WO2010035337A1 - 有機elデバイスおよびその製造方法 - Google Patents
有機elデバイスおよびその製造方法 Download PDFInfo
- Publication number
- WO2010035337A1 WO2010035337A1 PCT/JP2008/067542 JP2008067542W WO2010035337A1 WO 2010035337 A1 WO2010035337 A1 WO 2010035337A1 JP 2008067542 W JP2008067542 W JP 2008067542W WO 2010035337 A1 WO2010035337 A1 WO 2010035337A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic
- protective layer
- protective
- refractive index
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000010410 layer Substances 0.000 claims abstract description 271
- 239000011241 protective layer Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 230000001681 protective effect Effects 0.000 claims abstract description 35
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 35
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000010703 silicon Substances 0.000 claims abstract description 34
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 239000000126 substance Substances 0.000 claims abstract description 15
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 60
- 229910007991 Si-N Inorganic materials 0.000 claims description 47
- 229910006294 Si—N Inorganic materials 0.000 claims description 47
- 239000007789 gas Substances 0.000 claims description 46
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 37
- 229910018557 Si O Inorganic materials 0.000 claims description 35
- 239000001272 nitrous oxide Substances 0.000 claims description 30
- 239000012790 adhesive layer Substances 0.000 claims description 27
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 25
- 230000015572 biosynthetic process Effects 0.000 claims description 25
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 11
- 238000000862 absorption spectrum Methods 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 5
- 238000002834 transmittance Methods 0.000 abstract description 7
- 230000007774 longterm Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 115
- 238000006243 chemical reaction Methods 0.000 description 32
- 238000002347 injection Methods 0.000 description 20
- 239000007924 injection Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 238000002329 infrared spectrum Methods 0.000 description 15
- 238000007740 vapor deposition Methods 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical compound CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 239000007850 fluorescent dye Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- VBVAVBCYMYWNOU-UHFFFAOYSA-N coumarin 6 Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 VBVAVBCYMYWNOU-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- ZNJRONVKWRHYBF-VOTSOKGWSA-N 4-(dicyanomethylene)-2-methyl-6-julolidyl-9-enyl-4h-pyran Chemical compound O1C(C)=CC(=C(C#N)C#N)C=C1\C=C\C1=CC(CCCN2CCC3)=C2C3=C1 ZNJRONVKWRHYBF-VOTSOKGWSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000116 mitigating effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 238000010549 co-Evaporation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229920005573 silicon-containing polymer Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- QPQKUYVSJWQSDY-UHFFFAOYSA-N 4-phenyldiazenylaniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=CC=C1 QPQKUYVSJWQSDY-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000980 acid dye Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000000981 basic dye Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- 229960000956 coumarin Drugs 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000000982 direct dye Substances 0.000 description 2
- 239000000986 disperse dye Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical class O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- VFMUXPQZKOKPOF-UHFFFAOYSA-N 2,3,7,8,12,13,17,18-octaethyl-21,23-dihydroporphyrin platinum Chemical compound [Pt].CCc1c(CC)c2cc3[nH]c(cc4nc(cc5[nH]c(cc1n2)c(CC)c5CC)c(CC)c4CC)c(CC)c3CC VFMUXPQZKOKPOF-UHFFFAOYSA-N 0.000 description 1
- PCGDWIWUQDHQLK-UHFFFAOYSA-N 2-morpholin-4-yl-5-nitrobenzaldehyde Chemical compound O=CC1=CC([N+](=O)[O-])=CC=C1N1CCOCC1 PCGDWIWUQDHQLK-UHFFFAOYSA-N 0.000 description 1
- QWNCDHYYJATYOG-UHFFFAOYSA-N 2-phenylquinoxaline Chemical class C1=CC=CC=C1C1=CN=C(C=CC=C2)C2=N1 QWNCDHYYJATYOG-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 description 1
- YLYPIBBGWLKELC-UHFFFAOYSA-N 4-(dicyanomethylene)-2-methyl-6-(4-(dimethylamino)styryl)-4H-pyran Chemical compound C1=CC(N(C)C)=CC=C1C=CC1=CC(=C(C#N)C#N)C=C(C)O1 YLYPIBBGWLKELC-UHFFFAOYSA-N 0.000 description 1
- NURUHMMUJFXYDY-UHFFFAOYSA-M 4-[4-(1-ethylpyridin-1-ium-2-yl)buta-1,3-dienyl]-n,n-dimethylaniline;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CC[N+]1=CC=CC=C1C=CC=CC1=CC=C(N(C)C)C=C1 NURUHMMUJFXYDY-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- VSSSHNJONFTXHS-UHFFFAOYSA-N coumarin 153 Chemical compound C12=C3CCCN2CCCC1=CC1=C3OC(=O)C=C1C(F)(F)F VSSSHNJONFTXHS-UHFFFAOYSA-N 0.000 description 1
- JRUYYVYCSJCVMP-UHFFFAOYSA-N coumarin 30 Chemical compound C1=CC=C2N(C)C(C=3C4=CC=C(C=C4OC(=O)C=3)N(CC)CC)=NC2=C1 JRUYYVYCSJCVMP-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- LPQMOFIXRVVOSF-UHFFFAOYSA-M methyl sulfate;n-methyl-n-[(1,3,3-trimethylindol-1-ium-2-yl)methylideneamino]aniline Chemical compound COS([O-])(=O)=O.C[N+]=1C2=CC=CC=C2C(C)(C)C=1/C=N/N(C)C1=CC=CC=C1 LPQMOFIXRVVOSF-UHFFFAOYSA-M 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000004893 oxazines Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- MUSLHCJRTRQOSP-UHFFFAOYSA-N rhodamine 101 Chemical compound [O-]C(=O)C1=CC=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MUSLHCJRTRQOSP-UHFFFAOYSA-N 0.000 description 1
- MYIOYATURDILJN-UHFFFAOYSA-N rhodamine 110 Chemical compound [Cl-].C=12C=CC(N)=CC2=[O+]C2=CC(N)=CC=C2C=1C1=CC=CC=C1C(O)=O MYIOYATURDILJN-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
Definitions
- the present invention relates to an organic EL device useful for display applications and a method for producing the same. More specifically, the present invention relates to an organic EL device that prevents moisture from entering from the outside environment and exhibits excellent luminous efficiency over a long period of time, and a method for manufacturing the same.
- organic EL devices using self-luminous organic EL elements have been actively studied for display applications.
- the organic EL device is expected to realize high light emission luminance and light emission efficiency. This is because a high current density can be realized at a low voltage.
- the practical application of high-definition multicolor light-emitting organic EL devices capable of multicolor display, particularly full color display is expected in the technical field of displays.
- dark spot means a light emitting defect point. This dark spot is considered to be generated by the oxidation or aggregation of the material of the constituent layer of the organic EL element during driving and storage due to oxygen or moisture in the element.
- the growth of dark spots proceeds not only during energization but also during storage.
- dark spot growth is (1) accelerated by oxygen or moisture present in the external environment surrounding the device, (2) affected by oxygen or moisture present as an adsorbate in the constituent layers, and (3) It is considered that it is affected by moisture adsorbed on components used for device manufacture or moisture intrusion during manufacture. As the growth continues, dark spots spread over the entire light emitting surface of the organic EL device.
- Silicon nitride, silicon oxynitride, or the like is used as a sealing thin film.
- Patent Document 1 a silicon oxynitride film formed by sputtering or plasma CVD is proposed as a sealing thin film applicable to organic EL devices (Patent Document 1). reference).
- Patent Document 1 in order to achieve both high gas barrier properties and high light transmittance, a gradient silicon oxynitride film whose composition is continuously and inclined is used, or a silicon oxynitride film and a silicon nitride film are used. It is disclosed to use a two-layer laminated film.
- Patent Document 2 discloses that the magnitude of compressive stress and tensile stress and the refractive index of the silicon nitride film can be controlled by the number of Si—H bonds formed in the silicon nitride film.
- the main bond in the silicon nitride film forming the laminated film is Si—N
- the change in the lattice constant between each layer is small, and defects in the underlying layer are taken over to form a silicon nitride film containing defects.
- a so-called top emission type device that takes out light to the opposite side of the substrate on which a switching circuit including a TFT or the like is produced has been mainly used.
- a transparent electrode and a sealing film are formed on the organic EL layer, and light emitted from the organic EL layer is emitted to the outside through the sealing film.
- the refractive index of ITO or IZO used as the upper electrode is about 2, and there is a large difference in refractive index from the adhesive layer formed in the outside air or light extraction direction and the protective substrate.
- the sealing film of Patent Document 1 has a disadvantage that the transmittance is low because there is no regulation of the refractive index in the light traveling direction.
- the method of continuously changing the ratio of the deposition gas in the process of forming the protective film is a film such as an interface formed by a difference in the growth direction of the film generated at an inconsistent point of atomic arrangement or a stepped portion. Since defects grow continuously, the moisture resistance may be locally lowered by the film defects.
- the organic EL device of the present invention includes a substrate, an organic EL element formed on the substrate, and a protective substrate bonded to the organic EL element via an adhesive layer, and the organic EL element includes a lower electrode.
- An organic EL layer, an upper electrode, and a protective layer, and the protective layer is a laminated body from the first layer to the nth layer from the side closer to the upper electrode, where n is an integer of 3 or more,
- n is an integer of 3 or more
- Each layer in the layer is composed of silicon oxynitride or silicon nitride, two adjacent layers in the protective layer have different chemical compositions, and the first layer of the protective layer has a lower refractive index than the upper electrode ,
- the nth layer of the protective layer has a higher refractive index than the adhesive layer, and for each of the integers k from 2 to n, the refractive index (k) of the kth layer of the protective layer is the refractive index ( It is characterized in that the
- the organic EL device of the present invention includes a substrate, an organic EL element formed on the substrate, and a protective substrate bonded to the organic EL element via an adhesive layer, and the organic EL element includes a lower electrode.
- An organic EL layer, an upper electrode, and a protective layer, and the protective layer is a laminated body from the first layer to the nth layer from the side closer to the upper electrode, where n is an integer of 3 or more,
- n is an integer of 3 or more
- Each layer in the layer is composed of silicon oxynitride or silicon nitride, and two adjacent layers in the protective layer have different chemical compositions and are determined by infrared absorption spectroscopy measurements for each of the integer k from 2 to n.
- the peak area ratio Si—O / Si—N area ratio (k) of the stretching mode of the Si—O bond to the Si—N bond of the k-th layer in the protective layer is the Si—O / Si—N area ratio. (K-1) ⁇ Si-O / S
- the Si—O / Si—N area ratio (n) for the nth layer in the protective layer is 0.8 or less and an integer m from 1 to n, satisfying the relationship of ⁇ N area ratio (k)
- the stretching area peak area ratio NH / Si-N area ratio (m) of the NH bond to the Si-N bond of the m-th layer in the protective layer determined by infrared absorption spectrum measurement Is less than 0.1.
- the method for producing an organic EL device of the present invention is a method for producing the above-mentioned organic EL device, wherein a lower electrode, an organic EL layer, an upper electrode, and a protective layer are sequentially formed on a substrate to form an organic EL element.
- Each of the layers forming the protective layer includes monosilane, ammonia, nitrous oxide (N 2 O), and a step of forming a protective substrate on the organic EL element through an adhesive layer.
- the flow rate ratio of ammonia gas to monosilane gas being 0.5 or more and less than 1.0, and the flow rate ratio of nitrous oxide gas to monosilane gas being 0 or more and less than 0.8
- the flow rate (k) of the nitrous oxide gas in forming the kth layer of the protective layer is such that the flow rate (k-1) ⁇ flow rate Characterized by satisfying the relation of k).
- the discharge and gas introduction are stopped at the end of the formation of the (k-1) th layer in the protective layer, so that the kth layer is formed.
- the gas may be introduced and then the discharge may be started.
- the present invention can maintain excellent luminous efficiency over a long period of time by using a protective layer having excellent moisture resistance.
- An organic EL device can be provided.
- the protective layer of the present invention has a high visible light transmittance, the configuration of the present invention is particularly effective in a top emission type organic EL device.
- FIG. 1 is a cross-sectional view showing one example of the organic EL device of the present invention.
- FIG. 2 is a diagram showing a change in flow rate ratio and refractive index of nitrous oxide gas to monosilane gas.
- FIG. 3 is a diagram showing an IR spectrum for determining the ratio of Si—N bonds and Si—O bonds in the silicon nitride film.
- FIG. 4 is a diagram showing an IR spectrum subjected to peak separation in order to determine the ratio of Si—N bonds and Si—O bonds in the silicon nitride film.
- FIG. 5 is a graph showing changes in the flow rate ratio of nitrous oxide gas and the infrared absorption spectrum.
- FIG. 1 shows one example of the organic EL device of the present invention.
- the organic EL device of the present invention includes a substrate 10, an organic EL element 20 formed on the substrate 10, and a protective substrate 30 bonded on the organic EL element 20 via an adhesive layer 50.
- 20 includes a lower electrode 21, an organic EL layer 22, an upper electrode 23, and a protective layer 24.
- the protective layer 24 is a laminate from the first layer to the n-th layer from the side closer to the upper electrode 23, where n is an integer of 3 or more, each layer in the protective layer 24 is made of silicon oxynitride or silicon nitride, two adjacent layers in the protective layer 24 have different chemical compositions, and the first of the protective layer 24
- the layer has a lower refractive index than the upper electrode 23, the nth layer of the protective layer 24 has a higher refractive index than the adhesive layer 50, and protection for each of the integers k from 2 to n.
- the refractive index (k) of the kth layer of the layer 24 is Characterized by satisfying the relation of rate (k-1)> refractive index (k).
- FIG. 1 an example in which the protective substrate 30 on which the color conversion color layer 40 is placed is used and the organic EL element 20 and the color conversion color layer 40 are in a position facing each other is shown.
- the organic EL device of the present invention includes a substrate 10, an organic EL element 20 formed on the substrate 10, and a protective substrate 30 bonded on the organic EL element 20 via an adhesive layer 50.
- the EL element 20 includes a lower electrode 21, an organic EL layer 22, an upper electrode 23, and a protective layer 24.
- the protective layer 24 is a stacked body from the first layer to the n-th layer from the side closer to the upper electrode 23.
- n is an integer greater than or equal to 3
- each layer in the protective layer 24 is made of silicon oxynitride or silicon nitride, and two adjacent layers in the protective layer 24 have different chemical compositions, from 2 to n
- the ratio of the peak area of the stretching mode of the Si—O bond to the Si—N bond of the k-th layer in the protective layer 24 determined by infrared absorption spectrum measurement Si—O / Si—N area ratio k) satisfies the relationship of Si—O / Si—N area ratio (k ⁇ 1) ⁇ Si—O / Si—N area ratio (k), and Si—O / Si for the nth layer in the protective layer 24.
- -N area ratio (n) is 0.8 or less, and for each of the integers m from 1 to n, the Si-N of the m-th layer in the protective layer 24 determined by infrared absorption spectrum measurement
- the peak area ratio N—H / Si—N area ratio (m) of the stretching mode of N—H bond to bond is characterized by being less than 0.1.
- each of the layers forming the protective layer 24 uses monosilane, ammonia, nitrous oxide (N 2 O), and nitrogen as source gases, and the flow rate ratio of ammonia gas to monosilane gas is 0.5 or more and less than 1.0. Yes, and formed by a plasma CVD method in which the flow ratio of nitrous oxide gas to monosilane gas is 0 or more and less than 0.8.
- the flow rate (k) of the nitrous oxide gas when forming the k-th layer of the protective layer 24 is such that the flow rate (k ⁇ 1) ⁇ flow rate (k). Satisfy the relationship.
- the discharge and gas introduction are stopped at the end of the formation of the (k ⁇ 1) th layer in the protective layer, and the introduction of the gas for forming the kth layer is stopped. It is desirable to perform discharge and then start discharge to clarify the interface between two adjacent layers in the protective layer.
- the substrate 10 of the present invention can be formed using any material that can withstand various conditions (for example, solvent used, temperature, etc.) used for forming other constituent layers.
- the substrate 10 desirably has excellent dimensional stability.
- the transparent material used to form the substrate 10 includes glass or acrylic resins such as polyolefin and polymethyl methacrylate, polyester resins such as polyethylene terephthalate, polycarbonate resins, and resins such as polyimide resins.
- the substrate 10 may be rigid or flexible.
- the substrate 10 may be formed using an opaque material such as silicon or ceramic. It can be formed using a flat material having insulation and rigidity capable of maintaining the form of the organic EL light emitting element.
- the substrate 10 may further include a plurality of switching elements (such as TFTs) and wiring on the surface thereof. This configuration is effective for manufacturing an active matrix driving type organic EL device having a plurality of independent light emitting portions.
- switching elements such as TFTs
- the lower electrode 21 positioned between the substrate 10 and the organic EL layer 22 and the upper electrode 23 positioned on the opposite side of the organic EL layer 22 from the substrate 10 are carriers injected into the organic EL layer 22 and an external drive circuit. It has the function of connection.
- the lower electrode 21 and the upper electrode 23 may be either an anode (hole injection electrode) or a cathode (electron injection electrode), respectively.
- One of the lower electrode 21 and the upper electrode 23 is an anode, and the other is a cathode.
- the lower electrode 21 is preferably a reflective electrode
- the upper electrode 23 is a transparent electrode.
- the reflective electrode used as the lower electrode 21 uses a highly reflective metal (aluminum, silver, molybdenum, tungsten, nickel, chromium, etc.) or an alloy thereof, or an amorphous alloy (NiP, NiB, CrP, CrB, etc.). Can be formed.
- a particularly preferable material includes a silver alloy.
- the silver alloy that can be used is an alloy of silver and at least one metal selected from the group consisting of Group 10 nickel or platinum, Group 1 rubidium, and Group 14 lead, or silver. And an alloy with at least one metal selected from the group consisting of Group 2 magnesium and calcium.
- the transparent electrode used as the upper electrode 23 is formed using a conductive metal oxide such as SnO 2 , In 2 O 3 , In—Sn oxide, In—Zn oxide, ZnO, or Zn—Al oxide. be able to.
- the transparent electrode serves as a path for extracting light emitted from the organic EL layer 22 to the outside. Therefore, the transparent electrode desirably has a transmittance of 50% or more, preferably 85% or more within a wavelength range of 400 to 800 nm.
- the lower electrode 21 and the upper electrode 23 can be formed using a resistance heating method or an electron beam heating method vapor deposition method, or a sputtering method.
- a vapor deposition method film formation can be performed at a film formation speed of 0.1 to 10 nm / second at a pressure of 1.0 ⁇ 10 ⁇ 4 Pa or less.
- an inert gas such as Ar can be used as a sputtering gas, and film formation can be performed at a pressure of about 0.1 to 2.0 Pa.
- the upper electrode 23 is formed by sputtering, it is preferable not to directly irradiate the organic EL layer 22 with plasma formed in the vicinity of the target in order to prevent the deterioration of the organic EL layer 22 that becomes the surface of the deposition target substrate.
- the organic EL layer 22 is located between the lower electrode 21 and the upper electrode 23 and is in contact with each electrode. This is the core layer of the light emitting part.
- the organic EL layer 22 includes at least a light emitting layer, and includes a hole transport layer, a hole injection layer, an electron transport layer, and / or an electron injection layer as necessary.
- the organic EL layer 22 can have the following layer configuration.
- anode / light emitting layer / cathode (2) Anode / hole injection layer / light emitting layer / cathode (3) Anode / light emitting layer / electron injection layer / cathode (4) Anode / hole injection layer / light emitting layer / electron Injection layer / cathode (5) Anode / hole transport layer / light emitting layer / electron injection layer / cathode (6) Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode (7) Anode / Hole injection layer / hole transport layer / light-emitting layer / electron transport layer / electron injection layer / cathode In each of the above configurations (1) to (7), the anode and the cathode are the lower electrode 21 or the upper electrode 23, respectively. One of them.
- the light emitting layer can be formed using a known material.
- Materials for obtaining blue to blue-green light emission are, for example, fluorescent brighteners such as benzothiazole compounds, benzimidazole compounds or benzoxazole compounds; tris (8-hydroxyquinolinato) aluminum complex (Alq 3 ) Metal chelated oxonium compounds such as aluminum complexes represented by); styrylbenzene compounds such as 4,4′-bis (diphenylvinyl) biphenyl (DPVBi); aromatic dimethylidin compounds; condensed aromatic ring compounds; An aggregate compound; and a porphyrin-based compound.
- fluorescent brighteners such as benzothiazole compounds, benzimidazole compounds or benzoxazole compounds
- Alq 3 8-hydroxyquinolinato aluminum complex
- Metal chelated oxonium compounds such as aluminum complexes represented by
- styrylbenzene compounds such as 4,4′-bis (diphenylvinyl) biphenyl
- a light emitting layer that emits light in various wavelength ranges can be formed by adding a dopant to the host compound.
- a distyrylarylene compound, N, N′-ditolyl-N, N′-diphenylbiphenylamine (TPD), Alq 3 or the like can be used as the host compound.
- perylene blue purple
- coumarin 6 blue
- quinacridone compounds blue green to green
- rubrene yellow
- 4-dicyanomethylene-2- (p-dimethylaminostyryl) -6- Methyl-4H-pyran DCM, red
- platinum octaethylporphyrin complex PtOEP, red
- the hole transport layer can be formed using a material having a triarylamine partial structure, a carbazole partial structure, or an oxadiazole partial structure.
- Preferred materials for the hole transport layer are TPD, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ( ⁇ -NPD), MTDAPB (o-, m-, p-). , M-MTDATA and the like.
- the hole injection layer can be formed using a material such as phthalocyanine (Pc) containing copper phthalocyanine complex (CuPc) or an indanthrene compound.
- the electron transport layer aluminum complexes such as Alq 3, oxadiazole derivatives such as PBD or TPOB, triazole derivatives such as TAZ, triazine derivatives, phenylquinoxalines acids, materials such as thiophene derivatives such as BMB-2T Can be formed.
- the electron injection layer can be formed using a material such as an aluminum complex such as Alq 3 or an aluminum quinolinol complex doped with an alkali metal or an alkaline earth metal.
- a buffer layer for further enhancing the carrier injection efficiency is optionally provided between the organic EL layer 22 and either the lower electrode 21 or the upper electrode 23 used as the cathode. It can also be formed selectively (not shown).
- the buffer layer can be formed using an electron injecting material such as an alkali metal, an alkaline earth metal or an alloy thereof, a rare earth metal, or a fluoride of the metal.
- a damage mitigating layer (not shown) made of MgAg or the like on the upper surface of the organic EL layer 22 in order to mitigate damage when the upper electrode 23 is formed.
- each layer constituting the organic EL layer 22 has a film thickness sufficient to realize desired characteristics.
- the light emitting layer, the hole transport layer, the electron transport layer and the electron injection layer have a thickness of 2 to 50 nm, and the hole injection layer has a thickness of 2 to 200 nm.
- the optional buffer layer preferably has a thickness of 10 nm or less from the viewpoint of reducing driving voltage and improving transparency.
- Each component layer, buffer layer, and damage mitigating layer of the organic EL layer 22 can be produced by using any means known in the art such as vapor deposition (resistance heating vapor deposition or electron beam heating vapor deposition).
- the protective layer 24 is a layer for preventing moisture from entering the electrode and / or the organic EL layer 22 from an external environment or a layer that may contain moisture.
- the protective layer 24 is composed of three or more inorganic films, each of which is a silicon nitride film or a silicon oxynitride film. Two adjacent inorganic films (layers) in the protective layer have different chemical compositions.
- the refractive index of the upper electrode 23, the inorganic film constituting the protective layer 24, and the adhesive layer 50 is desirably decreased from the upper electrode 23 toward the adhesive layer 50.
- the protective layer 24 is a laminate from the first layer to the nth layer (n is an integer of 3 or more) from the side closer to the upper electrode 23, and the refractive index of the kth layer is the refractive index (k).
- the refractive index preferably satisfies the following relationship: (1) (Refractive index of upper electrode 23)> Refractive index (1); (2) Refractive index (n)> (Refractive index of adhesive layer 50); and (3) For each of the integers k from 2 to n, Refractive index (k-1)> Refractive index (k). Therefore, the refractive index of the inorganic film constituting the protective layer 24 is in the range from the refractive index of the adhesive layer 50 (usually about 1.6) to the refractive index of the upper electrode 23 (usually about 2.1).
- the inorganic film constituting the protective layer 24 desirably has a small stress in order to prevent film peeling.
- the stress of the inorganic film has an absolute value of 20 MPa or less, whether it is shrinkable or extensible.
- the stress can be obtained from, for example, the amount of change in warpage of the Si wafer before and after forming the inorganic film after forming the inorganic film on the Si wafer.
- the protective layer 24 is located on the light emission path from the organic EL layer to the outside, it is desirable to have a high visible light transmittance. Specifically, it is desirable that the extinction coefficient of the film is smaller than 0.001 within the wavelength range of 400 to 800 nm.
- the silicon nitride film and the silicon oxynitride film constituting the protective layer 24 can be formed using a chemical vapor deposition (CVD) method.
- CVD chemical vapor deposition
- a plasma CVD method in which monosilane, ammonia, nitrous oxide, and nitrogen are used as source gases and high frequency power is applied is desirable.
- nitrous oxide is not used.
- the flow rate of ammonia gas with respect to monosilane gas is set to 0.5 or more and less than 1.0.
- a silicon nitride film having a refractive index of about 1.8 to 1.9 can be obtained by using the aforementioned ammonia / monosilane flow ratio.
- nitrous oxide gas is introduced at a flow ratio of 0 to 0.8 with respect to monosilane gas.
- a silicon oxynitride film is formed, and as the nitrous oxide / monosilane gas flow ratio increases, the refractive index of the resulting silicon oxynitride film decreases.
- FIG. 2 shows the relationship between the ratio of the nitrous oxide / monosilane flow ratio and the refractive index at a wavelength of 450 nm (see Production Example 1).
- the frequency of the high frequency power In order to obtain a silicon nitride film and a silicon oxynitride film with high moisture resistance, it is desirable to set the frequency of the high frequency power to 25 MHz or more and 50 MHz or less. More preferably, high frequency power having a frequency of 27.12 MHz or 40.68 MHz is used. Further, it is desirable that the power density of the high frequency power is 0.1 to 2 W / cm 2 . From the viewpoint of avoiding damage to the substrate 10 or a layer already formed on the substrate 10, it is preferable to form the silicon nitride film and the silicon oxynitride film at a substrate temperature of 70 ° C. or lower.
- each layer constituting the protective film 24 in the present invention has a clear interface.
- two adjacent layers silicon nitride film or silicon oxynitride film
- a clear interface provides resistance to moisture diffusion and is effective in improving moisture resistance. For this reason, every time the formation of one layer is completed, it is desirable to stop the discharge and the introduction of the source gas, introduce a new source gas for forming the next layer, and discharge.
- the protective layer 24 is a stacked body from the first layer to the n-th layer (n is an integer of 3 or more) from the side closer to the upper electrode 23, the protection is performed for each of the integers k from 2 to n.
- the discharge and the introduction of the source gas are stopped, and a source gas for forming the kth layer (with a different component or a different flow ratio from the gas for forming the k-1th layer) It is desirable to start the discharge.
- the “chemical composition” of the silicon nitride film and the silicon oxynitride film constituting the protective layer 24 is not the molar ratio of Si, N and O in the film, but Si—N bonds, Si—O bonds and It means the peak area ratio of N—H bond.
- the protective layer 24 is a laminated body from the first layer to the n-th layer (n is an integer of 3 or more) from the side closer to the upper electrode 23, for each of the integers k from 2 to n,
- the peak area ratio Si—O / Si—N area ratio (k) of the stretching mode of the Si—O bond to the Si—N bond of the kth layer in the protective layer, determined by infrared absorption spectrum measurement, is Si— It is desirable to satisfy the relationship of O / Si—N area ratio (k ⁇ 1) ⁇ Si—O / Si—N area ratio (k). Further, the Si—O / Si—N area ratio (n) of the nth layer is desirably 0.8 or less.
- the N—H bond stretching mode peak area ratio N ⁇ to the Si—N bond of the mth layer in the protective layer determined by infrared absorption spectrum measurement.
- the H / Si—N area ratio (m) is preferably less than 0.1.
- the protective layer 24 is arranged from the first layer to the n-th layer (n is an integer of 3 or more) from the side closer to the upper electrode 23.
- n is an integer of 3 or more
- the flow rate (k) of nitrous oxide when forming the k-th layer satisfies the relationship of flow rate (k ⁇ 1) ⁇ flow rate (k). It is desirable.
- the IR spectrum of the silicon oxynitride film is measured.
- the IR spectrum in the present invention uses stretching mode absorption. This mode of absorption is preferred because of its high intensity and easy peak separation. Further, the spectrum is expressed using a linear axis of wave number (unit: cm ⁇ 1 ) as the horizontal axis, and has no partial expansion.
- IR spectra of the deposition target substrate on which the silicon oxynitride film is formed and the deposition target substrate on which the silicon oxynitride film is not formed are measured, and the difference spectrum is obtained. It is desirable to take.
- the obtained IR spectrum includes a change in absorbance due to light interference in the film.
- correction using the baseline is performed.
- FIG. 3 is a diagram for explaining this correction process, and shows the IR spectrum 100, the baseline 110, and the IR spectrum 120 after the baseline correction as measured.
- the baseline for the silicon oxynitride film in the present invention is obtained by connecting the absorbance of the IR spectrum 100 at a wave number defined below with a straight line. 400, 612, 1500, 1650, 2030, 2330, 2900, 3200, 3550, 4000 (cm ⁇ 1 ) Then, at each wave number, the absorbance of the baseline 110 is subtracted from the absorbance of the IR spectrum 100 to obtain the IR spectrum 120 after baseline correction.
- peak separation is performed on the IR spectrum 120 after baseline correction.
- the peak separation is performed by expressing each peak with a Gaussian function G n represented by the formula (I).
- An is the maximum value of the absorbance of each peak
- C n is the wave number (unit: cm ⁇ 1 ) at which the absorbance of each peak is maximum
- x is the wave number
- B n is a variable.
- Bn regarding each peak is calculated
- FIG. 4 shows the result of peak separation of the IR spectrum 120 after baseline correction in FIG.
- a peak having a maximum at 3250 to 3400 cm ⁇ 1 is defined as a peak exhibiting an N—H bond stretching mode.
- the Gaussian function G n of each peak obtained by peak separation is integrated to obtain absorption areas of Si—N bonds, Si—O bonds, and NH bonds, and thereby Si—O / Si—N.
- the area ratio, NH / Si-N area ratio is determined.
- the protective substrate 30 can be formed using, for example, an acrylic resin such as polyolefin or polymethyl methacrylate, a polyester resin such as polyethylene terephthalate, a polycarbonate resin, or a resin such as a polyimide resin. When resin is used, the protective substrate 30 may be rigid or flexible.
- the color conversion color layer 40 is a layer for adjusting the hue of light emitted from the organic EL layer 22.
- the “color conversion color layer” in the present invention is a general term for a color layer, a color conversion layer, and a laminate of a color layer and a color conversion layer.
- the color conversion color layer 40 may be provided inside the protective substrate 30 as shown in FIG. 1, or a structure provided outside the protective substrate 30 is also conceivable.
- the color layer is a layer that transmits light in a specific wavelength range.
- the color layer has a function of improving the color purity of light from the organic EL layer 22 or the color conversion layer.
- the color layer can be formed using a commercially available color material for a flat panel display (for example, a color mosaic manufactured by FUJIFILM Electronics Materials Co., Ltd.).
- a coating method such as spin coating, roll coating, casting, or dip coating can be used.
- a film formed by a coating method may be patterned by a photolithography method or the like to form a color layer having a desired pattern.
- the color conversion layer is a layer that absorbs light in a specific wavelength range, performs wavelength distribution conversion, and emits light in a different wavelength range.
- the color conversion layer includes at least a fluorescent dye, and may include a matrix resin as necessary.
- the fluorescent dye absorbs light from the organic EL layer 22 and emits light in a desired wavelength region (for example, a red region, a green region, or a blue region).
- rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, and basic red 2 are fluorescent dyes that absorb blue to blue-green light and emit red fluorescence.
- Rhodamine dyes such as: cyanine dyes; pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate (pyridine 1); and oxazines System pigments.
- various dyes having fluorescence as described above direct dyes, acid dyes, basic dyes, disperse dyes, etc. may be used.
- Fluorescent dyes that absorb light in the blue to blue-green region and emit fluorescence in the green region include, for example, 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzimidazolyl) ) -7-diethylaminocoumarin (coumarin 7), 3- (2′-N-methylbenzimidazolyl) -7-diethylaminocoumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoro Coumarin dyes such as methylquinolidine (9,9a, 1-gh) coumarin (coumarin 153); naphthalimide dyes such as Solvent Yellow 11 and Solvent Yellow 116; and Coumarin dyes such as Basic Yellow 51 Including.
- various dyes having fluorescence as described above direct dyes, acid dyes, basic dyes, disperse dyes, etc. may be used.
- acrylic resin various silicone polymers, or any material that can be substituted for them can be used.
- a straight silicone polymer or a modified resin silicone polymer can be used as the matrix resin.
- the color conversion layer can be formed using a coating method such as spin coating, roll coating, casting, dip coating, or vapor deposition.
- a coating method such as spin coating, roll coating, casting, dip coating, or vapor deposition.
- a plurality of types of fluorescent dyes in a predetermined ratio and a matrix resin are mixed to form a preliminary mixture, and vapor deposition is performed using the preliminary mixture. You can also.
- the color conversion layer may be formed using a co-evaporation method.
- the co-evaporation method forms a plurality of types of vapor deposition mixtures by mixing each of a plurality of types of fluorescent dyes with a matrix resin, places the vapor deposition mixtures in separate heating sites, and separates the vapor deposition mixture. Is carried out by heating.
- characteristics (evaporation rate and / or vapor pressure, etc.) of a plurality of types of fluorescent dyes are greatly different, it is advantageous to use a co-evaporation method.
- a passivation layer (not shown) may be formed so as to cover the entire color conversion color layer 40 in order to prevent deterioration of characteristics of the color conversion layer.
- the passivation layer can be formed using an insulating oxide (SiO x , TiO 2 , ZrO 2 , AlO x or the like) or an insulating nitride (AlN x , SiN x or the like).
- the passivation layer can be formed using a method such as a plasma CVD method. From the viewpoint of preventing the deterioration of the color conversion layer, it is desirable that the temperature of the film formation substrate having the color conversion color layer 40 as the uppermost layer is 100 ° C. or lower when forming the passivation layer.
- the adhesive layer 50 is a layer used for bonding the substrate 10 and the protective substrate 30 together.
- the adhesive layer 50 can be formed using, for example, a thermosetting adhesive, a UV curable adhesive, a UV heat combined curable adhesive, or the like.
- Adhesives that can be used include epoxy resin adhesives and the like.
- the adhesive described above may include spacer particles for defining a distance between the substrate 10 and the protective substrate 30. Spacer particles that can be used include glass beads and the like.
- the adhesive layer 50 can be formed by applying an adhesive to a predetermined position on the surface of either the substrate 10 or the protective substrate 30, bonding the substrate 10 and the protective substrate 30, and curing the adhesive. it can.
- the range of the refractive index of the adhesive layer is desirably larger than 1.5 and smaller than 1.8.
- FIG. 1 shows an example of an organic EL device having a single light emitting unit.
- the organic EL device of the present invention may include a plurality of light emitting units that are controlled independently.
- both the lower electrode and the upper electrode are electrode groups composed of a plurality of stripe electrodes, and the extending direction of the stripe electrodes constituting the lower electrode intersects with the extending direction of the stripe electrodes constituting the upper electrode.
- a so-called passive matrix driving organic EL device may be formed.
- the extending direction of the stripe electrode constituting the lower electrode and the extending direction of the stripe electrode constituting the upper electrode are orthogonal to each other. .
- the lower electrode is divided into a plurality of partial electrodes, each of the plurality of partial electrodes is connected to a switching element formed on the substrate in a one-to-one relationship, and the upper electrode is used as an integrated common electrode so-called active matrix.
- a driving organic EL device may be formed.
- the insulating film can be formed using an insulating oxide (such as SiO x , TiO 2 , ZrO 2 , or AlO x ), an insulating nitride (AlN x , SiN x , or the like), a polymer material, or the like.
- an insulating oxide such as SiO x , TiO 2 , ZrO 2 , or AlO x
- an insulating nitride AlN x , SiN x , or the like
- a polymer material or the like.
- an organic EL device capable of multicolor display can be formed using a plurality of types of color conversion layers.
- a red, green, and blue color conversion layer is used to form red, green, and blue subpixels, and a full-color display is possible by arranging pixels with a set of three subpixels in a matrix.
- a simple organic EL device can be formed.
- the flow rate of monosilane was set to 100 sccm
- the flow rate of nitrogen was set to 2000 sccm
- the flow rate of ammonia was fixed to 80 sccm
- the flow rate of nitrous oxide was changed in the range of 0 to 160 sccm.
- the pressure of the mixed gas was set to 100 Pa.
- a silicon nitride film or a silicon oxynitride film was formed over a deposition target substrate at 50 ° C. using high-frequency power with a frequency of 27.12 MHz and a power density of 0.5 W / cm 2 .
- the silicon nitride film and the silicon oxynitride film are collectively referred to as “SiNOx film”.
- Si—O / Si—N area ratio, NH / Si—N area ratio A Si wafer having a thickness of 1 ⁇ m was formed using a Si wafer having a thickness of 0.5 mm as a film formation substrate.
- the IR spectrum of the obtained SiNOx film was measured using a transmission type Fourier transform infrared spectrometer.
- the Si wafer of the same lot was used as a reference, and the difference spectrum between the SiNOx film / Si wafer laminate and the Si wafer was measured. Subsequently, the baseline was determined and the baseline was corrected as described above.
- the spectrum shape is shown in FIG.
- the moisture resistance of the films with the nitrous oxide addition amount of 0 to 20 sccm is almost the same, but when the addition amount of nitrous oxide is further increased, the moisture resistance tends to decrease.
- the amount of nitrous oxide added exceeds 20 sccm, the N—H / Si—N area ratio increases, so moisture resistance can be controlled by using film-forming conditions that reduce the N—H bond ratio in the film. It was inferred that a protective film needs to be formed. It is considered that a region where the area of the unaltered portion is 90% or more is suitable as a protective film.
- Example 1 a red light emitting organic EL device having 2 ⁇ 2 pixels and a pixel width of 0.3 mm ⁇ 0.3 mm was produced.
- Fusion glass (Corning 1737 glass, 50 ⁇ 50 ⁇ 1.1 mm) was prepared as the substrate 10.
- a 100 nm-thick Ag film was deposited on the substrate 10 by sputtering.
- the obtained Ag film was patterned by a photolithographic method to form a lower electrode 21 composed of two striped electrodes having a width of 0.3 mm.
- the substrate 10 on which the lower electrode 21 was formed was placed in a resistance heating vapor deposition apparatus.
- a buffer layer made of Li having a thickness of 1.5 nm was formed on the lower electrode 21 by vapor deposition using a mask.
- an organic EL layer 22 composed of four layers of an electron transport layer / a light emitting layer / a hole transport layer / a hole injection layer was formed by vapor deposition.
- the electron transport layer is Alq 3 with a thickness of 20 nm
- the light emitting layer is DPVBi with a thickness of 30 nm
- the hole transport layer is ⁇ -NPD with a thickness of 10 nm
- the hole injection layer is CuPc with a thickness of 100 nm. there were.
- each layer was formed at a film formation rate of 0.1 nm / s with the internal pressure of the vacuum chamber of the apparatus set to 1 ⁇ 10 ⁇ 4 Pa. Subsequently, an MgAg film having a thickness of 5 nm was formed by using an evaporation method to form a damage mitigating layer.
- a transparent upper electrode 23 was formed by depositing IZO with a film thickness of 100 nm by sputtering using a metal mask.
- the upper electrode 23 was composed of two stripe electrodes extending in a direction orthogonal to the stripe electrode of the lower electrode 21 and having a width of 0.3 mm.
- the upper electrode 23 had a refractive index of 2.10 at a wavelength of 475 nm.
- the laminate on which the upper electrode 23 was formed was moved to a plasma CVD apparatus to form a protective layer 24 having a three-layer structure.
- the first layer uses a mixed gas of monosilane 100 sccm, ammonia 80 sccm and nitrogen 2000 sccm as a raw material, and applies a high frequency power with a frequency of 27.12 MHz and a power density of 0.5 W / cm 2 to form a silicon nitride film having a thickness of 500 nm ( Sample 1) of Production Example 1 was formed.
- the internal pressure of the apparatus during film formation was set to 100 Pa, and the temperature of the stage for supporting the film formation substrate was set to 50 ° C.
- the organic EL element 20 composed of the lower electrode 21 / organic EL layer 22 / upper electrode 23 / protective layer 24 was formed on the substrate 10. The obtained organic EL element 20 was moved into a bonding apparatus in which the internal environment was adjusted to an oxygen concentration of 5 ppm or less and a water concentration of 5 ppm or less.
- fusion glass (Corning 1737 glass, 50 ⁇ 50 ⁇ 1.1 mm) was prepared as the protective substrate 30.
- a red color material color mosaic CR7001 (manufactured by FUJIFILM Electronics Materials) is applied on the protective substrate 30, patterned, and placed at a position corresponding to the pixel of the organic EL element 20 at 0.5 mm ⁇ 0.5 mm.
- a red color layer consisting of four parts having the following dimensions was formed. The red color layer had a thickness of 1.5 ⁇ m.
- the protective substrate 30 on which the red color layer was formed was installed in a resistance heating vapor deposition apparatus.
- a red conversion layer having a film thickness of 300 nm containing coumarin 6 and DCM-2 was deposited on the red color layer by vapor deposition.
- Each of coumarin 6 and DCM-2 was heated in separate crucibles so that the deposition rate of coumarin 6 was 0.3 nm / s and the deposition rate of DCM-2 was 0.005 nm / s.
- the molar ratio of coumarin 6: DCM-2 in the red conversion layer was 49: 1.
- an epoxy UV curable adhesive is applied to the outer peripheral portion of the surface of the protective substrate 30 on which the red conversion color layer 40 is formed, and a thermosetting adhesive (Ogsol SI-) is applied to the red conversion color layer 40.
- 20 manufactured by Osaka Gas Chemical
- the substrate 10 on which the organic EL element 20 is formed and the red color layer 40 are arranged so that the red conversion color layer 40 and the organic EL element 20 face each other and the position of the red conversion color layer 40 corresponds to the pixel of the organic EL element 20.
- the formed protective substrate 30 was temporarily bonded. Subsequently, the inside of the bonding apparatus was decompressed to about 10 MPa, and the substrate 10 and the protective substrate 30 were bonded together. After the bonding, the pressure in the bonding apparatus was increased to atmospheric pressure.
- the UV curable adhesive on the outer periphery of the protective substrate 30 was irradiated with ultraviolet rays to temporarily cure the adhesive.
- the bonded body was heated to 80 ° C. for 1 hour in a heating furnace to cure the adhesive, and the adhesive layer 50 was formed to obtain an organic EL device.
- the organic EL device was naturally cooled in the heating furnace over 30 minutes and taken out from the heating furnace.
- the adhesive layer 50 on the organic EL element 20 formed from a thermosetting adhesive (Ogsol SI-20 (manufactured by Osaka Gas Chemical)) had a refractive index of 1.60.
- an organic EL device was formed by repeating the procedure of Example 1 except that a 1500 nm-thick silicon nitride film (Sample 1 of Production Example 1) was formed. That is, using a mixed gas of monosilane 100 sccm, ammonia 80 sccm and nitrogen 2000 sccm as a raw material, applying a high frequency power with a frequency of 27.12 MHz and a power density of 0.5 W / cm 2 to form a silicon nitride film having a thickness of 1500 nm. Then, an organic EL device was formed.
- the organic EL device was formed by repeating the procedure of Example 1 except that a 1500 nm thick silicon oxynitride film (Sample 4 of Production Example 1) was formed as the protective layer 24. That is, a silicon oxynitride film is manufactured by using a mixed gas of monosilane 100 sccm, ammonia 80 sccm, nitrous oxide 20 sccm and nitrogen 2000 sccm as a raw material and applying high-frequency power with a frequency of 27.12 MHz and a power density of 0.5 W / cm 2 . Film formation was performed to form an organic EL device.
- a 1500 nm thick silicon oxynitride film (Sample 4 of Production Example 1) was formed as the protective layer 24. That is, a silicon oxynitride film is manufactured by using a mixed gas of monosilane 100 sccm, ammonia 80 sccm, nitrous oxide 20 sccm and nitrogen 2000 sccm as
- Example 3 An organic EL device was formed by repeating the procedure of Example 1 except that the formation order of the three layers constituting the protective layer 24 was reversed to that of Example 1. That is, from the upper electrode 23 side, a silicon oxynitride film having a thickness of 500 nm (Sample 4 in Production Example 1), a silicon oxynitride film having a thickness of 500 nm (Sample 2 in Production Example 1), and a silicon nitride having a thickness of 500 nm A film (Sample 1 of Production Example 1) was formed.
- the film thickness of the protective layer 24 of this comparative example was 1500 nm.
- Example 1 and Comparative Examples 1 to 3 were placed in an environment of 60 ° C. and 90% RH, and a current with a current density of 0.1 A / cm 2 was passed to continuously drive for 1000 hours. The voltage and brightness at that time were measured. Luminance was divided by current value to obtain luminous efficiency. The light emission efficiency of the organic EL device of Example 1 was taken as 1, and the initial light emission efficiency and the light emission efficiency after 1000 hours of continuous driving of the organic EL devices of Example 1 and Comparative Example were determined. The results are shown in Table 3.
- the devices of Comparative Examples 1 to 3 showed an emission efficiency inferior to that of Example 1 in the initial stage. This is considered due to the fact that the refractive index difference between the protective layer 24 and the adhesive layer 50 of the devices of Comparative Examples 1 to 3 is larger than the refractive index difference in Example 1. As a result, it is considered that a part of the light emitted from the organic EL layer 22 is reflected by the protective layer 24 and the luminous efficiency is lowered.
- the devices of Comparative Examples 1 and 2 have significantly reduced light emission efficiency after 1000 hours of continuous driving as compared with Example 1.
- the protective layer 24 is a single layer, it is considered that the decrease in light emission efficiency has progressed due to the penetration of moisture through the protective layer 24.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
11 透明支持体
20 有機EL素子
21 下部電極
22 有機EL層
23 上部電極
24 保護層
30 保護基板
40 色変換カラー層
50 接着層
(1)陽極/発光層/陰極
(2)陽極/正孔注入層/発光層/陰極
(3)陽極/発光層/電子注入層/陰極
(4)陽極/正孔注入層/発光層/電子注入層/陰極
(5)陽極/正孔輸送層/発光層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(7)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
なお、上記(1)~(7)の各構成において、陽極および陰極は、それぞれ下部電極21または上部電極23のいずれかである。
(1) (上部電極23の屈折率) > 屈折率(1);
(2) 屈折率(n) > (接着層50の屈折率);および
(3) 2からnまでの整数kのそれぞれに関して、
屈折率(k-1) > 屈折率(k)。
したがって、保護層24を構成する無機膜の屈折率は、接着層50の屈折率(通常1.6程度)から上部電極23の屈折率(通常2.1程度)までの範囲内である。
400、 612、1500、1650、2030、
2330、2900、3200、3550、4000 (cm-1)
そして、各波数において、IRスペクトル100の吸光度からベースライン110の吸光度を減算して、ベースライン補正後のIRスペクトル120を得る。
本製造例においては、モノシランの流量を100sccmとし、窒素の流量を2000sccmとし、アンモニアの流量を80sccmに固定し、亜酸化窒素の流量を0~160sccmの範囲で変化させた。このとき、混合ガスの圧力を100Paとした。また、周波数27.12MHzおよび電力密度0.5W/cm2の高周波電力を用い、50℃の被成膜基板上に窒化ケイ素膜または酸化窒化ケイ素膜を形成した。本製造例においては、窒化ケイ素膜および酸化窒化ケイ素膜を、「SiNOx膜」と総称する。
被成膜基板として厚さ0.5mmのSiウェーハを用い、膜厚1μmのSiNOx膜を形成した。得られたSiNOx膜のIRスペクトルを、透過型フーリエ変換赤外分光測定器を用いて測定した。Siウェーハ起因のバックグラウンド吸収を除去するため、同一ロットのSiウェーハをリファレンスとして用い、SiNOx膜/Siウェーハ積層体とSiウェーハとの差スペクトルを測定した。次いで、前述のようにベースラインの決定、ベースライン補正を行った。スペクトル形状を図5に示す。この後にピーク分離を行って、Si-N結合、Si-O結合、N-H結合の吸収面積を求め、Si-O/Si-N面積比、N-H/Si-N面積比をそれぞれを決定した。結果を第1表に示す。
被成膜基板としてSiウェーハを用い、膜厚1μmのSiNOx膜を形成した。分光エリプソメーター(VASE、ジェーエーウーラム社製)を用いて、得られたSiNOx膜の屈折率および消衰係数を測定した。波長475nmにおける屈折率の変化を図2に示す。亜酸化窒素の添加に従い屈折率は低下し、流量100sccmではおよそ1.68となった。
膜厚100nmのカルシウム膜を覆うように、膜厚3μmのSiNOx膜を形成した。得られたサンプルを、1000時間にわたって95℃、50%RHの恒温槽中に放置し、カルシウム膜の変質面積を測定して、各膜の防湿性を評価した。
被成膜基板として直径4インチ(約10.2cm)のSiウェーハを用いた。成膜前に、Siウェーハの反りを測定した。次いで、膜厚3μmのSiNOx膜を形成し、成膜後のSiウェーハの反りを測定した。成膜前後のSiウェーハの反りの変化量から、SiNOx膜の膜応力を算出した。結果を第1表に示す。
本実施例においては、画素数2×2、画素幅0.3mm×0.3mmの赤色発光有機ELデバイスを作製した。
保護層24として、膜厚1500nmの窒化ケイ素膜(製造例1のサンプル1)を形成したことを除いて実施例1の手順を繰り返して、有機ELデバイスを形成した。すなわち、モノシラン100sccm、アンモニア80sccmおよび窒素2000sccmの混合ガスを原料として用い、周波数27.12MHzおよび電力密度0.5W/cm2の高周波電力を印加して、膜厚1500nmの窒化ケイ素膜を製膜し、有機ELデバイスの形成を行った。
保護層24として、膜厚1500nmの酸化窒化ケイ素膜(製造例1のサンプル4)を形成したことを除いて実施例1の手順を繰り返して、有機ELデバイスを形成した。すなわち、モノシラン100sccm、アンモニア80sccm、亜酸化窒素20sccmおよび窒素2000sccmの混合ガスを原料として用い、周波数27.12MHzおよび電力密度0.5W/cm2の高周波電力を印加して、酸化窒化ケイ素膜を製膜し、有機ELデバイスの形成を行った。
保護層24を構成する3つの層の形成順序を実施例1と逆順にしたことを除いて実施例1の手順を繰り返して、有機ELデバイスを形成した。すなわち、上部電極23の側から、膜厚500nmの酸化窒化ケイ素膜(製造例1のサンプル4)、膜厚500nmの酸化窒化ケイ素膜(製造例1のサンプル2)、および膜厚500nmの窒化ケイ素膜(製造例1のサンプル1)を形成した。本比較例の保護層24の膜厚は、1500nmであった。
Claims (5)
- 基板と、前記基板上に形成される有機EL素子と、有機EL素子上に接着層を介して貼り合せられた保護基板を含む有機ELデバイスであって、
前記有機EL素子は、下部電極、有機EL層、上部電極および保護層からなり、
前記保護層は、上部電極に近い方から第1層から第n層までの積層体であり、ここでnは3以上の整数であり、保護層中の各層は酸化窒化ケイ素または窒化ケイ素で構成され、保護層中の隣接する2つの層は異なる化学組成を有し、
保護層の第1層は、上部電極よりも小さい屈折率を有し、
保護層の第n層は、接着層よりも大きな屈折率を有し、および
2からnまでの整数kのそれぞれに関して、保護層の第k層の屈折率(k)は、屈折率(k-1)>屈折率(k)の関係を満たす
ことを特徴とする有機ELデバイス。 - 基板と、前記基板上に形成される有機EL素子と、有機EL素子上に接着層を介して貼り合せられた保護基板を含む有機ELデバイスであって、
前記有機EL素子は、下部電極、有機EL層、上部電極および保護層からなり、
前記保護層は、上部電極に近い方から第1層から第n層までの積層体であり、ここでnは3以上の整数であり、保護層中の各層は酸化窒化ケイ素または窒化ケイ素で構成され、保護層中の隣接する2つの層は異なる化学組成を有し、
2からnまでの整数kのそれぞれに関して、赤外吸収スペクトル測定によって求められる、保護層中の第k層のSi-N結合に対するSi-O結合のストレッチングモードのピーク面積比Si-O/Si-N面積比(k)は、Si-O/Si-N面積比(k-1)<Si-O/Si-N面積比(k)の関係を満たし、
保護層中の第n層に関するSi-O/Si-N面積比(n)は、0.8以下であり、および
1からnまでの整数mのそれぞれに関して、赤外吸収スペクトル測定によって求められる、保護層中の第m層のSi-N結合に対するN-H結合のストレッチングモードのピーク面積比N-H/Si-N面積比(m)は、0.1未満である
ことを特徴とする有機ELデバイス。 - 基板上に、下部電極、有機EL層、上部電極および保護層を順次形成して、有機EL素子を形成する工程と、
接着層を介して、該有機EL素子に対して保護基板を貼り合わせる工程と
を含み、
保護層は、上部電極に近い方から第1層から第n層までの積層体であり、ここでnは3以上の整数であり、保護層中の各層は酸化窒化ケイ素または窒化ケイ素で構成され、保護層中の隣接する2つの層は異なる化学組成を有し、
保護層の第1層は、上部電極よりも小さい屈折率を有し、
保護層の第n層は、接着層よりも大きな屈折率を有し、および
2からnまでの整数kのそれぞれに関して、保護層の第k層の屈折率(k)は、屈折率(k-1)>屈折率(k)の関係を満たす
有機ELデバイスの製造方法であって、
前記保護層を形成する各層は、モノシラン、アンモニア、亜酸化窒素(N2O)および窒素を原料ガスとして用い、モノシランガスに対するアンモニアガスの流量比が0.5以上1.0未満であり、モノシランガスに対する亜酸化窒素ガスの流量比が0以上、0.8未満であるプラズマCVD法によって形成され、および
2からnまでの整数kのそれぞれに関して、保護層の第k層を形成する際の亜酸化窒素ガスの流量(k)は、流量(k-1)<流量(k)の関係を満たす
ことを特徴とする有機ELデバイスの製造方法。 - 基板上に、下部電極、有機EL層、上部電極および保護層を順次形成して、有機EL素子を形成する工程と、
接着層を介して、該有機EL素子に対して保護基板を貼り合わせる工程と
を含み、
前記保護層は、上部電極に近い方から第1層から第n層までの積層体であり、ここでnは3以上の整数であり、保護層中の各層は酸化窒化ケイ素または窒化ケイ素で構成され、保護層中の隣接する2つの層は異なる化学組成を有し、
2からnまでの整数kのそれぞれに関して、赤外吸収スペクトル測定によって求められる、保護層中の第k層のSi-N結合に対するSi-O結合のストレッチングモードのピーク面積比Si-O/Si-N面積比(k)は、Si-O/Si-N面積比(k-1)<Si-O/Si-N面積比(k)の関係を満たし、
保護層中の第n層のSi-O/Si-N面積比(n)は、0.8以下であり、および
1からnまでの整数mのそれぞれに関して、赤外吸収スペクトル測定によって求められる、保護層中の第m層のSi-N結合に対するN-H結合のストレッチングモードのピーク面積比N-H/Si-N面積比(m)は、0.1未満である
有機ELデバイスの製造方法であって、
前記保護層を形成する各層は、モノシラン、アンモニア、亜酸化窒素(N2O)および窒素を原料ガスとして用い、モノシランガスに対するアンモニアガスの流量比が0.5以上1.0未満であり、モノシランガスに対する亜酸化窒素ガスの流量比が0以上、0.8未満であるプラズマCVD法によって形成し、および
2からnまでの整数kのそれぞれに関して、保護層の第k層を形成する際の亜酸化窒素ガスの流量(k)は、流量(k-1)<流量(k)の関係を満たす
ことを特徴とする有機ELデバイスの製造方法。 - 2からnまでの整数kのそれぞれに関して、保護層中の第k-1層の形成終了時に放電およびガスの導入を停止し、第k層形成のためのガスの導入を行い、次いで放電を開始することを特徴とする請求項3または4に記載の有機ELデバイスの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020107002772A KR101095250B1 (ko) | 2008-09-26 | 2008-09-26 | 유기 el 디바이스 및 그 제조 방법 |
JP2010504365A JP5378354B2 (ja) | 2008-09-26 | 2008-09-26 | 有機elデバイスおよびその製造方法 |
PCT/JP2008/067542 WO2010035337A1 (ja) | 2008-09-26 | 2008-09-26 | 有機elデバイスおよびその製造方法 |
US12/672,996 US8487299B2 (en) | 2008-09-26 | 2008-09-26 | Organic EL device and method of manufacturing same |
CN2008801032178A CN101810050B (zh) | 2008-09-26 | 2008-09-26 | 有机el器件及其制造方法 |
TW098131240A TWI486092B (zh) | 2008-09-26 | 2009-09-16 | 有機電激發光裝置及其製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/067542 WO2010035337A1 (ja) | 2008-09-26 | 2008-09-26 | 有機elデバイスおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010035337A1 true WO2010035337A1 (ja) | 2010-04-01 |
Family
ID=42059355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/067542 WO2010035337A1 (ja) | 2008-09-26 | 2008-09-26 | 有機elデバイスおよびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8487299B2 (ja) |
JP (1) | JP5378354B2 (ja) |
KR (1) | KR101095250B1 (ja) |
CN (1) | CN101810050B (ja) |
TW (1) | TWI486092B (ja) |
WO (1) | WO2010035337A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015049946A (ja) * | 2013-08-29 | 2015-03-16 | 株式会社ジャパンディスプレイ | 有機エレクトロルミネッセンス表示装置 |
WO2015125382A1 (ja) * | 2014-02-21 | 2015-08-27 | 富士フイルム株式会社 | 有機機能層付き基板およびその製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9397318B2 (en) * | 2012-09-04 | 2016-07-19 | Applied Materials, Inc. | Method for hybrid encapsulation of an organic light emitting diode |
TWI578592B (zh) * | 2013-03-12 | 2017-04-11 | 應用材料股份有限公司 | 有機發光二極體元件及包括其之封裝結構的沉積方法 |
KR20230041087A (ko) * | 2015-02-04 | 2023-03-23 | 메르크 파텐트 게엠베하 | 전자 엘리먼트 및 디스플레이 |
DE102016103821A1 (de) * | 2016-03-03 | 2017-09-07 | Osram Oled Gmbh | Organisches optoelektronisches Bauelement und Verfahren zur Verhinderung der Analyse der Materialzusammensetzung eines organischen optoelektronischen Bauelements |
WO2018237318A1 (en) * | 2017-06-23 | 2018-12-27 | Sinmat, Inc. | FILM FOR APPLYING COMPRESSION STRESS TO CERAMIC MATERIALS |
CN108333648A (zh) * | 2018-02-09 | 2018-07-27 | 广州奥翼电子科技股份有限公司 | 电泳显示器的保护膜、电泳显示器及其封装方法 |
CN110890376B (zh) * | 2018-09-11 | 2022-08-02 | 长鑫存储技术有限公司 | 半导体器件的制备方法 |
CN111628098A (zh) * | 2019-02-28 | 2020-09-04 | 三星显示有限公司 | 显示装置 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002017689A1 (fr) * | 2000-08-23 | 2002-02-28 | Idemitsu Kosan Co., Ltd. | Afficheur electroluminescent organique |
JP2003203771A (ja) * | 2002-01-09 | 2003-07-18 | Matsushita Electric Ind Co Ltd | 有機発光素子、表示装置及び照明装置 |
JP2005209356A (ja) * | 2004-01-20 | 2005-08-04 | Toppan Printing Co Ltd | 有機el素子及びカラーフィルター |
JP2005222778A (ja) * | 2004-02-04 | 2005-08-18 | Shimadzu Corp | 有機エレクトロルミネッセンス素子およびその製造方法 |
JP2005302336A (ja) * | 2004-04-07 | 2005-10-27 | Hitachi Ltd | 発光素子及びその表示装置 |
JP2006004917A (ja) * | 2004-05-20 | 2006-01-05 | Semiconductor Energy Lab Co Ltd | 発光素子及び表示装置 |
JP2007123174A (ja) * | 2005-10-31 | 2007-05-17 | Canon Inc | 有機エレクトロルミネッセンス素子 |
JP2007123173A (ja) * | 2005-10-31 | 2007-05-17 | Canon Inc | 有機エレクトロルミネッセンス素子 |
JP2007184251A (ja) * | 2005-12-07 | 2007-07-19 | Sony Corp | 表示装置 |
JP2007220646A (ja) * | 2006-01-19 | 2007-08-30 | Toppan Printing Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2007273094A (ja) * | 2006-03-30 | 2007-10-18 | Toppan Printing Co Ltd | 有機エレクトロルミネッセンス素子およびその製造方法 |
JP4106076B2 (ja) * | 2005-09-29 | 2008-06-25 | 松下電器産業株式会社 | 有機elディスプレイおよびその製造方法 |
JP2008153004A (ja) * | 2006-12-15 | 2008-07-03 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子 |
JP2008210665A (ja) * | 2007-02-27 | 2008-09-11 | Canon Inc | 有機発光素子及びそれを用いた表示装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3326663B2 (ja) * | 1994-04-05 | 2002-09-24 | ソニー株式会社 | 半導体装置の製造方法 |
JP4492167B2 (ja) * | 2004-03-22 | 2010-06-30 | 富士電機ホールディングス株式会社 | 有機elディスプレイおよびその製造方法 |
US7202504B2 (en) | 2004-05-20 | 2007-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and display device |
US7696683B2 (en) | 2006-01-19 | 2010-04-13 | Toppan Printing Co., Ltd. | Organic electroluminescent element and the manufacturing method |
JP5135753B2 (ja) * | 2006-02-01 | 2013-02-06 | セイコーエプソン株式会社 | 光学物品 |
-
2008
- 2008-09-26 WO PCT/JP2008/067542 patent/WO2010035337A1/ja active Application Filing
- 2008-09-26 JP JP2010504365A patent/JP5378354B2/ja active Active
- 2008-09-26 CN CN2008801032178A patent/CN101810050B/zh active Active
- 2008-09-26 KR KR1020107002772A patent/KR101095250B1/ko active IP Right Grant
- 2008-09-26 US US12/672,996 patent/US8487299B2/en active Active
-
2009
- 2009-09-16 TW TW098131240A patent/TWI486092B/zh not_active IP Right Cessation
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002017689A1 (fr) * | 2000-08-23 | 2002-02-28 | Idemitsu Kosan Co., Ltd. | Afficheur electroluminescent organique |
JP2003203771A (ja) * | 2002-01-09 | 2003-07-18 | Matsushita Electric Ind Co Ltd | 有機発光素子、表示装置及び照明装置 |
JP2005209356A (ja) * | 2004-01-20 | 2005-08-04 | Toppan Printing Co Ltd | 有機el素子及びカラーフィルター |
JP2005222778A (ja) * | 2004-02-04 | 2005-08-18 | Shimadzu Corp | 有機エレクトロルミネッセンス素子およびその製造方法 |
JP2005302336A (ja) * | 2004-04-07 | 2005-10-27 | Hitachi Ltd | 発光素子及びその表示装置 |
JP2006004917A (ja) * | 2004-05-20 | 2006-01-05 | Semiconductor Energy Lab Co Ltd | 発光素子及び表示装置 |
JP4106076B2 (ja) * | 2005-09-29 | 2008-06-25 | 松下電器産業株式会社 | 有機elディスプレイおよびその製造方法 |
JP2007123174A (ja) * | 2005-10-31 | 2007-05-17 | Canon Inc | 有機エレクトロルミネッセンス素子 |
JP2007123173A (ja) * | 2005-10-31 | 2007-05-17 | Canon Inc | 有機エレクトロルミネッセンス素子 |
JP2007184251A (ja) * | 2005-12-07 | 2007-07-19 | Sony Corp | 表示装置 |
JP2007220646A (ja) * | 2006-01-19 | 2007-08-30 | Toppan Printing Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2007273094A (ja) * | 2006-03-30 | 2007-10-18 | Toppan Printing Co Ltd | 有機エレクトロルミネッセンス素子およびその製造方法 |
JP2008153004A (ja) * | 2006-12-15 | 2008-07-03 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子 |
JP2008210665A (ja) * | 2007-02-27 | 2008-09-11 | Canon Inc | 有機発光素子及びそれを用いた表示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015049946A (ja) * | 2013-08-29 | 2015-03-16 | 株式会社ジャパンディスプレイ | 有機エレクトロルミネッセンス表示装置 |
WO2015125382A1 (ja) * | 2014-02-21 | 2015-08-27 | 富士フイルム株式会社 | 有機機能層付き基板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110278547A1 (en) | 2011-11-17 |
TW201031249A (en) | 2010-08-16 |
JP5378354B2 (ja) | 2013-12-25 |
US8487299B2 (en) | 2013-07-16 |
CN101810050B (zh) | 2011-12-28 |
JPWO2010035337A1 (ja) | 2012-02-16 |
TWI486092B (zh) | 2015-05-21 |
KR101095250B1 (ko) | 2011-12-20 |
CN101810050A (zh) | 2010-08-18 |
KR20100077145A (ko) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5378354B2 (ja) | 有機elデバイスおよびその製造方法 | |
JP5172961B2 (ja) | 有機elデバイスおよびその製造方法 | |
JP5722453B2 (ja) | 表示装置の製造方法 | |
TWI482528B (zh) | Closed film for organic electroluminescent element, organic electroluminescent element and organic electroluminescent display | |
WO2010010622A1 (ja) | 有機elデバイスおよびその製造方法 | |
JPH11260562A (ja) | 有機elカラーディスプレイ | |
JP2008270172A (ja) | 有機el素子の製造方法 | |
TWI538552B (zh) | 有機el裝置 | |
JP2008140621A (ja) | 有機elディスプレイおよびその製造方法 | |
WO2013047457A1 (ja) | 表示装置の製造方法および表示装置 | |
JP2004039468A (ja) | 有機elカラーディスプレイ | |
WO2009099009A1 (ja) | 有機elディスプレイおよびその製造方法 | |
JP5306949B2 (ja) | 有機電界発光装置 | |
JP2010244860A (ja) | 有機el素子およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880103217.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010504365 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107002772 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08877074 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12672996 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08877074 Country of ref document: EP Kind code of ref document: A1 |