WO2010041573A1 - 合成ゼオライト触媒の製造方法、並びに該方法で製造した触媒を用いた高純度パラキシレンの製造方法 - Google Patents
合成ゼオライト触媒の製造方法、並びに該方法で製造した触媒を用いた高純度パラキシレンの製造方法 Download PDFInfo
- Publication number
- WO2010041573A1 WO2010041573A1 PCT/JP2009/066952 JP2009066952W WO2010041573A1 WO 2010041573 A1 WO2010041573 A1 WO 2010041573A1 JP 2009066952 W JP2009066952 W JP 2009066952W WO 2010041573 A1 WO2010041573 A1 WO 2010041573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- xylene
- mol
- zeolite
- single crystal
- Prior art date
Links
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 title claims abstract description 102
- 239000003054 catalyst Substances 0.000 title claims abstract description 75
- 239000010457 zeolite Substances 0.000 title claims abstract description 73
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 75
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 41
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 22
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 17
- 238000005804 alkylation reaction Methods 0.000 claims abstract description 11
- 238000007323 disproportionation reaction Methods 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 230000029936 alkylation Effects 0.000 claims abstract description 5
- 239000011164 primary particle Substances 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims description 53
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 239000002994 raw material Substances 0.000 claims description 26
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 24
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 239000008096 xylene Substances 0.000 claims description 7
- 239000012188 paraffin wax Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 13
- 238000007873 sieving Methods 0.000 abstract description 9
- 239000007858 starting material Substances 0.000 abstract description 6
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000006317 isomerization reaction Methods 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 12
- 239000002168 alkylating agent Substances 0.000 description 11
- 229940100198 alkylating agent Drugs 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 238000009835 boiling Methods 0.000 description 10
- 239000012528 membrane Substances 0.000 description 9
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000002808 molecular sieve Substances 0.000 description 7
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 238000004821 distillation Methods 0.000 description 5
- 238000010335 hydrothermal treatment Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910021485 fumed silica Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229940078552 o-xylene Drugs 0.000 description 3
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001577 simple distillation Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010555 transalkylation reaction Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/865—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an ether
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/005—Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
- C01B39/40—Type ZSM-5 using at least one organic template directing agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/54—Phosphates, e.g. APO or SAPO compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/067—C8H10 hydrocarbons
- C07C15/08—Xylenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/864—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C6/00—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
- C07C6/08—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
- C07C6/12—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
- C07C6/123—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of only one hydrocarbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/12—After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/32—Reaction with silicon compounds, e.g. TEOS, siliconfluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/60—Synthesis on support
- B01J2229/62—Synthesis on support in or on other molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing a single crystal silicate-coated synthetic zeolite catalyst, and a method for producing high-purity paraxylene using the catalyst produced by the method, and more particularly to a method for efficiently producing high-purity paraxylene. It is.
- xylenes are extremely important compounds as starting materials for producing terephthalic acid, isophthalic acid, orthophthalic acid, etc., which are polyester raw materials. These xylenes are produced, for example, by transalkylation of toluene, disproportionation reaction, etc., and the product contains structural isomers p-xylene, o-xylene, and m-xylene.
- Terephthalic acid obtained by oxidizing p-xylene is the main raw material for polyethylene terephthalate
- phthalic anhydride obtained from o-xylene is used as a raw material for plasticizers
- isophthalic acid obtained from m-xylene is Since these are used as main raw materials such as unsaturated polyesters, there is a need for a method for efficiently separating these structural isomers from the product.
- a xylene mixture containing structural isomers In the method of selectively separating p-xylene by cryogenic separation, a xylene mixture containing structural isomers must be precisely distilled and then cooled and crystallized, which makes the process multistage and complicated. There are problems such as the precision distillation and the cooling crystallization process causing the production cost to increase. Therefore, instead of this method, the adsorption separation method is currently most widely implemented. In this method, while the raw material xylene mixture moves through an adsorption tower filled with an adsorbent, paraxylene having a stronger adsorption power than other isomers is adsorbed and separated from other isomers. It is.
- paraxylene is extracted out of the system by the desorbing agent, and after desorption, it is separated from the desorbing solution by distillation.
- Actual processes include UOP's PAREX method and Toray's AROMAX method.
- This adsorptive separation method has a higher recovery rate and purity of para-xylene than other separation methods, but on the other hand, adsorption and desorption are repeated in succession by an adsorption tower consisting of a pseudo moving bed extending over 10 stages. It was necessary to separate and remove the desorbent for removing para-xylene, and it was never good in operating efficiency when para-xylene was highly purified.
- Patent Document 1 discloses a zeolite-bound zeolite catalyst comprising a first zeolite crystal having catalytic activity and a second zeolite crystal having molecular sieve action.
- the zeolite-bound zeolite catalyst disclosed in Patent Document 1 since the second zeolite crystal having molecular sieve action forms a continuous phase matrix or bridge, the zeolite-bound zeolite catalyst of the first zeolite crystal having catalytic activity is included in the zeolite-bound zeolite catalyst.
- the second zeolite crystal having molecular sieving action forms a continuous phase matrix
- the permeation resistance of the selected molecule becomes too large.
- Molecular sieve action tends to decrease.
- the second zeolite crystal plays a role as a binder (carrier) without using a binder (carrier) for maintaining the shape
- the first zeolite crystal is agglomerated by the second zeolite crystal or a blocky zeolite A bound zeolite catalyst is obtained once.
- the agglomerated or massive catalyst is pulverized before use, but the second zeolite crystals are peeled off by the pulverization, and a portion where the first zeolite crystals are exposed is generated, which causes a decrease in molecular sieve action.
- Patent Document 2 discloses a method of coating solid acid catalyst particles with zeolite crystals having molecular sieve action.
- the catalyst particles have an average particle diameter of 0.3 to 3.0 mm, the reaction field necessary for the target reaction, that is, the specific surface area of the catalyst is very small. Therefore, this method has insufficient reaction efficiency, toluene conversion rate and paraxylene selectivity are never high, and it cannot be used industrially.
- the conventional technology provides a method for efficiently producing high-purity paraxylene without a complicated process such as an isomerization / adsorption separation process, and a catalyst useful for the method. There wasn't. In particular, when surface-modifying the catalyst, nothing mentions the crystalline phase of the modifier.
- the present invention has been made in view of the above circumstances, and by using a novel catalyst having molecular sieving action (or shape selectivity) and excellent catalytic activity, without performing an isomerization / adsorption separation step, It is an object of the present invention to provide a method capable of efficiently producing high purity para-xylene.
- the present inventors have come up with an epoch-making paraxylene production method that does not contain impurities at all and is easily separated by selecting an optimum catalyst.
- the isomer of the specific structure of the product produced inside the catalyst particles selectively passes through the single crystal silicate membrane having the molecular sieving action, so that the isomer of the specific structure is obtained without reducing the activity of the catalyst.
- only isomers with a specific structure can selectively penetrate into the catalytically active catalyst particles to cause a selective (specific) reaction inside the catalyst particles. it can.
- highly purified para-xylene can be produced efficiently.
- the present invention (1) In a method for producing a synthetic zeolite catalyst in which an MFI-type zeolite having a primary particle size of 100 ⁇ m or less is coated with a single crystal silicate, at least an MFI-type zeolite, a structure directing agent, and an average particle size of 10 nm to 1 A silica raw material of less than 0.0 ⁇ m was used and mixed in a range satisfying X ⁇ Y ⁇ 0.05 (where X: concentration of silica raw material (mol%), Y: concentration of structure directing agent (mol%)).
- the MFI-type zeolite is coated using an aqueous solution.
- the synthetic zeolite catalyst produced by the production method described in (1) or (2) above is used. It is a manufacturing method of purity para-xylene.
- the structure directing agent is R.I. F. Lobo et. al, Phenomena and Molecular Recognition in Chem. , 21, 47 (1995), it is a reagent that determines the zeolite structure (for example, MFI) during hydrothermal synthesis, and is also called a template or template molecule. It is mainly an organic compound of quaternary ammonium type.
- the entire surface of each of the granular MFI-type zeolites is selected by selecting a ratio between a specific silica raw material and a structure directing agent. It can be suitably used for selectively producing an isomer having a specific structure by utilizing molecular sieve action.
- shape selectivity of para-xylene can be imparted to the catalyst particles with a minimum amount of modification. . From the above, it is possible to provide an excellent catalyst for producing industrially useful para-xylene selectively and without reducing the conversion rate.
- a catalyst obtained by coating MFI type zeolite having a primary particle diameter of 100 ⁇ m or less with a single crystal silicate is used.
- the zeolite having the MFI structure used as the core of the catalyst is excellent in catalytic performance for a reaction in which para-xylene is produced by a reaction between aromatic hydrocarbons or an aromatic hydrocarbon and an alkylating agent.
- MFI type zeolite ZSM-5 and SAPO-34 are particularly preferable.
- zeolites have a pore size of 0.5 to 0.6 nm, which is the same as the minor axis of paraxylene molecules, so they distinguish paraxylene from orthoxylene and metaxylene, which are slightly larger in molecular size than paraxylene. This is effective when the desired para-xylene is produced.
- the primary particle diameter of the MFI type zeolite that becomes the core of the catalyst is 100 ⁇ m or less.
- the particle size of the MFI-type zeolite exceeds 100 ⁇ m, the diffusion resistance increases, and the conversion rate of the aromatic hydrocarbon as a raw material becomes low, so that it cannot be used industrially.
- the smaller the particle size of the MFI type zeolite used the smaller the effect of diffusion in the pores, so that the particle size is desirably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
- the silica / alumina ratio of the MFI type zeolite is preferably 30 or more and 10,000 or less, and more preferably 50 or more and 5,000 or less.
- the silica / alumina ratio is lower than 30, it is difficult to stably maintain the MFI structure.
- the silica / alumina ratio is higher than 10,000, the amount of acid which is a reaction active point decreases, which is not preferable.
- the catalyst used in the present invention is obtained by coating the above-mentioned MFI type zeolite with a single crystal silicate, and the single crystal silicate exhibits a molecular sieving action.
- the single crystal silicate membrane (zeolite membrane) having the molecular sieving action preferably has a structure similar to the core MFI zeolite and has continuous pores. Examples of the method for confirming the continuity of the pores include a method of measuring a hydrocarbon diffusion rate according to the pore size, a method using a Hammett indicator according to the pore size, and the like.
- the single crystal silicate is desirably inert to the disproportionation reaction and the alkylation reaction, and is particularly preferably pure silica zeolite (silicalite-1) containing no alumina component. Since silicalite-1 has few acid sites, it is particularly suitable for inactivating the surface after coating. Note that silicon in the single crystal silicate film may be partially substituted with another element such as gallium, germanium, phosphorus, or boron, but even in that case, the surface inactive state may be maintained. is important.
- the weight of the single crystal silicate membrane is preferably 10 parts or more, more preferably 20 parts or more, and preferably 100 parts or less, more preferably 70 parts or less, with respect to 100 parts of the MFI zeolite as a nucleus. It is. If the single crystal silicate is less than 10 parts by weight with respect to 100 parts by weight of the MFI type zeolite, the molecular sieving action of the single crystal silicate film cannot be sufficiently exerted, whereas if it exceeds 100 parts by weight, the MFI type in the catalyst The ratio of zeolite is too low, causing not only a decrease in catalyst activity, but also the resistance of the object to be treated such as raw materials and products passing through the single crystal silicate membrane may become too high.
- the film thickness of the single crystal silicate is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 10 ⁇ m or less. If the film thickness of the single crystal silicate is less than 0.01 ⁇ m, the molecular sieving action of the single crystal silicate film cannot be fully exerted. On the other hand, if it exceeds 50 ⁇ m, the film thickness of the single crystal silicate is too thick, and the raw material This is because the resistance of an object to be processed such as an object passing through the single crystal silicate film becomes too large.
- a conventional method for preparing a zeolite membrane such as a hydrothermal synthesis method, is used as described below.
- a conventional method for preparing a zeolite membrane such as a hydrothermal synthesis method, is used as described below.
- silica source such as amorphous silica, amorphous silica, fumed silica, colloidal silica, structure directing agent such as tetrapropylammonium hydroxide, alkali metal or alkali
- a sol for forming a single crystal silicate film is prepared by dissolving a mineralizer such as a hydroxide of an earth metal in water or ethanol.
- a single crystal silicate film can be formed by using an appropriate ratio of silica raw material and structure directing agent.
- the concentration of the silica raw material is X (mol%) and the concentration of the structure directing agent is Y (mol%)
- the coating treatment is performed using an aqueous solution mixed in a range satisfying X ⁇ Y ⁇ 0.05. Do. If the value of X ⁇ Y is 0.05 or more, the crystallization speed is too high, the target efficient coating treatment is not performed, and it becomes difficult to obtain a single crystal structure.
- the silica raw material to be used preferably has an average particle size of 10 nm or more and less than 1.0 ⁇ m, and preferably 20 nm or more and less than 0.5 ⁇ m, for the purpose of appropriately controlling the silica elution rate into the coating aqueous solution.
- the average particle size of the silica raw material is smaller than 10 nm, it is difficult to obtain a single crystal structure due to crystal growth between silica sources.
- the average particle size is 1.0 ⁇ m or more, film formation itself is difficult.
- the pH of the aqueous solution is desirably 7 or more and less than 10. If the pH of the aqueous solution is outside the above range, the film formation reaction of the silicate film does not proceed sufficiently, which is not preferable.
- each of the granular MFI type zeolites is immersed in the single crystal silicate film forming sol, or the single crystal silicate film forming sol is individually applied to the granular MFI type zeolite.
- the entire individual surface of the zeolite is treated with a single crystal silicate film forming sol.
- a single crystal silicate film is formed on the entire individual surface of the granular MFI type zeolite by hydrothermal treatment.
- the hydrothermal treatment can be performed by immersing the granular MFI-type zeolite treated with the sol for forming a single crystal silicate film in hot water or hot water in an autoclave, or by leaving it in heated steam. .
- the hydrothermal treatment may be performed while the granular MFI-type zeolite is immersed in the sol for forming a single crystal silicate film.
- an autoclave containing the granular MFI-type zeolite and the sol for forming a single crystal silicate film is placed in an oven. Just put directly and heat.
- the hydrothermal treatment is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, preferably 0.5 hours or longer, more preferably 1 hour or longer, preferably For 48 hours or less, more preferably 36 hours or less.
- the granular MFI-type zeolite is taken out, dried, and further subjected to a heat treatment, whereby the single crystal silicate film is fired.
- the calcination may be performed by increasing the temperature at a rate of 0.1 to 10 ° C./min, if necessary, and then performing heat treatment at a temperature of 500 to 700 ° C. for 2 to 10 hours.
- the method for producing para-xylene according to the present invention comprises para-xylene in the presence of the above-mentioned catalyst by reaction between aromatic hydrocarbons (disproportionation) or reaction between an aromatic hydrocarbon and an alkylating agent (alkylation). Is selectively manufactured.
- Raw materials include aromatic hydrocarbons such as benzene and toluene.
- the raw material aromatic hydrocarbon may contain a hydrocarbon compound other than benzene and toluene.
- para-xylene is a target product, it is not preferable to use meta-xylene or ortho-xylene as a raw material.
- alkylating agent used in the present invention examples include methanol and dimethyl ether.
- Commercial products can be used for these, but for example, methanol or dimethyl ether produced from synthesis gas, which is a mixed gas of hydrogen and carbon monoxide, or dimethyl ether produced by dehydration reaction of methanol may be used as a starting material.
- impurities that may be present in benzene, toluene, methanol, and dimethyl ether include water, olefins, sulfur compounds, and nitrogen compounds.
- Preferable contents are 200 ppm by weight or less, more preferably 100 ppm by weight or less for water, 1% by weight or less, more preferably 0.5% by weight or less for olefins, and 1 ppm by weight for sulfur compounds and nitrogen compounds. Below, more preferably 0.1 ppm by weight or less.
- the ratio of the alkylating agent to the aromatic hydrocarbon in the alkylation reaction is preferably 5/1 to 1/20, more preferably 2/1 to 1/10, as the molar ratio of methyl group to aromatic hydrocarbon. 1/1 to 1/5 is particularly preferable.
- the amount of alkylating agent is excessively large with respect to the aromatic hydrocarbon, the reaction between undesirable alkylating agents proceeds, which may cause coking that causes catalyst deterioration, which is not preferable.
- the alkylating agent is extremely small relative to the aromatic hydrocarbon, the alkylation reaction to the aromatic hydrocarbon does not proceed substantially, and when toluene is used as the aromatic hydrocarbon, toluene The disproportionation reaction between them proceeds.
- the reaction conditions for the disproportionation reaction or alkylation reaction are not particularly limited, but the reaction temperature is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, particularly preferably 260 ° C. or higher, preferably 550.
- the pressure is preferably atmospheric pressure or higher, more preferably 0.1 MPaG or higher, particularly preferably 0.5 MPaG or higher, preferably 10 MPaG or lower, More preferably, it is 5 MPaG or less.
- an inert gas such as nitrogen or helium or hydrogen for suppressing coking may be circulated or pressurized. If the reaction temperature is too low, activation of aromatic hydrocarbons and alkylating agents is insufficient, and active sites due to water generated by the reaction are poisoned. If the conversion rate is low and the reaction temperature is too high, the catalyst life tends to be shortened in addition to consuming a lot of energy.
- toluene methylation reaction proceeds in the presence of the above catalyst, in addition to the target product paraxylene, orthoxylene, metaxylene and ethylbenzene, which are structural isomers, unreacted toluene, the number of carbons in which methylation has progressed Generation of 9 or more alkylbenzenes is envisaged.
- the higher the proportion of para-xylene in the aromatic hydrocarbon having 8 carbon atoms the more preferable, and 95 mol% or more is preferable, 97.5 mol% or more is more preferable, and 99.7 mol% or more is more preferable in this one-step reaction. Even more preferably, 99.8 mol% or more is particularly preferable, and 99.9 mol% or more is most preferable.
- the residual amount of benzene having 6 carbon atoms and toluene having 7 carbon atoms greatly depends on the reaction temperature and the mixing ratio of the alkylating agent, but when the actual process is assumed, the residual ratio is preferably 70 mol% or less. 50 mol% or less, more preferably 30 mol% or less, in other words, the conversion is preferably 30 mol% or more, more preferably 50 mol% or more, and particularly preferably 70 mol% or more.
- the residual rate is high, that is, when the conversion rate is low, it is necessary to return the unreacted toluene to the raw material line and react it again, so that there is a demerit that the production efficiency is greatly reduced.
- the alkylating agent ratio is preferably not extremely high as described above.
- the total content of aromatic hydrocarbons having 9 or more carbon atoms in the reaction product is preferably 5 mol% or less, more preferably 1 mol% or less, and particularly preferably 0.1 mol% or less.
- the content is particularly preferably 0.1 mol% or less.
- the reaction product may be separated and concentrated by an existing method, but in the present invention, paraxylene having a very high purity can be selectively obtained, and therefore it can be isolated only by a simple distillation method. That is, by simple distillation, it can be divided into a fraction having a boiling point lower than that of unreacted benzene and toluene, a fraction having a higher boiling point than paraxylene, and a fraction having a higher boiling point than paraxylene. In the case where the production amount of the minute is extremely small, the high purity para-xylene can be isolated only by distilling off the light component. Unreacted toluene may be re-reacted as a raw material.
- catalysts A1 to A8 are catalysts A1 to A8.
- catalyst A7-2 is a catalyst A7-1 further coated, and the weight increase was increased by the coating treatment based on the weight of H-ZSM-5. Indicates the weight percentage.
- FIG. 1 shows an SEM photograph of catalyst A8 (single crystal silicate-coated zeolite catalyst). The average particle size was measured by dispersing 20% in water using a laser diffraction particle size distribution analyzer (LA-920) manufactured by Horiba.
- LA-920 laser diffraction particle size distribution analyzer
- ⁇ Preparation of catalysts T1 to T7> When preparing the mixed solution, the same conditions as described above except that water-soluble tetraethoxysilane (TEOS) (particle size in liquid less than 10 nm) was used instead of fumed silica, and the amount of charge described in Table 2 was used. Thus, catalysts T1 to T7 were obtained. As a result, it was confirmed from the SEM measurement that all these catalysts were polycrystalline coating phases.
- FIG. 2 shows an SEM photograph of catalyst T6 (polycrystalline silicate-coated zeolite catalyst).
- Example 1 In a fixed bed reaction vessel with an inner diameter of 4 mm, 0.05 g of catalyst A6 is diluted and filled with 1.0 mm ⁇ glass beads to make the catalyst layer length 20 mm, and while flowing helium gas, LHSV is 2.0 h ⁇ 1 , methanol. / Toluene was set to 1.0 mol / mol, and toluene was alkylated at 400 ° C. under atmospheric pressure. The product at the outlet of the reaction vessel 1 hour after the start of the reaction was analyzed by gas chromatography to determine the production ratio of each isomer. The results are shown in Table 3, and the measurement conditions for gas chromatography are shown below.
- Measuring device GC-2014 manufactured by Shimadzu Corporation
- Column capillary column Xylene Master, inner diameter 0.32 mm, 50 m
- Temperature conditions column temperature 50 ° C., heating rate 2 ° C./min, detector (FID) temperature 250 ° C.
- Carrier gas helium
- Toluene conversion rate (mol%) 100 ⁇ (toluene residual mole / toluene mole in raw material) ⁇ 100
- Paraxylene selectivity (mol%) (paraxylene production mole / C8 aromatic hydrocarbon production mole) ⁇ 100
- Examples 2 to 4, Comparative Examples 1 to 6 As the catalyst, toluene was alkylated under the same conditions as in Example 1 except that the catalysts listed in Table 3 were used. The results are shown in Table 3.
- the catalyst used in Comparative Example 6 was H-ZSM-5 that was not subjected to the above-described coating treatment.
- the selectivity of p-xylene is 97.5% or more and a thermodynamic equilibrium composition (about 25%). It was extremely high in comparison, and it was revealed that p-xylene was selectively produced.
- the product oil is essentially paraxylene (boiling point 138 ° C) and aromatic hydrocarbons having 9 or more carbon atoms (boiling point 165 to 176 ° C). Thus, high-concentration paraxylene can be easily obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
(1)1次粒子径が100μm以下であるMFI型ゼオライトを単結晶シリケートで被覆する合成ゼオライト触媒の製造方法において、原料として、少なくともMFI型ゼオライト、構造規定剤、及び平均粒径が10nm以上1.0μm未満であるシリカ原料を用い、X×Y<0.05を満たす範囲(ここで、X:シリカ原料の濃度(mol%)、Y:構造規定剤の濃度(mol%))で混合した水溶液を用いて、前記MFI型ゼオライトを被覆化処理する、合成ゼオライト触媒の製造方法である。
(2)前記単結晶シリケートがシリカライトである、前記(1)に記載の合成ゼオライト触媒の製造方法である。
(3)ベンゼン、トルエンのうち少なくとも1種を原料としたアルキル化又は不均化を行う際に、前記(1)又は(2)に記載の製造方法により製造した合成ゼオライト触媒を使用する、高純度パラキシレンの製造方法である。
(4)トルエン転化率が30mol%以上で、炭素数が8である芳香族炭化水素中のパラキシレン選択率が97.5mol%以上である、前記(3)に記載の高純度パラキシレンの製造方法である。
本発明の高純度パラキシレンの製造方法においては、1次粒子径が100μm以下であるMFI型ゼオライトを単結晶シリケートで被覆してなる触媒を使用する。該触媒の核として使用するMFI構造を有するゼオライトは、芳香族炭化水素同士または芳香族炭化水素とアルキル化剤との反応によりパラキシレンを生成する反応に対する触媒性能が優れる。該MFI型ゼオライトとして、特には、ZSM-5、SAPO-34が好ましい。これらゼオライトは、細孔の大きさがパラキシレン分子の短径と同じ0.5~0.6nmであるため、パラキシレンと、パラキシレンよりわずかに分子サイズが大きいオルトキシレンやメタキシレンとを区別することができ、目的のパラキシレンを製造する場合には有効である。
本発明のパラキシレンの製造方法は、上述の触媒の存在下で、芳香族炭化水素同士の反応(不均化)あるいは芳香族炭化水素とアルキル化剤との反応(アルキル化)により、パラキシレンを選択的に製造することを特徴とする。
<触媒A1~A8の調製>
0.3gのH-ZSM-5(粒径10μm)に対して、表1に示すような比率となるように、非水溶性で平均粒径112nmのヒュームドシリカ(和光純薬製アエロジル200)、テトラプロピルアンモニウムヒドロキシド(TPAOH)、エタノール、イオン交換水を適宜使用した混合溶液15gを用い、オートクレーブにて180℃、24時間かけて水熱合成を実施した。得られた生成物を洗浄ろ過後、600℃にて5時間焼成して、触媒A1~A8を得た。なお、表1中、触媒A7-2は、触媒A7-1に対してさらに被覆処理を施したものであり、また、重量増加分はH-ZSM-5の重量を基準として被覆処理により増加した重量の割合を示す。その結果、触媒A1では多結晶型、その他は単結晶型のコーティング相であることがSEM測定から確認された。図1に、触媒A8(単結晶シリケート被覆ゼオライト触媒)のSEM写真を示す。なお、平均粒径については、堀場製レーザー回折型粒度分布計(LA-920)を用い、水中に20%分散させて測定した。
混合溶液を調製する際、ヒュームドシリカの代わりに水溶性のテトラエトキシシラン(TEOS)(液中の粒子サイズ10nm未満)を用い、表2に記載の仕込み量とした以外、前記と同様の条件で触媒T1~T7を得た。その結果、これらすべての触媒は多結晶型のコーティング相であることがSEM測定から確認された。図2に、触媒T6(多結晶シリケート被覆ゼオライト触媒)のSEM写真を示す。
内径4mmの固定層反応容器に、0.05gの触媒A6を1.0mmφのガラスビーズで希釈充填して触媒層長を20mmとし、ヘリウムガスを流通しながら、LHSVを2.0h-1、メタノール/トルエンを1.0mol/molとして、大気圧下400℃でトルエンのアルキル化反応を行った。反応開始から1時間後の反応容器出口の生成物をガスクロマトグラフィーにより分析し、各異性体の生成割合を求めた。結果を表3に、ガスクロマトグラフィーの測定条件を以下に示す。
カラム:キャピラリーカラムXylene Master、内径0.32mm、50m
温度条件:カラム温度50℃、昇温速度2℃/分、検出器(FID)温度250℃
キャリアーガス:ヘリウム
触媒として、表3に記載した触媒を使用した以外は、実施例1と同様の条件でトルエンのアルキル化を行った。結果を表3に示す。尚、比較例6で使用した触媒は、前述の被覆処理を行わなかったH-ZSM-5である。
Claims (4)
- 1次粒子径が100μm以下であるMFI型ゼオライトを単結晶シリケートで被覆する合成ゼオライト触媒の製造方法において、
原料として、MFI型ゼオライト、構造規定剤、及び平均粒径が10nm以上1.0μm未満であるシリカ原料を用い、
X×Y<0.05を満たす範囲(ここで、X:シリカ原料の濃度(mol%)、Y:構造規定剤の濃度(mol%))で混合した水溶液を用いて、前記MFI型ゼオライトを被覆化処理することを特徴とする合成ゼオライト触媒の製造方法。 - 前記単結晶シリケートがシリカライトであることを特徴とする、請求項1に記載の合成ゼオライト触媒の製造方法。
- ベンゼン、トルエンのうち少なくとも1種を原料としたアルキル化または不均化を行う際に、請求項1又は2に記載の製造方法により製造した合成ゼオライト触媒を使用することを特徴とする高純度パラキシレンの製造方法。
- トルエン転化率が30mol%以上で、炭素数が8である芳香族炭化水素中のパラキシレン選択率が97.5mol%以上であることを特徴とする請求項3に記載の高純度パラキシレンの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/119,825 US8772564B2 (en) | 2008-10-09 | 2009-09-29 | Method of producing synthetic zeolite catalyst and method of producing high-purity paraxylene with a catalyst produced by such a method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-262943 | 2008-10-09 | ||
JP2008262943A JP5495531B2 (ja) | 2008-10-09 | 2008-10-09 | パラキシレン製造用合成ゼオライト触媒の製造方法、並びに該方法で製造したパラキシレン製造用触媒を用いた高純度パラキシレンの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010041573A1 true WO2010041573A1 (ja) | 2010-04-15 |
Family
ID=42100525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/066952 WO2010041573A1 (ja) | 2008-10-09 | 2009-09-29 | 合成ゼオライト触媒の製造方法、並びに該方法で製造した触媒を用いた高純度パラキシレンの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8772564B2 (ja) |
JP (1) | JP5495531B2 (ja) |
KR (1) | KR101607720B1 (ja) |
TW (1) | TW201021914A (ja) |
WO (1) | WO2010041573A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118668A1 (ja) * | 2010-03-26 | 2011-09-29 | Jx日鉱日石エネルギー株式会社 | 触媒及びその製造方法、並びにそれを用いたパラキシレンの製造方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120296134A1 (en) * | 2011-05-22 | 2012-11-22 | Fina Technology, Inc. | Germanium modified catalyst for coupling reactions |
WO2013147261A1 (ja) | 2012-03-30 | 2013-10-03 | Jx日鉱日石エネルギー株式会社 | シリケート被覆MFI型ゼオライトとその製造方法およびそれを用いたp-キシレンの製造方法 |
WO2013165655A1 (en) * | 2012-05-03 | 2013-11-07 | Exxonmobil Chemical Patents Inc. | Hydrocarbon conversion process |
JP6317736B2 (ja) | 2012-05-31 | 2018-04-25 | エクソンモービル ケミカル パテンツ インコーポレイテッド | パラキシレンの回収法におけるフェノールの除去 |
WO2014193563A1 (en) * | 2013-05-31 | 2014-12-04 | Exxonmobil Chemical Patents Inc. | Transalkylation system |
DE102014012681A1 (de) * | 2014-08-22 | 2016-02-25 | Friedrich-Alexander-Universität Erlangen - Nürnberg | Zeolithische Materialien mit ausgeprägter Makroporosität im Einzelkristall und Verfahren zu deren Herstellung |
US20160060187A1 (en) * | 2014-08-26 | 2016-03-03 | Exxonmobil Chemical Patents Inc. | Treatment of Off-Gas in the Production of Para-Xylene by the Methylation of Toluene and/or Benzene |
KR101949431B1 (ko) | 2016-11-04 | 2019-02-19 | 한국과학기술연구원 | 실리카에 담지된 헤테로폴리산 촉매 및 이를 이용한 파라자일렌의 제조방법 |
CN108525643B (zh) * | 2017-03-01 | 2020-10-27 | 中国石油化工股份有限公司 | 一种对二甲苯吸附剂及其制备方法 |
CN108525641B (zh) * | 2017-03-01 | 2020-11-13 | 中国石油化工股份有限公司 | 吸附分离对二甲苯的小球吸附剂及制备方法 |
CN108525650B (zh) * | 2017-03-01 | 2020-11-13 | 中国石油化工股份有限公司 | 一种X/Silicalite-1核/壳分子筛及其制备方法 |
CN109251119B (zh) * | 2017-07-14 | 2021-11-02 | 中国石油天然气股份有限公司 | 一种利用超重力反应器生产烷基苯的方法 |
CN109590019A (zh) * | 2017-09-30 | 2019-04-09 | 株式会社模范 | 用于合成气直接制备对二甲苯的催化剂及其制备和应用 |
JP7091842B2 (ja) * | 2018-05-29 | 2022-06-28 | 日本製鉄株式会社 | パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、およびパラキシレンの製造方法 |
CN112844454A (zh) * | 2019-11-12 | 2021-05-28 | 惠生工程(中国)有限公司 | 一种zsm-5催化剂及其制备方法和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500189A (ja) * | 1999-05-20 | 2003-01-07 | エクソンモービル・ケミカル・パテンツ・インク | 炭化水素転化方法及びその方法に有用な触媒 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465886A (en) * | 1983-06-09 | 1984-08-14 | Mobil Oil Corporation | Silica-modified catalyst and use for selective production of para-dialkyl substituted benzenes |
NL9401260A (nl) * | 1993-11-12 | 1995-06-01 | Cornelis Johannes Maria Van Ri | Membraan voor microfiltratie, ultrafiltratie, gasscheiding en katalyse, werkwijze ter vervaardiging van een dergelijk membraan, mal ter vervaardiging van een dergelijk membraan, alsmede diverse scheidingssystemen omvattende een dergelijk membraan. |
SE9600970D0 (sv) * | 1996-03-14 | 1996-03-14 | Johan Sterte | Förfarande för framställning av mycket tunna filmer av molekylsiktar |
CN1102075C (zh) * | 1996-05-29 | 2003-02-26 | 埃克森美孚化学专利公司 | 沸石催化剂及其在烃转化上的用途 |
CA2255873A1 (en) | 1996-05-29 | 1997-12-04 | Robert S. Smith | Methylation of toluene to para-xylene |
JP2003062466A (ja) | 2001-08-29 | 2003-03-04 | Kobe Steel Ltd | 触媒粒子及びこれを用いた芳香族誘導体の製造方法 |
-
2008
- 2008-10-09 JP JP2008262943A patent/JP5495531B2/ja not_active Expired - Fee Related
-
2009
- 2009-09-29 US US13/119,825 patent/US8772564B2/en active Active
- 2009-09-29 WO PCT/JP2009/066952 patent/WO2010041573A1/ja active Application Filing
- 2009-09-29 KR KR1020117008022A patent/KR101607720B1/ko active IP Right Grant
- 2009-10-07 TW TW098133991A patent/TW201021914A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500189A (ja) * | 1999-05-20 | 2003-01-07 | エクソンモービル・ケミカル・パテンツ・インク | 炭化水素転化方法及びその方法に有用な触媒 |
Non-Patent Citations (2)
Title |
---|
MANABU MIYAMOTO ET AL.: "Silicalite/ZSM-5 Zeolite Composite o Mochiita p-Xylene no Sentakuteki Gosei", DAI 98 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 26 September 2006 (2006-09-26), pages 383 * |
MANABU MIYAMOTO ET AL.: "Zeolite Hifuku Shokubai o Mochiita Hannobutsu Oyobi Seiseibutsu Sentakuteki Hanno", ZEOLITE KENKYU HAPPYOKAI KOEN YOKOSHU, vol. 20, 29 November 2004 (2004-11-29), pages 67 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118668A1 (ja) * | 2010-03-26 | 2011-09-29 | Jx日鉱日石エネルギー株式会社 | 触媒及びその製造方法、並びにそれを用いたパラキシレンの製造方法 |
US9079163B2 (en) | 2010-03-26 | 2015-07-14 | Jx Nippon Oil & Energy Corporation | Catalyst and method for producing the same and method for producing paraxylene using the same |
Also Published As
Publication number | Publication date |
---|---|
TW201021914A (en) | 2010-06-16 |
KR101607720B1 (ko) | 2016-03-30 |
KR20110066933A (ko) | 2011-06-17 |
US20110201863A1 (en) | 2011-08-18 |
US8772564B2 (en) | 2014-07-08 |
JP2010089034A (ja) | 2010-04-22 |
JP5495531B2 (ja) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5495531B2 (ja) | パラキシレン製造用合成ゼオライト触媒の製造方法、並びに該方法で製造したパラキシレン製造用触媒を用いた高純度パラキシレンの製造方法 | |
JP5520212B2 (ja) | パラ置換芳香族炭化水素の製造方法 | |
Van Vu et al. | Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals | |
JP5732189B2 (ja) | トルエンのアルキル化反応又は不均化反応によるパラキシレン製造用の触媒及びその製造方法、並びにそれを用いたパラキシレンの製造方法 | |
TWI363753B (en) | Process for producing para-xylene | |
JP5602719B2 (ja) | パラ置換芳香族炭化水素製造用触媒及びそれを用いたパラ置換芳香族炭化水素の製造方法 | |
JP5985139B2 (ja) | パラキシレンを製造するための、ベンゼンのアルキル化反応、或いは、トルエンのアルキル化反応又はトルエンの不均化反応に用いる触媒及びその製造方法、並びにそれを用いたパラキシレンの製造方法 | |
US20160039726A1 (en) | Boroaluminosilicate Molecular Sieves and Methods for Using Same for Xylene Isomerization | |
JP2005139190A (ja) | 芳香族化合物の触媒異性化方法 | |
JP2004203877A (ja) | メシチレンおよびズレンの製造方法 | |
CN114787323A (zh) | 用于将重质重整产物转化成二甲苯的复合分层沸石催化剂 | |
US6429347B1 (en) | Selective aromatics disproportionation process | |
JP5920703B2 (ja) | パラ置換芳香族炭化水素製造用触媒及びその製造方法、並びにそれを用いたパラ置換芳香族炭化水素の製造方法 | |
JP2015051383A (ja) | エチルベンゼンの脱アルキル化およびキシレン異性化触媒ならびにエチルベンゼンの脱アルキル化方法およびキシレン異性化方法 | |
JP2010526139A (ja) | 芳香族化合物を高転化率で選択的に不均化する方法 | |
BR0001521B1 (pt) | catalisador gotejado com óleo, e, processo para o desproporcionamento de uma carga de alimentação contendo tolueno. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09819108 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13119825 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117008022 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09819108 Country of ref document: EP Kind code of ref document: A1 |