WO2010041706A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2010041706A1
WO2010041706A1 PCT/JP2009/067539 JP2009067539W WO2010041706A1 WO 2010041706 A1 WO2010041706 A1 WO 2010041706A1 JP 2009067539 W JP2009067539 W JP 2009067539W WO 2010041706 A1 WO2010041706 A1 WO 2010041706A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
subject
magnetic field
volume
frequency magnetic
Prior art date
Application number
PCT/JP2009/067539
Other languages
English (en)
French (fr)
Inventor
公輔 伊藤
貴之 阿部
正良 土畑
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2010532950A priority Critical patent/JP5337162B2/ja
Priority to US13/122,593 priority patent/US8531184B2/en
Publication of WO2010041706A1 publication Critical patent/WO2010041706A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus, and in particular, a magnetic resonance capable of accurately estimating a body SAR, which is one of indices indicating absorption of electromagnetic waves into a subject in imaging.
  • MRI magnetic resonance imaging
  • the present invention relates to an imaging apparatus.
  • the MRI system generates a static magnetic field generator for generating a uniform static magnetic field in the imaging space, a gradient magnetic field coil for generating a gradient magnetic field in the imaging space, and a high-frequency magnetic field (RF pulse) in the imaging space
  • An RF pulse is applied from a high frequency coil to an examination site of a subject arranged in a uniform static magnetic field space, and a nuclear magnetic resonance (hereinafter referred to as NMR) signal generated from the examination site is detected.
  • NMR nuclear magnetic resonance
  • An image effective for medical diagnosis is obtained by imaging it.
  • the gradient magnetic field coil applies a gradient magnetic field whose magnetic field strength is changed in three orthogonal directions to the imaging space in order to give position information to the NMR signal.
  • One of the things to be considered as a safety matter when using an MRI apparatus clinically is a problem related to electromagnetic wave energy absorbed by a subject.
  • IEC According to 60601-2-33,2 nd edition, time units, the absorption of RF pulses per unit mass defined by the following equation as SAR (Specific Absorption Rate), more to the human body by the upper limit value
  • SAR Specific Absorption Rate
  • the RF pulse irradiation is limited so that electromagnetic waves are not absorbed.
  • the whole body SAR means the electromagnetic energy absorbed by the whole body of the subject divided by the mass of the subject
  • the body part SAR means the electromagnetic energy absorbed by the desired part of the subject. Is divided by the mass of the desired part of the subject, and the local SAR refers to electromagnetic energy per unit time absorbed per 10 g.
  • Patent Document 1 describes a technique for obtaining SAR more accurately by detecting in real time an RF pulse irradiated from an RF coil in real time and integrating using an integrator.
  • SAR which is an index representing the absorption of electromagnetic wave energy, particularly body part SAR
  • body part SAR depends on how much each part of the subject is included in the RF coil in each imaging.
  • What is required in the prior art described in Patent Document 1 is whole body SAR, and does not disclose a method for accurately calculating body part SAR that depends on the mass of a subject placed in a high-frequency pulse irradiation region by an RF coil. .
  • An object of the present invention is to provide an MRI apparatus capable of accurately calculating a body part SAR by accurately estimating the mass of an imaging part actually disposed in a high-frequency pulse irradiation region every time a subject is disposed. There is to do.
  • the generation of the high-frequency magnetic field measured by the measuring means when calculating the amount of absorption of the electromagnetic wave accompanying the irradiation of the high-frequency magnetic field to the subject is calculated using the characteristics of the means. More specifically, the body part SAR is calculated.
  • an MRI apparatus capable of accurately calculating the body part SAR by accurately estimating the mass of the imaging part actually disposed in the high-frequency pulse irradiation region every time the subject is disposed. Is done.
  • FIG. 6 is a diagram illustrating a workflow common to the first to fifth embodiments.
  • FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
  • This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject.As shown in FIG. 1, the MRI apparatus includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, A reception system 6, a signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8 are provided.
  • CPU central processing unit
  • the static magnetic field generation system 2 generates a uniform static magnetic field in the direction perpendicular to the body axis in the space around the subject 1 if the vertical magnetic field method is used, and in the direction of the body axis if the horizontal magnetic field method is used.
  • a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the subject 1.
  • the gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 that applies a gradient magnetic field in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field that drives each gradient magnetic field coil. It consists of a power source 10 and applies gradient magnetic fields Gx, Gy, Gz in the three axis directions of X, Y, Z by driving the gradient magnetic field power supply 10 of each coil in accordance with a command from the sequencer 4 described later. .
  • a slice direction gradient magnetic field pulse is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining two orthogonal to the slice plane and orthogonal to each other
  • a phase encoding direction gradient magnetic field pulse (Gp) and a frequency encoding direction gradient magnetic field pulse (Gf) are applied in one direction, and position information in each direction is encoded into an echo signal.
  • the sequencer 4 is a control means that repeatedly applies a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) and a gradient magnetic field pulse in a predetermined pulse sequence, and operates under the control of the CPU 8 to collect tomographic image data of the subject 1.
  • RF pulse high-frequency magnetic field pulse
  • Various commands necessary for the transmission are sent to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6.
  • the transmission system 5 irradiates the subject 1 with RF pulses in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1, and includes a high frequency oscillator 11, a modulator 12, and a high frequency amplifier. 13 and a high frequency coil (transmission coil) 14a on the transmission side.
  • the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1.
  • the high frequency coil 14a the subject 1 is irradiated with the RF pulse.
  • the receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives a high-frequency coil (receiving coil) 14b on the receiving side and a signal amplifier 15 And a quadrature phase detector 16 and an A / D converter 17.
  • the NMR signal of the response of the subject 1 induced by the electromagnetic wave irradiated from the high frequency coil 14a on the transmission side is detected by the high frequency coil 14b arranged close to the subject 1 and amplified by the signal amplifier 15,
  • the signal is divided into two orthogonal signals by the quadrature phase detector 16 at the timing according to the command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing system 7.
  • the signal processing system 7 performs various data processing and display and storage of processing results, and has an external storage device such as an optical disk 19 and a magnetic disk 18 and a display 20 composed of a CRT, etc. Is input to the CPU 8, the CPU 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20, and the magnetic disk 18 of the external storage device. Record in etc.
  • the operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed by the signal processing system 7 and includes a trackball or mouse 23 and a keyboard 24.
  • the operation unit 25 is disposed close to the display 20, and the operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.
  • the high-frequency coil 14a and the gradient magnetic field coil 9 on the transmission side face the subject 1 in the static magnetic field space of the static magnetic field generation system 2 into which the subject 1 is inserted, in the case of the vertical magnetic field method. If the horizontal magnetic field method is used, the subject 1 is installed so as to surround it.
  • the high-frequency coil 14b on the receiving side is installed so as to face or surround the subject 1.
  • the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is the main constituent material of the subject, as is widely used in clinical practice.
  • proton the main constituent material of the subject
  • the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.
  • Example 1 of the present invention uses that the characteristics of the RF coil depend on the volume of the imaging region of the subject included in the RF coil. That is, by measuring the characteristics of the RF coil, the volume of the imaging region of the subject placed in the RF coil in the situation where the subject is placed in the RF coil is obtained. Further, the mass is calculated by multiplying the volume of the imaging region of the subject arranged in the obtained RF coil by the density, and the body part SAR in the situation where the subject is arranged in the RF coil is calculated using the mass. calculate. First, the concept of Embodiment 1 of the present invention will be described.
  • Equation 4 Z represents the impedance of the RF coil
  • V represents the volume of the irradiation space in the RF coil.
  • the volume of the irradiation space in the RF coil can be calculated as (Equation 5). Can be calculated. Furthermore, the impedance when the subject is in the RF coil is given by (Equation 6).
  • V 1 represents the subject volume in the RF coil
  • Equation (6) the impedance when the subject is in the RF coil is the portion where the subject is not arranged in the RF coil. It is assumed that it is given as the sum of a term that depends on the volume of the object and a term that depends on the volume of the portion where the subject is arranged in the RF coil.
  • the mass Mp of the portion irradiated with the RF pulse is , (Equation 7).
  • the body part SAR is calculated by (Equation 8).
  • the absorbed energy W [W] of the RF pulse is calculated using the ratio of the reference RF pulse whose energy is absorbed in advance and the actually used RF pulse. Specifically, it is calculated by the following equation (9).
  • Wc is the amount of absorption of the RF pulse measured using the reference RF pulse
  • T 0 is the application time of the reference RF pulse
  • S 0 is a function obtained by normalizing the waveform of the reference RF pulse to [0: 1].
  • FA 0 is the flip angle of the reference RF pulse.
  • T is the application time of the RF pulse actually used
  • Wc is measured by irradiating a reference RF pulse, measuring the energy of the incident wave and the reflected wave, and measuring the power of the absorbed RF pulse by taking the difference.
  • Figure 2 shows a graph of the relationship between impedance and volume actually measured using a phantom.
  • the error was about 3%.
  • the function h is experimentally obtained, and the volume of the subject accommodated in the RF coil is calculated.
  • FIG. 3 is a schematic diagram when measuring the volume of the subject actually housed in the RF coil.
  • 31 represents a subject
  • 32 represents an RF coil
  • 33 represents a portion irradiated with an RF pulse in the subject.
  • the RF coil has a feeding point 34 for supplying electricity, and is connected to a coil characteristic measuring device 36 by a coaxial cable 35.
  • the coil characteristic measuring device 36 can measure the impedance of the RF coil.
  • Step 41 The subject is placed inside the RF coil.
  • Step 42 Measure the impedance of the RF coil.
  • Step 43 According to the graph of FIG. 2, the volume of the subject accommodated in the RF coil (gray portion in FIG. 3) is calculated.
  • Step 44 From the volume obtained in step 43, the mass of the subject in the RF coil is calculated based on (Expression 7).
  • Step 45 Input imaging parameters.
  • Step 46 Calculate the energy of the RF pulse applied to the subject.
  • Step 47 The body part SAR is calculated according to (Equation 8) using the energy and the mass obtained in step 44, and the body part SAR is obtained and compared with the limit value.
  • the internal body SAR of the index representing the absorption of electromagnetic wave energy to the subject can be accurately estimated by a simple method. That is, the MRI apparatus provided with the calculation means for calculating the amount of electromagnetic waves absorbed by the subject accompanying the irradiation of the high-frequency magnetic field according to the present invention is a measurement for measuring the characteristics of the high-frequency magnetic field generation means. Means for calculating the amount of electromagnetic waves absorbed by the subject based on the characteristics of the high-frequency magnetic field generating means. More specifically, the amount of electromagnetic waves absorbed by the subject is determined using the volume of the portion of the subject irradiated with the high-frequency magnetic field.
  • the coil characteristic measuring device by measuring the coil characteristics with the coil characteristic measuring device, it is possible to accurately estimate the volume of a part of the subject placed in the RF coil by using a graph (function) obtained in advance, so that the obtained volume Is multiplied by the density of the subject, and the mass of the portion actually irradiated with the high frequency pulse can be accurately obtained. Furthermore, the body part SAR depending on the mass can be accurately estimated. Furthermore, if the body part SAR can be accurately obtained, it is possible to accurately determine whether or not the imaging sequence can actually be executed.
  • Example 2 of the present invention will be described.
  • the second embodiment is different from the first embodiment in that the body part SAR is calculated using the inductance of the RF coil. Further, it is assumed that a solenoid coil is used as the RF coil.
  • a solenoid coil is used as the RF coil.
  • the inductance of the solenoid coil is expressed by (Equation 10).
  • L 0 represents the inductance of the air-core coil
  • ⁇ 0 represents the air permeability
  • n represents the number of turns per unit length of the coil
  • V 0 represents the volume of the coil.
  • the inductance when the subject is inside is expressed by (Equation 11).
  • L ′ represents the inductance when the subject enters the coil
  • ⁇ 1 represents the permeability of the subject
  • V 1 represents the volume of the subject within the coil.
  • the mass Mp of the portion irradiated with the RF pulse is obtained as in (Equation 13).
  • the body part SAR is calculated by (Equation 14). W [W] is calculated using the ratio between the reference RF pulse whose energy absorbed in advance is measured and the actually used RF pulse, as in the first embodiment.
  • Step 51 First, the inductance of the RF coil (FIG. 2) is measured with no subject present.
  • Step 52 The subject is placed inside the RF coil.
  • Step 53 Measure the inductance of the RF coil again.
  • Step 54 The volume of the subject in the RF coil (gray portion in FIG. 3) is calculated according to (Equation 12).
  • Step 56 Input imaging parameters.
  • Step 57 Calculate the energy of the RF pulse applied to the subject.
  • Step 58 The body part SAR is calculated according to (Equation 14) using the energy and the part mass, and compared with the body part SAR limit value.
  • the body part SAR is obtained using the change in inductance using the electromagnetic formula, so the graph of FIG.
  • the body part SAR can be accurately obtained without the need for preliminary measurement for obtaining
  • Example 3 will be described.
  • the third embodiment is different from the second embodiment in that impedance is used instead of inductance. Further, it is assumed that a solenoid coil is used as the RF coil.
  • impedance is used instead of inductance.
  • a solenoid coil is used as the RF coil.
  • This embodiment is a method of measuring impedance when a subject enters the RF coil of the MRI apparatus.
  • the volume of the subject is calculated from the obtained impedance change.
  • Equation 15 there is a relationship of (Equation 15) between impedance and inductance.
  • Z is the impedance of the coil
  • R is the resistance
  • is the frequency
  • i is the imaginary unit.
  • Step 61 First, the impedance of the RF coil is measured with no subject present.
  • Step 62 The subject is placed inside the RF coil.
  • Step 63 Measure the impedance of the RF coil again.
  • Step 64 The volume of the subject in the RF coil (gray portion in FIG. 2) is calculated according to (Equation 16).
  • Step 65 From the obtained volume, the mass of the subject in the RF coil is calculated according to (Equation 16).
  • Step 66 Input imaging parameters.
  • Step 67 Calculate the energy of the RF pulse applied to the subject.
  • the body part SAR is calculated according to (Equation 8) using the energy and the part mass, and compared with the body part SAR limit value.
  • the body part SAR is obtained by using the change in impedance using the electromagnetic formula, so the graph of FIG.
  • the body part SAR can be obtained accurately without the need for preliminary measurement for obtaining the body part.
  • Example 4 will be described.
  • the fourth embodiment is different from the first to third embodiments in that the Q value of the RF coil is used instead of the impedance and the inductance. Further, it is assumed that a solenoid coil is used as the RF coil.
  • a solenoid coil is used as the RF coil.
  • This example is a method of measuring the Q value before and after the subject enters the RF coil of the MRI apparatus.
  • the volume of the subject is calculated from the obtained Q value change.
  • the Q value of the coil is given by (Equation 17).
  • (Expression 12) and (Expression 17) the relationship between the Q value and the volume of the subject in the RF coil is expressed as (Expression 18). Therefore, if the amount of change in the Q value is measured when the subject is inserted into the RF coil, the volume of the subject in the RF coil can be obtained.
  • Step 71 First, the Q value of the RF coil is measured with no subject present.
  • Step 72 The subject is placed inside the RF coil.
  • Step 73 Measure the Q value of the RF coil again.
  • Step 74 The volume of the subject in the RF coil (gray portion in FIG. 2) is calculated according to (Equation 18).
  • Step 76 Input imaging parameters.
  • Step 77 Calculate the energy of the RF pulse applied to the subject.
  • Step 78 The body part SAR is calculated according to (Equation 14) using the energy and the part mass, and compared with the body part SAR limit value.
  • the body part SAR is obtained by using the change of the Q value by using the electromagnetic formula, and therefore, as shown in FIG.
  • the body part SAR can be accurately obtained without requiring preliminary measurement for obtaining a graph.
  • Example 5 will be described.
  • the fifth embodiment is different from the first to fourth embodiments in that the body part SAR is calculated using the density of the subject that varies depending on the imaging region.
  • the body part SAR is calculated using the density of the subject that varies depending on the imaging region.
  • the partial mass is obtained by (Equation 19).
  • V 1 is the subject volume in the RF coil obtained by any of the methods of Examples 1 to 4.
  • the body part SAR is calculated according to (Equation 8).
  • Step 81 First, the characteristics of the RF coil (FIG. 2) are measured with no subject present.
  • Step 82 The subject is placed inside the RF coil.
  • Step 83 Measure the RF coil characteristics again.
  • Step 84 Calculate the volume of the subject in the RF coil (grey part in Fig. 2).
  • Step 85 Input imaging parameters.
  • Step 86 The energy irradiated to the subject is calculated.
  • Step 87 The mass of the subject in the RF coil is calculated according to (Equation 19) using the human body density for each imaging region measured in advance according to the imaging region input by the MRI operator.
  • Step 88 The RF energy absorbed by the subject is calculated using the imaging parameters.
  • the body part SAR is calculated according to (Equation 8) from the obtained object mass and absorbed RF energy.
  • the body part SAR since the density of each imaging region of the subject is accurately estimated, there is an advantage that the body part SAR can be accurately obtained.
  • Step 91 First, the MRI operator turns on the MRI.
  • the MRI apparatus measures the characteristics of the RF coil when no subject is in the RF coil. Note that the characteristics of the RF coil measured when adjusting the MRI apparatus may be used without actually performing the measurement.
  • Step 93 Next, the MRI operator sets the subject on the table.
  • Step 94 Insert the table into the gantry.
  • Step 95 The MRI apparatus measures the characteristics of the RF coil while the subject is in the RF coil. Further, the mass of the subject in the RF coil is calculated by the methods of Examples 1 to 5 using the characteristics of the obtained RF coil.
  • Step 96 The MRI operator inputs subject information and imaging parameters.
  • Step 97 The MRI apparatus calculates the whole body SAR, the body part SAR, and the local SAR using the input imaging parameters, object information, and the calculated object mass in the RF coil.
  • Step 98 The MRI apparatus compares the calculated SAR and the SAR limit value, and if the SAR exceeds the SAR limit value, returns to imaging parameter input. If the SAR does not exceed the SAR limit value, the MRI apparatus starts imaging.
  • the body part SAR that depends on the mass of the part that is actually irradiated with the high-frequency pulse. Furthermore, it is possible to accurately determine whether or not the imaging sequence can actually be executed using the body part SAR.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 被検体の配置された撮影空間に静磁場を発生する静磁場発生手段と、前記撮影空間に傾斜磁場を発生する傾斜磁場発生手段と、前記撮影空間に高周波磁場を発生する高周波磁場発生手段と、前記高周波磁場の前記被検体への照射に伴う電磁波の前記被検体への吸収量を計算する計算手段を備えた磁気共鳴イメージング装置において、前記高周波磁場発生手段の特性を計測する計測手段を備え、前記計算手段は、前記計測手段で計測した前記高周波磁場発生手段の特性に基づいて、電磁波の前記被検体への吸収量を計算する。

Description

磁気共鳴イメージング装置
 本発明は、磁気共鳴イメージング(以下、「MRI」という)装置に係り、特に、撮影における被検体への電磁波の吸収を表す指標の一つである身体SARを正確に見積もることが可能な磁気共鳴イメージング装置に係る。
 MRI装置は、撮影空間に均一な静磁場を発生するための静磁場発生装置と、撮影空間に傾斜磁場を発生するための傾斜磁場コイルと、撮影空間に高周波磁場(RFパルス)を発生するためのRFコイルを備え、均一な静磁場空間に配置された被検者の検査部位へ高周波コイルからRFパルスを印加し、検査部位から生じる核磁気共鳴(以下、NMRという。)信号を検出し、それを画像化することで医用診断に有効な画像を得ている。傾斜磁場コイルは、NMR信号に位置情報を付与するため、直交する3軸方向に磁場強度を変化させた傾斜磁場を撮像空間に印加する。
 MRI装置を臨床上使用する際に安全事項として考慮すべきものの一つとして被検体に吸収される電磁波エネルギーに関する問題がある。IEC 60601-2-33,2nd editionによると、単位時間、単位質量あたりのRFパルスの吸収量をSAR(Specific Absorption Rate)として次式のように定義して、その上限値により人体にそれ以上電磁波が吸収されないようにRFパルスの照射を制限をしている。
Figure JPOXMLDOC01-appb-I000001
 
Figure JPOXMLDOC01-appb-I000002
 
Figure JPOXMLDOC01-appb-I000003
 
 ここで、全身SARとは、被検体全身に吸収される電磁波エネルギーを被検体の質量で割ったものでありのことをいい、身体部分SARとは、被検体の所望部位に吸収される電磁波エネルギーを被検体の所望部位の質量で割ったものでありのことをいい、局所SARとは、任意の10g当たりに吸収される単位時間当たりの電磁波エネルギーのことをいう。
 特許文献1には、リアルタイムにRFコイルより照射されるRFパルスをリアルタイムに検出し積分器を用いて積分することにより、より正確にSARを求める手法が記載されている。
特開平5-317287号公報
 しかしながら、電磁波エネルギーの吸収を表す指標であるSARの内、特に身体部分SARは、各撮影において被検体の各部位がRFコイルの内部にどの程度含まれるかに依存する。特許文献1記載の従来技術において求めているのは全身SARであり、RFコイルによる高周波パルス照射領域に配置される被検体の質量に依存する身体部分SARについて正確に算出する
方法が開示されていない。
 本発明の目的は、実際に高周波パルス照射領域に配置される撮像部位の質量を被検体が配置される毎に正確に見積もって、正確に身体部分SARを算出することが可能なMRI装置を提供することにある。
 上記目的を達成するために本発明によれば、前記高周波磁場の前記被検体への照射に伴う電磁波の前記被検体への吸収量を計算する際に、前記計測手段により計測した前記高周波磁場発生手段の特性を用いて、前記電磁波の吸収量を計算する。より具体的には、身体部分SARを計算する。
 本発明によれば、実際に高周波パルス照射領域に配置される撮像部位の質量を被検体が配置される毎に正確に見積もって、正確に身体部分SARを算出することが可能なMRI装置が提供される。
本発明に係るMRI装置の一例の全体概要 実際にファントムを用いて測定したインピーダンスと体積との関係のグラフ 実際にRFコイル内部に収容されている被検体の体積を測定する際の模式図 実施例1の動作を示すフローチャート 実施例2の動作を示すフローチャート 実施例3の動作を示すフローチャート 実施例4の動作を示すフローチャート 実施例5の動作を示すフローチャート 実施例1~5に共通するワークフローについて示す図。
 以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、図1に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、シーケンサ4と、中央処理装置(CPU)8とを備えて構成される。
 静磁場発生系2は、垂直磁場方式であれば、被検体1の周りの空間にその体軸と直交する方向に、水平磁場方式であれば、体軸方向に均一な静磁場を発生させるもので、被検体1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。
 傾斜磁場発生系3は、MRI装置の座標系(静止座標系)であるX,Y,Zの3軸方向に傾斜磁場を印加する傾斜磁場コイル9と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源10とから成り、後述のシ-ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzを印加する。撮影時には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルス(Gp)と周波数エンコード方向傾斜磁場パルス(Gf)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。
 シーケンサ4は、高周波磁場パルス(以下、「RFパルス」という)と傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、CPU8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送る。
 送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1にRFパルスを照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル(送信コイル)14aとから成る。高周波発振器11から出力された高周波パルスをシーケンサ4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に被検体1に近接して配置された高周波コイル14aに供給することにより、RFパルスが被検体1に照射される。
 受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)14bと信号増幅器15と直交位相検波器16と、A/D変換器17とから成る。送信側の高周波コイル14aから照射された電磁波によって誘起された被検体1の応答のNMR信号が被検体1に近接して配置された高周波コイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞ
れがA/D変換器17でディジタル量に変換されて、信号処理系7に送られる。
 信号処理系7は、各種データ処理と処理結果の表示及び保存等を行うもので、光ディスク19、磁気ディスク18等の外部記憶装置と、CRT等からなるディスプレイ20とを有し、受信系6からのデータがCPU8に入力されると、CPU8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。
 操作部25は、MRI装置の各種制御情報や上記信号処理系7で行う処理の制御情報を入力するもので、トラックボール又はマウス23、及び、キーボード24から成る。この操作部25はディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブにMRI装置の各種処理を制御する。
 なお、図1において、送信側の高周波コイル14aと傾斜磁場コイル9は、被検体1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検体1に対向して、水平磁場方式であれば被検体1を取り囲むようにして設置されている。また、受信側の高周波コイル14bは、被検体1に対向して、或いは取り囲むように設置されている。
 現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。
 次に、本発明の実施例1について説明する。本発明の実施例1では、RFコイルの特性が、RFコイルの中に含まれる被検体の撮影部位の体積に依存することを用いる。すなわち、RFコイルの特性を計測することにより、RFコイル内に被検体を配置した状況における、該RFコイル内に配置されている被検体の撮影部位の体積を求める。更に、求めたRFコイル内に配置されている被検体の撮影部位の体積に密度を掛けて質量を計算し、該質量を用いて、RFコイル内に被検体を配置した状況における身体部分SARを計算する。先ず、本発明の実施例1の概念を説明する。
 RFコイルのインピーダンスは、RFコイル内の照射空間の体積に依存するため、(式4)のように表すことができる。
Figure JPOXMLDOC01-appb-I000004
 ここで、ZはRFコイルのインピーダンス、VはRFコイル内の照射空間の体積をそれぞれ表す。
 従って、いろいろな体積を持つRFコイルに対して、インピーダンスを測定してその関数fを求めておくことにより、インピーダンスを測定することで、RFコイル内の照射空間の体積を(式5)のように計算することが可能である。
Figure JPOXMLDOC01-appb-I000005
 更に、RFコイル内に被検体が入っている状態でのインピーダンスは(式6)で与えられる。
Figure JPOXMLDOC01-appb-I000006
 ここで、V1はRFコイル内の被検体体積を表し、式(6)において、RFコイル内に被検体が入っている状態でのインピーダンスは、RFコイル内で被検体の配置されていない部分の体積に依存する項と、RFコイル内で被検体の配置されている部分の体積に依存する項の和として与えられると仮定している。
 従って、式(6)を簡単に、Z'=h(V1)として表して、関数hを実験的に求めれば、実際に被検体を配置した状態におけるインピーダンスを計測することにより、RFコイル内に配置されている被検体の体積を計算できる。
 得られたRFコイル内部の被検体の体積に被検体の密度p(例えば、水の密度で近似して1g/cm3とする)をかけることで、RFパルスが照射される部分の質量Mpが、(式7)のように得られる。
Figure JPOXMLDOC01-appb-I000007
 得られた部分質量と、吸収されるRFパルスのエネルギーW[W]とから、身体部分SARが(式8)で計算される。
Figure JPOXMLDOC01-appb-I000008
 吸収されるRFパルスのエネルギーW[W]については、予め吸収されるエネルギーを測定した基準のRFパルスと、実際に用いるRFパルスとの比を用いて計算する。具体的には次式(9)により計算する。
Figure JPOXMLDOC01-appb-I000009
 ここで、Wcは基準RFパルスを用いて測定されたRFパルスの吸収量、T0は基準RFパルスの印加時間、S0は基準RFパルスの波形を[0:1]に規格化した関数の2乗を、時刻t=0からt=T0まで積分した量、FA0は基準RFパルスのフリップ角である。また、Tは実際に用いるRFパルスの印加時間、Sは実際に用いるRFパルスの波形を[0:1]に規格化した関数の2乗を、時刻t=0からt=Tまで積分した量、FAは実際に用いるRFパルスのフリップ角をそれぞれ表す。ただし、Wcの測定は、基準RFパルスを照射して、入射波と、反射波のエネルギーを測定し、差を取ることによって吸収されたRFパルスのパワーを測定する。
 図2に実際にファントムを用いて測定したインピーダンスと体積との関係のグラフを示す。測定した体積とインピーダンスを、任意の関数を用いて最小2乗法でフィッティングすると、誤差は約3%であった。本発明の実施例1では、図2に示されるように、実験的に関数hを求め、RFコイル内部に収容されている被検体の体積を算出する。
 図3は、実際にRFコイル内部に収容されている被検体の体積を測定する際の模式図である。図3において、31は被検体、32はRFコイル、33は被検体内でRFパルスを照射される部分を表す。RFコイルには電気を供給する給電点34があり、同軸ケーブル35により、コイル特性計測装置36に接続されている。ここでは、コイル特性計測装置36はRFコイルのインピーダンスを測定できるようになっている。
 次に、実施例1の動作について図4のフローチャートを用いて説明する。
 (ステップ41)
 被検体をRFコイル内部に配置する。
 (ステップ42)
 RFコイルのインピーダンスを測定する。
 (ステップ43)
 図2のグラフに従って、RFコイル内に収容されている被検体の体積(図3の灰色部分)を計算する。
 (ステップ44)
 ステップ43で得られた体積から、(式7)に基づいてRFコイル内の被検体の質量を計算する。
 (ステップ45)
 撮像パラメータを入力する。
 (ステップ46)
 被検体に照射されるRFパルスのエネルギーを計算する。
 (ステップ47)
 エネルギーと、ステップ44で求めた質量とを用いて身体部分SARを(式8)に従って計算し、身体部分SARを求め、制限値と比較する。
 上記実施例によれば、被検体への電磁波エネルギーの吸収を表す指標の内身体SARを、正確に簡単な方法で見積もることができる。すなわち、本発明に係る前記高周波磁場の前記被検体への照射に伴う電磁波の前記被検体への吸収量を計算する計算手段を備えたMRI装置は、前記高周波磁場発生手段の特性を計測する計測手段を備え、前記計算手段は、前記高周波磁場発生手段の特性に基づいて、電磁波の前記被検体への吸収量を計算することを特徴としている。より具体的には、電磁波の前記被検体への吸収量は、前記高周波磁場に照射される前記被検体の部分の体積を用いて、求められる。
 すなわち、コイル特性計測装置によってコイルの特性を計測することにより、予め求められたグラフ(関数)によりRFコイル内に配置される被検体の一部分の体積を正確に見積もることができるので、求めた体積に被検体の密度を掛け合わせ、実際に高周波パルスが照射されている部分の質量を正確に求められる。更には、該質量に依存する身体部分SARを、正確に見積もることができる。更に身体部分SARを正確に求めることができれば、実際に撮影シーケンスを実行して良いかの判断を正確に行うことができる。
 次に、本発明の実施例2について説明する。実施例2は、実施例1と異なり、RFコイルのインダクタンスを用いて身体部分SARを計算することを特徴とする。また、RFコイルとして、ソレノイドコイルを用いる場合を仮定したものである。以下、実施例1と異なる箇所のみ説明し、同じ箇所の説明は省略する。先ず、本実施例の概念を以下に説明する。
 ソレノイドコイルのインダクタンスは(式10)で表される。
Figure JPOXMLDOC01-appb-I000010
 ここで、L0は空芯のコイルのインダクタンス、μ0は空気の透磁率、nはコイルの単位長さ当りの巻き数、V0はコイルの体積をそれぞれ表す。内部に被検体が入った状態のインダクタンスは(式11)で表される。
Figure JPOXMLDOC01-appb-I000011
 ここで、L'は被検体がコイル内部に入ったときのインダクタンス、μ1は被検体の透磁率、V1はコイル内部の被検体の体積をそれぞれ表す。(式11)を用いると、コイル内部の被検体の体積(式12)が得られる。
Figure JPOXMLDOC01-appb-I000012
 得られたコイル内部の被検体の体積に被検体の密度pをかけることで、RFパルスが照射される部分の質量Mpが、(式13)のように得られる。
Figure JPOXMLDOC01-appb-I000013
 得られた部分質量と、吸収されるRFパルスのエネルギーW[W]とから、身体部分SARが(式14)で計算される。
Figure JPOXMLDOC01-appb-I000014
 W[W]については実施例1と同様に、予め吸収されるエネルギーを測定した基準のRFパルスと、実際に用いるRFパルスとの比を用いて計算する。
 次に、実施例2の動作について図5のフローチャートを用いて説明する。
 (ステップ51)
 まず、被検体が入っていない状態でRFコイル(図2)のインダクタンスを測定する。
 (ステップ52)
 被検体をRFコイル内部に配置する。
 (ステップ53)
 RFコイルのインダクタンスを再び測定する。
 (ステップ54)
 (式12)に従ってRFコイル内の被検体の体積(図3の灰色部分)を計算する。
 (ステップ55)
 得られた体積から、(式13)に従ってRFコイル内の被検体の質量を計算する。
 (ステップ56)
 撮像パラメータを入力する。
 (ステップ57)
 被検体に照射されるRFパルスのエネルギーを計算する。
 (ステップ58)
 エネルギーと、部分質量とを用いて身体部分SARを(式14)に従って計算し、身体部分SAR制限値と比較する。
 本実施例によれば、RFコイルの形状がソレノイドコイルであると仮定して電磁気学の公式を用いてインダクタンスの変化を用いて身体部分SARを求めるので、実施例1のように図2のグラフを求める予備計測を必要とせず、正確に身体部分SARを求めることができる。
 次に、実施例3について説明する。実施例3は、実施例2と異なり、インダクタンスではなく、インピーダンスを用いることを特徴とする。また、RFコイルとして、ソレノイドコイルを用いる場合を仮定したものである。以下、異なる箇所のみ説明し、同じ箇所の説明は省略する。まず、本実施例の概念を以下に説明する。
 本実施例は、MRI装置のRFコイル内に被検体が入ったらインピーダンスを測定する方法である。得られたインピーダンスの変化から被検体の体積を計算する。
 より具体的にインピーダンスとインダクタンスとの間には(式15)の関係がある。
Figure JPOXMLDOC01-appb-I000015
 ここで、Zはコイルのインピーダンス、Rは抵抗、ωは周波数、iは虚数単位を表す。(式12)と(式15)とを用いるとインピーダンスとRFコイル内の被検体の体積との関係が(式16)のように得られる。
Figure JPOXMLDOC01-appb-I000016
 したがって、RFコイル内に被検体を配置した際にインピーダンスの変化量を測定すれば、RFコイル内の被検体の体積を求めることができる。
 次に、実施例3の動作について図6のフローチャートを用いて説明する。
 (ステップ61)
 まず、被検体が入っていない状態でRFコイルのインピーダンスを測定する。
 (ステップ62)
 被検体をRFコイル内部に配置させる。
 (ステップ63)
 RFコイルのインピーダンスを再び測定する。
 (ステップ64)
 (式16)に従ってRFコイル内の被検体の体積(図2の灰色部分)を計算する。
 (ステップ65)
 得られた体積から、(式16)に従ってRFコイル内の被検体の質量を計算する。
 (ステップ66)
 撮像パラメータを入力する。
 (ステップ67)
 被検体に照射されるRFパルスのエネルギーを計算する。
 (ステップ68)
 エネルギーと、部分質量とを用いて身体部分SARを(式8)に従って計算し、身体部分SAR制限値と比較する。
 本実施例によれば、RFコイルの形状がソレノイドコイルであると仮定して電磁気学の公式を用いてインピーダンスの変化を用いて身体部分SARを求めるので、実施例1のように図2のグラフを求める予備計測を必要とせず、正確に身体部分SARを求めることができるという利点がある。
 次に実施例4について説明する。実施例4は、実施例1~3と異なり、インピーダンスやインダクタンスではなく、RFコイルのQ値を用いることを特徴とする。また、RFコイルとして、ソレノイドコイルを用いる場合を仮定したものである。以下、異なる箇所のみ説明し、同じ箇所の説明は省略する。まず、本実施例の概念を以下に説明する。
 本実施例は、MRI装置のRFコイル内に被検体が入る前と入った後でQ値を測定する方法である。得られたQ値の変化から被検体の体積を計算する。
 より具体的に、コイルのQ値は(式17)で与えられる。
Figure JPOXMLDOC01-appb-I000017
 (式12)と(式17)とを用いると、Q値とRFコイル内の被検体の体積との関係が(式18)のように表される。
Figure JPOXMLDOC01-appb-I000018
 したがって、RFコイル内に被検体を挿入した際にQ値の変化量を測定すれば、RFコイル内の被検体の体積を求めることができる。
 次に、実施例4の動作について図7のフローチャートを用いて説明する。
 (ステップ71)
 まず、被検体が入っていない状態でRFコイルのQ値を測定する。
 (ステップ72)
 被検体をRFコイル内部に配置させる。
 (ステップ73)
 RFコイルのQ値を再び測定する。
 (ステップ74)
 (式18)に従ってRFコイル内の被検体の体積(図2の灰色部分)を計算する。
 (ステップ75)
 得られた体積を用いて、(式13)に従って、RFコイル内の被検体質量を計算する。
 (ステップ76)
 撮像パラメータを入力する。
 (ステップ77)
 被検体に照射されるRFパルスのエネルギーを計算する。
 (ステップ78)
 エネルギーと、部分質量とを用いて身体部分SARを(式14)に従って計算し、身体部分SAR制限値と比較する。
 本実施例によれば、RFコイルの形状がソレノイドコイルであると仮定して電磁気学の公式を用いてQ値の変化を用いて身体部分SARを求めるので、実施例1のように図2のグラフを求める予備計測を必要とせず、正確に身体部分SARを求めることができるという利点がある。
 次に、実施例5について説明する。実施例5は、実施例1~実施例4と異なり、撮像部位に
依存して変化する被検体の密度を用いて身体部分SARを計算することを特徴とする。以下
、異なる箇所のみ説明し、同じ箇所の説明は省略する。
 被検体の密度をp(z)[kg/cm3]とすると部分質量は(式19)で得られる。
Figure JPOXMLDOC01-appb-I000019
 ここでV1は、実施例1~4のいずれかの方法で求めた、RFコイル内の被検体体積である。
(式19)で計算された部分質量を用いて身体部分SARを(式8)に従って計算する。
 次に、実施例6の動作について図8のフローチャートを用いて説明する。
 (ステップ81)
 まず、被検体が入っていない状態でRFコイル(図2)の特性を測定する。
 (ステップ82)
 被検体をRFコイル内部に配置させる。
 (ステップ83)
 RFコイルの特性を再び測定する。
 (ステップ84)
 RFコイル内の被検体の体積(図2の灰色部分)を計算する。
 (ステップ85)
 撮像パラメータを入力する。
 (ステップ86)
 被検体に照射されるエネルギーを計算する。
 (ステップ87)
 MRIの操作者が入力した撮像部位に応じて、あらかじめ測定した、撮像部位毎の人体密度を用いて、RFコイル内の被検体質量を(式19)に従って計算する。
 (ステップ88)
 撮像パラメータを用いて被検体に吸収されるRFのエネルギーを計算する。得られた被検体質量と、吸収されるRFのエネルギーとから、(式8)に従って身体部分SARを計算する。
 本実施例によれば、被検体の各撮影部位の密度を正確に見積もったので、正確に身体部分SARを求めることができるという利点がある。
 以上で説明した実施例1~実施例5に共通するワークフローについて、図9を用いて説明する。
 (ステップ91)
 まず、MRI操作者はMRIの電源を入れる。
 次にMRI装置は、RFコイル内に被検体が入っていない状態でのRFコイルの特性を測定する。尚、実際に測定を行うことなく、MRI装置調整時に測定したRFコイルの特性を用いても良い。
 (ステップ93)
 次にMRI操作者は、被検体をテーブルにセットする。
 (ステップ94)
 テーブルをガントリに挿入する。
 (ステップ95)
 MRI装置は、RFコイル内に被検体が入っている状態でRFコイルの特性を測定する。更に、得られたRFコイルの特性を用いて、実施例1~実施例5の方法でRFコイル内の被検体質量を計算する。
 (ステップ96)
 MRI操作者は被検体情報及び撮像パラメータを入力する。
 (ステップ97)
 MRI装置は入力された撮像パラメータと、被検体情報と、計算したRFコイル内の被検体質量とを用いて、全身SAR及び身体部分SAR及び局所SARを計算する。
 (ステップ98)
MRI装置は計算したSARとSAR制限値とを比較し、SARがSAR制限値を超えている場合には撮像パラメータ入力に戻る。SARがSAR制限値を超えていない場合は、MRI装置は撮像を始める。
 以上説明したように、上記実施例によれば、実際に高周波パルスが照射されている部分の質量に依存する身体部分SARを、正確に見積もることができる。更に身体部分SARを用いて、実際に撮影シーケンスを実行して良いかの判断を正確に行うことができる。
 31 被検体、32 RFコイル、33 被検体内でRFパルスを照射される部分、34 RFコイルには電気を供給する給電点、34,35 同軸ケーブル、36 コイル特性計測装置

Claims (8)

  1.  被検体の配置された撮影空間に静磁場を発生する静磁場発生手段と、前記撮影空間に傾斜磁場を発生する傾斜磁場発生手段と、前記撮影空間に高周波磁場を発生する高周波磁場発生手段と、前記高周波磁場の前記被検体への照射に伴う電磁波の前記被検体への吸収量を計算する計算手段を備えた磁気共鳴イメージング装置において、前記高周波磁場発生手段の特性を計測する計測手段を備え、前記計算手段は、前記計測手段で計測した前記高周波磁場発生手段の特性に基づいて、電磁波の前記被検体への吸収量を計算することを特徴とする磁気共鳴イメージング装置。
  2.  電磁波の前記被検体への吸収量は、前記高周波磁場に照射される前記被検体の部分の体積を用いて、求められることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  3.  前記高周波磁場発生手段はRFコイルを含み、
     前記特性として、前記RFコイルのインピーダンスを用い、前記体積を計算することを特徴とする請求項2に記載の磁気共鳴イメージング装置。
  4.  前記高周波磁場発生手段はRFコイルを含み、
     前記特性として、前記RFコイルのインダクタンスを用い、前記体積を計算することを特徴とする請求項2に記載の磁気共鳴イメージング装置。
  5.  前記高周波磁場発生手段はRFコイルを含み、
     前記特性として、前記RFコイルのQ値を用い、前記体積を計算することを特徴とする請求項2に記載の磁気共鳴イメージング装置。
  6.  前記電磁波の被検体の吸収量は、身体SARとして定義されるものであることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  7.  前記高周波磁場発生手段はRFコイルであり、
     前記身体SARは、前記高周波磁場発生手段から発生する電磁波の照射エネルギーを、前記RFコイル内に配置された前記被検体の高周波磁場照射部位の体積と密度の積である質量で割ることにより計算されることを特徴とする請求項6に記載の磁気共鳴イメージング装置。
  8.  前記被検体の高周波磁場照射部位の体積は、前記RFコイルの特性に基づいて計算されることを特徴とする請求項7に記載の磁気共鳴イメージング装置。
PCT/JP2009/067539 2008-10-08 2009-10-08 磁気共鳴イメージング装置 WO2010041706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010532950A JP5337162B2 (ja) 2008-10-08 2009-10-08 磁気共鳴イメージング装置
US13/122,593 US8531184B2 (en) 2008-10-08 2009-10-08 Magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-261474 2008-10-08
JP2008261474 2008-10-08

Publications (1)

Publication Number Publication Date
WO2010041706A1 true WO2010041706A1 (ja) 2010-04-15

Family

ID=42100654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067539 WO2010041706A1 (ja) 2008-10-08 2009-10-08 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US8531184B2 (ja)
JP (1) JP5337162B2 (ja)
WO (1) WO2010041706A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072571A (ja) * 2007-08-24 2009-04-09 Toshiba Corp 磁気共鳴イメージング装置、sar算出装置、磁気共鳴イメージング装置の作動方法およびsar算出方法
JP2013144066A (ja) * 2012-01-16 2013-07-25 Toshiba Corp 磁気共鳴イメージング装置及びSAR(SpecificAbsorptionRate)計算方法
WO2014080781A1 (ja) * 2012-11-20 2014-05-30 株式会社 日立メディコ 磁気共鳴イメージング装置、及び、sarの予測方法
JP2015532162A (ja) * 2012-10-23 2015-11-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴画像診断システム及び磁気共鳴画像診断方法
WO2016009791A1 (ja) * 2014-07-14 2016-01-21 株式会社 日立メディコ 磁気共鳴イメージング装置、q値算出方法および比吸収率管理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337162B2 (ja) * 2008-10-08 2013-11-06 株式会社日立メディコ 磁気共鳴イメージング装置
DE102012215006A1 (de) * 2012-08-23 2014-02-27 Siemens Aktiengesellschaft Erkennung von Sende-/Empfangsspulen eines Magnetresonanztomographen mit Hilfe von elektronisch lesbaren Etiketten
JP2017164211A (ja) 2016-03-15 2017-09-21 株式会社日立製作所 磁気共鳴イメージング装置、q値算出方法及び比吸収率管理方法
JP6147450B1 (ja) * 2017-01-04 2017-06-14 株式会社日立製作所 磁気共鳴イメージング装置、および、その作動方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253416A (ja) * 1998-03-09 1999-09-21 Toshiba Corp 磁気共鳴イメージング装置
JP2006095278A (ja) * 2004-08-30 2006-04-13 Toshiba Corp 磁気共鳴診断装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317287A (ja) 1992-05-14 1993-12-03 Toshiba Corp 磁気共鳴イメージング装置
US5984881A (en) * 1995-03-31 1999-11-16 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus using a therapeutic ultrasonic wave source and an ultrasonic probe
JP3978159B2 (ja) * 2003-07-03 2007-09-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮像システム
JP5269499B2 (ja) * 2007-08-24 2013-08-21 株式会社東芝 磁気共鳴イメージング装置、sar算出装置、磁気共鳴イメージング装置の作動方法およびsar算出方法
JP5337162B2 (ja) * 2008-10-08 2013-11-06 株式会社日立メディコ 磁気共鳴イメージング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253416A (ja) * 1998-03-09 1999-09-21 Toshiba Corp 磁気共鳴イメージング装置
JP2006095278A (ja) * 2004-08-30 2006-04-13 Toshiba Corp 磁気共鳴診断装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072571A (ja) * 2007-08-24 2009-04-09 Toshiba Corp 磁気共鳴イメージング装置、sar算出装置、磁気共鳴イメージング装置の作動方法およびsar算出方法
JP2013144066A (ja) * 2012-01-16 2013-07-25 Toshiba Corp 磁気共鳴イメージング装置及びSAR(SpecificAbsorptionRate)計算方法
JP2015532162A (ja) * 2012-10-23 2015-11-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴画像診断システム及び磁気共鳴画像診断方法
WO2014080781A1 (ja) * 2012-11-20 2014-05-30 株式会社 日立メディコ 磁気共鳴イメージング装置、及び、sarの予測方法
CN104736050A (zh) * 2012-11-20 2015-06-24 株式会社日立医疗器械 磁共振成像装置以及sar的预测方法
JPWO2014080781A1 (ja) * 2012-11-20 2017-01-05 株式会社日立製作所 磁気共鳴イメージング装置、及び、sarの予測方法
US10534048B2 (en) 2012-11-20 2020-01-14 Hitachi, Ltd. Magnetic resonance imaging apparatus and SAR prediction method
WO2016009791A1 (ja) * 2014-07-14 2016-01-21 株式会社 日立メディコ 磁気共鳴イメージング装置、q値算出方法および比吸収率管理方法
US10156615B2 (en) 2014-07-14 2018-12-18 Hitachi, Ltd. Magnetic resonance imaging apparatus, Q-value calculation method, and specific absorption rate management method

Also Published As

Publication number Publication date
JPWO2010041706A1 (ja) 2012-03-08
US20110181287A1 (en) 2011-07-28
US8531184B2 (en) 2013-09-10
JP5337162B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5337162B2 (ja) 磁気共鳴イメージング装置
JP6162142B2 (ja) 磁気共鳴イメージング装置、及び、sarの予測方法
JP5259715B2 (ja) 磁気共鳴イメージング装置および実行順決定方法
JP5666470B2 (ja) 核磁気共鳴イメージング装置およびそのsarの見積方法
JPWO2012026382A1 (ja) 磁気共鳴イメージング装置及び振動誤差磁場低減方法
JP2015167698A (ja) 医療用画像診断装置
JP6618988B2 (ja) 磁気共鳴イメージング装置およびrfシミングパラメータの設定方法
JP2015213535A (ja) 磁気共鳴イメージング装置
JP5670037B2 (ja) 静磁場測定器
JP2011110131A (ja) 磁気共鳴イメージング装置
JP5421600B2 (ja) 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法
JP6579908B2 (ja) 磁気共鳴イメージング装置及び拡散強調画像計算方法
JP5280127B2 (ja) 磁気共鳴イメージング装置
JP2012010728A (ja) 磁気共鳴イメージング装置及びt2マップ取得方法
JP2007181587A (ja) 磁気共鳴イメージング装置
JP5037956B2 (ja) 磁気共鳴イメージング装置
JP5100242B2 (ja) 磁気共鳴イメージング装置
JP2013017493A (ja) 磁気共鳴イメージング装置
JP2023046466A (ja) 磁気共鳴イメージング装置、および、画像処理方法
JP2011251038A (ja) 磁気共鳴イメージング装置及び、波形調整方法
JP2011015702A (ja) 磁気共鳴イメージング装置
WO2010038847A1 (ja) 磁気共鳴イメージング装置及びrfパルス調整方法
JP2012223299A (ja) 磁気共鳴イメージング装置における静磁場不均一測定装置
JP2015020037A (ja) 磁気共鳴イメージング装置及び傾斜磁場印加制御方法
JP2016140417A (ja) 磁気共鳴イメージング装置及びfseシーケンスの照射位相制御法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532950

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13122593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819240

Country of ref document: EP

Kind code of ref document: A1