WO2010040865A1 - Nuevo biomaterial a partir de la gelatina de wharton del cordón umbilical humano - Google Patents

Nuevo biomaterial a partir de la gelatina de wharton del cordón umbilical humano Download PDF

Info

Publication number
WO2010040865A1
WO2010040865A1 PCT/ES2008/000640 ES2008000640W WO2010040865A1 WO 2010040865 A1 WO2010040865 A1 WO 2010040865A1 ES 2008000640 W ES2008000640 W ES 2008000640W WO 2010040865 A1 WO2010040865 A1 WO 2010040865A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomaterial
gags
cells
umbilical cord
biomaterial according
Prior art date
Application number
PCT/ES2008/000640
Other languages
English (en)
French (fr)
Inventor
Julio Font Perez
Maite Del Olmo Basterrechea
Maria Begoña CASTRO FEO
Arantza Infante Martinez
Ana Isabel Alonso Varona
Teodoro Palomares Casado
Original Assignee
Histocell S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Histocell S.L. filed Critical Histocell S.L.
Priority to US13/123,186 priority Critical patent/US8685732B2/en
Priority to KR1020117008461A priority patent/KR101595600B1/ko
Priority to JP2011530512A priority patent/JP5427237B2/ja
Priority to CA2739166A priority patent/CA2739166C/en
Priority to CN200880131511.XA priority patent/CN102176881B/zh
Priority to AU2008362567A priority patent/AU2008362567B2/en
Priority to PCT/ES2008/000640 priority patent/WO2010040865A1/es
Priority to EP08874660.7A priority patent/EP2351538B1/en
Priority to ES08874660.7T priority patent/ES2670932T3/es
Priority to BRPI0822802-7A priority patent/BRPI0822802A2/pt
Publication of WO2010040865A1 publication Critical patent/WO2010040865A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0059Cosmetic or alloplastic implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00

Definitions

  • the present invention refers to a biomaterial, specifically a hydrogel, formed from the extracellular matrix of the umbilical cord for application in Regenerative Medicine.
  • the invention refers to a biomaterial composed of glycosaminoglycans isolated exclusively from Wharton's jelly of the umbilical cord that may optionally contain cells, and also to the methods for its production and use.
  • Biomaterials formed by polymers play a central role in regenerative medicine since they provide three-dimensional temporal anchors for adhesion, proliferation and differentiation of transplanted cells. This three-dimensional character provides a suitable platform for intercellular communication and the relationship of cells with biomaterial components. The biointeraction that occurs between the matrix and the cells in time determines the proliferative capacity of the cells, their organization for the formation of a new tissue, their differentiation and the secretion of signaling molecules that direct the regenerative process (Dawson et al ., 2008).
  • a specific type of biomaterial, ios hydrogels, has numerous properties that make them very suitable for application in Tissue Engineering.
  • Hydrogels are structures formed by interconnected hydrophilic polymers of natural or synthetic origin, capable of containing a large amount of water inside their structure, from 10-20% up to hundreds of times their own weight. These gels exhibit a semi-solid morphology whose three-dimensional framework is presented as an ideal candidate to form a structural matrix capable of acting as a support. This three-dimensional structure can be formed by both physical cross-linking and chemical cross-linking. Physical crosslinking results in reversible hydrogels whose structure can be reversed depending on the final application, while chemical crosslinking results in permanent hydrogels whose structure will be maintained throughout the entire application (Cobum et al., 2007). Therefore, hydrogels are polymeric materials (of natural or synthetic origin) cross-linked in the form of a three-dimensional network, which swell in contact with water forming soft and elastic materials, and that retain a significant fraction of it in their structure without dissolve.
  • Hydrophilic character due to the presence in its structure of water soluble groups (-OH, -COOH, -CONH2, -CONH, SO3H). They have a high water content similar to that presented by living tissues (Elisseeff et al., 2005).
  • SUBSTITUTE SHEET (RULE 26) of water and of a porous structure also allows the flow of solutes of low molecular weight and crucial and essential nutrients for cell viability, as well as the transport of cellular waste outside the hydrogel (Torres et al., 2000).
  • the umbilical cord is a highly vascularized structure with an important cellular component.
  • the cells and vascular system are integrated in a gelatinous connective tissue called Wharton's Jelly (GW).
  • GW contains a low amount of cells and high levels of extracellular matrix, mainly composed of collagen, hyaluronic acid and sulfated glycosaminoglycans.
  • Glycosaminoglycans also called mucopolysaccharides
  • GAGs are heteropolysaccharides found in organisms bound to a protein nucleus forming macromolecules called proteoglycans. These can be found on the surfaces of the cells or in the extracellular matrix and perform important functions for cell-cell and extracellular cell-matrix interactions. They are found in sulphated and non-sulphated form and the common characteristic of these molecules is their composition in a repeated sequence of disaccharides formed by two different sugars: one of them is usually a hexuronate while the other is a hexosamine. The configurational variation in the union of the disaccharides and the position of the sulphation leads to an increase in the diversity in the physical and chemical properties of these chains.
  • GAGs are directly involved in basic cellular functions, not only because of their structure, but also because they are anchoring sites for various cell signaling molecules.
  • Hyaluronic acid is the most abundant GAG of the GW. It is the only unsulfated member of.
  • SUBSTITUTE SHEET (RULE 26) It is synthesized by several cell types and is secreted to the extracellular space where it interacts with other components of the extracellular matrix to create the support and protection structure that surrounds the cells (Collins e ⁇ al., 2008). It is a linear, large and polyanionic polymer, and a single molecule can have a molecular weight of 100,000 to 5.10 6 Da (Toóle e ⁇ al., 2004; Bertolami e ⁇ al., 1992). It adopts a screwed structure that occupies a large volume, resulting in high viscosity solutions. Individual hyaluronic acid molecules associate with each other forming networks or frameworks. In developing tissues, hyaluronic acid is considered the main structural macromolecule involved in cell proliferation and migration.
  • Hyaluronic acid has been implicated in various processes such as vascularization, morphogenesis, repair and the general integrity of the extracellular matrix. It is known that the hyaluronic acid contained in a large amount in the amniotic fluid favors the repair of fetal wounds (Longaker e ⁇ al., 1989). In addition, variations in their molecular properties have been observed between healthy skin and scars, the hyaluronic acid being surely different from normal and hypertrophic scars (Ueno et al., 1992).
  • Chondroitin sulfate is a linear polymer formed by the repetition of a dimer of D-glucuronic acid and N-acetylgalactosamine. Its usefulness has been proven in therapies aimed at combating joint pathologies, by inhibiting the activity of the enzymes responsible for the degradation of the matrix of the cartilage components. It would also act as an anti-inflammatory by means of complement inhibition and is useful in the treatment of thromboembolic disorders, in surgery and ophthalmological clinics.
  • Dermatan sulfate also known as chondroitin sulfate B, is a potent anticoagulant because of its selective inhibitory effect on thrombin through the cofactor Il of heparin, being very effective in vivo due to its lower hemorrhagic risk (Trowbridge et al., 2002) . '
  • Glycosaminoglycans in general and in particular heparin, have the ability to modulate the activity of plasma cascades, enhancing the inhibition of the intrinsic pathway of coagulation and inhibiting the classical route of complement activation at various points (Rabenstein, 2001).
  • Other known functions of heparin are the inhibition of angiogenesis, humoral growth and its antiviral activity.
  • Heparan sulfate has a structure highly related to heparin. It is widely distributed in animal tissues and its functions include cell adhesion and cell proliferation regulation. It has a protective effect against protein degradation, regulating its transport through the basement membrane and also intervening in its internalization (Rabenstein, 2001).
  • US Patent 5,814,621 refers to a composition consisting essentially of a medicament that is more soluble in a mixture of organic solvent-water than in water, and a mucopolysaccharide that is part of a medicament, in which crystals or particles of the medications are distributed on the surface of the mucopolysaccharide particles and in which said medication dissolves in water faster than if it were alone.
  • Said composition may have granular form.
  • biomaterials which comprise.
  • the umbilical cord membrane may additionally comprise one or more vessels of the umbilical cord and / or Wharton jelly.
  • the biomaterial is preferably dry and can be smooth, tubular or adapted to fit a specific structure.
  • the invention also provides methods of manufacturing the biomaterial comprising at least one layer of the umbilical cord membrane, as well as the methods for obtaining said biomaterials and their use to repair tissues or organs.
  • composition of said material comprises collagen (type I, III and IV, these being 75-80% of the percentage of the biomaterial matrix), fibronectin and glycosaminoglycans.
  • biomaterial can also comprise collagen that does not come from umbilical cords and has commercial origin or that has been isolated from other tissues and methods known in the state of the art.
  • biomaterial can comprise non-structural compounds such as growth factors, hormones, antibiotics, immunomodulatory factors, etc.
  • Patent document ES 2 180 653 T3 describes methods for transforming biological materials into substances that have undergone autolysis to eliminate at least 70% of the cells and methods of treating said material to inhibit its mineralization after implantation in a being. human or animal It is claimed that
  • the biological starting material can be, among others, the umbilical cord; although they specifically refer to a porcine aortic valve. However, the description does not contain any detail regarding the realization with umbilical cord.
  • the resulting biomaterial is used for the creation of a bioprosthetic heart valve.
  • Patent document US4,240,794 refers to the preparation of umbilical cords of human or animal origin for use as a vascular graft. Specifically, the document describes a dehydration technique in umbilical cord alcohol followed by a method of fixation in the desired configuration. It is described that once the umbilical cord has been cleaned of possible remains of other tissues, it is mounted on a mandrel and immersed in a specific solution of ethyl alcohol for the time necessary for it to dehydrate. After dehydration, the cord is immersed in a 1% solution of aldehyde for fixation.
  • Patent document FR2, 563,727 describes a method for producing a skin graft from deprogrammed connective tissue impregnated with Wharton's jelly and stored at freezing temperatures. The authors describe a device that is anchored to the umbilical tissue and expands it through a cannula that injects compressed air. It is described that the umbilical cord is then cut and smoothed but the product resulting from this process is not composed exclusively of GW.
  • 98/17791 describes the isolation of pre-chondrocytes from the umbilical cord, which are subsequently used therapeutically to produce cartilage.
  • stem cells extracted from the Wharton jelly existing in the perivascular area of the umbilical cord, which are used to repair human tissues, are obtained.
  • SUBSTITUTE SHEET (RULE 26) no membrane, no blood vessels, which can form a hydrogel that adapts to the necessary viscosity characteristics, etc. to be used in various human pathologies.
  • the biomaterial of the present invention is composed exclusively of the GAGs that make up the extracellular matrix of the umbilical cord called GW.
  • the extracellular matrix is a complex and tissue specific biological substance.
  • the extracellular matrix derived from the blood vessels of the urinary bladder is completely different from that derived from the dermis (Hiles & Hodde, 2006). In this way, although in
  • the biomaterial developed in the present invention offers a three-dimensional structure that allows its use as a base matrix for tissue engineering and also applied directly, or with cells, in a pathology, intervenes in the regenerative process exerting a called effect on the cells of the tissue itself and providing a favorable environment for the activation of cellular processes.
  • GW is characterized by containing a very low number of cells and yet a large amount of extracellular matrix (collagen and GAGs). That is, the cells found in the GW are highly stimulated and are capable of producing high levels of matrix. This is because in the GW high amounts of growth factors accumulate among which are the transforming growth factor beta (TGF-D), the insulin-like growth factor 1 (IGF-I), the growth factor fibroblastic (FGF), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). These growth factors exert their regulatory role of cell activity by binding to specific receptors, some of which are found in the various GAGs that make up the GW. These growth factors control cell proliferation, differentiation and 'the synthesis and remodeling of the extracellular matrix forming Ia GW. The large amount of synthesized matrix provides a
  • SUBSTITUTE SHEET (RULE 26) great mechanical resistance, elasticity and a great capacity of hydration that is used to prevent occlusion of blood vessels caused by contraction movements of the uterus or fetals (Sobolewski et al., 2005).
  • the biomaterial of the present invention is composed of a combination of different GAGs from the GW of the umbilical cord. It is mostly composed of hyaluronic acid, but also, unlike other GAG compounds, it contains dermatan sulfate, heparan sulfate, heparin, keratan sulfate, chondroitin sulfate 4 and chondroitin sulfate 6. This combination of GAGs improves the bioactivity of biomaterial , since each of them exercises regulatory functions of cellular behavior.
  • heparan sulfate and heparin are the main binding sites for FGF and EGF (Kanematsu et al., 2003; Ishihara et al., 2002), which protect them from proteolysis and allow concentrations local of these factors in the cellular environment, creating the appropriate molecular microenvironment for a great cellular activation (Malkowski et al., 2007).
  • GAGs present in this biomaterial provide numerous specific sites of binding of signaling molecules that will allow a high activation of the cells of the tissue itself for the synthesis of high levels of extracellular matrix that will regenerate and repair the treated defect.
  • the origin of the biomaterial of the invention provides a natural structure of human origin from a non-immunogenic zone, whose elimination is integrated into normal physiological cycles, avoids the reactions of biomaterials of animal origin or the side effects that some biomaterials can produce synthetic, such as inflammation, induration (hardening of the tissues of an organ), appearance of granulomas, necrosis in mucous membranes and tissue complications by toxic substances used in its preparation.
  • GAGs In the umbilical cord, one of the most important functions of GAGs is to provide strength, elasticity and resistance to protect the vascular system that is
  • SUBSTITUTE SHEET found inside of external aggressions. In fact, the deficiency in the synthesis of these molecules is involved in important pathologies during pregnancy (Gogiel et al., 2005). Obtaining a biomaterial composed of the 7 different types of GAGs that are part of the umbilical cord, would be able to form crosslinks between its fibers simulating what happens in the organism and thus providing strength, elasticity, resistance and compression similar to Ia that confer on the cord.
  • FIG. 1 Characterization and quantification of GAGs present in the biomaterial of the invention.
  • the bar histogram shows the different types of Gags present in the biomaterial of the invention, as well as the percentage of each of them in it.
  • HA hyaluronic acid
  • KS keratan sulfate
  • C6S chondroitin sulfate 6
  • HS heparan sulfate
  • C4S chondroitin sulfate 4
  • DS dermatan sulfate
  • H heparin.
  • Figure 2 Verification of the presence of GAGs in the sample and of the absence of cells and DNA / RNA in them by histological staining.
  • Figure 3 Images of the internal three-dimensional structure of the biomaterial of the invention by scanning electron microscopy.
  • the image shows the internal structure of the biomaterial of the invention at two different magnifications (A: 10 ⁇ m and B: 5 ⁇ m), in which the interconnected GAG units are observed, offering a very homogeneous porous structure.
  • the graphs show the cytotoxicity curves of AMSC cells (adipose tissue mesenchymal stem cells) (Figure A), mouse fibroblasts (Figure B9), L929 (Figure C), osteoblasts (Figure D), condorites (Figure E) and keratinocytes (Figure
  • the biomaterial does not produce toxicity in any of the cell types tested, since the mitochondrial activity of the cells arranged on the biomaterial does not show differences with respect to the control cells (under standard culture conditions).
  • Figure 5 Macroscopic image of the three-dimensional biomaterial
  • This image shows the macroscopic three-dimensional structure of the solid biomaterial of the invention after lyophilization for which a standard 24-well culture plate has been used as a mold.
  • the image corresponds to the amount of biomaterial solidified in a well.
  • the umbilical cord contains large amounts of GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (sulfated and non-sulphated) forming part of the soft connective tissue called GW. Between these GAGs (s
  • GAGs the main one is the unsulfated GAG called hyaluronic acid (Hadidian et al.,
  • the invention described herein is a hydrogel composed of GAGs obtained exclusively from the GW of the umbilical cord. This hydrogel is completely free of the cells present in the GW umbilical cord
  • the biomaterial is formed by a mixture of glycosaminoglycans selected from the group comprising: hyaluronic acid, keratan sulfate, chondroitin sulfate 6, heparan sulfate, chondroitin sulfate 4, dermatan sulfate and heparin.
  • the biomaterial is preferably forming the following combination and proportion of the mixture of GAGs: Hyaluronic Acid (65-75%), Keratan Sulfate (5-15%), Chondroitin Sulfate 6 (6-8%), Heparan Sulfate (3- 7%), Chondroitin Sulfate 4 (2-6%), Dermatán Sulfate (1-5%) and Heparin (0.1-2%), more preferably the combination of GAGs is: Hyaluronic Acid (70%), Keratan Sulfate (10%), Chondroitin Sulfate 6 (7%), Heparan Sulfate (5%), Chondroitin Sulfate 4 (4%), Dermatán Sulfate (3%) and Heparin (1%).
  • the present invention also relates to the biomaterial composed of the hydrogel described above, which optionally contains cells.
  • the action of the hydrogel in the regenerative process and tissue repair in those very damaged tissues or without the possibility of in situ cellular contribution by the patient is enhanced, thanks to the fact that the biomaterial presents healthy cells of the same type as the affected tissue .
  • the cells contained in the biomaterial can be among others: mesenchymal stem cells undifferentiated or differentiated to another cell line, undifferentiated or differentiated hematopoietic stem cells to another cell line, chondrocytes and chondroblasts, osteoblasts and osteocytes, keratinocytes, fibroblasts, myocytes, adiposites, neurons or other cells from the nervous system, leukocyte system cells, corneal cells, endothelial cells or epithelial cells.
  • the present invention is divided into the following sections: (i) obtaining GAGs extract from Wharton's jelly of the umbilical cord (ii) elaboration of a hydrogel from GAGs isolated from Wharton's jelly of the cord umbilical (iii) characterization of the hydrogel obtained and (iv) uses of the biomaterial.
  • glycosaminoglycans of the GW from the umbilical cord, proceed as follows:
  • the umbilical cord is collected immediately after delivery and is processed or maintained at 4 0 C until processing, no more than 24 hours must pass in these conditions.
  • the umbilical cord is preferably maintained under sterile conditions, in a laminar flow hood of biosafety level II. It is subjected to a minimum of three successive washes, with a DMEM solution (Dulbecco's Modified Eagle's Medium) or with 1X phosphate buffer (1X PBS) with a mixture of antibiotics (penicillin, streptomycin, amphotericin-B) and / or a buffer solution of lysis of erythrocytes, to completely remove the remains of blood.
  • DMEM solution Dulbecco's Modified Eagle's Medium
  • 1X PBS 1X phosphate buffer
  • the umbilical cord Once the surface of the umbilical cord is cleaned of blood, it is transferred to a Petri dish and fragmented into sections of 1-2 cm. When cutting the cord into fragments it is
  • SUBSTITUTE SHEET (RULE 26) it is possible that retained blood is released inside the umbilical cord blood vessels, so it will be necessary in this case to thoroughly clean the cord fragments.
  • the umbilical cord consists structurally of two umbilical arteries and an umbilical vein, supported by a consistent matrix that is the GW and covered with a thin membrane. To obtain exclusively the GW, the membrane and blood vessels are mechanically removed. To do this, the umbilical cord fragments are sectioned longitudinally and with the help of a scalpel and tweezers carefully remove both the umbilical cord membrane, as well as the blood vessels. The gelatinous substance that is obtained as a result of this mechanical separation is the GW. Generally, from an umbilical cord of 25 to
  • 200 g are obtained between 20 and 160 g of Wharton's jelly.
  • the GW obtained in the previous point is immersed in 10 ml of the extraction buffer solution (5 mM L-Cysteine, 100 mM Na2HPO4 buffer solution, 5 mM EDTA, 10 mg papain (14 U / mg), pH 7.5) for 24-48 hours at 60 0 C, for complete digestion.
  • the extraction buffer solution 5 mM L-Cysteine, 100 mM Na2HPO4 buffer solution, 5 mM EDTA, 10 mg papain (14 U / mg), pH 7.5
  • the GW Once the GW has been digested in its entirety, it is centrifuged to remove the unusable residue from the digestion. At this point, it is observed that the volume of the digestion is greater than the starting volume. This increase is due to the dissolution of the GAGs present in the GW and therefore to the release of the water they accumulate.
  • the sample is centrifuged, the supernatant is transferred to another container and the GAGs present in the sample are precipitated.
  • SUBSTITUTE SHEET (RULE 26) Precipitation and isolation of GAGs from the GW of the umbilical cord.
  • the GAGs of the GW were precipitated with 5 volumes of 100% ethanol.
  • the GAGs of the sample are precipitated as well as salts present in it.
  • Precipitation occurs because the water molecules present in the sample interact with the ethanol molecules, so that the water molecules cannot interact with the GAGs of the sample, becoming the latter insoluble in the water, and therefore so much precipitating.
  • the GAGs are left precipitating for 12 hours at -2O 0 C. Once precipitated, they are centrifuged to remove 100% ethanol and the precipitate is washed with 5 volumes of 75% ethanol to eliminate the possible residual salts that have precipitated in the sample. The sample is centrifuged once more to completely remove the supernatant.
  • the solid residue is allowed to dry for a minimum of 30 minutes at room temperature until all the ethanol has evaporated. Once evaporated ethanol, resuspended in the sample of GAGs MIII-Q H2O and kept stored at 4 0 C indefinitely.
  • SUBSTITUTE SHEET (RULE 26) arranged in the biomaterial before implantation.
  • the biomaterial of the invention would act as a three-dimensional bioactive matrix to induce the healing and repair of a tissue lesion.
  • the great diversity of GAGs present in the biomaterial allow the existence of numerous specific binding sites for growth factors that regulate the processes of cell proliferation and differentiation, as well as the ability to synthesize new extracellular matrix and growth factors by the cells. This effect produces a greater capacity of response in the affected tissues and accelerates the regeneration and even allows healing in the case of highly degraded areas, such as chronic ulcers.
  • the GAG extract In order for the biomaterial to be used as a three-dimensional matrix, the GAG extract has to be stabilized, increase its mechanical properties and allow the formation of a three-dimensional structure.
  • GAGs can be chemically modified or crosslinked to form a solid hydrogel-shaped material. These chemical modifications typically involve carboxylic groups or alcohol.
  • crosslinking polymerization
  • the hydrogels obtained by crosslinking have unique properties that make them potentially useful for Tissue Engineering: high water content for the transport of nutrients or waste substances, elasticity and the ability to encapsulate or immobilize cells in situ in a 3D microenvironment .
  • the density of crosslinking directly influences the pore size of the hydrogel and therefore both its physical properties, such as water content or resistance
  • hydrogel by crosslinking can be carried out by various methods: temperature changes, chemical reactions and photopolymerization.
  • the crosslinking reaction is carried out in the following manner: an aqueous solution of the polymer to be crosslinked (in our case aqueous GAG solution) is obtained and the chemical reagent that will produce the crosslink is added.
  • aqueous GAG solution in our case aqueous GAG solution
  • EDC 1-ethyl-3- (3- , dimethylaminopropyl carbodiimide hydrochloride) is used since the EDC activates the carboxyl groups in aqueous solutions.
  • the hydrogel with a specific shape and size solidifies during the cross-linking process in the mold intended for that purpose, so that it adopts the desired shape and size depending on the mold being used.
  • the solid hydrogels can be dried by the process called lyophilization, in order to obtain a porous structure, due to the elimination of the water molecules intercalated between the GAG molecules and present in the hydrogel (Fig. 5).
  • the three-dimensional structure of the hydrogel can be characterized by scanning electron microscopy (SEM) (Fig. 3).
  • SEM scanning electron microscopy
  • SUBSTITUTE SHEET (RULE 26) called sublimation.
  • the hydrogel is obtained in its final form, it is sterilized, through exposure to ultraviolet radiation for a period of 40 minutes. Sterility tests performed on the hydrogel showed that the biomaterial was optimally sterilized.
  • the hydrogel is in final product format, ready for direct application or association with cells.
  • the biomaterial of the invention either in its combined form with cells or only, can be applied in its injectable form in diseases of the joint system and in aesthetic treatments.
  • the cells that can be used are, among others: undifferentiated or differentiated mesenchymal stem cells from another cell line, undifferentiated or differentiated hematopoietic stem cells from another cell line, chondrocytes and chondroblasts, osteoblasts and osteocytes, keratinocytes, fibroblasts, myocytes, adipose , neurons or other cells from the nervous system, leukocyte system cells, corneal cells, endothelial cells or epithelial cells.
  • the viscosity of the injectable hydrogel is 10 to 15,000 cts, preferably between 10 and 2,000 cts.
  • the crosslinked hydrogel may have a viscosity greater than
  • hydrogel viscosity of the hydrogel can be modified by
  • the biomaterial developed in the present invention can preferably be applied by injection in the following pathologies: remodeling, filling or reconstruction of soft tissues, treatment of wrinkles, folds and scars, burns, ulcers, soft tissue augmentation, facial lipoarthrophy, pathologies of the intervertebral disc, cartilage repair, musculoskeletal lesions, osteoarthritis and periarthritis.
  • the biomaterial of the invention in its solid form has a substantially porous structure.
  • the pore diameter is 0.5-1000 ⁇ m, preferably 0.5-500 ⁇ m, and may have a viscosity greater than 15000cts.
  • Said biomaterial in its solid form can be preferably applied in the following pathologies: treatment of burns, ulcers and dermo-epidermal defects, treatment of ophthalmological diseases, such as corneal lesions, of the retina or cataracts.
  • Chondral diseases constitute a major global socio-economic problem. In this sense, despite the difficulty of registering its incidence, it is estimated that in the world joint injuries affect 500 million people.
  • OA Osteoarthritis
  • SUBSTITUTE SHEET (RULE 26) OA is one of the most common types of arthritis that affects 35-40 million people in the US and Europe. It is a degenerative disease that causes cartilage disintegration accompanied by a reaction in the bone. It usually affects hands, knees, hips, feet and neck and in adults it is considered as one of the most common causes of physical disability.
  • the articular cartilage is a highly specialized avascular tissue that protects the bone from the diartroidial joint, from the forces associated with weight and impacts that lead to friction between the articular surfaces.
  • This tissue is formed by a single cell type, chondrocytes, and an important and rich extracellular matrix.
  • This matrix consists of a dense network of collagen fibers of type Il (predominant molecule), and, within this macro-aggregate network of proteoglycans, which contain GAGs such as chondroitin sulfate, keratan sulfate, hyaluronic acid and aggrecan.
  • biodegradable biomaterials are being used to treat chondral lesions.
  • macroscopic synthetic polymers lactic, glycolic, caprolactone .
  • these solid macroscopic materials require the use of aggressive surgical procedures such as conventional surgery.
  • new biomatrices capable of being implanted by minimally invasive techniques such as injection or arthroscopy are currently being developed.
  • one of the applications of the injectable biomaterial of the present invention is the regeneration of articular cartilage damaged by the degenerative process of osteoarthritis. Said biomaterial can be easily administered in the area to be regenerated.
  • the injectable hydrogel has the property of forming a stable implant that adjusts to the size and geometry of the damaged tissue.
  • biomaterial Another application of the biomaterial is the use of the three-dimensional biomaterial for the treatment of wounds.
  • Chronic ulcers - diabetic, recumbent, venous - are a major problem that affects between 3 and 6 million people in the US. This pathology affects 1-3% of the population of developed countries and 15% of patients admitted to a hospital are affected with this condition. The large number of patients suffering from these injuries produce important socioeconomic and health repercussions, thus confirming a high cost of treatment, and altering, in an important way, the patient's quality of life.
  • Ulcers are traumatisms that have a great impact on the organism with a considerably complex pathophysiology.
  • fibroblasts cells of the dermis
  • keratinocytes cells of the epidermis
  • extracellular matrix proteins derived from plasma in order to produce the different phases of healing of The wound, hemostasis, inflammation, repair and remodeling.
  • said dressing must fulfill a series of basic characteristics such as rapid adhesion to the wound, provide an effective barrier against the loss of liquids, resist
  • the solid biomaterial of the invention has the majority of the characteristics necessary for a dressing to be effective in the healing of a chronic ulcer. In this sense, in order to evaluate the therapeutic effect in chronic ulcers, the experimental study has been carried out in vivo using, for this, mice.
  • the umbilical cord can be stored at 4 0 C, for no more than 24 hours until it is processed, but in this example the umbilical cord was processed immediately upon receipt.
  • SUBSTITUTE SHEET (RULE 26) operation a minimum of 3 times, until most of the blood was removed.
  • the umbilical cord was then washed with 500 ml of a red cell lysis solution at a 1X concentration (for 1 liter of H2O: NH4CI 8.99 g, KHCO3 1 g, EDTA 37 mg, pH 7.3) until The total elimination of blood remains.
  • the umbilical cord was transferred to a 10 cm Petri dish and sliced with sterile scissors into 1-2 cm fragments.
  • the membrane that surrounds the umbilical cord and the blood vessels that are inside were removed mechanically.
  • the umbilical cord pieces were opened longitudinally and with the help of a scalpel and tweezers both the umbilical cord membrane and the blood vessels were removed.
  • the substance . gelatinous that was obtained as a result of this mechanical separation was the GW. 40 g of GW were obtained.
  • the GW obtained in Example 1 was immersed in 10 ml of the extraction buffer solution (242 ⁇ l of 200 mM L-Cysteine, 1.42 ml of Na2HPO4 704 mM buffer, 100 ⁇ l of
  • SUBSTITUTE SHEET (RULE 26) 0.5 M EDTA, papain (SIGMA, Ref: P-4762) 10 mg (14 U / mg), pH 7.5) and was maintained for 24 hours at 6O 0 C, to completely digest the GW and once digested The sample was centrifuged at 800 rpm for 5 min to remove the residue from the digestion. It was observed that the volume of the digestion was 30 ml, approximately 20 ml additional at 10 ml of departure, due to the dissolution of the GAGs present in the GW and therefore to the release of the water they accumulated.
  • the supernatant was transferred to another tube and the GAGs present in the sample were precipitated.
  • Example 3 Precipitation and isolation of GAGs from the GW of the umbilical cord.
  • the GAGs of the GW present in the supernatant were precipitated with 5 volumes of 100% ethanol. Through this step the GAGs of the sample were precipitated as well as salts present in it, this is because the water molecules present in the sample interact with those of ethanol, so that the water molecules cannot interact with the GAGs of the sample.
  • the GAGs were left precipitating 12 hours at -2O 0 C. Once precipitated, it was centrifuged at 2500 rpm for 5 min, thus eliminating all 100% ethanol, the precipitate was washed with 5 volumes of 75% ethanol to remove possible residual salts that would have precipitated in the sample. Then, it was centrifuged about 5 min at 2500 rpm and the supernatant was completely removed.
  • the amount of GAGs that precipitate from a sample of about 40 g of GW may vary between 50 and 300 mg depending on the starting material. In this particular case 200 mg of precipitate GAGs, which were resuspended in 2 ml of H2O mIII-Q were obtained and thus kept stored at 4 0 C until preparation of the hydrogel Ia.
  • Example 4 Preparation of an injectable hydroqel of GAGs of the GW of the umbilical cord.
  • the water content of the hydrogel can be from 10% to 100 times its own weight, depending on the viscosity required for its application.
  • the hydrogel obtained after the resorption of the GAGs precipitated in 2 ml of H2O was resuspended in an injectable physiological serum solution to give a viscosity of 1000 cst. Subsequently, this hydrogel was resuspended in 8 ml of an injectable physiological serum solution to give a viscosity of 200 centistokes and was allowed to stir in a vortex moderately until it was completely dissolved and homogenized, to avoid the degradation of the structure of the gel.
  • Example 5 Preparation of a solid hydrogel of GAGS of the GW of the umbilical cord.
  • EDC fixative (1-ethyl-3- (3- dimethylaminopropyl carbodiimide hydrochloride) (SIGMA, Ref: E6383) was added to the solution. The mixture was maintained between 30 minutes and 1 hour in constant stirring at T at room until solid hydrogel was achieved.
  • the physical form of the hydrogel it will have the shape of the mold in which it solidifies, so that standard culture plates of 96, 48, 24, 12 and 6 wells, Petri dishes or any other can be used
  • the hydrogel can be solidified in a large container such as a beaker and once solidified the hydrogel can be cut with a characteristic shape and thickness. Specifically, in this example the hydrogel was solidified in 24-well plate wells and once solidified it was washed 3 times 5 min with 500 ⁇ l of 1X PBS.
  • the solid hydrogel crosslinked in 24-well plates was subjected to the lyophilization process consisting of the following steps: the hydrogel was frozen at -8O 0 C.
  • the frozen hydrogel samples were introduced into the vacuum chamber of the lyophilizer Hydrogel samples under vacuum while the temperature is up to -40 0 C at a rate of 0.1 ° C / min and maintained subjected Ia T 0 to -40 0 C for 20 min. Subsequently, the T 0 was raised to -2O 0 C at a speed of 0.1 ° C / min and the T 0 of -2O 0 C was maintained for 15 min.
  • the T 0 was raised to O 0 C at a speed of 0.1 ° C / min and the T 0 of O 0 C was maintained for 15 min. Subsequently, the T 0 was raised to 25 0 C at a speed of 0.1 ° C / min and maintained at this T 0 for the time necessary to equalize the external pressure and the internal pressure of the vacuum chamber.
  • SUBSTITUTE SHEET (RULE 26) structured. For example, so that a vascular network can be formed.
  • the intermediate pores allow cell integration.
  • Micropores (0.5-50 ⁇ n) are necessary for cell survival, since they are responsible for the correct diffusion of gases, nutrients and the elimination of waste products from cellular metabolism.
  • the pore size measurement is made based on the metric scale obtained by scanning electron microscope.
  • the solid hydrogel provides a three-dimensional structure, which constitutes a matrix for cell growth and colonization throughout its internal and external structure.
  • This biomaterial shows greater structural stability, being indicated for applications in which not only a bioactive and trophic action character is sought, but also a structure that can temporarily house cells, until tissue repair is carried out, such as they are the treatment of ulcers and other dermo-epidermal diseases, cartilage repair and ophthalmic treatments, among others.
  • the cells contained in the biomaterial can be those of the tissues adjacent to the implantation site, which have managed to colonize it, or also cells arranged ex vivo in the biomaterial prior to its clinical application, so that its regenerative action is enhanced.
  • This biomaterial has a homogeneous distribution of pores whose size is distributed in a range of 0.01 to 500 microns in size, determined by scanning electron microscopy techniques. This porosity range is suitable both for the diffusion of gases and nutrients throughout its structure, and to allow the entry of cells inside.
  • Dermatan sulfate Dermatan Sulfate sodium salt (SlGMA, Ref: C3788), for Keratan sulfate: Keratan sulfate (CHEMOS, Ref: 7295), for Heparin:
  • Heparin sodium salt SIGMA, Ref: H8537
  • Heparan sulfate Heparan sulfate sodium salt
  • the quantification values of GAGs present in the sample were obtained based on the results obtained from each GAG standard used.
  • Hyaluronidase (SIGMA, Ref: H3506) was used for Hyaluronic Acid, for
  • the preparation of the samples and the standards for being subjected to enzymatic digestion was as follows: 500 ⁇ l of digestion buffer (80 U of enzyme) were added to 500 ⁇ l of each GAG standard at a concentration of 2 mg / ml, so that the final solution of the standard was 1 mg / ml. With the sample of GAGs, the same procedure was followed: 500 ⁇ l of digestion buffer (80 L) of enzyme) was added to 500 ⁇ l of sample of GAGs.
  • Mass spectrometry is an experimental methodology used to determine the mass / charge ratio of certain ions present in the sample to be analyzed.
  • the mass spectrometer consists of 3 basic components: ion source, mass analyzer and detector.
  • the sample to be analyzed is ionized by means of the ion source, separated in the mass analyzer and detected to produce a mass spectrum, where the mass / charge values are shown against the relative abundance of a particular ionic species.
  • the injection of samples into the mass spectrometer was carried out as follows: 20 ⁇ l of the samples were injected, at a flow of 0.2 ml / min directly into the mass / mass detector (LCQ model , Thermo).
  • the negative electrospray ionization method (ESI -) was used and the chromatogram time was set at 10 minutes.
  • Molecular ions with a range of ⁇ 6 Da were selected, corresponding according to the literature (Mahoney et al., 2001) to the molecular weight of chains recognized for each type of GAG. Said ions were present both in the sample of standard GAGs and in the sample to be analyzed for which the presence of each GAG in the sample was qualitatively demonstrated in this way.
  • SUBSTITUTE SHEET (RULE 26) ensure reproducibility of results, samples and standards were injected in duplicate.
  • a straight standard of the standard of each GAG was made at 1 mg / ml.
  • the standard line made consisted of the following concentrations of each of the standard GAGs (hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate and keratan sulfate) used to make the standard line: 750 ⁇ g / ml, 500 ⁇ g / ml , 250 ⁇ g / ml, 100 ⁇ g / ml, 0 ⁇ g / ml.
  • the dilutions of the standard line were carried out with H2O and as a blank of the line a mixture was used in the same proportion of enzymatic digestion buffer and H2O.
  • the biomaterial of the invention contains a combination of GAGs of natural origin. This natural origin enhances its regenerative effect and on the cellular activity, since the structures of the GAGs and the interactions between them are similar to those found in the extracellular matrix under physiological conditions.
  • the umbilical cord a is a very little immunogenic tissue type, in fact the use of the stem cells contained in the GW is considered in numerous works, for use in heterologous treatments. Likewise, there are works in which artery or vein systems are developed from the umbilical cord vasculature also for heterologous use.
  • Hematoxylin-Eosin is the most used histochemical staining at the histopathological level. It allows to observe cells and cellular components. Hematoxylin has an affinity for the acidic components of the cell, especially nucleic acids and eosin for the basic areas, allowing a good observation of the cell cytoplasm. Preparations of the GAG sample were stained (Fig. 2 B) and cell extensions (Fig. 2 A) were used as a positive control.
  • Eosin was as follows: A sample of GAG was extended with the help of a sterile swab, on a slide and the extension was allowed to dry for a minimum of 24 hours. Once the slides were dry, the extensions were fixed with 70% methanol for 5 min. After this time, the fixative was removed by washing with H2O. The slides were stained with hematoxylin for 3 min (PANREAC, Harris Hematoxylin DC solution). After this time, the excess dye was removed by washing with H2O. All slides were passed through H2O with 0.5% HCI to remove nonspecific dye junctions. The slides were washed with H2O. The ones were dyed
  • SUBSTITUTE SHEET (RULE 26) slide with eosin (0.5% in H2O) for 30 sec. The slides were washed with H2O to remove excess eosin. A few drops of the Fluoromount-G mounting medium (SOUTHERN BIOTECH, Ref: 0100-01) were added to the preparations, covered with a coverslip and observed under a microscope.
  • Alciano blue is one of the main cationic dyes (it contains positive charges in its molecule), which bind to the sites with negative charges of the polysaccharides with sulfate, phosphate or carbonate radicals that are part of the proteoglycans. These electrostatic junctions depend on the pH of the medium, at neutral pH the dye binds proteoglycans with neutral radicals, at acidic pH it binds to sulfated proteoglycans and at basic pH it binds phosphated proteoglycans.
  • alcian blue binds to weak and strongly sulfated proteoglycans, which contain Chondroitin sulfate, Dermatan sulfate, Heparan sulfate and Keratan Sulfate, which are part of the GAG of Warthon gelatin. Preparations of the GAG sample were stained (Fig. 2 F) and cell extensions were used as control (Fig. 2 E).
  • Methylene pyronine green Used for histological investigation of nucleic acid contained in tissues, as well as to demonstrate the presence of lymphatic series cells and plasma cells. It is also useful in the identification of plasma cells and RNA in tissue sections and preparations cytological Pyronine stains the cytoplasm of plasma cells and most red nucleoli. Methylene green dyes DNA of a bluish green (violet) hue. Preparations of the GAG sample were stained (Fig. 2 D) and cell extensions were used as control (Fig. 2 C).
  • the cytotoxicity was determined by the MTT method (Roche Diagnostics), validated by Ia
  • ECVAM European Center for the Validation of Alternative Methods
  • the cell types used are related to the pathologies to which the biomaterial is directed, such as keratinocytes and skin fibroblasts, bone osteoblasts, cartilage chondrocytes and mesenchymal stem cells of adipose tissue, as well as the cell line that marks Ia
  • the MTT assay is based on the ability of mitochondrial enzymes in living cells to transform certain substrates into other secondary metabolites.
  • the amount of compound formed depends on the activity of
  • the mitochondrial dehydrogenase which is a clear indicator of the number of viable cells that exist in the culture.
  • the cells were seeded in 96-well non-stick plates with 50 ⁇ l of biomaterial in each well at a density of 2000-5000 cells / well depending on the cell type. Previously the appropriate cell concentration has been determined for
  • the culture was left to stabilize at 37 0 C and 5% CO 2 for 24 hours before initiating the cytotoxicity assays.
  • Positive controls were included in this assay (cells + medium + known material that induces cytotoxity, in this case polyvinyl polychloride or PVC was used), control (cells + standard culture medium), and cells in contact with the biomaterial of Ia invention.
  • MTT (0.5 mg / ml) to each well per 100 .mu.l of medium, and incubated for 4 hours at 37 0 C in the incubator.
  • the culture plate is read directly with an ELISA reader at 550 nm. Before reading it is convenient to clean the lower surface of the plate with ethanol.
  • the biomaterial of the invention did not produce toxic effects on any of the cell lines tested, there being no significant differences with respect to the control.
  • the hydrogel obtained in Example 3 was used and it was resuspended in 8 ml of an injectable physiological solution to give a viscosity of 200 cts.
  • rabbits were used, which had a resection of the anterior cruciate ligament in one of their knees. This ligament resection was carried out by a lateral arthrotomy. Then, in order to destabilize the knee, a period of weeks to months was expected, during which time erosions in the cartilage, similar to osteoarthritis, occurred.
  • animals without knee arthrotomy were used as a control group.
  • the injured joint surface was prepared by washing and debridement by atroscopic surgery and the lesions were coated with the injectable biomaterial of the invention.
  • the animals were sacrificed and the cartilage was extracted.
  • the cartilage obtained was fixed in 4% paraformaldehyde for subsequent histological processing.
  • the sample was included in paraffin, for which it was kept for 5 minutes in 50, 70, 90 and 100% alcohols. Subsequently, the samples were placed in citrosol for 5 minutes and included in paraffin until a solid block was obtained.
  • histological sections of 5 ⁇ m were obtained in which the histological stains were performed, as well as immunomarking.
  • SUBSTITUTE SHEET (RULE 26) direct, using, monoclonal antibodies labeled with a fluorochrome. The visualization of the marking was carried out using confocal microscopy.
  • the injectable biomaterial did not produce toxicity once implanted, that is, no phenomena of macroscopic or microscopic inflammation were observed in histological sections.
  • the biomaterial was adjusted to the geometry and size of the lesion to be repaired and was maintained in the area of implantation.
  • the implant area is the implant area.
  • cartilage-specific extracellular matrix molecules such as type II collagen
  • Example 10 Use of the three-dimensional biomaterial for the treatment of wounds
  • the solid biomaterial of the invention obtained in Example 5 has the majority of the characteristics necessary for a dressing to be effective in the healing of a chronic ulcer. In this sense, in order to evaluate the therapeutic effect in chronic ulcers, the experimental study has been carried out in vivo using, for this, mice of the albino swiss species that have been subjected to thermal abrasion of about 3 cm 2 in
  • SUBSTITUTE SHEET (RULE 26) The dorsal area. As control group animals were used to which the same type of injury occurred but treated with a commercial hyaluronic acid gel.
  • the surface of the induced wound was prepared - by washing, disinfection and surgical debridement - and the lesions were covered and filled, both in depth and on the surface, with the moldable solid biomaterial of the invention.
  • 15 days after the disposition of the biomaterial the animals were sacrificed and the area of the wound was removed and fixed in 4% paraformaldehyde for subsequent histological examination.
  • the sample was included in paraffin, for which it was kept for 5 minutes in 50, 70, 90 and 100% alcohols. Subsequently, the samples were placed in citrosol for 5 minutes and included in paraffin until a solid block was obtained. Using a microtome, histological sections of 5 ⁇ m were obtained in which the histological stains were carried out.
  • the biomaterial applied to the wound was immunologically inert and there were no signs of toxicity.
  • the biomaterial was adjusted to the geometry and size of the lesion to be repaired, completely covering the affected area both superficially and in depth.
  • the biomaterial of the invention induced the wound healing 2 times with respect to the control animals and in addition the quality of the new scar tissue was significantly superior to the animals without the application of the biomaterial of the invention.

Abstract

La presente invención hace referencia a un biomaterial, concretamente un hidrogel, formado a partir de Ia matriz extracelular del cordón umbilical para su aplicación en Medicina Regenerativa. En particular Ia invención hace referencia a un biomaterial compuesto por glicosaminoglicanos aislados exclusivamente de Ia gelatina de Wharton del cordón umbilical que opcionalmente puede contener células, y también a los métodos para su producción y uso.

Description

NUEVO BIOMATERIAL A PARTIR DE LA GELATINA DE WHARTON DEL CORDÓN UMBILICAL HUMANO
SECTOR TÉCNICO DE LA INVENCIÓN
La presente invención hace referencia a un biomaterial, concretamente un hidrogel, formado a partir de Ia matriz extracelular del cordón umbilical para su aplicación en Medicina Regenerativa. En particular Ia invención hace referencia a un biomaterial compuesto por glicosaminoglicanos aislados exclusivamente de Ia gelatina de Wharton del cordón umbilical que opcionalmente puede contener células, y también a los métodos para su producción y uso.
ANTECEDENTES DE LA INVENCIÓN
Los biomateriales formados por polímeros juegan un papel central en medicina regenerativa ya que proporcionan anclajes temporales tridimensionales para Ia adhesión, Ia proliferación y Ia diferenciación de células trasplantadas. Este carácter tridimensional proporciona una plataforma adecuada para Ia comunicación intercelular y Ia relación de las células con los componentes del biomaterial. La biointeracción que se produce entre Ia matriz y las células en el tiempo determina Ia capacidad proliferativa de las células, su organización para Ia formación de un nuevo tejido, su diferenciación y Ia secreción de moléculas de señalización que dirigen el proceso regenerativo (Dawson et al., 2008).
Para que se puedan producir estos fenómenos es necesario que el biomaterial permanezca en el lugar de Ia aplicación durante un tiempo limitado hasta su reabsorción, conservando su estructura el suficiente tiempo para una acción celular adecuada con consecuencias regenerativas.
Un tipo de biomaterial concreto, ios hidrogeles, poseen numerosas propiedades que los hacen muy adecuados para su aplicación en Ia Ingeniería de Tejidos.
HOJA DE SUSTITUCIÓN (REGLA 26) Los hidrogeles son estructuras formadas por polímeros hidrofílicos de origen natural o sintético interconectados, con capacidad de contener una gran cantidad de agua en el interior de su estructura, desde el 10-20% hasta cientos de veces su propio peso. Estos geles exhiben una morfología semi-sólida cuyo entramado tridimensional se presenta como candidato ideal para formar una matriz estructural capaz de actuar como soporte. Esta estructura tridimensional puede estar formada tanto por entrecruzamiento físico como por entrecruzamiento químico. El entrecruzamiento físico da lugar a hidrogeles reversibles cuya estructura puede ser revertida en función de las aplicación final, mientras que el entrecruzamiento químico da lugar a hidrogeles permanentes cuya estructura se mantendrá a Io largo de toda Ia aplicación (Cobum et al., 2007). Por Io tanto, los hidrogeles son materiales poliméricos (de origen natural o sintético) entrecruzados en forma de red tridimensional, que se hinchan en contacto con el agua formando materiales blandos y elásticos, y que retienen una fracción significativa de Ia misma en su estructura sin disolverse.
Los hidrogeles presentan una serie de características particulares como son:
1. Carácter hidrófilo: debido a Ia presencia en su estructura de grupos solubles en agua (-OH, -COOH, -CONH2, -CONH, SO3H). Tienen un alto contenido en agua similar al que presentan los tejidos vivos (Elisseeff et al., 2005).
2. Insolubles en agua: debido a Ia existencia de una red polimérica tridimpnsional en su estructura.
3. Presentan una consistencia suave y elástica Ia cual está determinada por el monómero hidrófilo de partida y Ia baja densidad de entrecruzamiento del polímero.
Poseen Ia capacidad de hincharse en presencia de agua o soluciones acuosas, aumentando considerablemente su volumen hasta alcanzar un equilibrio químico-físico, pero sin perder su forma. Esta capacidad de hincharse proporciona un microambiente acuoso comparable al que se ven sometidas las células en tejidos blandos. La presencia
HOJA DE SUSTITUCIÓN (REGLA 26) de agua y de una estructura porosa también permite el flujo de solutos de bajo peso molecular y de nutrientes cruciales y esenciales para Ia viabilidad celular, así como el transporte de los desechos celulares fuera del hidrogel (Torres et al., 2000).
El cordón umbilical es una estructura altamente vascularizada con un componente celular importante. Las células y el sistema vascular se encuentran integradas en un tejido conectivo gelatinoso llamado Gelatina de Wharton (GW). La GW contiene una baja cantidad de células y altos niveles de matriz extracelular, compuesta principalmente por colágeno, ácido hialurónico y glicosaminoglicanos sulfatados.
Los glicosaminoglicanos (GAGs), también denominados mucopolisacáridos, son heteropolisacáridos que se encuentran en los organismos unidos a un núcleo proteico formando macromoléculas denominadas proteoglicanos. Estos se pueden hallar en las superficies de las células o en Ia matriz extracelular y desempeñan importantes funciones para las interacciones célula-célula y célula-matriz extracelular. Se encuentran en forma sulfatada y no sulfatada y Ia característica común de estas moléculas es su composición en una secuencia repetida de disacáridos formada por dos azúcares distintos: uno de ellos es habitualmente un hexuronato mientras que el otro es una hexosamina. La variación configuracional en Ia unión de los disacáridos y Ia posición de Ia sulfatación lleva a un incremento de Ia diversidad en las propiedades físicas y químicas de estas cadenas.
El elevado contenido en sulfato y Ia presencia de ácido uránico confiere una gran carga negativa a los GAGs por Io que Ia gran cantidad.de GAGs que presenta Ia GW hace que este tejido se encuentre altamente hidratado.
Existen diversos tipos de GAGs, los cuales se encuentran implicados de forma directa en las funciones celulares básicas, no solo debido a su estructura, sino porque son lugares de anclaje de diversas moléculas de señalización celular.
El ácido hialurónico es el GAG más abundante de Ia GW. Es el único miembro no sulfatado de . Ia familia de GAGs que funciona ¡n vivo como un carbohidrato libre consistiendo su estructura en sucesivas repeticiones de un disacárido: ácido D- glucurónico y (1-β-3) N-acetil-D-glucosamina (Goa et al., 1994; Laurent et al., 1992). Se
HOJA DE SUSTITUCIÓN (REGLA 26) sintetiza por varios tipos celulares y se secreta al espacio extracelular donde interactúa con otros componentes de Ia matriz extracelular para crear Ia estructura de soporte y protección que rodea a las células (Collins eí al., 2008). Es un polímero linear, grande y polianiónico, y una sola molécula puede tener un peso molecular de 100.000 a 5.106 Da (Toóle eí al., 2004; Bertolami eí al., 1992). Adopta una estructura enroscada que ocupa un gran volumen, dando lugar a soluciones de gran viscosidad. Las moléculas individuales de ácido hialurónico se asocian entre ellas formando redes o entramados. En los tejidos en desarrollo el ácido hialurónico es considerado Ia principal macromolécula estructural implicada en Ia proliferación y Ia migración celular.
El ácido hialurónico ha sido implicado en diversos procesos como Ia vascularización, morfogénesis, reparación y Ia integridad general de Ia matriz extracelular. Se sabe que el ácido hialurónico contenido en gran cantidad en el líquido amniótico, favorece Ia reparación de las heridas fetales (Longaker eí al., 1989). Además, se han observado variaciones en sus propiedades moleculares entre Ia piel sana y las cicatrices, siendo seguramente distinto el ácido hialurónico de las cicatrices normales y de las hipertróficas (Ueno et al., 1992).
El condroitín sulfato es un polímero lineal formado por Ia repetición de un dímero de ácido D-glucurónico y N-acetilgalactosamina. Su utilidad ha sido probada en terapias dirigidas a combatir patologías articulares, mediante Ia inhibición de Ia actividad de los enzimas responsables de Ia degradación de Ia matriz de los componentes de los cartílagos. También actuaría como un antiinflamatorio por medio de Ia inhibición del complemento y es útil en el tratamiento de desórdenes tromboembólicos, en cirugía y clínicas oftalmológicas.
El dermatán sulfato, también conocido como condroitín sulfato B, es un potente anticoagulante por su efecto inhibitorio selectivo sobre Ia trombina a través del cofactor Il de Ia heparina, siendo muy eficaz in vivo por su menor riesgo hemorrágico (Trowbridge et al., 2002). '
HOJA DE SUSTITUCIÓN (REGLA 26) Los glicosaminoglicanos, en general y en particular Ia heparina, tienen Ia capacidad de modular Ia actividad de las cascadas plasmáticas potenciando Ia inhibición de Ia vía intrínseca de Ia coagulación e inhibiendo Ia vía clásica de activación del complemento en diversos puntos (Rabenstein, 2001). Otras funciones conocidas de Ia heparina son Ia inhibición de Ia angiogénesis, el crecimiento humoral y su actividad antiviral.
El heparán sulfato tiene una estructura altamente relacionada con Ia heparina. Se distribuye ampliamente en los tejidos animales y entre sus funciones destacan Ia adhesión celular y Ia regulación de Ia proliferación celular. Posee un efecto protector frente a Ia degradación de proteínas, regulando su transporte a través de Ia membrana basal e interviniendo también en su internalización (Rabenstein, 2001).
Existen varios documentos de patente que se refieren a mucopolisacáridos obtenidos de origen animal o humano. El documento US 3,887,703 se refiere a mezclas de mucopolisacáridos obtenidas a partir de tegumentos y del cordón umbilical de fetos ovinos o bovinos. El único ejemplo que utiliza un cordón umbilical es de un feto de vaca de 1-9 meses y no menciona que se elimine Ia membrana ni los vasos ya que Ia primera operación es un molido por debajo de 1O0C. No se mencionan los mucopolisacáridos individuales que forman las mezclas ni las cantidades presentes, se identifican los productos activos por Ia cantidad de hexosaminas que hay presentes en Ia mezcla. Con los extractos se preparan composiciones para el tratamiento del pelo y el cuero cabelludo grasiento y para las inflamaciones tanto en forma de inyectable como por ingestión oral.
El documento de patente US 5,814,621 se refiere a una composición que consiste esencialmente en un medicamento que es más soluble en una mezcla de disolvente orgánico-agua que en agua, y un mucopolisacárído que forma parte de un medicamento, en el que cristales o partículas del medicamento están distribuidas en Ia superficie de las partículas del mucopolisacárido y en el que dicho medicamento se disuelve en agua más deprisa que si estuviera solo. Dicha composición puede tener forma granular.
HOJA DE SUSTITUCIÓN (REGLA 26) En Ia solicitud de patente WO 2008/021391 A1, se describen biomateriales que comprenden. Ia membrana del cordón umbilical. Además, puede comprender adicionalmente uno o más vasos del cordón umbilical y/o gelatina de Wharton. El biomaterial es preferiblemente seco y puede ser liso, tubular o adaptado para encajar en una estructura específica. La invención también proporciona métodos de fabricación del biomaterial comprendiendo al menos una capa de Ia membrana del cordón umbilical, así como los métodos para obtener dichos biomateriales y su uso para reparar tejidos u órganos.
La descripción caracteriza el biomaterial a partir del cordón umbilical. Describen ) que Ia composición de dicho material comprende colágeno (de tipo I, III y IV siendo estos un 75-80% del porcentaje de Ia matriz del biomaterial), fibronectina y glucosaminoglicanos.
También se menciona que el biomaterial también puede comprender colágeno que no provenga de cordones umbilicales y tenga procedencia comercial o que haya sido aislado a partir de otros tejidos y métodos conocidos en el estado de Ia técnica. Además los autores añaden, que el biomaterial puede comprender compuestos no estructurales como factores de crecimiento, hormonas, antibióticos, factores inmunomoduladores, etc.
En Ia patente española ES 8600613 se describe un procedimiento para el tratamiento de tejidos corporales, para separar membranas celulares, ácidos nucleicos, lípidos y componentes citoplasmicos y formar una matriz extracelular que tiene, como su principal componente colágenos, y para hacer que el tejido corporal sea adecuado para utilizarse como injerto corporal, que comprende extractar dicho tejido con al menos un detergente al mismo tiempo que se mantiene en un tamaño y forma adecuados para su injerto en el cuerpo.
El documento de patente ES 2 180 653 T3 describe métodos para transformar materiales biológicos en sustancias que han sufrido autólisis para eliminar por Io menos el 70% de las células y métodos de tratamiento de dicho material para inhibir su mineralización posterior a Ia implantación en un ser humano o animal. Se reivindica que
HOJA DE SUSTITUCIÓN (REGLA 26) el material biológico de partida puede ser entre otros el cordón umbilical; aunque específicamente se refieren a una válvula aórtica porcina. No obstante, Ia descripción no contiene detalle alguno respecto a Ia realización con cordón umbilical. El biomaterial resultante se utiliza para Ia creación de una válvula cardiaca bioprotésica.
El documento de patente US4,240,794 se refiere a Ia preparación de cordones umbilicales de origen humano o animal para su utilización como injerto vascular. Específicamente el documento describe una técnica de deshidratación en alcohol del cordón umbilical seguido de un método de fijación en Ia configuración deseada. Se describe que una vez que el cordón umbilical se ha limpiado de posibles restos de otros tejidos, éste se monta sobre un mandril y se sumerge en una disolución concreta de alcohol etílico durante el tiempo necesario para que se deshidrate. Tras Ia deshidratación el cordón se sumerge en una disolución al 1% de aldehido para su fijación.
El documento de patente FR2, 563,727 describe un método para producir un injerto de piel a partir de tejido conectivo desprogramado impregnado con gelatina de Wharton y conservado a temperaturas de congelación. Los autores describen un dispositivo que se ancla al tejido umbilical y Io expande mediante una cánula que inyecta aire comprimido. Se describe que después el cordón umbilical es cortado y alisado pero el producto resultante de este proceso no está compuesto por exclusivamente GW.
Existen documentos de patente que utilizan el cordón umbilical para obtener células de su interés, para Io cual llevan a cabo procesos para separar Ia gelatina de
Wharton y eliminarla, obteniendo así dichas células. Por ejemplo, el documento PCT
98/17791 describe el aislamiento de pre-condriocitos a partir del cordón umbilical, Io cuales se utilizan posteriormente de forma terapéutica para producir cartílago. De forma similar en el documento WO 2004/072273 A1 se obtienen células madre extraídas de Ia gelatina de Wharton existente en Ia zona perivascular del cordón umbilical, que utilizan para reparar tejidos humanos.
Sin embargo no existe ningún documento que mencione un biomaterial formado por los GAGs que se encuentran en Ia gelatina de Wharton del cordón umbilical humano,
HOJA DE SUSTITUCIÓN (REGLA 26) sin membrana no vasos sanguíneos, que pueda formar un hidrogel que se adapte a las características necesarias de viscosidad, etc. para utilizarse en diversas patologías humanas.
Así, el biomaterial de Ia presente invención está compuesto exclusivamente por los GAGs que conforman Ia matriz extracelular del cordón umbilical denominada GW. La matriz extracelular es una sustancia biológica compleja y específica de tejido. La matriz extracelular derivada de los vasos sanguíneos de Ia vejiga urinaria es completamente diferente de Ia derivada de Ia dermis (Hiles & Hodde, 2006). De esta manera, aunque en
Ia literatura se conocen varios intentos de sintetizar matriz extracelular, no se ha conseguido por el momento obtener una composición exacta que simule las condiciones naturales de un determinado tejido.
El biomaterial desarrollado en Ia presente invención ofrece una estructura tridimensional que permite su utilización como matriz base para Ia ingeniería tisular y además aplicado de forma directa, o con células, en una patología, interviene en el proceso regenerativo ejerciendo un efecto llamada sobre las células del propio tejido y proporcionando un entorno favorable para Ia activación de los procesos celulares.
La GW se caracteriza por contener un número muy bajo de células y sin embargo una gran cantidad de matriz extracelular (colágeno y GAGs). Es decir, las células que se encuentran en Ia GW se encuentran altamente estimuladas y son capaces de producir altos niveles de matriz. Esto es debido a que en Ia GW se acumulan altas cantidades de factores de crecimiento entre los que se encuentran el factor de crecimiento transformante beta (TGF-D), el factor de crecimiento tipo insulina 1 (IGF-I), el factor de crecimiento fibroblástico (FGF), el factor de crecimiento epidérmico (EGF) y el factor de crecimiento derivado de plaquetas (PDGF). Estos factores de crecimiento ejercen su papel regulador de Ia actividad celular mediante Ia unión a receptores específicos, algunos de los cuales se encuentran en los diversos GAGs que componen Ia GW. Estos factores de crecimiento controlan Ia proliferación celular, diferenciación y' Ia síntesis y remodelado de Ia matriz extracelular que forma Ia GW. La gran cantidad de matriz sintetizada proporciona una
HOJA DE SUSTITUCIÓN (REGLA 26) gran resistencia mecánica, elasticidad y una gran capacidad de hidratación que se utiliza para prevenir Ia oclusión de los vasos sanguíneos provocado por los movimientos de contracción del útero o fetales (Sobolewski et al., 2005).
A diferencia de otros biomateriales, el biomaterial de Ia presente invención se encuentra compuesto por una combinación de distintos GAGs procedentes de Ia GW del cordón umbilical. De forma mayoritaria se encuentra compuesto por ácido hialurónico, pero además, a diferencia de otros compuestos de GAGs, contiene dermatán sulfato, heparán sulfato, heparina, queratán sulfato, condroitín sulfato 4 y condroitín sulfato 6. Esta combinación de GAGs mejora Ia bioactividad del biomaterial, puesto que cada uno de ellos ejerce funciones reguladoras del comportamiento celular. Por ejemplo, se sabe que el heparán sulfato y Ia heparina son los principales lugares de unión para el FGF y el EGF (Kanematsu et al., 2003; Ishihara et al., 2002), los cuales los protegen de Ia proteólisis y permiten concentraciones locales de estos factores en el entorno celular, creando el microambiente molecular adecuado para una gran activación celular (Malkowski et al., 2007).
La combinación de GAGs presentes en este biomaterial aportan numerosos lugares específicos de unión de moléculas de señalización que van a permitir en el lugar de aplicación, una alta activación de las células del propio tejido para Ia síntesis de altos niveles de matriz extracelular que va a regenerar y reparar el defecto tratado.
Además, el origen del biomaterial de Ia invención proporciona una estructura natural de origen humano de una zona no inmunogénica, cuya eliminación se integra en los ciclos fisiológicos normales, evita las reacciones de los biomateriales de origen animal o los efectos secundarios que pueden producir algunos biomateriales sintéticos, como puede ser Ia inflamación, induración (endurecimiento de los tejidos de un órgano), aparición de granulomas, necrosis en mucosas y complicaciones tisulares por las sustancias tóxicas empleadas en su elaboración.
En el cordón umbilical, una de las funciones más importantes de los GAGs es proporcionar fuerza, elasticidad y resistencia para proteger el sistema vascular que se
HOJA DE SUSTITUCIÓN (REGLA 26) encuentra en su interior de las agresiones externas. De hecho, Ia deficiencia en Ia síntesis de estas moléculas están implicadas en patologías importantes durante el embarazo (Gogiel et al., 2005). La obtención de un biomaterial compuesto de los 7 tipos de GAGs diferentes que forman parte del cordón umbilical, sería capaz de formar entrecruzamientos entre sus fibras simulando Io que sucede en el organismo y proporcionando de esta manera una fuerza, elasticidad, resistencia y compresión similar a Ia que confieren en el cordón.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1: Caracterización y cuantificación de GAGs presentes en el biomaterial de Ia invención.
El histograma de barras muestra los diferentes tipos de Gags presentes en el biomaterial de Ia invención, así como el porcentaje de cada uno de ellos en el mismo. HA: ácido hialurónico, KS: queratán sulfato, C6S: condroitín sulfato 6, HS: heparán sulfato, C4S: condroitín sulfato 4, DS: dermatán sulfato, H: heparina.
Figura 2: Comprobación de Ia presencia de GAGs en Ia muestra y de Ia ausencia de células y DNA/RNA en las mismas mediante tinciones histológicas.
En las imágenes de Ia izquierda podemos observar las tinciones histológicas de las muestras con células y en las situadas a Ia derecha, las tinciones del biomaterial solo. A1B: tinción hematoxilina-eosina; C, D: tinción verde de metilo pironina; E, F: tinción azul alciano.
Figura 3: Imágenes de Ia estructura tridimensional interna del biomaterial de Ia invención por microscopía electrónica de barrido.
La imagen muestra Ia estructura interna del biomaterial de Ia invención a dos aumentos diferentes (A: 10 μm y B: 5 μm), en el que se observan las unidades de GAG interconectadas entre sí, ofreciendo una estructura porosa muy homogénea.
HOJA DE SUSTITUCIÓN (REGLA 26) Figura 4: Resultados del estudio de toxicidad de las células dispuestas en el biomaterial de Ia invención.
Los gráficos muestran las curvas de citotoxicidad de las células AMSC (células madre mesenquimales de tejido adiposo) (Figura A), fibroblastos de ratón (Figura B9), L929 (Figura C), osteoblastos (Figura D), condorcitos (Figura E) y queratinocitos (Figura
F). Los resultados se dan con respecto a un control (células sin biomaterial) y a un control positivo (células en un biomaterial tóxico determinado por Ia norma ISO-10993, PVC).
Como se puede observar en las gráficas, el biomaterial no produce toxicidad en ninguno de los tipos celulares testados, puesto que Ia actividad mitocondrial de las células dispuestas sobre el biomaterial no muestra diferencias con respecto a las células controles (en condiciones estándar de cultivo).
Figura 5: Imagen macroscópica del biomaterial tridimensional
En esta imagen se observa Ia estructura tridimensional macroscópica del biomaterial sólido de Ia invención tras su liofilización para Ia cual se ha utilizado como molde una placa de cultivo estándar de 24 pocilios. La imagen corresponde a Ia cantidad de biomaterial solidificada en un pocilio.
BIBLIOGRAFÍA
- Collins M. N, Birkinshaw C. 2008. "Physical properties of crosslinked hyaluronic acid hydrogels". Journal of Material Science. Materials in Medicine, 19: 3335-3343.
- Coburn J. A, Pandit A. 2007. "Development of naturally-derived biomaterials and optimization of their biomechanical properties". topics in Tissue Engineering, 3: 1-14.
- Cui F. Z, Tian W. M, Hou S. P, Xu Q. Y1 Lee I. S. 2006. "Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering". Journal of Material Science.
Materials ¡n Medicine, 17: 1393-1401.
HOJA DE SUSTITUCIÓN (REGLA 26) - Danishefsky I, Bella Jr. A. 1996. "The sulfated mucopolysaccharides from human umbilical cord", J. of Biological Chemistry, 241 : 143-146.
- Dawson J. I, Oreffo R. 2008. "Bringing the regeneration gap: stem cells, biomaterials, and clinical translation in bone tissue engineering". Archives of Biochemistry and Biophysics, 473: 124-131.
- Elisseeff J, Ruffner M, Kim T. G, Williams C. 2005: "Cellular photoencapsulation in hydrogels". Culture of Cells for Tissue Engineering, Chapter 9.
- Goa K. L, Benfield P. 1994. "Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing." Drugs, 47: 536-566.
- Gogiel T, Galewska Z, Jaworski S. 2005. "Pre-eclampsia-associated alterations in Wharton's jelly proteoglycans". Acta Biochim PoI, 52: 501-507.
- Hadidian Z, Pirie N. W. 1948. "The preparation and some properties of hyaluronic acid from human umbilical cord". The Biochemical Journal, 42: 260-265.
- Hiles M, Hodde J. 2006. "Tissue engineering a clinically useful extracellular matrix biomaterial". Int Urogynecol Journal, 17: 39-43.
- lshihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A. 2002. "Controlled reléase of fibroblasts growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization". Journal of Biomedical Materials Research, 78: 364-371.
- Jeanloz R. W, Forchielli E. 1950. "Studies on hyaluronic acid and related substances I. Preparation of hyaluronic acid and derivatives from human umbilical cord". Journal of Biological Chemistry, 186: 495-511.
HOJA DE SUSTITUCIÓN (REGLA 26) - Kanematsu A, Yamamoto S, Ozeki M, Noguchi T, Kanatani I, Ogawa O, Tabata Y. 2003. "Collagenous matrices as reléase carriers of exogenous growth factors". Biom ateríais, 25: 4513- 4520.
- Laurent T. C1 Fraser J. R. E. 1992. "Hyaluronan". The FASEB Journal, 6: 2397-2404
- Longaker M, Chiu E.S, Harrison M. R, Crombleholme, Langer J. C, Duncan B. W, Adzick N. S, Verrler E. D, Stern R. 1989. "Studies in fetal wound healing" Annals of Surgery, 210: 667-672.
- Mahoney D. J, Aplin R. T, Calabro A, Hascall V.C, Day A. J. 2001. "Novel methods for the preparation and characterization of hyaluronan oligosaccharides of defined length".GIycobiology, 11: 1025-1033.
- Malkowski A, Sobolewski K, Jaworski S, Bankowski E. 2007. "FGF binding by extracellular matrix components of Wharton's jelly". Acta Biochím PoI, 54: 357-363.
- Moore R. D, Schoenberg M. D. 1957. "Studies on connective tissue. I. The polysaccharides of the human umbilical cord". A. M. A. Archives of pathology, 64: 39-45.
- Pieper J. S, Oosterhof A, Dijkstra PJ, Veerkamp J. H, van Kuppevelt T.H. 1999. "Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate", Biomaterials, 20: 847-858.
- Rabenstein D. L. 2002. "Heparin and heparin sulfate: structure and function". Natural producís reports, 19: 312-331.
- Rogers B. A, Murphy C. L, Cannon S. R, and Briggs T. W. R. 2006. "Topographical variation in glyeosaminoglycan contení in human articular cartilage". The Journal of Bone and Joint Surgery, 88: 1670-1674.
- Sobolewski K, Mafkowski A, Baήkowski E, Jaworski S. 2005. "Wharton's jelly as a reservoir of peptide growth factors." Placenta, 26, 747- 752.
HOJA DE SUSTITUCIÓN (REGLA 26) - Toóle B. P. 2004. "Hyaluronan: from extracellular glue to pericellular cue". Nature Cáncer Reviews, 4, 528-539.
- Torres D. S, Freyman T. M, Yannas I. V, Spector M. 2000. "Tendón cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials, 21, 607-619.
-Trowbridge J. M, Gallo R. 2002. "Dermatan sulfate: new functions from an oíd glycosaminoglycan". Glycobiology, 12: 117-125.
- Ueno N, Chakrabarti B, Garg H. G. Hyaluronic acid of human skin and post-burn sean heterogeneity ¡n primary structure and molecular weight". 1992. Biochem Int, 26: 787-796.
- Wissink M. J. B, Beernink R, Pieper J. S, Poot A. A, Engbers G. H. M, Beugeling T, van Aken W. G, Feijen J. 2001. "Binding and reléase of basic fibroblast growth factor from heparinized collagen matrices", Biomaterials, 22: 2291-2299.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El cordón umbilical contiene grandes cantidades de GAGs (sulfatados y no sulfatados) formando parte del tejido conectivo blando denominado GW. Entre estos
GAGs, el principal es el GAG no sulfatado denominado ácido hialurónico (Hadidian et al.,
1948; Jeanloz et al., 1950), aunque también se detectan proporciones menores de GAGs sulfatados (Danishefsky et al., 1966). Además, estudios histológicos del cordón umbilical han sugerido Ia presencia de heparina (Moore et al., 1957). Es muy probable también que el cordón umbilical posea más GAGs sulfatados minoritarios que no se han reconocido hasta el momento.
La invención que describimos en el presente documento es un hidrogel compuesto por GAGs obtenidos exclusivamente de Ia GW del cordón umbilical. Este hidrogel se encuentra completamente exento de las células presentes en Ia GW cordón umbilical
HOJA DE SUSTITUCIÓN (REGLA 26) humano a partir del cual se obtiene el biomaterial, por Io que no presenta componentes inmunogénicos.
El biomaterial se encuentra formado por una mezcla de glicosaminoglicanos seleccionados del grupo que comprende: ácido hialurónico, queratán sulfato, condroitin sulfato 6, heparán sulfato, condroitin sulfato 4, dermatán sulfato y heparina.
El biomaterial preferentemente se encuentra formando Ia siguiente combinación y proporción de Ia mezcla de GAGs: Ácido Hialurónico (65-75%), Queratán Sulfato (5-15%), Condroitin Sulfato 6 (6-8%), Heparán Sulfato (3-7%), Condroitin Sulfato 4 (2-6%), Dermatán Sulfato (1-5%) y Heparina (0,1-2%), más preferentemente Ia combinación de GAGs es: Ácido Hialurónico (70%), Queratán Sulfato (10%), Condroitin Sulfato 6 (7%), Heparán Sulfato (5%), Condroitin Sulfato 4 (4%), Dermatán Sulfato (3%) y Heparina (1%).
La presente invención también se refiere al biomaterial compuesto por el hidrogel anteriormente descrito, que opcionalmente contiene células. De esta manera se potencia Ia acción del hidrogel en el proceso regenerativo y de reparación tisular en aquellos tejidos muy dañados o sin posibilidad de aporte celular in situ por parte del paciente, gracias a que el biomaterial presenta células sanas del mismo tipo que el tejido afectado. Las células contenidas en el biomaterial pueden ser entre otras: células madre mesenquimales ¡ndiferenciadas o bien diferenciadas a otra estirpe celular, células madre hematopoyéticas indiferenciadas o bien diferenciadas a otra estirpe celular, condrocitos y condroblastos, osteoblastos y osteocitos, queratinocitos, fibroblastos, miocitos, adipositos, neuronas u otras células procedentes del sistema nervioso, células del sistema leucocitario, células corneales, células endoteliales o células epiteliales.
La presente invención se divide en las siguientes secciones: (i) obtención de extracto de GAGs a partir de Ia gelatina de Wharton del cordón umbilical (ii) elaboración de un hidrogel a partir de los GAGs aislados a partir de Ia gelatina de Wharton del cordón umbilical (iii) caracterización del hidrogel obtenido y (iv) usos del biomaterial.
Obtención de extracto de GAGs de Ia GW del cordón umbilical.
HOJA DE SUSTITUCIÓN (REGLA 26) El procedimiento de obtención del biomaterial comprende Ia siguientes etapas:
a. Obtención de un cordón umbilical humano; b. Tratamiento del cordón umbilical con una solución salina y antibióticos; c. Eliminación de toda Ia sangre de Ia superficie del cordón; d. Fragmentación del cordón en secciones de 1-2 cm; e. Limpieza de toda Ia sangre retenida en el interior; f. Eliminación de Ia membrana y de los vasos sanguíneos del cordón umbilical; g. Separación de Ia sustancia gelatinosa que comprende Ia gelatina de Wharton; h. Digestión enzimática de Ia sustancia gelatinosa obtenida; y i. Precipitación y aislamiento de los GAGs;
Concretamente, para aislar los glicosaminoglicanos de Ia GW del cordón umbilical se procede de Ia siguiente manera:
Obtención de la Gelatina de Wharton.
Se recoge el cordón umbilical inmediatamente después del parto y se procesa o se mantiene a 40C hasta su procesamiento, no deben transcurrir más de 24 horas en estas condiciones.
Para su procesado, el cordón umbilical se mantiene preferiblemente en condiciones estériles, en una campana de flujo laminar de nivel de bioseguridad II. Se somete a un mínimo de tres lavados sucesivos, con una solución de DMEM (Dulbecco's Modified Eagle's Médium) o con buffer fosfato 1X (PBS 1X) con una mezcla de antibióticos (penicilina, estreptomicina, anfotericina-B) y/o una solución tampón de lisis de eritrocitos, para eliminar por completo los restos de sangre.
Una vez limpia de sangre Ia superficie del cordón umbilical, se transfiere a una placa Petri y se fragmenta en secciones de 1-2 cm. Al cortar el cordón en fragmentos es
HOJA DE SUSTITUCIÓN (REGLA 26) posible que se libere sangre retenida en el interior de los vasos sanguíneos del cordón umbilical por Io que será necesario en este caso limpiar a fondo los fragmentos de cordón.
El cordón umbilical consta a nivel estructural de dos arterias umbilicales y una vena umbilical, sostenidas por una matriz consistente que es Ia GW y recubierto de una fina membrana. Para obtener exclusivamente Ia GW, se procede a eliminar de forma mecánica Ia membrana y los vasos sanguíneos. Para ello, se seccionan de forma longitudinal los fragmentos de cordón umbilical y con Ia ayuda de un escalpelo y unas pinzas se retiran con cuidado tanto Ia membrana del cordón umbilical, así como los vasos sanguíneos. La sustancia gelatinosa que se obtiene como consecuencia de ésta separación mecánica es Ia GW. Generalmente, a partir de un cordón umbilical de 25 a
200 g se obtienen entre 20 y 160 g de gelatina de Wharton.
Extracción de GAGs de Ia Gelatina de Wharton
Para Ia obtención de GAGs a partir de Ia GW del cordón umbilical se utilizó, con algunas modificaciones, el protocolo descrito en Ia literatura (Rogers et al., 2006) para obtener GAGs a partir de cartílago humano mediante digestión enzimática con el enzima papaína (SIGMA, Ref: P-4762).
La GW obtenida en el punto anterior se sumerge en 10 mi de Ia solución tampón de extracción (L-Cysteína 5 mM, solución tampón Na2HPO4 100 mM, EDTA 5 mM, papaína 10 mg (14 U/mg), pH 7,5) durante 24-48 horas a 600C, para su completa digestión.
Una vez digerida en su totalidad Ia GW, se centrifuga para eliminar el residuo inservible de Ia digestión. En este punto, se observa que el volumen de Ia digestión es superior al volumen de partida. Este aumento se debe a Ia disolución de los GAGs presentes en Ia GW y por Io tanto a Ia liberación del agua que éstos acumulan.
' Centrifugada Ia muestra, se transfiere el sobrenadante a otro recipiente y se procede a Ia precipitación de los GAGs presentes en Ia muestra.
HOJA DE SUSTITUCIÓN (REGLA 26) Precipitación y aislamiento de GAGs de Ia GW del cordón umbilical.
Los GAGs de Ia GW se precipitaron con 5 volúmenes de etanol al 100%. Mediante este paso se precipitan los GAGs de Ia muestra así como sales presentes en ésta. La precipitación ocurre debido a que las moléculas de agua presentes en Ia muestra interactúan con las moléculas de etanol, de tal forma que las moléculas de agua no pueden interactuar con los GAGs de Ia muestra, volviéndose estos últimos insolubles en el agua, y por Io tanto precipitando. De esta manera, acto seguido de añadir el etanol y agitar el tubo, se observa un precipitado de color blanquecino. Los GAGs se dejan precipitando 12 horas a -2O0C. Una vez precipitados, se procede a centrifugar para eliminar el etanol al 100% y se lava el precipitado con 5 volúmenes de etanol al 75% para eliminar las posibles sales residuales que hayan precipitado en Ia muestra. Se centrifuga Ia muestra una vez más para eliminar totalmente el sobrenadante.
Una vez precipitada Ia muestra de GAGs, se deja secando el residuo sólido durante un mínimo de 30 minutos a temperatura ambiente hasta que se haya evaporado todo el etanol. Una vez evaporado el etanol, se resuspende Ia muestra de GAGs en H2O MiIi-Q y se mantiene almacenada a 40C indefinidamente.
La resistencia mecánica de este tipo de materiales es baja, no están pensados para soportar cargas, a no ser que se combinen con otro tipo de materiales tipo composites o fosfatos calcicos, sino para realizar una acción bioactiva regeneradora en Ia zona dañada. Sin embargo, Ia gran afinidad que se da entre las moléculas de polisacáridos que componen este hidrogel, hace que mantengan una gran cohesión entre ellas, manteniéndose en el lugar de inyección y presentando un carácter adhesivo.
Entrecruzamiento: obtención de hidrogel
Existen otras aplicaciones terapéuticas, que requieren un biomaterial más resistente y permanente; con una estructura interna que permita su ' colonización por células procedentes bien de los tejidos adyacentes en el lugar de aplicación o por células
HOJA DE SUSTITUCIÓN (REGLA 26) dispuestas en el biomaterial previamente a su implantación. En este caso el biomaterial de Ia invención actuaría a modo de matriz tridimensional bioactiva para inducir Ia curación y reparación de una lesión tisular.
El ácido Hialurónico, Condroitín Sulfato 6 y 4, el Queratán Sulfato, Dermatán Sulfato, el Heparán Sulfato y Ia Heparina regulan Ia actividad celular y activan Ia síntesis de nueva matriz extracelular. La gran diversidad de GAGs presentes en el biomaterial permiten Ia existencia de numerosos lugares de unión específicos para factores de crecimiento que regulan los procesos de proliferación y diferenciación celular, así como Ia capacidad de síntesis de nueva matriz extracelular y factores de crecimiento por parte de las células. Este efecto produce una mayor capacidad de respuesta en los tejidos afectados y acelera Ia regeneración e incluso permite Ia curación en el caso de zonas muy degradadas, como es el caso de úlceras crónicas.
Para que el biomaterial pueda ser utilizado como matriz tridimensional, el extracto de GAGs tiene que ser estabilizado, aumentar sus propiedades mecánicas y permitir Ia formación de una estructura tridimensional. Para conseguir estos objetivos, los GAGs pueden ser químicamente modificados o entrecruzados, para formar un material en forma de hidrogel sólido. Estas modificaciones químicas típicamente implican a grupos carboxílicos o alcohol.
Para Ia obtención de un hidrogel estable y sólido, es necesario someter a Ia muestra a una reacción de entrecruzamiento (crosslinking, polimerización). Este proceso implica que las cadenas de un polímero soluble en agua se convierten en insolubles (Elisseeff et al., 2005).
Los hidrogeles obtenidos mediante el entrecruzamiento poseen propiedades únicas que los hace potencialmente útiles para Ia Ingeniería de Tejidos: alto contenido en agua para el transporte de nutrientes o sustancias de desecho, elasticidad y Ia capacidad de encapsular o de inmovilizar células in situ en un microambiente 3D. La densidad del entrecruzamiento influye directamente en el tamaño del poro del hidrogel y por Io tanto en las propiedades físicas del mismo, como por ejemplo el contenido en agua o Ia resistencia
HOJA DE SUSTITUCIÓN (REGLA 26) mecánica. De esta manera, un hidrogel con una densidad de entrecruzamiento grande y por Io tanto un tamaño de poro muy pequeño, absorberá menos agua y poseerá una mayor resistencia mecánica que un hidrogel con un grado menor de entrecruzamiento y con un tamaño de poro grande.
La formación de un hidrogel por entrecruzamiento se puede llevar a cabo mediante diversos métodos: cambios de temperatura, reacciones químicas y fotopolimerización.
En Ia presente invención Ia reacción de entrecruzamiento se lleva a cabo de Ia siguiente manera: se obtiene una solución acuosa del polímero a entrecruzar (en nuestro caso solución acuosa de GAGs) y se adiciona el reactivo químico que producirá el entrecruzado. En este caso para desarrollar el hidrogel se utiliza EDC (1-ethyl-3-(3- , dimethylaminopropyl carbodiimide hydrochloride) ya que el EDC activa los grupos carboxilo en soluciones acuosas. Estos grupos carboxilo activados son capaces de reaccionar con aminas primarias o grupos hidroxilo resultando en enlaces amida o ester. Una vez formado el hidrogel, se lava varias con PBS para eliminar los restos de EDC que puedan quedar. De esta manera se consigue que las moléculas de GAG absorban grandes cantidades de agua, formando un hidrogel de aspecto sólido y poroso (Pieper et al., 1999; Wissink et al., 2001).
El hidrogel con una forma y tamaño específico se solidifica durante el proceso de entrecruzamiento en el molde destinado para tal fin, de forma que adopta Ia forma y el tamaño deseado dependiendo del molde que se utilice.
Los hidrogeles sólidos, se pueden desecar mediante el proceso denominado liofilización, para obtener de esta manera una estructura porosa, debido a Ia eliminación de las moléculas de agua intercaladas entre las moléculas de GAGs y presentes en el hidrogel (Fig. 5). Además, una vez liofilizado el biomaterial, se puede caracterizar Ia estructura tridimensional del hidrogel mediante microscopía electrónica de barrido (SEM) (Fig. 3). Mediante Ia liofilización se congela el hidrogel sólido obtenido y una vez congelado se introduce en una cámara de vacío para que eliminar el agua por el proceso
HOJA DE SUSTITUCIÓN (REGLA 26) denominado sublimación. Mediante diversos ciclos de congelación se consigue eliminar prácticamente Ia totalidad del agua libre contenida en el hidrogel original.
Una vez obtenido el hidrogel en su forma final, se procede a su esterilización, mediante Ia exposición a radiación ultravioleta durante un periodo de 40 minutos. Las pruebas de esterilidad realizadas sobre el hidrogel demostraron que el biomaterial se esterilizó de forma óptima.
Una vez esterilizado, el hidrogel se encuentra en formato de producto final, listo para su aplicación directa o su asociación con células.
Ensayos de asociación de células con el hidrogel de Ia invención demostraron que el biomaterial no produce efectos tóxicos sobre las células, siendo su capacidad de proliferación similar a Ia que se produce en condiciones estándar de cultivo (Fig. 4).
Usos del bioqel
El biomaterial de Ia invención bien en su forma combinado con células o bien sólo, puede ser aplicado en su forma inyectable en enfermedades del sistema articular y en tratamientos estéticos. Las células que se pueden utilizar son, entre otras: células madre mesenquimales indiferenciadas o bien diferenciadas a otra estirpe celular, células madre hematopoyéticas indiferenciadas o bien diferenciadas a otra estirpe celular, condrocitos y condroblastos, osteoblastos y osteocitos, queratinocitos, fibroblastos, miocitos, adipositos, neuronas u otras células procedentes del sistema nervioso, células del sistema leucocitario, células corneales, células endoteliales o células epiteliales.
Dependiendo de Ia aplicación a Ia que vaya destinada el hidrogel, Ia técnica de inyección será diferente y Ia viscosidad del hidrogel se adaptará al calibre del sistema de inyección. La viscosidad del hidrogel inyectable es de 10 a 15.000 cts, preferentemente entre 10 y 2.000 cts. El hidrogel entrecruzado puede poseer una viscosidad superior a
15.000 cts. La viscosidad del hidrogel del hidrogel puede ser modificado por
HOJA DE SUSTITUCIÓN (REGLA 26) entrecruzamiento según las necesidades, pudiendo obtener viscosidades superiores a 15.000cts.
El biomaterial desarrollado en Ia presente invención puede ser aplicado preferentemente de forma inyectable en las siguientes patologías: remodelado, relleno o reconstrucción de tejidos blandos, tratamiento de arrugas, pliegues y cicatrices, quemaduras, úlceras, aumento de tejidos blandos, lipoartrofia facial, patologías del disco intervertebral, reparación de cartílago, lesiones musculoesqueléticas, osteoartritis y periartritis. Tratamiento antitumoral, enfermedades vaginales, lesiones cerebrales, reparación medular, desórdenes neurodegenerativos, enfermedades cardiovasculares y procesos de lubricación, como analgésico y antiinflamatorio.
El biomaterial de Ia invención en su forma sólida, posee una estructura sustancialmente porosa. En dicha estructura el diámetro de poro es de 0,5 - 1.000 μm, preferiblemente de 0,5 - 500 μm, pudiendo presentar viscosidad superior a 15000cts. Dicho biomaterial en su forma sólida puede ser aplicado preferentemente en las siguientes patologías: tratamiento de quemaduras, úlceras y defectos dermo-epidérmicos, tratamiento de enfermedades oftalmológicas, como lesiones corneales, de Ia retina o cataratas.. Reparación del cartílago, tratamiento del sistema osteoarticular como en el caso de defectos osteocondrales, osteoartritis o defectos óseos. Adjuvante en Ia resolución de enfermedades vaginales, tratamiento de Ia gingivitis y Ia periodontitis. Utilización en el desarrollo de sistemas de cultivo celular.
Las enfermedades condrales constituyen un importante problema socio-económico mundial. En este sentido, a pesar de Ia dificultad de registrar su incidencia, se estima que en el mundo las lesiones articulares afectan a 500 millones de personas.
Las patologías condrales se producen como consecuencia de lesiones o enfermedades que, si no son tratadas, pueden concluir en enfermedades degenerativas como Ia Osteoartritis (OA).
HOJA DE SUSTITUCIÓN (REGLA 26) La OA, es uno de los tipos más comunes de artritis que afecta a 35-40 millones de personas en EEUU y Europa. Es una enfermedad degenerativa que provoca Ia desintegración del cartílago acompañada con una reacción en el hueso. Generalmente afecta a manos, rodillas, caderas, pies y cuello y en los adultos está considerada como una de las causas más comunes de inhabilidad física.
El cartílago articular es un tejido avascular altamente especializado que protege al hueso de Ia articulación diartroidial, de las fuerzas asociadas con el peso e impactos que conducen a fricciones entre las superficies articulares. Este tejido está formado por un solo tipo celular, los condrocitos, y por una importante y rica matriz extracelular. Dicha matriz consiste en una red densa de fibras de colágeno de tipo Il (molécula predominante), y, en el interior de esta red macro-agregados de proteoglicanos, que contienen GAGs como el condroitín sulfato, queratán sulfato, ácido hialurónico y agrecán.
La especializada arquitectura del cartílago y su limitada capacidad de reparación, provocan que el tratamiento de este tipo de lesiones sea muy complicado. La ausencia de vascularización hace que su capacidad regenerativa sea muy limitada, puesto que las células progenitoras no pueden acceder a Ia zona dañada para contribuir en el proceso regenerativo.
Durante los últimos años, se están utilizando biomateriales biodegradables para el tratamiento de lesiones condrales. En este sentido, los polímeros sintéticos macroscópicos (láctico, glicólico, caprolactona...) se han convertido en el grupo de biomateriales más importante y numeroso. Sin embargo, estos materiales macroscópicos sólidos requieren el empleo de procedimientos quirúrgicos agresivos como es Ia cirugía convencional. Con el objetivo de superar estas limitaciones, en Ia actualidad se están desarrollando nuevas biomatrices capaces de ser implantadas por técnicas mínimamente invasivas como es Ia inyección o artroscopia.
Por Io tanto, una de las aplicaciones del biomaterial inyectable de Ia presente invención es Ia regeneración del cartílago articular dañado por el proceso degenerativo de Ia osteoartritis. Dicho biomaterial se puede administrar fácilmente en Ia zona a regenerar
HOJA DE SUSTITUCIÓN (REGLA 26) mediante técnicas percutáneas como es Ia artroscopia o mediante cualquier dispositivo de inyección. Además de Ia fácil administración, el hidrogel inyectable posee Ia propiedad de formar un implante estable que se ajusta al tamaño y geometría del tejido deteriorado.
Otra aplicación del biomaterial, es Ia Utilización del biomaterial tridimensional para el tratamiento de heridas.
Las úlceras crónicas -diabéticas, decúbito, venosas- constituyen un importante problema que afecta a entre 3 y 6 millones de personas en EEUU. Esta patología afecta al 1-3% de Ia población de los países desarrollados y el 15% de los pacientes ingresados en un hospital están afectados con esta dolencia. El amplio número de pacientes que sufre estas lesiones producen importantes repercusiones socioeconómicas y sanitarias, constatándose, de este modo, un elevado costo de tratamiento, y alterando, de manera importante, Ia calidad de vida del paciente.
Las úlceras son traumatismos que tienen una gran repercusión sobre el organismo con una fisiopatología considerablemente compleja. En el lecho de una herida se produce una compleja interacción sinérgica entre fibroblastos (células de Ia dermis), queratinocitos (células de Ia epidermis), matriz extracelular y las proteínas derivadas del plasma con el fin de que se produzcan las diferentes fases de cicatrización de Ia herida, hemostasia, inflamación, reparación y remodelación.
Sin embargo, Ia cronicidad y Ia recidiva son las incidencias más relevantes en Ia evolución clínica. A pesar de Ia gran variedad de tratamientos y apositos que se disponen en Ia actualidad, el porcentaje y Ia velocidad de cicatrización siguen siendo extremadamente bajos, precisando, por Io tanto, de tratamientos más eficaces que consigan Ia rápida cicatrización de Ia lesión. El progresivo conocimiento de Ia fisiopatología de las úlceras crónicas durante los últimos años ha originado el desarrollo de nuevos apositos que pueden suponer un avance significativo en el tratamiento de esta enfermedad. Aunque, hasta el momento, no existe un aposito ideal para el cubrimiento de
Ia piel, dicho aposito debe cumplir una serie de características básicas como son Ia rápida adhesión a Ia herida, proporcionar una barrera eficaz contra Ia pérdida de líquidos, resistir
HOJA DE SUSTITUCIÓN (REGLA 26) contra presiones mecánicas para proporcionar una estabilidad a largo plazo, fáciles de esterilizar, manejo sencillo, fácil de transportar e inocuos.
El biomaterial sólido de Ia invención posee Ia mayoría de las características necesarias para que un aposito sea eficaz en Ia curación de una úlcera crónica. En este sentido, con el fin de evaluar el efecto terapéutico en úlceras crónicas se ha llevado a cabo el estudio experimental in vivo empleando, para ello, ratones.
EJEMPLOS
Ejemplo 1. Obtención de Ia gelatina de Wharton
Para aislar los GAGs de Ia GW del cordón umbilical se procedió de Ia siguiente manera:
Se recogió un cordón umbilical de 50 g inmediatamente después del parto, en un frasco estéril en el que se habían dispuesto previamente 300 mi de PBS a una concentración 1X (para 1 litro de H2O: NaCI 8 g, KCI 0,2 g, Na2HPO4 1,44 g, KH2PO4 0,24 g, pH=7,4 en 1 I de H2O) y 3 mi de una mezcla de antibióticos de penicilina (30.000 unidades), estreptomicina (30.000 μg) y anfotericina-B (75 μg) (LONZA, Ref: 17-745 E) a una concentración 1X. El cordón umbilical se puede guardar a 40C, durante no más de 24 horas hasta su procesado, pero en este ejemplo el cordón umbilical se procesó inmediatamente tras su recepción.
Para su procesado, el cordón umbilical se mantuvo en condiciones estériles, en una campana de flujo laminar de nivel de bioseguridad Il y se sometió a sucesivos lavados para eliminar totalmente los restos de sangre que contiene. Para ello, se dispuso en un recipiente y se añadieron 300 mi de PBS 1X (Para 1 litro de H2O: NaCI 8 g, KCI 0,2 g, Na2HPO4 1,44 g, KH2PO4 0,24 g, pH=7,4 en 1 L de H2O) que contenían 3 mi de una mezcla de antibióticos de penicilina (30.000 unidades), estreptomicina (30.000 μg> y anfotericina-B (75 μg) (LONZA, Ref: 17-745 E), se agitó manualmente inclinando Ia botella verticalmente 5 veces durante 10 seg y se desechó el líquido, repitiéndose esta
HOJA DE SUSTITUCIÓN (REGLA 26) operación un mínimo de 3 veces, hasta que se eliminó Ia mayor parte de Ia sangre. A continuación se procedió al lavado del cordón umbilical con 500 mi de una solución de lisis de eritrocitos a una concentración 1X (para 1 litro de H2O: NH4CI 8,99 g, KHCO3 1 g, EDTA 37 mg, pH 7,3) hasta Ia eliminación total de restos de sangre.
Una vez limpia de sangre Ia superficie del cordón umbilical, se transfirió a una placa Petri de 10 cm y se troceó con unas tijeras estériles en fragmentos de 1-2 cm. Como al cortar el cordón umbilical en fragmentos se liberó sangre retenida en el interior de los vasos sanguíneos, para limpiar a fondo dichos fragmentos, se añadieron 10 mi de PBS 1X conteniendo 1 mi de una mezcla de antibióticos (10.000 unidades), estreptomicina (10.000 μg) y anfotericina-B (25 μg), y se presionó Ia superficie del fragmento contra su superficie de apoyo, haciendo movimientos de desplazamiento horizontales a Io largo del fragmento con un escalpelo estéril. Este proceso se repitió hasta eliminar totalmente todos los restos de sangre de su interior. Los fragmentos del cordón umbilical, totalmente limpios, se transfirieron a un tubo estéril y se procesaron acto seguido, aunque en caso necesario se pueden crioconservar a -800C indefinidamente.
A continuación se procedió a eliminar mecánicamente Ia membrana que rodea al cordón umbilical y los vasos sanguíneos que se encuentran en su interior. Para ello, se abrieron longitudinalmente los trozos de cordón umbilical y con Ia ayuda de un escalpelo y unas pinzas se retiraron tanto Ia membrana del cordón umbilical como los vasos sanguíneos. La sustancia . gelatinosa que se obtuvo como consecuencia de ésta separación mecánica fue Ia GW. Se obtuvieron 40 g de GW.
Ejemplo 2. Extracción de GAGs de Ia Gelatina de Wharton
Para Ia obtención de GAGs a partir de Ia GW del cordón umbilical se utilizó, con algunas modificaciones, el protocolo descrito para obtener GAGs a partir de cartílago humano (Rogers et al., 2006).
La GW obtenida en el Ejemplo 1 se sumergió en 10 mi de Ia solución tampón de extracción (242 μl de L-Cysteína 200 mM, 1,42 mi de buffer Na2HPO4 704 mM, 100 μl de
HOJA DE SUSTITUCIÓN (REGLA 26) EDTA 0,5 M, papaína (SIGMA, Ref: P-4762) 10 mg (14 U/mg), pH 7,5) y se mantuvo durante 24 horas a 6O0C, para digerir completamente Ia GW y una vez digerida se centrifugó Ia muestra a 800 rpm durante 5 min para eliminar el residuo de Ia digestión. Se observó que el volumen de Ia digestión era de 30 mi, aproximadamente 20 mi adicionales a los 10 mi de partida, por Ia disolución de los GAGs presentes en Ia GW y por Io tanto a Ia liberación del agua que éstos acumulaban.
Una vez centrifugada Ia muestra, se transfirió el sobrenadante a otro tubo y se procedió a Ia precipitación de los GAGs presentes en Ia muestra.
Ejemplo 3. Precipitación y aislamiento de GAGs de Ia GW del cordón umbilical.
. Los GAGs de Ia GW presentes en el sobrenadante se precipitaron con 5 volúmenes de etanol al 100%. Mediante este paso se precipitaron los GAGs de Ia muestra así como sales presentes en ésta, esto es debido a que las moléculas de agua presentes en Ia muestra interactúan con las de etanol, de tal forma que las moléculas de agua no pueden interactuar con los GAGs de la muestra. Los GAGs se dejaron precipitando 12 horas a -2O0C. Una vez precipitados, se centrifugó a 2500 rpm durante 5 min, eliminándose así todo el etanol al 100%, se lavó el precipitado con 5 volúmenes de etanol al 75% para eliminar las posibles sales residuales que hubieran precipitado en Ia muestra. A continuación, se centrifugó unos 5 min a 2500 rpm y se eliminó totalmente el sobrenadante.
Una vez precipitada Ia muestra, se dejó secando el residuo sólido durante unos
30 minutos a "F ambiente hasta que se hubo evaporado todo el etanol. La cantidad de GAGs que se precipitan partiendo de una muestra de unos 40 g de GW de puede variar entre 50 y 300 mg dependiendo del material de partida. En este caso concreto se obtuvieron 200 mg de precipitado de GAGs, que se resuspendieron en 2 mi de H2O MiIi-Q y así se mantuvo almacenada a 40C hasta Ia elaboración del hidrogel.
Ejemplo 4. Elaboración de un hidroqel inyectable de GAGs de Ia GW del cordón umbilical.
HOJA DE SUSTITUCIÓN (REGLA 26) El contenido en agua del hidrogel puede llegar a ser desde un 10% hasta 100 veces su propio peso, dependiendo de Ia viscosidad que se requiera para su aplicación.
El hidrogel obtenido tras Ia resupensión de los GAGs precipitados en 2 mi de H2O se resuspendió en una solución de suero fisiológico inyectable para dar lugar a una viscosidad de 1000 cst. Posteriormente, este hidrogel se resuspendió en 8 mi de una solución de suero fisiológico inyectable para dar lugar a una viscosidad de 200 centistokes y se dejó agitando de forma moderada en un vortex hasta su completa disolución y homogeneizado, para evitar Ia degradación de Ia estructura del gel.
Una vez disuelto el hidrogel, se dejó almacenado a 40C, donde puede mantenerse de forma indefinida.
Ejemplo 5. Elaboración de un hidrogel sólido de GAGS de Ia GW del cordón umbilical.
Para Ia elaboración del hidrogel sólido, se procedió según Io descrito en Ia bibliografía (Cui et al., 2006). Se preparó una solución acuosa a partir del extracto de GAGs obtenido de la GW según el Ejemplo 3. Concretamente, se preparó una solución al 1% de GAGs en H2O. Para ello, se añadieron 10 mi de H2O a los 200 mg de GAGs obtenidos tras su precipitación y aislamiento (Ejemplo 3). Se añadieron a Ia solución 1,2 g de Adipic dihydrazide (ADH) y se ajustó el pH de Ia solución con HCI 0,1 N hasta pH=3,5. Una vez ajustado este pH se añadió a Ia solución 0,6 g del fijador EDC (1-ethyl-3-(3- dimethylaminopropyl carbodiimida hydrochloride ) (SIGMA, Ref: E6383). Se mantuvo Ia mezcla entre 30 minutos y 1 hora en agitación constante a Ta ambiente hasta que se consiguió el hidrogel sólido.
Una vez formado el hidrogel sólido se lavó 3 veces con PBS 1X (para 1 litro de
H2O: NaCI 8 g, KCI 0,2 g, Na2HPO4 1,44 g, KH2PO4 0,24 g, pH=7,4 en 1 I de H2O) 5 min cada vez para eliminar el exceso de EDC. En cuanto a Ia forma física del hidrogel éste tendrá Ia forma del molde en el que solidifique, de tal manera que se pueden emplear placas de cultivo estándar de 96, 48, 24, 12 y 6 pocilios, placas Petri o cualquier otro
HOJA DE SUSTITUCIÓN (REGLA 26) recipiente con Ia forma deseada. Adicionalmente, se puede solidificar el hidrogel en un recipiente grande como un vaso de precipitados y una vez solidificado se puede cortar el hidrogel con una forma y grosor característicos. Concretamente, en este ejemplo el hidrogel se solidificó en pocilios de placas de 24 pocilios y una vez solidificado se lavó 3 veces 5 min con 500 μl de PBS 1X.
En este caso, el hidrogel sólido entrecruzado en placas de 24 pocilios, se sometió al proceso de liofilización que consta de los siguientes pasos: se congeló el hidrogel a -8O0C. Se introdujeron las muestras de hidrogel congeladas en Ia cámara de vacio del liofilizador. Se sometieron las muestras de hidrogel a vacío mientras se subía Ia temperatura hasta -400C a una velocidad de 0,1°C/min y se mantuvo Ia T0 a -400C durante 20 min. Posteriormente se subió Ia T0 a -2O0C a una velocidad de 0,1°C/min y se mantiuvo Ia T0 de -2O0C durante 15 min. Transcurrido este tiempo se subió Ia T0 a O0C a una velocidad de 0,1°C/min y se mantiene Ia T0 de O0C durante 15 min. Posteriormente se subió Ia T0 a 250C a una velocidad de 0,1°C/min y se mantuvo a esta T0 durante el tiempo necesario para igualar Ia presión exterior y Ia presión interior de Ia cámara de vacío.
En este ejemplo, para Ia caracterización tridimensional del hidrogel mediante microscopía electrónica de barrido (SEM), una vez liofilizado éste se procedió de Ia siguiente manera: se cortó una sección del hidrogel liofilizado y se llevó a cabo Ia desecación de esta sección al punto crítico con CO2 en un desecador AUTOSAMDRI-814 y al metalizado con oro en un SPUTTER. Se observaron las preparaciones a un voltaje 20 KV en el microscopio electrónico de barrido JEUL (JSM35).
El análisis por SEM (Figura 3) del hidrogel indicó que éste posee una estructura porosa uniforme y que contiene una red interconectada de poros. La micrografía refleja Ia existencia de una estructura tridimensional altamente porosa, con un diámetro de poro que varía entre 0,5 y 500 μm. Este rango de poros implica Ia existencia de micro y macroporosidad. Los macroporos (300-500 μm) son necesarios para que se realice una coionización celular adecuada, tanto para que se concentre un número elevado de células como para que convivan diferentes tipos celulares favoreciendo Ia formación de tejidos
HOJA DE SUSTITUCIÓN (REGLA 26) estructurados. Por ejemplo, para que se pueda formar una red vascular. Los poros intermedios permiten Ia integración celular. Los microporos (0,5-50 μn) son necesarios para Ia supervivencia celular, ya que son los responsables de que se lleve a cabo una correcta difusión de gases, nutrientes y Ia eliminación de los productos de desecho procedentes del metabolismo celular. La medida del tamaño del poro se efectúa en base a Ia escala métrica obtenida mediante el microscopio electrónico de barrido.
En este caso, a diferencia del ejemplo anterior del biomaterial inyectable, el hidrogel sólido aporta una estructura tridimensional, que constituye una matriz para el crecimiento y colonización celular en toda su estructura tanto interna como externa. Este biomaterial muestra una mayor estabilidad estructural, siendo indicado para aplicaciones en las que se busca no solamente un carácter bioactivo y de acción trófica, sino también una estructura que pueda albergar células de forma transitoria, hasta que se lleve a cabo Ia reparación tisular, como son el tratamiento de úlceras y otras enfermedades dermo- epidérmicas, reparación de cartílago y tratamientos oftalmológicos, entre otras. Las células contenidas en el biomaterial pueden ser las de los tejidos adjacentes al lugar de implantación, que han conseguido colonizarlo, o también células dispuestas ex vivo en el biomaterial previamente a su aplicación clínica, de forma que se potencia su acción regeneradora.
Este biomaterial presenta una distribución homogénea de poros cuyo tamaño se encuentra distribuido en un rango de 0.01 a 500 mieras de tamaño, determinado mediante técnicas de microscopía electrónica de barrido. Este rango de porosidad es adecuado tanto para Ia difusión de gases y nutrientes a través de toda su estructura, como para permitir Ia entrada de células en su interior.
Ejemplo 6. Caracterización v cuantificación de GAGs presentes en el biomaterial de Ia invención
• Se analizaron y cuantificaron los distintos GAG presentes en el biomaterial de Ia invención mediante Ia técnica de espectrometría de masas (ESI/MS). Dado que mediante esta técnica solamente se pueden determinar moléculas con un peso molecular de entre
HOJA DE SUSTITUCIÓN (REGLA 26) 200 y 2000 Daltons y que las moléculas de GAGs superan en gran medida este rango, se procedió en primer lugar a digerir enzimáticamente Ia muestra, para conseguir de esta manera cadenas de GAGs cuyo peso molecular se encuentre entre 200 y 2000 Da.
Como patrón para Ia identificación y cuantificación del GAGs se utilizaron compuestos comerciales estándar de cada uno de ellos de concentración conocida.
Concretamente, los estándares utilizados para llevar a cabo Ia cuantificación de GAGs fueron los siguientes: Para el Ácido Hialurónico: Hyaluronic acid potassium salt (SIGMA,
Ref: 53750) para el Condroitin Sulfato: Chondroitin sulfate sodium salt (SIGMA, Ref:
C4384), para el Dermatán sulfato: Dermatan Sulfate sodium salt (SlGMA, Ref: C3788), para el Queratán sulfato: Keratan sulfate (CHEMOS, Ref: 7295), para Ia Heparina:
Heparin sodium salt (SIGMA, Ref: H8537) y para el Heparan sulfato: Heparan sulfate sodium salt (SIGMA, Ref 51541).
Los valores de Ia cuantificación de GAGs presentes en la muestra se obtuvieron en base a los resultados obtenidos de cada estándar de GAG utilizado.
Para llevar a cabo la digestión enzimática de los GAGs se procedió según el procedimiento descrito en Ia literatura (Mahoney et al., 2001). Para ello se utilizaron los enzimas específicos para Ia digestión de cada GAG.
Para el Ácido Hialurónico se utilizó Hialuronidasa (SIGMA, Ref: H3506), para el
Condroitin Sulfato se utilizó Condroitinasa (SIGMA, Ref: C2780), para el Dermatán sulfato se utilizó Condroitinasa B (SIGMA, Ref: C8058), para Ia Heparina se utilizó Heparinasa I
(SIGMA, Ref: H2519), para el Heparan sulfato se utilizó Heparinasa I (SIGMA, Ref:
H2519), para el Queratán sulfato se utilizó Queratanasa (K2876).
Estos enzimas se prepararon resuspendiendo 440 U del enzima correspondiente en 10 mi del siguiente tampón: 2 mi de tampón fosfato 100 mM pH=7, 77, 770 μl de NaCI 1 M, 1 mg de BSA y 7,23 mi de H2O.
HOJA DE SUSTITUCIÓN (REGLA 26) El buffer de digestión enzimática con una concentración de enzima de 160 U/ml se preparó de Ia siguiente manera: 4,5 mi de Enzima (2000 U) se añadieron a 7,5 mi de buffer de digestión 1,5 mi de NaCI 1M, 0,333 mi de Acetato de sodio 3M pH = 5,2 y 5,67 mi de H2O.l_a preparación de las muestras y los estándares para ser sometidos a Ia digestión enzimática fue Ia siguiente: 500 μl de buffer de digestión (80 U de enzima) se añadieron a 500 μl de estándar de cada GAG a una concentración de 2 mg/ml, de tal manera que Ia solución final del estándar quedó a 1 mg/ml. Con Ia muestra de GAGs se procedió de Ia misma manera: 500 μl de buffer de digestión (80 L) de enzima) se añadieron a 500 μl de muestra de GAGs.
Las muestras se digirieron a 370C durante 1 h, tras Io cual se inactivo el enzima mediante desnaturalización térmica a 600C durante 5 min.
Una vez realizadas las digestiones se analizaron las muestras y los estándares mediante espectrometría de masas. La espectrometría de masas es una metodología experimental empleada para Ia determinación de Ia relación masa/carga de determinados iones presentes en Ia muestra a analizar. El espectrómetro de masas consiste en 3 componentes básicos: fuente de iones, analizador de masas y detector. La muestra a analizar se ioniza mediante Ia fuente de iones, se separan en el analizador de masas y se detectan para producir un espectro de masas, donde los valores de masa/carga se muestran frente a Ia abundancia relativa de una especie iónica en concreto.
Concretamente, en este ejemplo Ia inyección de muestras en el espectrómetro de masas se llevó a cabo de Ia siguiente manera: 20 μl de las muestras se inyectaron, a un flujo de 0.2 ml/min directamente en el detector de masas/masas (modelo LCQ, Thermo). Se utilizó el método de ionización electrospray negativo (ESI -) y el tiempo del cromatograma se fijó en 10 minutos. Se seleccionaron los iones moleculares con un rango de ±6 Da, correspondientes según Ia bibliografía (Mahoney et al., 2001) al peso molecular de cadenas reconocidas para cada tipo de GAG. Dicho iones se mantuvieron presentes tanto en Ia muestra de GAGs estándar como en Ia muestra a analizar por Io que se demostró de ésta manera cualitativamente Ia presencia de cada GAG en Ia muestra. Para
HOJA DE SUSTITUCIÓN (REGLA 26) asegurarse la reproducibilidad de los resultados, se inyectaron las muestras y los estándares por duplicado.
Para Ia cuantificación de los distintos GAGs, se realizó una recta patrón del estándar de cada GAG a 1 mg/ml. La recta estándar realizada constaba de los siguientes concentraciones de cada uno de los GAGs estándares (Ácido hialurónico, Condroitin sulfato, Dermatán sulfato, Heparina, Heparán sulfato y Queratán sulfato) empleados para hacer Ia recta patrón: 750 μg/ml, 500 μg/ml, 250 μg/ml, 100 μg/ml, 0 μg/ml. Las diluciones de Ia recta estándar se llevaron a cabo con H2O y como blanco de Ia recta se utilizó una mezcla en igual proporción de buffer de digestión enzimática y de H2O.
Los resultados de Ia cualificación y las proporciones de cada GAG en el biomaterial de Ia invención son los siguientes, teniendo en cuenta que el origen del biomaterial es natural, Io que conlleva Ia existencia de pequeñas variaciones en su composición (Fig. 1):
Ácido Hialurónico 70%
Queratán Sulfato 10%
Condroitin 6 Sulfato 7%
Heparán Sulfato 5%
Condroitin 4 Sulfato 4%
Dermatán Sulfato 3%
Heparina 1%
Ejemplo 7. Estudio histológico para la determinación de la presencia de restos celulares en el biomaterial
HOJA DE SUSTITUCIÓN (REGLA 26) El biomaterial de la invención contiene una combinación de GAGs de origen natural. Este origen natural, potencia su efecto regenerador y sobre Ia actividad celular, puesto que las estructuras de los GAGs y las interacciones entre los mismos son similares a como se encuentran en Ia matriz extracelular en condiciones fisiológicas.
El cordón umbilical a es un tipo de tejido muy poco ¡nmunogénico, de hecho se plantea en numerosos trabajos Ia utilización de las células madre que contiene Ia GW, para su utilización en tratamientos de forma heteróloga. Asimismo, existen trabajos en los que se desarrollan sistemas de arterias o venas a partir de Ia vasculatura del cordón umbilical también para uso heterólogo.
Sin embargo, para asegurar que el biomaterial de Ia invención está libre de células y de restos celulares, que puedan ser causantes de reacciones inflamatorias o de rechazo del implante, se han realizado las tinciones histológicas de hematoxilina-eosina, azul alciano y verde metilo- pironina (Fig. 2).
Hematoxilina-Eosina: es Ia tinción histoquímica más utilizada a nivel histopatológico. Permite observar células y componentes celulares. La hematoxilina presenta afinidad por los componentes ácidos de Ia célula, en especial los ácidos nucleicos y Ia eosina por las zonas básicas, permitiendo una buena observación del citoplasma celular. Se tiñeron preparaciones de Ia muestra de GAGs (Fig. 2 B) y como control positivo se utilizaron extensiones de células (Fig. 2 A).
El procedimiento que se llevó a cabo para realizar Ia tinción de Hematoxilina-
Eosina en fue el siguiente: Se extendió una muestra de GAG con Ia ayuda de un hisopo estéril, en un portaobjetos y se dejó secar la extensión un mínimo de 24 horas. Una vez secos los portaobjetos, se fijaron las extensiones con metanol al 70% durante 5 min. Transcurrido este tiempo se eliminó el fijador lavando con H2O. Se tiñeron los portaobjetos con hematoxilina durante 3 min (PANREAC, Hematoxilina de Harris solución DC). Transcurrido este tiempo se eliminó el exceso de colorante lavando con H2O. Se pasron todos los portaobjetos por H2O con HCI al 0,5% para eliminar uniones ¡nespecíficas del colorante. Se lavaron los portaobjetos con H2O. Se tiñeron los
HOJA DE SUSTITUCIÓN (REGLA 26) portaobjetos con eosina (0,5% en H2O) durante 30 seg. Se lavaron los portaobjetos con H2O para eliminar el exceso de eosina. Sobre las preparaciones se añadieron unas gotas del medio de montaje Fluoromount-G (SOUTHERN BIOTECH, Ref: 0100-01), se cubrieron con un cubreobjetos y se observaron al microscopio.
Los resultados de Ia tinción con Hematoxilina-Eosina (Fig. 2, imágenes A y B) indican Ia ausencia de células en Ia muestra de GAGs analizados.
Azul Alciano: El azul alciano es uno de los principales colorantes catiónicos (contiene cargas positivas en su molécula), las cuales se unen a los sitios con cargas negativas de los polisacáridos con radicales de sulfato, fosfato o carbonato que forman parte de los proteoglicanos. Estas uniones electroestáticas dependen del pH del medio, a pH neutro el colorante se une a proteoglicanos con radicales neutros, a pH ácidos se une a proteoglicanos sulfatados y a pH básicos se une a proteoglicanos fosfatados. A pH=1, el azul alciano se une a proteoglicanos débil y fuertemente sulfatados, que contienen Condroitin sulfato, Dermatan sulfato, Heparan sulfato y Keratan Sulfato que forman parte de los GAG de Ia gelatina de Warthon. Se tiñeron preparaciones de Ia muestra de GAGs (Fig. 2 F) y como control se utilizaron extensiones de células (Fig. 2 E).
El procedimiento que se llevó a cabo para realizar Ia tinción de Azul Alciano en este ejemplo en concreto fue el siguiente:
Se extendió una muestra de GAG, con Ia ayuda de un hisopo estéril, en un portaobjetos y se dejó secar Ia extensión un mínimo de 24 horas. Una vez secos los portaobjetos, se fijaron las extensiones con metanol al 70% durante 5 min. Transcurrido este tiempo se eliminó el fijador lavando con PBS 1X. Se sumergieron los portaobjetos en
HCI 0,1 N pH=1 durante 5 min. Transcurrido ese tiempo se tiñeron con azul alciano 1% en
HCI 0,1 N pH=1 durante 2h. Se sumergieron los portaobjetos en HCI 0,1 N durante 5 min y acto seguido se lavaron con H2O para eliminar el exceso de colorante. Sobre las preparaciones .se añadieron unas .gotas del medio de montaje Fluoromount-G
(SOUTHERN BIOTECH, Ref: 0100-01), se cubrieron con un cubreobjetos y se observaron al microscopio.
HOJA DE SUSTITUCIÓN (REGLA 26) Los resultados de Ia tinción con Azul Alciano (Fig. 2, imágenes E y F) indican Ia presencia de GAGs en Ia muestra de biomaterial analizada.
Verde de metilenopironina: Empleado para Ia investigación histológica del ácido nucleico contenido en los tejidos, así como para demostrar Ia presencia de células de Ia serie linfática y células plasmáticas.También es útil en Ia identificación de células plasmáticas y RNA en secciones de tejidos y preparaciones citológicas. La pironina tiñe el citoplasma de las células plasmáticas y Ia mayoría de los nucléolos de rojo. El verde de metileno tiñe DNA de un tono verde azulado (violáceo). Se tiñeron preparaciones de Ia muestra de GAGs (Fig. 2 D) y como control se utilizaron extensiones de células (Fig. 2 C).
El procedimiento que se llevó a cabo para realizar Ia tinción de Verde metilo- pironina en este ejemplo en concreto fue el siguiente:
Se extendió una muestra de cada GAG con Ia ayuda de un hisopo estéril, en un portaobjetos y se dejó secar Ia extensión un mínimo de 24 horas. Una vez secos los portaobjetos, se fijaron las extensiones con metanol al 70% durante 5 min. Transcurrido este tiempo se eliminó el fijador lavando con H2O. Se sumergieron los portaobjetos en HCI 0,1 N pH=1 durante 5 min. Transcurrido ese tiempo se tiñeron con verde de metileno - pironina durante 5 min (verde de metileno al 0,012% en H2O, Pironina 0,01% en H2O, metanol al 0,75%) y acto seguido se lavaron con H2O para eliminar el exceso de colorante. Sobre las preparaciones se añadieron unas gotas del medio de montaje Fluoromount-G (SOUTHERN BIOTECH, Ref: 0100-01), se cubrieron con un cubreobjetos y se observaron al microscopio.
Los resultados de Ia tinción con Verde metilo-pironina (Fig. 2, imágenes C y D) indican Ia ausencia de ácidos nucleicos en Ia muestra de GAGs analizada.
Como se puede observar en las imágenes de Ia Figura 4, no se observan células ni restos de ácidos nucleicos en el material de Ia invención. Sin embargo, mediante Ia tinción Azul Anciano se puede observar Ia presencia de GAGs en el biomaterial desarrollado.
HOJA DE SUSTITUCIÓN (REGLA 26) Ejemplo 8. Toxicidad de diversos tipos celulares sobre el biomaterial de la invención.
El principal requisito para que un biomaterial pueda ser utilizado para su implantación o como matriz para Ia ingeniería tisular, es Ia ausencia total de citotoxicidad. Para comprobar que el biomaterial de Ia invención no produce efectos tóxicos, se determinó Ia citotoxicidad mediante el método MTT (Roche Diagnostics), validado por Ia
ECVAM (European Centre for the Validation of Alternative Methods) de las células dispuestas sobre el biomaterial de Ia invención. Los tipos celulares empleados están relacionados con las patologías a las que va dirigido el biomaterial, como son, queratinocitos y fibroblastos de piel, osteoblastos de hueso, condrocitos de cartílago y células madre mesenquimales de tejido adiposo, así como Ia línea celular que marca Ia
ISO10993 para los ensayos de toxicidad L929.
El ensayo MTT está basado en Ia capacidad que tienen los enzimas mitocondriales de las células vivas para transformar determinados sustratos en otros metabolitos secundarios. La cantidad de compuesto formado depende de Ia actividad de
Ia deshidrogenasa mitocondrial, Io cual es un claro indicador del número de células viables que existen en el cultivo.
En concreto en este test mitocondrial, CeII Proliferation Kit I (MTT) Cat. N0 1 465 007 Roche, se determina Ia transformación que llevan a cabo las succinatos desidrogenasas mitocondriales celulares de Ia sal de tetrazoilo (amarilla), a cristales insolubles de formazan (azul). Posteriormente las células se permeabilizan y los cristales formados son solubilizados, dando lugar a una solución coloreada que puede ser cuantificada midiendo su absorbancia en un lector de microplacas ELISA a una longitud de onda de 550 nm. Los resultados obtenidos se muestran en Ia Figura 4.
El procedimiento a seguir es el siguiente:
1. Las células fueron sembradas en placas de 96 pocilios antiadherentes con 50 μl de biomaterial en cada pocilio a una densidad de 2000-5000 células/pocilio dependiendo del tipo celular. Previamente se ha determinado Ia concentración celular apropiada para
HOJA DE SUSTITUCIÓN (REGLA 26) cada tipo celular Los fibroblastos, osteoblastos, condrocitos y células madre meseήquimales de tejido adiposo, todas ellas de cultivo primario y de origen humano, se sembraron a una concentración de 4000 células por pocilio, Ia línea de fibroblastos de ratón L929 se sembró a una concentración de 200 células por pocilio y los queratinocitos obtenidos de piel humana en cultivo primario se sembraron a una concentración de 5000 células por pocilio.
2. El cultivo se dejó estabilizar a 37 0C y 5% de CO2 durante 24 horas antes de iniciar los ensayos de citotoxicidad. En este ensayo se incluyeron controles positivos (células + medio + material conocido que induce citotoxidad,. en este caso se utilizó policloruro de polivinilo o PVC), control (células + medio de cultivo estándar), y células en contacto con el biomaterial de Ia invención.
3. Se dejaron incubando a 37 0C en el incubador el periodo de tiempo indicado en el protocolo hasta Ia realización de las determinaciones, que en este caso fueron a las 24, 48 y 72 horas de contacto. 4. Finalizado el periodo de incubación, se adicionó al cultivo 10 μl de Ia solución de
MTT (0,5 mg/ml) a cada pocilio, por cada 100 μl de medio, y se incubó durante 4 horas a 370C en el incubador.
5. Al finalizar Ia incubación se pueden observar los cristales de formazán en el interior de las células. Se añade 100 μl de Ia solución solubilizadora a cada cultivo o pocilio y se incuba a 370C en el incubador durante toda Ia noche. De esta manera, se permeabilizan las células y se solubilizan los cristales con los 100 μl de soubilizador como está indicado, dando lugar a una solución coloreada fácilmente cuantificable.
6. Una vez solubilizados los cristales, se lee Ia placa de cultivo directamente con un lector ELISA a 550 nm. Antes de Ia lectura es conveniente limpiar Ia superficie inferior de Ia placa con etanol.
Como se puede observar en Ia Figura 4, el biomaterial de Ia invención no produjo efectos tóxicos sobre ninguna de las líneas celulares testadas, no existiendo diferencias significativas con respecto al control.
HOJA DE SUSTITUCIÓN (REGLA 26) Ejemplo 9. Utilización del biomaterial de Ia invención en su forma inyectable para el tratamiento de Ia osteoartritis.
Para Ia evaluación in vivo del efecto terapéutico del biomaterial de Ia invención en Ia OA, se utilizó el hidrogel obtenido en el Ejemplo 3 y se resuspendió en 8 mi de una solución de fuero fisiológico inyectable para dar lugar a una viscosidad de 200 cts. Y como modelo experimental se utilizaron conejos a los que se les ha realizado una resección del ligamento anterior cruzado en una de sus rodillas. Esta resección del ligamento se llevó a cabo mediante una artrotomía lateral. Seguidamente, con el fin de desestabilizar Ia rodilla, se esperó un periodo de semanas a meses, tiempo en el cual se produjeron erosiones en el cartílago, similares a Ia osteoartritis. Por otro lado, como grupo control se utilizaron animales sin artrotomía en Ia rodilla.
La superficie articular lesionada fue preparada mediante lavado y desbridamiento por cirugía atroscópica y las lesiones fueron recubiertas con el biomaterial inyectable de Ia invención. A las cuatro semanas después de Ia disposición del biomaterial, los animales fueron sacrificados y se les extrajo el cartílago. El cartílago obtenido se fijó en para- formaldehído al 4 % para su posterior procesado histológico. Para Ia obtención de cortes histológicos, Ia muestra fue incluida en parafina, para Io cual se mantuvo durante 5 minutos en alcoholes al 50, 70, 90 y 100%. Posteriormente se introdujeron las muestras en citrosol durante 5 minutos y se incluyeron en parafina hasta obtener un bloque sólido.
Utilizando un micrótomo se obtuvieron cortes histológicos de 5 μm en los que se llevaron a cabo las tinciones histológicas, así como de inmunomarcaje.
En los cortes histológicos se analizaron diferentes marcadores de Ia matriz extracelular del cartílago mediante técnicas inmunohistoquímicas. Las moléculas específicas de Ia matriz extracelular del cartílago y marcadores moleculares estudiados fueron el Colágeno tipo II, Keratán sulfato, Condroitín-4-sulfato y el Condroitín-6- sulfato.Los inmunomareajes fueron realizados utilizando anticuerpos monoclonales. La técnica empleada para el mareaje de Ia sección del tejido fue mediante inmunomarcaje
HOJA DE SUSTITUCIÓN (REGLA 26) directo, utilizando, anticuerpos monoclonales marcados con un fluorocromo. La visualización del mareaje fue llevada a cabo utilizando microscopía confocal.
Los resultados obtenidos demostraron que el biomaterial indujo Ia regeneración del cartílago lesionado ya que:
- El biomaterial inyectable no produjo toxicidad una vez implantado, es decir, no se observaron fenómenos de inflamación a nivel macroscópico ni microscópico en los cortes histológicos.
- El biomaterial se ajustó a Ia geometría y tamaño de Ia lesión a reparar y se mantuvo en Ia zona de Ia implantación.
- No se observaron alteraciones en el fenotipo de las células del tejido sano anexo a
Ia zona del implante.
- La presencia de moléculas de matriz extracelular específicas del cartílago, como el colágeno tipo II, en Ia zona del implante indicó el inicio del proceso regenerativo con Ia formación de nueva matriz extracelular de Ia misma calidad que Ia del tejido nativo.
- Se visualizó Ia presencia de condrocitos en Ia zona del implante, Io que indicó Ia estimulación de Ia migración, adhesión y proliferación celular.
- Estos hechos demuestran que el biomaterial de Ia invención promueve Ia regeneración del defecto condral, a diferencia de los animales controles los cuales no presentaron ningún signo de reparación del cartílago.
Ejemplo 10. Utilización del biomaterial tridimensional para el tratamiento de heridas
El biomaterial sólido de Ia invención obtenido en el Ejemplo 5 posee Ia mayoría de las características necesarias para que un aposito sea eficaz en Ia curación de una úlcera crónica. En este sentido, con el fin de evaluar el efecto terapéutico en úlceras crónicas se ha llevado a cabo el estudio experimental in vivo empleando, para ello, ratones de Ia especie swiss albino a los que se les ha producido una abrasión térmica de unos 3 cιm2en
HOJA DE SUSTITUCIÓN (REGLA 26) Ia zona dorsal. Como grupo control se utilizaron animales a los que se produjo el mismo tipo de lesión pero tratados con un gel de ácido hialurónico comercial.
Para Ia aplicación del biomaterial de Ia invención, Ia superficie de Ia herida inducida fue preparada -mediante lavado, desinfección y desbridamiento quirúrgico- y las lesiones fueron cubiertas y rellenas, tanto en profundidad como en superficie, con el biomaterial sólido moldeable de Ia invención. A los 15 días de Ia disposición del biomaterial, los animales fueron sacrificados y Ia zona de Ia herida fue extirpada y fijada en paraformaldehído al 4% para su posterior examen histológico. Para el procesado, Ia muestra fue incluida en parafina, para Io cual se mantuvo durante 5 minutos en alcoholes al 50, 70, 90 y 100%. Posteriormente se introdujeron las muestras en citrosol durante 5 minutos y se incluyeron en parafina hasta obtener un bloque sólido. Utilizando un microtomo se obtuvieron cortes histológicos de 5 μm en los que se llevaron a cabo las tinciones histológicas.
En los cortes histológicos se analizaron diferentes marcadores fenotípicos epidérmicos -queratina 5 y 10- marcadores de diferenciación -involucrina y loricrina-, marcador dérmico -vimentina- y componentes de Ia matriz -laminina- mediante técnicas inmunohistoquímicas. La técnica empleada para el mareaje de Ia sección del tejido fue mediante inmunomarcaje directo, con anticuerpos monoclonales marcados con un fluorocromo. La visualización del mareaje fue llevada a cabo utilizando microscopía confocal.
Los resultados obtenidos demostraron que el biomaterial resultó efectivo en Ia regeneración de Ia úlcera ya que:
- El biomaterial aplicado en Ia herida fue inmunológicamente inerte y no se presentaron signos de toxicidad.
- El biomaterial se ajustó a Ia geometría y tamaño de Ia lesión a reparar, cubriendo completamente Ia zona afectada tanto a nivel superficial como en profundidad.
HOJA DE SUSTITUCIÓN (REGLA 26) - El biomaterial promovió el fenómeno hemostático, lo que es señal de Ia iniciación del proceso de cicatrización.
- Conforme avanza el proceso de cicatrización, se produjo Ia degradación del biomaterial y su sustitución por componentes dermo-epiteliales.
- Los cortes histológicos mostraron que el biomaterial indujo Ia migración y proliferación de fibroblastos y queratinocitos, los cuales permanecieron viables en el mismo.
- El biomaterial de Ia invención indujo Ia cicatrización de Ia herida 2 veces con respecto a los animales control y además Ia calidad del nuevo tejido cicatricial fue significativamente superior a los animales sin Ia aplicación del biomaterial de Ia invención.
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REINVINDICACIONES
1. Biomaterial caracterizado porque comprende una mezcla de glicosaminoglicanos (GAGs) procedentes de cordón umbilical humano, libre de membrana y vasos sanguíneos de cordón umbilical humano.
2. Biomaterial de acuerdo con Ia reivindicación 1 , caracterizado porque Ia mezcla de GAGs se extrae de Ia Gelatina de Wharton presente en el cordón umbilical humano.
3. Biomaterial de acuerdo con las reivindicaciones 1-2, caracterizado porque comprende una mezcla de glicosaminoglicanos seleccionados del grupo que consiste en: ácido hialurónico, queratán sulfato, condroitin sulfato 6, heparán sulfato, condroitin sulfato 4, dermatán sulfato y heparina.
4. Biomaterial de acuerdo con Ia reivindicación 3, caracterizado porque comprende ácido hialurónico en un 65-75% de Ia mezcla total de GAGs.
5. Biomaterial de acuerdo con la reivindicación 3, caracterizado porque comprende queratán sulfato en un 5-15% de Ia mezcla total de GAGs.
6. Biomaterial de acuerdo con Ia reivindicación 3, caracterizado porque comprende condroitin sulfato 6 en un 6-8% de Ia mezcla total de GAGs.
7. Biomaterial de acuerdo con Ia reivindicación 3, caracterizado porque comprende heparan sulfato en un 3-7% de Ia mezcla total de GAGs.
8. Biomaterial de acuerdo con Ia reivindicación 3, caracterizado porque comprende condroitin sulfato 4 en un 2-6% de Ia mezcla total de'GAGs.
HOJA DE SUSTITUCIÓN (REGLA 26)
9. Biomaterial de acuerdo con Ia reivindicación 3, caracterizado porque comprende dermatán sulfato en un 1-5% de Ia mezcla total de GAGs.
10. Biomaterial de acuerdo con Ia reivindicación 3, caracterizado porque comprende heparina en un 0.1-2% de Ia mezcla total de GAGs.
11. Biomaterial desarrollado a partir de cordón umbilical humano de acuerdo con Ia reivindicación 3, caracterizado porque contiene: ácido hialurónico (70%), queratán sulfato (10%), condroitin sulfato 6 (7%), heparán sulfato (5%), condroitin sulfato 4 (4%), dermatán sulfato (3%) y heparina (1%).
12. Biomaterial desarrollado a partir de cordón umbilical humano de acuerdo con las reivindicaciones 1-11, caracterizado porque es un hidrogel.
13. Biomaterial de acuerdo con Ia reivindicación 12, caracterizado porque es un hidrogel inyectable.
14. Biomaterial de acuerdo con las reivindicaciones 12-13, caracterizado porque el hidrogel inyectable presenta una viscosidad de 10 a 15.000cts.
15. Biomaterial de acuerdo con Ia reivindicación 12, caracterizado porque presenta una viscosidad entre 10 y 2.000cts.
16. Biomaterial de acuerdo con Ia reivindicación 12, caracterizado porque posee una viscosidad superior a 15.000cts
17. Biomaterial de acuerdo con Ia reivindicación 12, caracterizado porque es un hidrogel sólido.
18. Biomaterial de acuerdo con Ia reivindicación 17, caracterizado porque posee una estructura sustancialmente porosa con un diámetro de poro de 0,5-IOOOμm.
HOJA DE SUSTITUCIÓN (REGLA 26)
19. Biomaterial de acuerdo con reivindicación 18, caracterizado porque el diámetro de poro es de 0,5-500μm
20. Biomaterial de acuerdo con reivindicaciones 1-19 caracterizado porque adicionalmente comprende células.
21. Biomaterial de acuerdo con reivindicación 20. caracterizado porque dichas células se seleccionan del grupo entre: células madre mesenquimales indiferenciadas o bien diferenciadas a otra estirpe celular y/o células madre hematopoyéticas indiferenciadas o bien diferenciadas a otra estirpe celular y/o condrocitos y/o condroblastos y/o osteoblastos y y/o osteocitos y/o queratinocitos y/o fibroblastos y/o miocítos y/o adipositos y/o neuronas y/u otras células procedentes del sistema nervioso y/o células del sistema leucocitario y/o células corneales y/o células endoteliales y/o células epiteliales
22. Procedimiento de obtención del biomaterial de acuerdo con las reivindicaciones 1-21 , caracterizado porque comprende Ia siguientes etapas: a) Obtención de un cordón umbilical humano; b) Tratamiento del cordón umbilical con una solución salina y antibióticos; c) Eliminación de toda Ia sangre de Ia superficie del cordón; d) Fragmentación del cordón en secciones de 1-2 cm; e) Limpieza de toda Ia sangre retenida en el interior; f) Eliminación de la membrana y de los vasos sanguíneos del cordón umbilical; g) Separación de Ia sustancia gelatinosa que comprende Ia gelatina de Wharton; h) Digestión enzimática de Ia sustancia gelatinosa obtenida; y i) Precipitación y aislamiento de los GAGs;
23. Procedimiento de obtención del biomaterial obtenido de acuerdo con ' las reivindicaciones 1-21, caracterizado porque dicho biomaterial comprende un hidrogel
HOJA DE SUSTITUCIÓN (REGLA 26) obtenible por disolución de los GAGs obtenidos en Ia reivindicación 22, y que posee una viscosidad de ÍO a 15.000 cts.
24. Procedimiento de obtención del biomaterial de acuerdo con las reivindicaciones 17- 19, caracterizado porque comprende un hidrogel obtenible por entrecruzamiento a partir de los GAGs obtenidos en Ia reivindicación 22, que posee una estructura tridimensional sustancialmente porosa con un diámetro de poro de 0,5-1000 μm.
25. Procedimiento de obtención de! biomaterial de acuerdo con Ia reivindicación 24, caracterizado porque el diámetro de poro es preferiblemente de 0,5-500 μm.
26. Procedimiento de obtención del biomaterial obtenido de acuerdo con las reivindicaciones 24-25, cuyo entrecruzamiento se produce por cambios de temperatura, reacciones químicas o fotopolimerización
27. Utilización del biomaterial de acuerdo con las reivindicaciones 1-26 para: remodelado, relleno o reconstrucción de tejidos blandos, tratamiento de arrugas, pliegues y cicatrices, quemaduras, úlceras, aumento de tejidos blandos, lipoartrofia facial, patologías del disco intervertebral, reparación de cartílago, lesiones musculoesqueléticas, osteoartritis y periartritis; tratamiento antitumoral, enfermedades vaginales, lesiones cerebrales, reparación medular, desórdenes neurodegenerativos, enfermedades cardiovasculares y procesos de lubricación, como analgésico y antiinflamatorio; tratamiento de quemaduras, úlceras y defectos dermo-epidérmicos, tratamiento de enfermedades oftalmológicas, como lesiones corneales, de Ia retina o cataratas; reparación del cartílago, tratamiento del sistema osteoarticular como en el caso de defectos osteocondrales, osteoartritis o defectos óseos y adjuvante en Ia resolución de enfermedades vaginales, tratamiento de Ia gingivitis y Ia periodontitis; utilización en el desarrollo de sistemas de cultivo celular.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2008/000640 2008-10-10 2008-10-10 Nuevo biomaterial a partir de la gelatina de wharton del cordón umbilical humano WO2010040865A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/123,186 US8685732B2 (en) 2008-10-10 2008-10-10 Biomaterial based on Wharton's jelly from the human umbilical cord
KR1020117008461A KR101595600B1 (ko) 2008-10-10 2008-10-10 인간 탯줄의 와튼 젤리에 기반한 신 생체재료
JP2011530512A JP5427237B2 (ja) 2008-10-10 2008-10-10 ヒト臍帯のウォートン・ジェリー由来の新規な生物材料
CA2739166A CA2739166C (en) 2008-10-10 2008-10-10 New biomaterial from wharton's jelly of the human umbilical cord
CN200880131511.XA CN102176881B (zh) 2008-10-10 2008-10-10 来自人脐带的脐带胶质的新生物材料
AU2008362567A AU2008362567B2 (en) 2008-10-10 2008-10-10 New biomaterial based on wharton's jelly from the human umbilical cord
PCT/ES2008/000640 WO2010040865A1 (es) 2008-10-10 2008-10-10 Nuevo biomaterial a partir de la gelatina de wharton del cordón umbilical humano
EP08874660.7A EP2351538B1 (en) 2008-10-10 2008-10-10 New biomaterial based on wharton's jelly from the human umbilical cord
ES08874660.7T ES2670932T3 (es) 2008-10-10 2008-10-10 Nuevo biomaterial a partir de la gelatina de Wharton del cordón umbilical humano
BRPI0822802-7A BRPI0822802A2 (pt) 2008-10-10 2008-10-10 Biomaterial na forma de hidrogel injetável, biomaterial derivado do cordão umbilical humano, processo para a obtenção do biomaterial, processo para a obtenção do biomaterial obtido e uso do biomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000640 WO2010040865A1 (es) 2008-10-10 2008-10-10 Nuevo biomaterial a partir de la gelatina de wharton del cordón umbilical humano

Publications (1)

Publication Number Publication Date
WO2010040865A1 true WO2010040865A1 (es) 2010-04-15

Family

ID=42100231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000640 WO2010040865A1 (es) 2008-10-10 2008-10-10 Nuevo biomaterial a partir de la gelatina de wharton del cordón umbilical humano

Country Status (10)

Country Link
US (1) US8685732B2 (es)
EP (1) EP2351538B1 (es)
JP (1) JP5427237B2 (es)
KR (1) KR101595600B1 (es)
CN (1) CN102176881B (es)
AU (1) AU2008362567B2 (es)
BR (1) BRPI0822802A2 (es)
CA (1) CA2739166C (es)
ES (1) ES2670932T3 (es)
WO (1) WO2010040865A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120535A1 (en) * 2010-03-30 2011-10-06 Histocell, S.L. New biomaterial from wharton's jelly umbilical cord
WO2011153205A1 (en) * 2010-06-01 2011-12-08 Auxocell Laboratories, Inc. Native wharton's jelly stem cells and their purification
FR2972113A1 (fr) * 2011-03-02 2012-09-07 Philippe Zanchetta Utilisation d'un melange de polysaccharides specifiques comprenant de l'acide hyaluronique, de la chondroitine 6 sulfate, du dermatane sulfate et de l'heparine en cicatrisation cutanee
CN103298497A (zh) * 2010-11-26 2013-09-11 克瑞奥埃斯塔麦诺健康与技术股份有限公司 改善干细胞的疗效的组合物和方法
WO2023164799A1 (zh) * 2022-03-01 2023-09-07 傅毓秀 可促进骨质新生的瓦顿氏凝胶制品

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2775928T (pt) 2011-11-08 2019-05-30 Auxocell Laboratories Inc Sistemas e métodos para processar células
US9814802B2 (en) * 2012-04-30 2017-11-14 The University Of Kansas Method for promoting hair growth comprising implanting a tissue scaffold comprising CK-19 positive cells derived from Wharton's jelly mesenchymal stromal cells
CN102861358B (zh) * 2012-08-16 2016-01-20 吴鸿 一种以脐带沃顿胶为材料制作新型生物软骨支架
US9512422B2 (en) * 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
US20150335686A1 (en) * 2014-05-21 2015-11-26 Mimedx Group, Inc. Micronized wharton's jelly
JP6640826B2 (ja) * 2014-07-08 2020-02-05 ミメディクス グループ インコーポレイテッド 微粒子化ワルトン膠質
US9993748B2 (en) 2014-08-11 2018-06-12 Auxocell Laboratories, Inc. Centrifuge clip and method
USD748462S1 (en) 2014-08-11 2016-02-02 Auxocell Laboratories, Inc. Centrifuge clip
CN105106238A (zh) * 2015-08-10 2015-12-02 山东省药学科学院 一种用于治疗骨关节炎和软骨缺损的细胞治疗组合物
AU2016324162B2 (en) 2015-09-17 2021-05-06 Stimlabs, Llc Compositions derived from placenta and methods of producing the same
EP3349813B1 (en) 2015-09-17 2021-09-01 Stimlabs LLC Compositions derived from placenta and methods of producing the same
AU2016327598B2 (en) * 2015-09-23 2023-06-29 Osiris Therapeutics, Inc. Umbilical tissue compositions and methods of use
CN106552295B (zh) * 2015-09-25 2021-05-25 广东博溪生物科技有限公司 一种含微血管管腔的双层皮肤及其制备方法
KR20180035032A (ko) * 2016-09-28 2018-04-05 주식회사 파마리서치프로덕트 가교 히알루론산을 포함하는 주사용 조성물
JP6972478B2 (ja) * 2016-11-15 2021-11-24 ポーラ化成工業株式会社 蛍光物質
EP3562929B1 (en) 2016-12-29 2024-05-01 Ador Diagnostics S.r.l. An electrophoretic chip for electrophoretic applications
WO2018201116A1 (en) * 2017-04-29 2018-11-01 Aluta Biosciences Llc Umbilical cord implantable cover and method of making
KR102048914B1 (ko) * 2017-07-28 2019-11-27 전북대학교산학협력단 콘드로이틴설페이트가 함유된 젤란검 하이드로겔 조성물
US11154641B2 (en) 2017-12-22 2021-10-26 Stimlabs Llc Translucent, dehydrated placental tissue and methods of producing and using the same
RU2699029C1 (ru) * 2018-12-10 2019-09-03 Частное образовательное учреждение дополнительного профессионального образования "Академия медицинского образования имени Федора Ивановича Иноземцева" (ЧОУ ДПО "Академия медицинского образования им. Ф.И. Иноземцева") Способ использования мезенхимальных стволовых клеток для улучшения состояния рубца на матке
CN112089890A (zh) * 2020-08-28 2020-12-18 广东乾晖生物科技有限公司 脱细胞基质水凝胶及其制备方法和应用
CN114099779A (zh) * 2020-08-28 2022-03-01 傅毓秀 可促进骨质新生的瓦顿氏凝胶制品
CN112111444B (zh) * 2020-08-28 2022-03-04 广东乾晖生物科技有限公司 脐带间充质干细胞重编程为肝脏细胞的方法及所制备的肝脏类器官
RU2745995C1 (ru) * 2020-09-16 2021-04-05 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-медицинская академия имени С.М. Кирова" Министерства обороны Российской Федерации (ВМедА) Способ изготовления бесклеточного гидрогеля из вартонова студня пуповины человека для внутрисуставного применения
US11844876B2 (en) 2021-01-25 2023-12-19 BioStem Tehcnologies, Inc. Two-part clotting composition and methods of making and using thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061080A1 (en) * 1998-05-27 1999-12-02 Fidia Advanced Biopolymers S.R.L. Biomaterials containing hyaluronic acid derivatives in the form of three-dimensional structures free from cellular components or products thereof for the in vivo regeneration of tissue cells
WO2008021391A1 (en) * 2006-08-15 2008-02-21 Anthrogenesis Corporation Umbilical cord biomaterial for medical use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU53280A1 (es) * 1967-03-24 1968-11-29
FR2036453A5 (en) * 1969-03-14 1970-12-24 Henry Michel Cosmetic preparations additive
IT1177276B (it) * 1984-11-20 1987-08-26 Farmaka Srl Composizioni cosmetiche dermotrope
US5919702A (en) * 1996-10-23 1999-07-06 Advanced Tissue Science, Inc. Production of cartilage tissue using cells isolated from Wharton's jelly
WO1999001143A1 (en) * 1997-07-03 1999-01-14 Orquest, Inc. Cross-linked polysaccharide drug carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061080A1 (en) * 1998-05-27 1999-12-02 Fidia Advanced Biopolymers S.R.L. Biomaterials containing hyaluronic acid derivatives in the form of three-dimensional structures free from cellular components or products thereof for the in vivo regeneration of tissue cells
WO2008021391A1 (en) * 2006-08-15 2008-02-21 Anthrogenesis Corporation Umbilical cord biomaterial for medical use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAIER R.E.: "Advanced biomaterials development from Natural Products", JOURNAL OF BIOMATERIALS APPLICATIONS, vol. 2, April 1988 (1988-04-01), pages 615 - 626, XP002590650 *
See also references of EP2351538A4 *
SOBOLEWSKI K. ET AL.: "Collagen and glycosaminoglycans of Wharton's jelly", BIOLOGY OF THE NEONATE, vol. 71, 1997, pages 11 - 21, XP009135435 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120535A1 (en) * 2010-03-30 2011-10-06 Histocell, S.L. New biomaterial from wharton's jelly umbilical cord
AU2010350075B2 (en) * 2010-03-30 2016-03-03 Histocell, S.L. New biomaterial from Wharton's jelly umbilical cord
WO2011153205A1 (en) * 2010-06-01 2011-12-08 Auxocell Laboratories, Inc. Native wharton's jelly stem cells and their purification
US9012222B2 (en) 2010-06-01 2015-04-21 Auxocell Laboratories, Inc. Native wharton's jelly stem cells and their purification
US9441201B2 (en) 2010-06-01 2016-09-13 Auxocell Laboratories, Inc. Native wharton's jelly stem cells and their purification
US9920301B2 (en) 2010-06-01 2018-03-20 Auxocell Laboratories, Inc. Native Wharton's jelly stem cells and their purification
CN103298497A (zh) * 2010-11-26 2013-09-11 克瑞奥埃斯塔麦诺健康与技术股份有限公司 改善干细胞的疗效的组合物和方法
FR2972113A1 (fr) * 2011-03-02 2012-09-07 Philippe Zanchetta Utilisation d'un melange de polysaccharides specifiques comprenant de l'acide hyaluronique, de la chondroitine 6 sulfate, du dermatane sulfate et de l'heparine en cicatrisation cutanee
WO2023164799A1 (zh) * 2022-03-01 2023-09-07 傅毓秀 可促进骨质新生的瓦顿氏凝胶制品

Also Published As

Publication number Publication date
EP2351538A1 (en) 2011-08-03
CA2739166A1 (en) 2010-04-15
CA2739166C (en) 2013-12-31
US8685732B2 (en) 2014-04-01
JP5427237B2 (ja) 2014-02-26
EP2351538B1 (en) 2018-03-21
EP2351538A4 (en) 2013-01-23
CN102176881A (zh) 2011-09-07
KR20110090896A (ko) 2011-08-10
BRPI0822802A2 (pt) 2015-09-01
AU2008362567A1 (en) 2010-04-15
KR101595600B1 (ko) 2016-02-18
US20110256186A1 (en) 2011-10-20
ES2670932T3 (es) 2018-06-04
JP2012505188A (ja) 2012-03-01
AU2008362567B2 (en) 2015-11-12
CN102176881B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
ES2670932T3 (es) Nuevo biomaterial a partir de la gelatina de Wharton del cordón umbilical humano
US10226480B2 (en) Biomaterial from Wharton's jelly umbilical cord
Pandit et al. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications
Gilarska et al. Collagen/chitosan/hyaluronic acid–based injectable hydrogels for tissue engineering applications–design, physicochemical and biological characterization
Ziadlou et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs
ES2809457T3 (es) Matriz de soporte de injerto para reparación de cartílago y procedimiento de obtención de la misma
US8329870B2 (en) Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof
ES2408554T3 (es) Método para preparar armazón poroso para ingeniería de tejidos, cultivo celular y suministro de células
JP7042749B2 (ja) ジェランガムヒドロゲル、調製物、方法、およびそれらの使用
JP2023090746A (ja) インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
Brissenden et al. In situ forming macroporous biohybrid hydrogel for nucleus pulposus cell delivery
US20130084278A1 (en) Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof
Sivasankar et al. Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering.
허지승 Riboflavin induced photo-cross-linking of collagen hydrogel and its application in tissue engineering

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131511.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2739166

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011530512

Country of ref document: JP

Ref document number: 2618/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008874660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117008461

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008362567

Country of ref document: AU

Date of ref document: 20081010

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13123186

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0822802

Country of ref document: BR

Free format text: IDENTIFIQUE E COMPROVE QUE O SIGNATARIO DA PETICAO NO 018110013035 DE 08/04/2011 TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENP Entry into the national phase

Ref document number: PI0822802

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110408