene Schichten erhalten werden. Die so ausgebildeten Titandioxidschichten auf Edelstahl wie- sen einen optischen Brechungsindex von 2,41 bei einer Wellenlänge von 550 nm und einer Schichtdicke von 111 nm auf.
Die hohe Kristallinität (Anatasmodifikation) des Ti- tandioxids konnte mittels Ramanspektroskopie nachgewiesen werden, wie es in Figur 4 gezeigt ist. Die photokatalytische Aktivität wurde durch die Abbaurate von Stearinsäureschichten mit einem Wert von 40,7 nm/h bei Bestrahlung mit elektromagnetischer Strah- lung einer Wellenlänge von 366 nm, die von einer UV- Lampe (I= 1 mW/cm2) emittiert worden ist, linear ermittelt.
Analog beschichtete Glassubstrate wiesen Titandioxid- schichten mit einem optischen Brechungsindex von 2,54 bei einer Wellenlänge von 550 nm und einer Schichtdicke von 82 nm auf. Die Kristallinität des Titandioxids wurde mittels Röntgendiffraktometrie (XRD) , wie aus Figur 5 hervorgeht, nachgewiesen.
Es wurden außerdem in der vorab erläuterten Form erhaltenen Titandioxidschichten Untersuchungen durchgeführt, wobei die Ausbildung der Schichten auf Substraten erfolgte, die auf eine Temperatur von nur 100 0C erwärmt worden waren. Dabei wurden Substrate aus Glas, Edelstahl, Aluminium, Papier und Polymeren be- schichtet. Bei Schichtdicken von 95 nm wurde ein optischer Brechungsindex von 1,99 bei λ= 550 nm erreicht. Die Titandioxidschichten wiesen ebenfalls photokatalytische Aktivität auf, was durch Farbwechsel beim Resazurintinten-Test nachweisbar war. Sie waren Superhydrophil. Bei Titandioxidschichten auf Glas konnte eine Abbaurate von Stearinssäure von 2,3 nm/h ermittelt werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung photokatalytisch aktiver Titandioxidschichten mittels Gasphasen- Hydrolyse, bei dem eine in der Gasphase vorliegende Titanverbindung und Wasserdampf auf ein vorerwärmtes Substrat gerichtet werden und durch chemische Reaktion eine Titandioxidschicht auf der Oberfläche des Substrates ausgebildet wird; dabei werden die Titanverbindung und Wasserdampf voneinander getrennt zugeführt, dadurch gekennzeichnet, dass die Zufuhr von Titanverbindung und Wasserdampf so erfolgt, dass eine Strömungsgeschwindigkeit von mindestens 0,5 m/s erreicht und die Zeit zwischen dem ersten Kontakt der beiden Gase bis zum Auftreffen auf die Oberfläche des Substrates kleiner 0,05 s gehalten wird und dabei die photokatalytisch aktive Titandioxidschicht auf der Substratoberfläche ausgebildet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeich- net, dass als Titanverbindung Tetraisopropy- lorthotitanat (TTIP) eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich oder im Gemisch mit mindestens einem der beiden reaktiven Gase ein inertes Trägergas auf die Substratoberfläche gerichtet wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Wasserdampf im Überschuss zugeführt wird.
5. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass das Substrat auf eine Temperatur im Bereich 100 0C bis 250 0C erwärmt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gase als laminare Strömung auf die Substratoberfläche gerichtet werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gase mit einer Strömungsgeschwindigkeit von mindestens 2 m/s auf die Substratoberfläche gerichtet und
Zeit zwischen dem ersten Kontakt der beiden Gase bis zum Auftreffen auf die Oberfläche des Substrates kleiner 0,001 s gehalten wird.
8. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass ein Mol- Verhältnis von mindestens 2 zu 1 für Wasser und Titanverbindung eingehalten wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Vorrich- tung zur Zuführung der Gase und ein Substrat relativ zueinander bewegt werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung zur Zuführung der Gase auf eine Temperatur oberhalb der Kondensationstemperatur der zugeführten Gase erwärmt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ausbildung der Titandioxidschicht im Bereich des Atmosphärendrucks durchgeführt wird.
PCT/DE2009/001474 2008-10-14 2009-10-09 Verfahren zur herstellung photokatalytisch aktiver titandioxidschichten WO2010043215A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/121,785 US8728576B2 (en) 2008-10-14 2009-10-09 Method for producing photocatalytically active titanium dioxide layers
EP09771279.8A EP2347029B1 (de) 2008-10-14 2009-10-09 Verfahren zur herstellung photokatalytisch aktiver titandioxidschichten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008052098A DE102008052098B4 (de) 2008-10-14 2008-10-14 Verfahren zur Herstellung photokatalytisch aktiver Titandioxidschichten
DE102008052098.5 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010043215A1 true WO2010043215A1 (de) 2010-04-22

Family

ID=41528847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/001474 WO2010043215A1 (de) 2008-10-14 2009-10-09 Verfahren zur herstellung photokatalytisch aktiver titandioxidschichten

Country Status (4)

Country Link
US (1) US8728576B2 (de)
EP (1) EP2347029B1 (de)
DE (1) DE102008052098B4 (de)
WO (1) WO2010043215A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140134331A1 (en) * 2011-07-21 2014-05-15 Jsr Corporation Method for producing substrate with metal body

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004611B4 (de) 2013-03-14 2014-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtung, Verfahren zu deren Herstellung und ihre Verwendung
US10118191B2 (en) 2014-10-01 2018-11-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Film forming apparatus
KR102193365B1 (ko) * 2015-10-19 2020-12-22 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 성막 장치
WO2017068624A1 (ja) * 2015-10-19 2017-04-27 東芝三菱電機産業システム株式会社 成膜装置
CN117772172B (zh) * 2024-02-23 2024-05-03 山西安仑化工有限公司 一种氧化钛/磁性炭黑催化材料的制备方法和制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113983A (en) 1997-04-03 2000-09-05 The United States Of America As Represented By The Secretary Of Commerce Method of forming metallic and ceramic thin film structures using metal halides and alkali metals
US6921707B1 (en) * 1999-05-28 2005-07-26 Ultramet Low temperature metal oxide coating formation
DE102004045321A1 (de) 2004-09-16 2006-03-23 Biedermann, Andreas Normaldruck CVD-Verfahren und Vorrichtungen zum Herstellen eines photoaktiven Überzugs
EP1650325A1 (de) 2003-07-10 2006-04-26 Sumitomo Titanium Corporation Verfahren zur ausbildung eines metalloxidüberzugfilms und dampfabscheidungsvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US777374A (en) 1903-01-20 1904-12-13 Chapman Valve Mfg Co Motor-disconnecting mechanism for valves.
US3785851A (en) * 1971-07-01 1974-01-15 Dart Ind Inc Hot end coating device
US5298587A (en) * 1992-12-21 1994-03-29 The Dow Chemical Company Protective film for articles and method
US6268019B1 (en) * 1998-06-04 2001-07-31 Atofina Chemicals, Inc. Preparation of fluorine modified, low haze, titanium dioxide films
FI118342B (fi) * 1999-05-10 2007-10-15 Asm Int Laite ohutkalvojen valmistamiseksi
US6777374B2 (en) * 2000-07-18 2004-08-17 The United States Of America As Represented By The Environmental Protection Agency Process for photo-induced selective oxidation of organic chemicals to alcohols, ketones and aldehydes using flame deposited nano-structured photocatalyst
EP1468737A4 (de) * 2002-01-21 2005-09-21 Sumitomo Titanium Corp Photokatalytisches verbundmaterial und herstellungsverfahren dafür

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113983A (en) 1997-04-03 2000-09-05 The United States Of America As Represented By The Secretary Of Commerce Method of forming metallic and ceramic thin film structures using metal halides and alkali metals
US6921707B1 (en) * 1999-05-28 2005-07-26 Ultramet Low temperature metal oxide coating formation
EP1650325A1 (de) 2003-07-10 2006-04-26 Sumitomo Titanium Corporation Verfahren zur ausbildung eines metalloxidüberzugfilms und dampfabscheidungsvorrichtung
DE102004045321A1 (de) 2004-09-16 2006-03-23 Biedermann, Andreas Normaldruck CVD-Verfahren und Vorrichtungen zum Herstellen eines photoaktiven Überzugs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"JOURNAL OF CRYSTAL GROWTH", vol. 3, 1 March 1995, ELSEWERE, article "Morphology and structure of Ti02 thin films grown by atomic layer deposition", pages: 268 - 275
UUSTARE T ET AL: "Morphology and structure of TiO2 thin films grown by atomic layer deposition", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 148, no. 3, 1 March 1995 (1995-03-01), pages 268 - 275, XP004010729, ISSN: 0022-0248 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140134331A1 (en) * 2011-07-21 2014-05-15 Jsr Corporation Method for producing substrate with metal body
US9150962B2 (en) * 2011-07-21 2015-10-06 Jsr Corporation Method for producing substrate with metal body

Also Published As

Publication number Publication date
DE102008052098A1 (de) 2010-04-15
EP2347029A1 (de) 2011-07-27
US8728576B2 (en) 2014-05-20
DE102008052098B4 (de) 2013-04-04
EP2347029B1 (de) 2020-01-15
US20110244130A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
DE102008052098B4 (de) Verfahren zur Herstellung photokatalytisch aktiver Titandioxidschichten
DE60314634T2 (de) Titandioxid-beschichtungen hergestellt durch plasma-cvd bei atmosphärendruck
DE602005002635T2 (de) Verfahren zur abscheidung von galliumoxidbeschichtungen auf flachglas
DE102010062357B4 (de) Vorrichtung und Verfahren zur Herstellung eines mit zumindest einer Korrosionsschutzschicht beschichteten magnesiumhaltigen Substrats
EP2150633B1 (de) Verfahren zum beschichten eines substrats
DE102007049930B4 (de) Oberflächenmodifizierte Hohlraumstrukturen, Verfahren zu deren Herstellung sowie deren Verwendung
DE112018003649T5 (de) Wasserstoffreduktionskatalysator für kohlendioxid und verfahren zu seiner herstellung, wasserstoffreduktionsverfahren für kohlendioxid und wasserstoffreduktionsvorrichtung für kohlendioxid
DE69630559T2 (de) Verfahren zum Beschichten von Flachglas
DE102004029911B4 (de) Verfahren und Anordnung zur Herstellung anorganischer Schichten
DE102007025151A1 (de) Verfahren zum Beschichten eines Substrats
EP1194611B1 (de) Anlage und verfahren zur vakuumbehandlung bzw. zur pulverherstellung
EP1114002B1 (de) Verfahren zur herstellung optischer schichten von gleichmässiger schichtdicke
EP2714607B1 (de) Verfahren und vorrichtung zum beschichten eines floatglasbandes
DE102017216139B3 (de) Verfahren zur Herstellung einer Schicht
DE102007020800B4 (de) Modifizierte Multikanalstrukturen und deren Verwendung
DE102011056538A1 (de) Verfahren zum Entfernen unerwünschter Rückstände aus einem MOCVD-Reaktor sowie zugehörige Vorrichtung
DE2316602A1 (de) Verfahren zum herstellen polykristallinen siliciums
DE102007049929A1 (de) Innenbeschichtete Hohllichtwellenleiter
DD152532A5 (de) Verfahren zur herstellung eines elektrisch leitenden artikels
DE102004016436B3 (de) Verfahren zur Herstellung von Mehrschichtsystemen mit photokatalytischen Eigenschaften auf Oberflächen und dessen Verwendung
WO1986006105A1 (en) Process for the manufacture of wear resistant binding materials
EP3680361A1 (de) Aufsatz zum dosieren eines precursors und verfahren zur herstellung einer schicht
EP1326809B1 (de) Optisches substrat sowie ein verahren zur herstellung optischer substrate
DE102022108150B3 (de) Verfahren und Reaktorkonfiguration zur Herstellung von Oxid- oder Oxinitridschichten
DE102010044234B4 (de) Poröse Schichten und deren Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009771279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13121785

Country of ref document: US