WO2010034743A1 - Bildprojektion mit rasterabtastung eines modulierten lichtstrahls mittels spiegel - Google Patents

Bildprojektion mit rasterabtastung eines modulierten lichtstrahls mittels spiegel Download PDF

Info

Publication number
WO2010034743A1
WO2010034743A1 PCT/EP2009/062325 EP2009062325W WO2010034743A1 WO 2010034743 A1 WO2010034743 A1 WO 2010034743A1 EP 2009062325 W EP2009062325 W EP 2009062325W WO 2010034743 A1 WO2010034743 A1 WO 2010034743A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
processing unit
deflection
unit
mirror
Prior art date
Application number
PCT/EP2009/062325
Other languages
English (en)
French (fr)
Inventor
Jan Oliver Drumm
Christian Gammer
Jens Richter
Original Assignee
Osram Gesellschaft mit beschränkter Haftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gesellschaft mit beschränkter Haftung filed Critical Osram Gesellschaft mit beschränkter Haftung
Priority to US13/121,412 priority Critical patent/US8684538B2/en
Priority to CN200980138513.6A priority patent/CN102165759B/zh
Priority to KR1020117009976A priority patent/KR101280495B1/ko
Publication of WO2010034743A1 publication Critical patent/WO2010034743A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/047Detection, control or error compensation of scanning velocity or position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/14Picture reproducers using optical-mechanical scanning means only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Definitions

  • the invention relates to a method and a device for the projection of at least one light beam.
  • light beams typically consisting of the three primary colors red, green and blue
  • a two-dimensional resonant micromirror In projectors based on a so-called “flying spot” principle of operation, light beams (typically consisting of the three primary colors red, green and blue) are deflected by means of a two-dimensional resonant micromirror and projected onto an image plane.
  • a "flying spot" projection light beams of different colors are used e.g. of laser sources (red R, blue B and green G) each directed to a semitransparent mirror (transmission and reflection of the mirror depending on the wavelength) and then as a common beam (also referred to as a projection beam) directed to a two-dimensional resonant micromirror, the two-dimensionally deflected beam and projected onto an image plane.
  • a common beam also referred to as a projection beam directed to a two-dimensional resonant micromirror, the two-dimensionally deflected beam and projected onto an image plane.
  • the image is built up in the image plane by the continuous harmonically deflected common beam.
  • Image information is generated and displayed by an intensity modulation of the respective light source synchronously with the deflection of the micromirror.
  • the mirrors can be designed, for example, as so-called MEMS mirrors.
  • Image jitter effects eg a horizontally or vertically passing image
  • Deviation from the target and actual frequency of the mirror does not achieve the maximum mirror deflection.
  • the strength of the effect depends on the manufacturing quality of the mirrors (production-related target frequency deviation).
  • Image jitter effects can also occur due to changes in ambient conditions (eg temperature, air pressure, humidity, etc.) (ambient frequency deviation due to ambient conditions).
  • the drive frequency of the fast axis of the beam deflection system is readjusted to its mechanical resonance frequency and used as a time base.
  • the adjustment of the frequency is necessary to keep the geometric size of the projected image constant.
  • the time base implies that e.g. after every
  • a trigger signal to the DPU having a fixed system clock, is sent to start the intensity modulation of the laser beams along a line.
  • This method has the disadvantage that as the frequency of the time base changes (e.g., due to a thermal drift of the mechanical resonance), end-of-line image information is cropped. This leads to a reduced quality of the projected image.
  • the object of the invention is to avoid the disadvantages mentioned above and in particular an efficient and improved way to Drift compensation to create a projection of a light beam.
  • Processing unit for controlling the at least one light beam is adjusted depending on a deflection of the at least one light beam.
  • Light beam can be used as a trigger and / or as a time base for the control of the at least one light beam.
  • the processing unit may include a processor, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing unit, a graphics processing circuitry
  • Controller and / or programmable logic include.
  • a development is that the at least one light beam is deflected by means of a deflecting projection device, in particular by means of a mirror or a micromirror.
  • the deflecting projection device may in particular be a two-dimensional resonant micromirror.
  • both axes can have resonance frequencies, wherein the drive of the two axes does not always have to be resonant. If, for example, the slow axis is driven quasi-statically, it is processed by a line scan method spoken. If both axes are driven resonantly, this corresponds to a Lissaj ous method.
  • Another development is that the deflection is determined and / or measured using a mirror unit.
  • the mirror unit comprises, in particular, the deflecting projection unit (for example a mirror), a driver for the deflecting projection unit, possibilities for
  • Measurement and / or evaluation of movements or positions of the deflecting projection unit possibly with a possibility for conditioning a measured signal and a signal converter.
  • a deflection of the deflecting projection unit in particular a drive frequency of a fast axis of the deflecting projection device, tracked by means of a controller and over this the time base of the processing unit is set.
  • the drive frequency of the fast axis of the deflecting projection device is adjusted by means of a reference signal taking into account mechanical properties of the deflecting projection device.
  • the reference signal may specify a phase value
  • a ratio of the drive frequency of the fast axis and a drive frequency of a slow axis of the deflecting projection device by means of the controller is kept substantially constant.
  • a temporal modulation of the intensity of the at least one light beam is carried out on the basis of the processing unit.
  • Processing unit an output signal depending on the deflection of the at least one light beam fed back.
  • the processing unit may be part of a control loop.
  • the processing unit may be part of a control loop.
  • Processing unit to a voltage controlled oscillator provide a digital signal, wherein an output signal of the voltage controlled oscillator is used to adjust the time base of the processing unit.
  • VCO voltage controlled oscillator
  • the processing unit is independent of the control loop - in particular not part of the control loop of the control loop - and is driven only by the deflection of the at least one light beam.
  • This activation can e.g. by means of a value determined by the voltage-controlled oscillator.
  • the processing unit may e.g. a DLL element for converting an input signal into a matched time base or clock frequency.
  • the at least one light beam is composed of at least one light source.
  • the at least one light source may comprise at least one laser, in particular at least one laser diode.
  • the light beam may, for example, be composed of one red, one blue and one or two green lasers.
  • An alternative embodiment is that the at least one light beam is projected by means of a flying spot method.
  • a device for projection of at least one light beam comprising a processor unit and / or a hardwired circuit arrangement and / or a freely programmable logic, which is set up such that the method can be carried out here.
  • - comprising a processing unit for controlling the at least one light beam, - comprising a unit for determining a
  • a time base of the processing unit is adjustable depending on one of the deflection of the at least one light beam.
  • An embodiment consists in that the unit for determining the deflection of the at least one light beam keeps the deflection of the at least one light beam substantially constant by means of a regulator.
  • the controller can drive a voltage-controlled oscillator, which is connected to the processing unit and this provides a voltage depending on the deflection of the at least one Lichstrahls.
  • a DLL element of the processing unit scales according to that of the voltage controlled oscillator signal provided the time base of the processing unit.
  • a next embodiment is that the components of the device are at least partially realized as discrete components and / or at least partially designed as an integrated solution.
  • Processing unit by means of a ring buffer and / or by means of a dual-port RAMs takes place.
  • Fig.l a block diagram of a circuit for controlling a clock of a processing unit (DPU) depending on a deflection of at least one light beam;
  • DPU processing unit
  • Processing unit is integrated into the control loop
  • Resonant frequency readjusted and used as a time base.
  • a control electronics is provided, based on which a ratio of a time base or clock frequency of a processor unit (also referred to as "DPU") and the
  • Time base is kept constant.
  • the processor unit may include a processor or programmable logic.
  • the ratio of drive frequencies may be slower (e.g., quasi-static drive) and faster
  • Axis are kept constant. With the approach described here, the image impression (resolving power) remains essentially unchanged even with changing or initially different frequencies of the fast axis. In this respect, in particular no disturbances or distortions by the user are perceptible.
  • the temporal modulation of the laser intensity is adapted to the movement of the mirror to ensure a distortion-free image as possible and to avoid image jitter effects.
  • the time base or clock frequency of the DPU is readjusted.
  • Fig.l shows a block diagram of a circuit for controlling a DPU clock.
  • a voltage-controlled oscillator VCO 101 provides at its output a signal Ul which is connected to an input of a reference system REF 104, to an input of a mirror unit MIRROR 105 and to an input of a DLL element 103 of a DPU 102.
  • a signal U2 is fed to an adder 107 of a regulator REG 106.
  • a signal U3 with a negative sign is supplied to the adder 107.
  • the regulator REG 106 further comprises an integrator 108 which is connected to the output of the adder 107.
  • the output of the integrator 108 is connected to the input of the VCO 101.
  • the light source e.g. Laser is driven by the DPU 102.
  • the DLL element multiplies the signal U1 and thus determines the clock base for the laser.
  • the VCO 101 provides the output signal Ul (fl), which is converted in the mirror unit MIRROR 105 into a suitable drive signal for the fast mirror axis. The movement of the mirror is measured and provided as signal U2 (fl).
  • Reference system REF 104 provides a delayed (phase shifted) signal U3 (fl).
  • the signals U3 and U2 are subtracted by means of the adder 107 and in the regulator REG 106 whose phase position is compared.
  • the regulator REG 106 generates from this the signal U R , which is passed to the input of the VCO 101. If the signal U R is not equal to zero, the readjustment of the image frequency (fast axis) is active.
  • the generation of the DPU clock frequency f2 takes place via the signal U1 guided to the DLL element 103.
  • the ratio of f2 / fl is substantially constant and the fast axis of the mirror is correspondingly in resonant operation.
  • the frequency fl of the signal Ul corresponds to the frequency of movement of the fast axis of the mirror system and is between 15 kHz and 50 kHz.
  • the VCO 101 generates a clock fl which is dependent on the input signal U R :
  • kvco is a constant of the VCO 101.
  • the signal U R can also be negative, so that the clock f ⁇ represents an average frequency.
  • the VCO provides an output signal Ul (fl).
  • the mirror unit MIRROR 105 comprises, in particular, a mirror, a mirror driver, possibilities for measuring and / or evaluating mirror values or mirror movements (feedback of the mirror) possibly with a possibility for conditioning the measured signal and a signal converter.
  • the mirror can be driven inductively, capacitively, piezo-resistively or electro-mechanically.
  • the measuring system can provide a signal that allows conclusions to be drawn about the movement of the mirror.
  • Signal conditioning provides additional level matching and noise filtering of the measurement signal.
  • the mirror unit MIRROR 105 supplies the output signal U2 (fl)
  • the reference system REF 104 allows a phase shift of the input signal U (fl) by an adjustable phase value.
  • the phase value to be set depends on the mechanical properties of the mirror and is typically around 90 °.
  • the reference system REF 104 supplies an output signal U3 (fl).
  • the DPU 102 can process incoming video data and according to a predetermined / implemented algorithm, which is optimized in particular with respect to a predetermined relationship between DPU clock frequency and frequency of the fast mirror axis, Passing modulation signals to the or the laser driver.
  • the DLL element 103 is preferably integrated in the DPU 102 and scales the clock frequency output by the VCO 101 according to the fixed ratio of the two clocks.
  • the regulator REG 106 has the task of comparing the input signals U2 and U3 to their phase position and, depending on the deviation, to generate a suitable signal (the control voltage in the form of the signal U R ).
  • the signals U3 and U2 are subtracted and a following integrator 108 determines a measure of the deviation of the phase position and provides this as a signal U R , which is passed to the input of the VCO 101.
  • the arrangement according to FIG. 1 can consist of discrete components comprising the DPU 102, the VCO 101, the regulator REG 106, the mirror unit MIRROR 105
  • the reference system REF 104 (in particular with mirror driver and / or measuring arrangement) and the reference system REF 104 be constructed.
  • the arrangement according to FIG. 1 can be embodied as an integrated solution, for example in the form of an integrated electronic single-chip solution in combination with the mirror.
  • the arrangement according to FIG. 1 comprises semiconductor elements and may be of integrated construction, comprising, for example, the VCO 101, the REG 106 controller, the MIRROR 105 mirror unit (or parts thereof) and the reference system REF 104.
  • FIG. 2 shows a block diagram of the DPU clock control, wherein, in contrast to FIG. 1, a DPU is integrated into the control loop.
  • FIG. 2 shows a VCO 201 which provides at its output a signal U1 which is connected to an input of a reference system REF 204, to an input of a mirror unit MIRROR 205 and to an input of a DLL element 203 of a DPU 202 ,
  • a signal U2 is fed to an adder unit 207 of a regulator REG 206.
  • a signal U3 with a negative sign is supplied to the adder unit 207.
  • the regulator REG 206 further comprises an integrator 208 which is connected to the output of the adder unit 207.
  • the output of the integrator 208 is connected to a first input of a comparator 210 (which is also provided in the regulator REG 206), to whose second input a reference value 211 is applied.
  • the output of the comparator 210 is connected to the DPU 202.
  • the DPU 202 has an output which is connected to the integrator 208 and serves to reset the integrator 208 ("Reset"). Furthermore, an output of the DPU 202 is connected to a quantizing unit 209.
  • the quantizing unit 209 comprises in particular a digital / analogue converter for converting an n-bit signal of the DPU 202 into an analogue signal U R.
  • the circuit according to FIG. 2 differs from the circuit according to FIG. 1 in particular in that the output of the regulator REG 206 is not passed directly to the VCO 201 but is conducted via the DPU 202.
  • the DPU 202 performs a reset of the integrator 208, in particular after a rising edge of the input signals U2 and U3. With a positive deviation of the difference of U3 and U2, the regulator REG 206 supplies logic "1" as an output signal to the DPU 202, otherwise logic "0".
  • the output signal of the regulator REG 206 can also be reversed depending on an implementation of a control algorithm.
  • an implementation may be designed in such a way that logic "0" at the output of the regulator REG 206 causes a frequency increase, ie an increase of the signal U R.
  • the DPU 202 sends an increased digital value n to the quantization unit 209.
  • the quantizing unit 209 converts the digital value into an analog signal U R having a higher value than the previous value of the signal U R.
  • FIG. 3 shows signal curves of the control according to FIG. 2 as a function of a clock having a clock duration T.
  • FIG. A graph 301 shows by way of example a signal at the output of the comparator 210, a graph 302 an associated signal at the input of the quantizing unit 209 and a graph 303 a corresponding signal U1 at the output of the VCO 201.
  • the quantizing unit 209 and / or the comparator 210 can be designed accordingly as a discrete and / or integrated element.
  • FIG. 4 shows a block diagram illustrating asynchronous data communication by means of a ring buffer or a dual-port RAM.
  • FIG. 4 shows an imaging unit 401 having a clock base A i.H.v. 60Hz.
  • An illustrative unit 402 has a clock base B i.H.v, 55Hz.
  • a dual port RAM 403 is arranged between the imaging unit 401 and the performing unit 402.
  • the dual port RAM 403 includes two ports A and B with separate address and data bus systems, where both ports can access the same memory area.
  • the dual port RAM 403 is provided with a clock signal "CIk A”, an address signal “Adr A” and a read / write signal "W / RA". Furthermore, data “Data A” is exchanged between the dual-port RAM 403 and the imaging unit 401. From the presenting unit 402, the dual port RAM 403 is entered Clock signal "CIk B", an address signal “Adr B” and a read / write signal "W / RB" provided. Furthermore, data “Data B” is exchanged between the dual-port RAM 403 and the performing unit 402.
  • Each port A and / or B provides the ability to both read data from memory and write data to memory via various control signals. Due to the separate clock inputs, both ports can be written or read at different speeds. While, for example, the image data required for display is read out on port B, new image data can already be written in via port A via the second address bus.
  • the approach presented here allows a compensation of production-related tolerances of the mirror frequency and a compensation of environmental changes in the image frequency.
  • the compensation is independent of an image-generating algorithm, in particular the image-generating algorithm is independent of the image frequency.
  • the image resolution can be increased and image jitter effects avoided or reduced.
  • Another advantage is the reduced power consumption of the data processing unit.
  • the proposed compensation increases the yield of the mirror production and the yield of the projector production. Overall, a scatter of image quality relative to a total amount of projectors can be reduced.
  • DPU data processing unit
  • DLL element delay-locked loop
  • quantizer unit including, for example, digital-to-analog converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

Es werden ein Verfahren sowie eine Vorrichtung zum Projizieren mindestens eines Lichtstrahls angegeben, bei dem eine Zeitbasis (z.B. eine Taktfrequenz) einer Verarbeitungseinheit zur Ansteuerung des mindestens einen Lichtstrahls abhängig von einer Auslenkung des mindestens einen Lichtstrahls eingestellt wird.

Description

Beschreibung
BILDPROJEKTION MIT RASTERABTASTUNG EINES MODULIERTEN LICHTSTRAHLS
MITTELS SPIEGEL
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Projektion mindestens eines Lichtstrahls.
In Projektoren, die auf einem sogenannten "Flying-Spot"- Funktionsprinzip beruhen, werden mittels eines zweidimensionalen resonanten Mikrospiegels Lichtstrahlen (typischerweise bestehend aus den drei Grundfarben rot, grün und blau) ausgelenkt und auf eine Bildebene proj iziert .
Bei einer "Flying-Spot"-Projektion werden Lichtstrahlen unterschiedlicher Farben z.B. von Laserquellen (rot R, blau B und grün G) jeweils auf einen halbdurchlässige Spiegel (Transmission und Reflektion der Spiegel erfolgt in Abhängigkeit der Wellenlänge) und dann als ein gemeinsamer Strahl (auch als Projektionsstrahl bezeichnet) auf einen zweidimensionalen resonanten Mikrospiegel gerichtet, der den gemeinsamen Strahl zweidimensional ablenkt und auf eine Bildebene projiziert. Dabei wird in der Bildebene das Bild durch den kontinuierlich harmonisch abgelenkten gemeinsamen Strahl aufgebaut.
Eine Bildinformation wird durch eine Intensitätsmodulation der jeweiligen Lichtquelle synchron zu der Auslenkung des Mikrospiegels generiert und dargestellt.
Durch die Bewegung, z.B. mittels Zeilen-Scan-Verfahren oder Lissaj ous-Verfahren des Spiegels und entsprechend geeigneter Modulation der Laser-Intensität, kann somit auf dem Schirm die gewünschte Bildinformation erzeugt werden. Die Spiegel können z.B. als sogenannte MEMS-Spiegel ausgeführt sein. Bild-Jitter-Effekte (z.B. ein horizontal oder vertikal durchlaufendes Bild) entstehen, wenn die tatsächliche Frequenz der Spiegelbewegung (Zeilen- oder Spaltenfrequenz) nicht mit der in der Video-Elektronik eingestellten Soll- Frequenz der Spiegelbewegung übereinstimmt. Bei Abweichung von Soll- und Ist-Frequenz des Spiegels wird nicht die maximale Spiegelauslenkung erreicht. Die Stärke des Effekts hängt von der Fertigungsqualität der Spiegel ab (fertigungsbedingte Soll-Frequenzabweichung) . Bild-Jitter- Effekte können auch durch Änderung der Umgebungsbedingungen (z.B. Temperatur, Luftdruck, Luftfeuchtigkeit, etc.) auftreten (umgebungsbedingte Soll-Frequenzabweichung) .
Es ist bekannt, dass die Antriebsfrequenz der schnellen Achse des Strahlablenkungssystems seiner mechanischen Resonanzfrequenz nachgeregelt und als Zeitbasis verwendet wird. Die Nachregelung der Frequenz ist notwendig, um die geometrische Größe des projizierten Bildes konstant zu halten. Die Zeitbasis bedingt, dass z.B. nach jeder
Richtungsumkehr der Spiegeldrehbewegung ein Triggersignal an die datenverarbeitende Einheit (engl.: DPU), die einen festen System-Takt aufweist, gesendet wird, um die Intensitätsmodulation der Laserstrahlen entlang einer Zeile zu starten.
Dieses Verfahren hat den Nachteil, dass bei Änderung der Frequenz der Zeitbasis (z.B. auf Grund einer thermische Drift der mechanischen Resonanz) Bildinformationen am Zeilenende abgeschnitten bzw. Zeilen gestaucht dargestellt werden. Dies führt zu einer verminderten Qualität des projizierten Bildes.
Die Aufgabe der Erfindung besteht darin, die vorstehend genannten Nachteile zu vermeiden und insbesondere eine effiziente und verbesserte Möglichkeit zur Driftkompensation bei einer Projektion eines Lichtstrahls zu schaffen.
Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich auch aus den abhängigen Ansprüchen.
Zur Lösung der Aufgabe wird ein Verfahren zum Projizieren mindestens eines Lichtstrahls angegeben, bei dem eine Zeitbasis (z.B. eine Taktfrequenz) einer
Verarbeitungseinheit zur Ansteuerung des mindestens einen Lichtstrahls abhängig von einer Auslenkung des mindestens einen Lichtstrahls eingestellt wird.
Somit kann eine Auslenkung des mindestens einen
Lichtstrahls eingesetzt werden als Trigger und/oder als eine Zeitbasis für die Ansteuerung des mindestens einen Lichtstrahls .
Die Verarbeitungseinheit kann einen Prozessor, einen
Controller und/oder eine programmierbare Logik umfassen.
Eine Weiterbildung ist es, dass der mindestens eine Lichtstrahl anhand einer umlenkenden Projektionseinrichtung, insbesondere anhand eines Spiegels oder eines Mikrospiegels, ausgelenkt wird.
Bei der umlenkenden Projektionseinrichtung kann es sich insbesondere um einen zweidimensionalen resonanten Mikrospiegel handeln.
Anstatt des zweidimensionalen Spiegels könne auch zwei eindimensionale Spiegel eingesetzt werden. Insbesondere können beide Achsen Resonanzfrequenzen aufweisen, wobei der Antrieb der beiden Achsen nicht immer resonant erfolgen muss. Wird beispielsweise die langsame Achse quasi-statisch angetrieben, wird von einem Zeilen-Scan-Verfahren gesprochen. Werden beide Achsen resonant angetrieben, entspricht dies einem Lissaj ous-Verfahren .
Eine andere Weiterbildung ist es, dass die Auslenkung anhand einer Spiegeleinheit ermittelt und/oder gemessen wird.
Die Spiegeleinheit umfasst insbesondere die umlenkende Projektionseinheit (z.B. einen Spiegel), einen Treiber für die umlenkende Projektionseinheit, Möglichkeiten zur
Messung und/oder Auswertung von Bewegungen bzw. Positionen der umlenkenden Projektionseinheit ggf. mit einer Möglichkeit zur Konditionierung eines gemessenen Signals sowie einen Signalkonverter.
Insbesondere ist es eine Weiterbildung, dass eine Auslenkung der umlenkenden Projektionseinheit, insbesondere eine Antriebsfrequenz einer schnellen Achse der umlenkenden Projektionseinrichtung, mittels eines Reglers nachgeführt und hierüber die Zeitbasis der Verarbeitungseinheit eingestellt wird.
Auch ist es eine Weiterbildung, dass die Antriebsfrequenz der schnellen Achse der umlenkenden Projektionseinrichtung mittels eines Referenzsignals unter Berücksichtigung mechanischer Eigenschaften der umlenkenden Projektionseinrichtung eingestellt wird.
Insbesondere kann das Referenzsignal einen Phasenwert vorgeben.
Ferner ist es eine Weiterbildung, dass ein Verhältnis der Antriebsfrequenz der schnellen Achse und einer Antriebsfrequenz einer langsamen Achse der umlenkenden Projektionseinrichtung mittels des Reglers im wesentlichen konstant gehalten wird. Im Rahmen einer zusätzlichen Weiterbildung wird anhand der Verarbeitungseinheit eine zeitliche Modulation der Intensität des mindestens einen Lichtstrahls durchgeführt.
Eine nächste Weiterbildung besteht darin, dass die
Verarbeitungseinheit ein Ausgangssignal abhängig von der Auslenkung des mindestens einen Lichtstrahls rückkoppelt.
Insbesondere kann die Verarbeitungseinheit Teil eines Regelkreises sein. Beispielsweise kann die
Verarbeitungseinheit einem spannungsgesteuerten Oszillator (VCO) ein digitales Signal bereitstellen, wobei ein Ausgangssignal des spannungsgesteuerten Oszillators zur Einstellung der Zeitbasis der Verarbeitungseinheit eingesetzt wird.
Auch ist es möglich, dass die Verarbeitungseinheit unabhängig von dem Regelkreis - insbesondere nicht Teil der Regelschleife des Regelkreises - ist und nur über die Auslenkung des mindestens einen Lichtstrahls angesteuert wird. Diese Ansteuerung kann z.B. mittels eines von dem spannungsgesteuerten Oszillator ermittelten Wert erfolgen.
Die Verarbeitungseinheit kann z.B. ein DLL-Element zur Umsetzung eines Eingangssignals in eine angepasste Zeitbasis bzw. Taktfrequenz umfassen.
Eine Ausgestaltung ist es, dass der mindestens eine Lichtstrahl aus mindestens einer Lichtquelle zusammengesetzt ist.
Insbesondere kann die mindestens eine Lichtquelle mindestens einen Laser, insbesondere mindestens eine Laserdiode, umfassen. Der Lichtstrahl kann z.B. aus einem roten, einem blauen und einem oder zwei grünen Lasern zusammengesetzt sein. Eine alternative Ausführungsform besteht darin, dass der mindestens eine Lichtstrahl mittels eines Flying-Spot- Verfahrens projiziert wird.
Insbesondere kann es ein Zeilen-Scan-Verfahren und/oder ein Lissaj ous-Verfahren eingesetzt werden
Die vorstehend genannte Aufgabe wird auch gelöst durch eine Vorrichtung zur Projektion mindestens eines Lichtstrahls umfassend eine Prozessoreinheit und/oder eine festverdrahtete Schaltungsanordnung und/oder eine freiprogrammierbare Logik, die derart eingerichtet ist, dass das hierin Verfahren durchführbar ist.
Weiterhin wird die oben genannte Aufgabe gelöst mittels einer Vorrichtung zur Projektion mindestens eines Lichtstrahls
- umfassend eine Verarbeitungseinheit zur Ansteuerung des mindestens einen Lichtstrahls, - umfassend eine Einheit zur Ermittlung einer
Auslenkung des mindestens einen Lichtstrahls,
- wobei eine Zeitbasis der Verarbeitungseinheit abhängig von einer der Auslenkung des mindestens einen Lichtstrahls einstellbar ist.
Eine Ausgestaltung besteht darin, dass die Einheit zur Ermittlung der Auslenkung des mindestens einen Lichtstrahls die Auslenkung des mindestens einen Lichtstrahls mittels eines Reglers im wesentlichen konstant hält.
Insbesondere kann der Regler einen spannungsgesteuerten Oszillator ansteuern, der mit der Verarbeitungseinheit verbunden ist und dieser eine Spannung abhängig von der Auslenkung des mindestens einen Lichstrahls bereitstellt. Ein DLL-Element der Verarbeitungseinheit skaliert entsprechend dem von dem spannungsgesteuerten Oszillator bereitgestellten Signal die Zeitbasis der Verarbeitungseinheit .
Eine nächste Ausgestaltung ist es, dass die Komponenten der Vorrichtung zumindest teilweise als diskrete Bauelemente realisiert sind und/oder zumindest teilweise als eine integrierte Lösung ausgeführt sind.
Auch ist es eine Ausgestaltung, dass eine Kommunikation mit der Verarbeitungseinheit und einer weiteren
Verarbeitungseinheit mittels eines Ringpuffers und/oder mittels eines Dual-Port-RAMs erfolgt.
Hierdurch ist voreilhaft eine Entkopplung verschiedener Zeitbasen bzw. Taktraten möglich.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen dargestellt und erläutert.
Es zeigen:
Fig.l ein Blockschaltbild einer Schaltung zur Regelung eines Taktes einer Verarbeitungseinheit (DPU) abhängig von einer Auslenkung mindestens eines Lichtstrahls;
Fig.2 ein Blockschaltbild einer Schaltung zur Regelung eines Taktes einer Verarbeitungseinheit (DPU) abhängig von einer Auslenkung mindestens eines Lichtstrahls, wobei im Gegensatz zu Fig.l die
Verarbeitungseinheit in den Regelkreis integriert ist;
Fig.3 Signalverläufe der Regelung gemäß Fig.2 in Abhängigkeit von einem Takt mit einer Taktdauer T; Fig.4 ein Blockdiagramm zur Veranschaulichung einer asynchronen Datenkommunikation mittels eines Ringpuffers oder eines Dual-Port-RAMs .
Der vorliegende Ansatz erlaubt es, dass eine
Antriebsfrequenz einer schnellen Achse des
Strahlablenkungssystems seiner mechanischen
Resonanzfrequenz nachgeregelt und als eine Zeitbasis verwendet wird.
Zusätzlich wird eine Regelungselektronik vorgesehen, anhand derer ein Verhältnis einer Zeitbasis oder Taktfrequenz einer Prozessoreinheit (auch bezeichnet als "DPU") und der
Zeitbasis konstant gehalten wird.
Die Prozessoreinheit kann einen Prozessor oder eine programmierbare Logik umfassen.
Zusätzlich kann das Verhältnis der Antriebsfrequenzen von langsamer (z.B. quasi-statischer Antrieb) und schneller
Achse konstant gehalten werden. Mit dem hier beschriebenen Ansatz bleibt der Bildeindruck (Auflösungsvermögen) auch bei sich ändernder oder anfänglich unterschiedlichen Frequenzen der schnellen Achse im wesentlichen unverändert. Insofern sind insbesondere keine Störungen oder Verzerrungen von dem Benutzer wahrnehmbar.
Die zeitliche Modulation der Laser-Intensität wird an die Bewegung des Spiegels angepasst, um eine möglichst verzerrungsfreie Bilddarstellung zu gewährleisten und um Bild-Jitter-Effekte zu vermeiden. Dazu wird die Zeitbasis bzw. Taktfrequenz der DPU nachgeregelt.
Fig.l zeigt ein Blockschaltbild einer Schaltung zur Regelung eines DPU Taktes. Ein spannungsgesteuerter Oszillator VCO 101 stellt an seinem Ausgang ein Signal Ul bereit, das mit einem Eingang eines Referenzsystems REF 104, mit einem Eingang einer Spiegeleinheit MIRROR 105 und mit einem Eingang eines DLL- Elements 103 einer DPU 102 verbunden ist.
Am Ausgang der Spiegeleinheit MIRROR 105 wird ein Signal U2 einer Addiereinheit 107 eines Reglers REG 106 zugeführt. Am Ausgang des Referenzsystems REF 104 wird ein Signal U3 mit negativen Vorzeichen der Addiereinheit 107 zugeführt.
Der Regler REG 106 umfasst weiterhin einen Integrator 108, der mit dem Ausgang der Addiereinheit 107 verbunden ist. Der Ausgang des Integrators 108 ist mit dem Eingang des VCO 101 verbunden.
Die Lichtquelle, z.B. Laser, wird mittels der DPU 102 angetrieben. Insbesondere multipliziert das DLL-Element das Signal Ul und bestimmt so die Taktbasis für den Laser.
Die Regelung der Zeitbasis bzw. Taktfrequenz der DPU 102 erfolgt über einen von der DPU 102 unabhängigen Regelkreis.
Nach dem Einschalten läuft der VCO 101 mit seiner Grundfrequenz fl=fθ, da kein Signal UR an seinem Eingang anliegt. Der VCO 101 liefert das Ausgangssignal Ul (fl), das in der Spiegeleinheit MIRROR 105 in ein geeignetes Antriebssignal für die schnelle Spiegelachse umgewandelt wird. Die Bewegung des Spiegels wird gemessen und als Signal U2(fl) bereitgestellt.
Das Referenzsystem REF 104 liefert ein verzögertes (phasenverschobenes) Signal U3(fl). Die Signale U3 und U2 werden mittels der Addiereinheit 107 subtrahiert und in dem Regler REG 106 wird deren Phasenlage verglichen. Der Regler REG 106 erzeugt daraus das Signal UR, das an den Eingang des VCO 101 geleitet wird. Ist das Signal UR ungleich Null, ist die Nachregelung der Spiegelfrequenz (schnelle Achse) aktiv. Die Erzeugung der DPU-Taktfrequenz f2 erfolgt über das an das DLL-Element 103 geleitete Signal Ul. Somit ist das Verhältnis von f2/fl im wesentlichen konstant und die schnelle Achse des Spiegels befindet sich entsprechend in einem resonanten Betrieb.
Die Frequenz fl des Signals Ul entspricht der Bewegungsfrequenz der schnellen Achse des Spiegelsystems und liegt zwischen 15kHz und 5OkHz. Die Bandbreite der Fertigungsverteilung eines Spiegel-Typs liegt üblicherweise im Bereich von +/- 1-2%, und die Taktrate einer DPU liegt üblicherweise im Bereich von 10MHz bis 400MHz. Daraus errechnet sich z.B. für einen Spiegel-Typ mit angestrebter Grundfrequenz von 3OkHz eine Fertigungsverteilung von 29,4kHz bis 30,6kHz. Bei einer typischen Taktrate von 180MHz bedeutet dies, dass das Verhältnis von f2/fl konstant=6000 ist. Die Variation der Taktrate liegt folglich in einem Frequenzband von 176MHz bis 184MHz.
Nachfolgend werden einzelne in Fig.l gezeigte Blöcke näher beschrieben :
VCO 101:
Der VCO 101 erzeugt einen Takt fl, der abhängig von dem Eingangssignal UR ist:
fl = fO + kvco-URr
wobei kvco eine Konstante des VCO 101 ist.
Das Signal UR kann auch negativ sein, so dass der Takt fθ eine mittlere Frequenz darstellt. Der VCO liefert ein Ausgangssignal Ul (fl). Spiegeleinheit MIRROR 105:
Die Spiegeleinheit MIRROR 105 umfasst insbesondere einen Spiegel, einen Spiegeltreiber, Möglichkeiten zur Messung und/oder Auswertung von Spiegelwerten bzw. Spiegelbewegungen (Feedback des Spiegels) ggf. mit einer Möglichkeit zur Konditionierung des gemessenen Signals sowie einen Signalkonverter.
Der Antrieb des Spiegels kann induktiv, kapazitiv, piezo-resistiv oder elektro-mechanisch erfolgen. Das Messsystem (Spiegel-Feedback) kann durch Auswertung einer kapazitiven, induktiven, optischen oder elektro- mechanischen Messgröße ein Signal liefern, das Rückschlüsse auf die Bewegung des Spiegels zulässt. Die Signalkonditionierung bewirkt eine zusätzliche Pegelanpassung und Rauschfilterung des Messsignals.
Die Spiegeleinheit MIRROR 105 liefert das Ausgangssignal U2(fl)
Referenzsystem REF 104:
Das Referenzsystem REF 104 ermöglicht eine Phasenverschiebung des Eingangssignals U(fl) um einen einstellbaren Phasen-Wert.
Der einzustellende Phasenwert hängt von mechanischen Eigenschaften des Spiegel ab und liegt typischerweise bei ca. 90°. Das Referenzsystem REF 104 liefert ein Ausgangssignal U3(fl).
DPU 102:
Die DPU 102 kann eingehende Videodaten verarbeiten und entsprechend eines vorgegebenen/implementierten Algorithmus, der insbesondere hinsichtlich eines vorgegebenen Verhältnisses zwischen DPU-Taktfrequenz und Frequenz der schnellen Spiegelachse optimiert ist, Modulationssignale an die bzw. den Laser-Treiber weitergeben .
DLL-Element 103: Das DLL-Element 103 ist vorzugsweise in der DPU 102 integriert und skaliert die vom VCO 101 ausgegebene Taktfrequenz gemäß dem festgelegten Verhältnis der beiden Takte.
Regler REG 106:
Der Regler REG 106 hat die Aufgabe, die Eingangssignale U2 und U3 auf ihre Phasenlage zu vergleichen und je nach Abweichung ein geeignetes Signal (die Regelspannung in Form des Signals UR) zu erzeugen.
In dem hier beispielhaft dargestellten Szenario werden die Signale U3 und U2 subtrahiert und ein folgender Integrator 108 ermittelt ein Maß für die Abweichung der Phasenlage und stellt dieses als Signal UR bereit, das an den Eingang des VCO 101 geleitet wird.
Insbesondere sind die folgenden Ausgestaltungen oder Variationen möglich:
(1) Die Anordnung gemäß Fig.l kann aus diskreten Bauelementen umfassend die DPU 102, den VCO 101, den Regler REG 106, die Spiegeleinheit MIRROR 105
(insbesondere mit Spiegeltreiber und/oder Messanordnung) und das Referenzsystem REF 104 aufgebaut sein.
(2) Die Anordnung gemäß Fig.l kann als integrierte Lösung ausgeführt sein, z.B. in Form einer integrierten elektronischen Einzelchip-Lösung in Kombination mit dem Spiegel. (3) Die Anordnung gemäß Fig.l umfasst Halbleiter-Elemente und kann integriert aufgebaut sein, umfassend z.B. den VCO 101, den Regler REG 106, die Spiegeleinheit MIRROR 105 (oder Teile derselben) sowie das Referenzsystem REF 104.
(4) Zusätzlich kann bei der Anordnung gemäß Fig.l ein Frequenzverhältnis von schneller Achse zu langsamer Achse konstant gehalten werden.
Als eine weitere Ausgestaltung zeigt Fig.2 ein Blockschaltbild der DPU-Taktregelung, wobei im Gegensatz zu Fig.l eine DPU in den Regelkreis integriert ist.
So zeigt Fig.2 einen VCO 201, der an seinem Ausgang ein Signal Ul bereit stellt, das das mit einem Eingang eines Referenzsystems REF 204, mit einem Eingang einer Spiegeleinheit MIRROR 205 und mit einem Eingang eines DLL- Elements 203 einer DPU 202 verbunden ist.
Am Ausgang der Spiegeleinheit MIRROR 205 wird ein Signal U2 einer Addiereinheit 207 eines Reglers REG 206 zugeführt. Am Ausgang des Referenzsystems REF 204 wird ein Signal U3 mit negativen Vorzeichen der Addiereinheit 207 zugeführt.
Der Regler REG 206 umfasst weiterhin einen Integrator 208, der mit dem Ausgang der Addiereinheit 207 verbunden ist. Der Ausgang des Integrators 208 ist mit einem ersten Eingang eines Komparators 210 (der auch in dem Regler REG 206 vorgesehen ist) verbunden, an dessen zweitem Eingang ein Referenzwert 211 anliegt. Der Ausgang des Komparators 210 ist mit der DPU 202 verbunden.
Die DPU 202 weist einen Ausgang auf, der mit dem Integrator 208 verbunden ist und einem Rücksetzen des Integrators 208 dient ("Reset") . Weiterhin ist ein Ausgang der DPU 202 mit einer Quantisiereinheit 209 verbunden. Die Quantisiereinheit 209 umfasst insbesondere einen Digital/Analog-Wandler zur Umsetzung eines n-Bit Signals der DPU 202 in ein analoges Signal UR.
Somit unterscheidet sich die Schaltung gemäß Fig.2 von der Schaltung gemäß Fig.l insbesondere dadurch, dass der Ausgang des Reglers REG 206 nicht direkt an den VCO 201 geleitet, sondern über die DPU 202 geführt wird.
Die DPU 202 führt einen Reset des Integrators 208 insbesondere nach einer steigenden Flanke der Eingangssignale U2 und U3 durch. Bei einer positiven Abweichung der Differenz von U3 und U2 liefert der Regler REG 206 logisch "1" als Ausgangssignal an die DPU 202, andernfalls logisch "0".
Das Ausgangssignal des Reglers REG 206 kann abhängig von einer Implementierung eines Regelalgorithmus auch umgekehrt ausfallen .
Beispielsweise kann eine Implementierung derart ausgestaltet sein, dass logisch "0" am Ausgang des Reglers REG 206 eine Frequenzerhöhung, also eine Erhöhung des Signals UR, bedingt. Hierzu wird von der DPU 202 ein erhöhter digitaler Wert n an die Quantisiereinheit 209 gesendet. Die Quantisiereinheit 209 wandelt den digitalen Wert in ein analoges Signal UR um, das einen höheren Wert aufweist als der vorherige Wert des Signals UR.
Entsprechend führt logisch "1" am Ausgang des Reglers REG 206 zu einem Signal UR mit reduziertem Wert.
Fig.3 zeigt Signalverläufe der Regelung gemäß Fig.2 in Abhängigkeit von einem Takt mit einer Taktdauer T. Ein Graph 301 zeigt beispielhaft ein Signal am Ausgang des Komparators 210, ein Graph 302 ein zugehöriges Signal am Eingang der Quantisiereinheit 209 und ein Graph 303 ein entsprechendes Signal Ul am Ausgang des VCO 201.
Hinsichtlich möglicher Ausgestaltungen oder Variationen gelten die oben zu Fig.l gemachten Ausführungen entsprechend. Zusätzlich können die Quantisiereinheit 209 und/oder der Komparator 210 entsprechend als diskretes und/oder integriertes Element ausgeführt sein.
Kommunikation der DPU
Hinsichtlich einer Kommunikation der DPU mit weiteren Bausteinen ist ggf. zu beachten, dass eine asynchrone
Datenkommunikation zur Entkopplung der unterschiedlichen Taktbasen notwendig sein kann.
Fig.4 zeigt ein Blockdiagramm zur Veranschaulichung einer asynchronen Datenkommunikation mittels eines Ringpuffers oder eines Dual-Port-RAMs .
Beispielsweise ist in Fig.4 eine bildgebende Einheit 401 dargestellt, die eine Taktbasis A i.H.v. 60Hz aufweist. Eine darstellende Einheit 402 weist eine Taktbasis B i.H.v, 55Hz auf. Zwischen der bildgebenden Einheit 401 und der darstellenden Einheit 402 ist ein Dual-Port-RAM 403 angeordnet. Das Dual-Port-RAM 403 umfasst zwei Ports A und B mit getrennten Adress- und Datenbussystemen, wobei beide Ports auf denselben Speicherbereich zugreifen können.
Von der bildgebenden Einheit 401 werden dem Dual-Port-Ram 403 ein Taktsignal "CIk A", ein Adress-Signal "Adr A" und ein Lese-/Schreib-Signal "W/R A" bereitgestellt. Weiterhin werden zwischen dem Dual-Port-Ram 403 und der bildgebenden Einheit 401 Daten "Data A" ausgetauscht. Von der darstellenden Einheit 402 werden dem Dual-Port-Ram 403 ein Taktsignal "CIk B", ein Adress-Signal "Adr B" und ein Lese- /Schreib-Signal "W/R B" bereitgestellt. Weiterhin werden zwischen dem Dual-Port-Ram 403 und der darstellenden Einheit 402 Daten "Data B" ausgetauscht.
Jedes Port A und/oder B bietet die Möglichkeit, über verschiedene Kontrollsignale sowohl Daten aus dem Speicher zu lesen als auch Daten in den Speicher zu schreiben. Aufgrund der getrennten Takteingänge kann an beiden Ports mit unterschiedlicher Geschwindigkeit geschrieben bzw. gelesen werden. Während beispielsweise am Port B die zur Darstellung benötigten Bilddaten ausgelesen werden, können über den zweiten Adressbus am Port A bereits neue Bilddaten eingeschrieben werden.
Weitere Vorteile
Der hier vorgestellte Ansatz ermöglicht eine Kompensation von fertigungsbedingten Toleranzen der Spiegel-Frequenz sowie eine Kompensation von umgebungsbedingten Änderungen der Spiegelfrequenz. Die Kompensation ist unabhängig von einem bildgenerierenden Algorithmus, insbesondere ist der bildgenerierende Algorithmus unabhängig von der Spiegelfrequenz .
Weiterhin können mit dem Vorschlag die Bildauflösung erhöht sowie Bild-Jitter-Effekte vermieden bzw. reduziert werden.
Auch wird eine kleinere und/oder kostengünstige Realsierung bzw. Bauweise der datenverarbeitenden Einheit ermöglicht.
Ein weiterer Vorteil ist die reduzierte Leistungsaufnahme der datenverarbeitenden Einheit.
Durch die vorgeschlagene Kompensation werden eine Ausbeute der Spiegel-Fertigung und eine Ausbeute der Projektor- Fertigung erhöht. Insgesamt kann eine Streuung der Bildqualität bezogen auf eine Gesamtmenge an Projektoren reduziert werden.
Bezugszeichenliste :
101 VCO (spannungsgesteuerter Oszillator)
102 DPU (datenverarbeitende Einheit, Verarbeitungseinheit)
103 DLL-Element (Delay-Locked-Loop)
104 Referenzsystem REF
105 Spiegeleinheit MIRROR
106 Regler REG 107 Addiereinheit (Summationsglied)
108 Integrator
201 VCO (spannungsgesteuerter Oszillator)
202 DPU (datenverarbeitende Einheit) 203 DLL-Element (Delay-Locked-Loop)
204 Referenzsystem REF
205 Spiegeleinheit MIRROR
206 Regler REG
207 Addiereinheit (Summationsglied) 208 Integrator
209 Quantisiereinheit (umfassend z.B. Digital/Analog- Wandler)
210 Komparator
211 Referenzwert
301 Graph: Signal am Ausgang des Komparators 210
302 Graph: Signal am Eingang der Quantisiereinheit 209
303 Graph: Signal Ul am Ausgang des VCO 201
401 bildgebende Einheit
402 darstellende Einheit
403 Dual-Port-RAM

Claims

Patentansprüche
1. Verfahren zum Projizieren mindestens eines
Lichtstrahls, - bei dem eine Zeitbasis einer Verarbeitungseinheit (102, 202) zur Ansteuerung des mindestens einen Lichtstrahls abhängig von einer Auslenkung des mindestens einen Lichtstrahls eingestellt wird.
2. Verfahren nach Anspruch 1, bei dem der mindestens eine Lichtstrahl anhand einer umlenkenden Projektionseinrichtung, insbesondere anhand eines Spiegels oder eines Mikrospiegels, ausgelenkt wird.
3. Verfahren nach Anspruch 2, bei dem die Auslenkung anhand einer Spiegeleinheit (105, 205) ermittelt und/oder gemessen wird.
4. Verfahren nach einem der Ansprüche 2 oder 3, bei dem eine Auslenkung der umlenkenden Projektionseinheit, insbesondere eine Antriebsfrequenz einer schnellen Achse der umlenkenden Projektionseinrichtung mittels eines Reglers (106, 206) nachgeführt und hierüber die Zeitbasis der Verarbeitungseinheit eingestellt wird.
5. Verfahren nach Anspruch 4, bei dem die Antriebsfrequenz der schnellen Achse der umlenkenden Projektionseinrichtung mittels eines Referenzsignals (U3) unter Berücksichtigung mechanischer Eigenschaften der umlenkenden Projektionseinrichtung eingestellt wird.
6. Verfahren nach einem der Ansprüche 4 oder 5, bei dem ein Verhältnis der Antriebsfrequenz der schnellen Achse und einer Antriebsfrequenz einer langsamen Achse der umlenkenden Projektionseinrichtung mittels des Reglers (106, 206) im wesentlichen konstant gehalten wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem anhand der Verarbeitungseinheit (102, 202) eine zeitliche Modulation der Intensität des mindestens einen Lichtstrahls durchgeführt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Verarbeitungseinheit (102, 202) ein
Ausgangssignal (UR) abhängig von der Auslenkung des mindestens einen Lichtstrahls rückkoppelt.
9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der mindestens eine Lichtstrahl aus mindestens einer Lichtquelle zusammengesetzt ist.
10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der mindestens eine Lichtstrahl mittels eines Flying-Spot-Verfahrens projiziert wird.
11. Vorrichtung zur Projektion mindestens eines
Lichtstrahls umfassend eine Prozessoreinheit und/oder eine festverdrahtete Schaltungsanordnung und/oder eine freiprogrammierbare Logik, die derart eingerichtet ist, dass das Verfahren nach einem der vorhergehenden Ansprüche durchführbar ist.
12. Vorrichtung zur Projektion mindestens eines Lichtstrahls
- umfassend eine Verarbeitungseinheit (102, 202) zur Ansteuerung des mindestens einen Lichtstrahls,
- umfassend eine Einheit (105, 205) zur Ermittlung einer Auslenkung des mindestens einen Lichtstrahls, - wobei eine Zeitbasis der Verarbeitungseinheit abhängig von einer der Auslenkung des mindestens einen Lichtstrahls einstellbar ist.
13. Vorrichtung nach Anspruch 12, bei der die Einheit (105, 205) zur Ermittlung der Auslenkung des mindestens einen Lichtstrahls die Auslenkung des mindestens einen Lichtstrahls mittels eines Reglers (106, 206) im wesentlichen konstant hält.
14. Vorrichtung nach einem der Ansprüche 12 oder 13, deren Komponenten zumindest teilweise als diskrete Bauelemente realisiert sind und/oder zumindest teilweise als eine integrierte Lösung ausgeführt sind.
15. Vorrichtung nach einem der Ansprüche 12 bis 14, bei der eine Kommunikation mit der Verarbeitungseinheit
(102, 202) und einer weiteren Verarbeitungseinheit mittels eines Ringpuffers und/oder mittels eines Dual- Port-RAMs (403) erfolgt.
PCT/EP2009/062325 2008-09-29 2009-09-23 Bildprojektion mit rasterabtastung eines modulierten lichtstrahls mittels spiegel WO2010034743A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/121,412 US8684538B2 (en) 2008-09-29 2009-09-23 Image projection through grid scanning of a modulated light beam using mirrors
CN200980138513.6A CN102165759B (zh) 2008-09-29 2009-09-23 通过借助镜对调制光束进行光栅扫描的图像投影
KR1020117009976A KR101280495B1 (ko) 2008-09-29 2009-09-23 미러들을 사용하는 변조된 광빔의 그리드 스캐닝을 통한 이미지 프로젝션

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008049477.1 2008-09-29
DE102008049477A DE102008049477A1 (de) 2008-09-29 2008-09-29 Verfahren und Vorrichtung zur Projektion mindestens eines Lichtstrahls

Publications (1)

Publication Number Publication Date
WO2010034743A1 true WO2010034743A1 (de) 2010-04-01

Family

ID=41327659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062325 WO2010034743A1 (de) 2008-09-29 2009-09-23 Bildprojektion mit rasterabtastung eines modulierten lichtstrahls mittels spiegel

Country Status (6)

Country Link
US (1) US8684538B2 (de)
KR (1) KR101280495B1 (de)
CN (1) CN102165759B (de)
DE (1) DE102008049477A1 (de)
TW (1) TWI474046B (de)
WO (1) WO2010034743A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015104890A1 (de) 2015-03-30 2016-10-06 Gpi Gesellschaft Für Prüfstanduntersuchungen Und Ingenieurdienstleistungen Mbh Testsystem und Testverfahren zum Test einer fahrzeug- und/oder fahrzeugführerspezifischen Signalwahrnehmung und -reaktion sowie Konfigurationssystem und Konfigurationsverfahren zur fahrzeug- und/oder fahrzeugführerspezifischen Konfiguration wenigstens einer Fahrzeugführer-System-Schnittstelle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493454B (zh) * 2013-01-04 2015-07-21 Ind Tech Res Inst 掃描鏡驅動裝置與驅動方法及掃描裝置
CN104977713B (zh) 2014-04-03 2017-09-29 财团法人工业技术研究院 扫描镜驱动装置与驱动方法及扫描装置
DE202017105001U1 (de) 2017-08-21 2017-09-14 Jenoptik Advanced Systems Gmbh LIDAR-Scanner mit MEMS-Spiegel und wenigstens zwei Scanwinkelbereichen
DE102017220813A1 (de) * 2017-11-22 2019-05-23 Robert Bosch Gmbh Laserprojektionsvorrichtung
CN109584761A (zh) * 2018-10-31 2019-04-05 歌尔股份有限公司 一种信号调整方法及激光扫描投影设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717925A (en) * 1985-04-19 1988-01-05 Ricoh Company, Ltd. Optical scanner without extra convergent lens
US6061163A (en) * 1996-09-25 2000-05-09 University Of Washington Position detection of mechanical resonant scanner mirror
WO2003032046A1 (de) * 2001-10-05 2003-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Projektionsvorrichtung
US20030117689A1 (en) * 2001-04-20 2003-06-26 Microvision, Inc. Frequency tunable resonant scanner with auxiliary arms
JP2004279947A (ja) * 2003-03-18 2004-10-07 Ricoh Co Ltd 光走査装置および画像形成装置
WO2005078508A2 (en) * 2004-02-09 2005-08-25 Microvision, Inc. Method and apparatus for scanning a beam of light
WO2005121866A1 (de) * 2004-06-07 2005-12-22 Benq Mobile Gmbh & Co. Ohg Verfahren zur kompensation von nichtlinearitäten in einem laserprojektionssystem und laserprojektionssystem mit mitteln zur kompensation von nichtlinearitäten
WO2007146093A2 (en) * 2006-06-06 2007-12-21 Microvision, Inc. Beam scanner with reduced phase error
WO2008058671A2 (de) * 2006-11-14 2008-05-22 Osram Gesellschaft mit beschränkter Haftung Projektions-vorrichtung mit verbesserter projektionseigenschaft

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319214A (en) * 1992-04-06 1994-06-07 The United States Of America As Represented By The Secretary Of The Army Infrared image projector utilizing a deformable mirror device spatial light modulator
US6406148B1 (en) * 1998-12-31 2002-06-18 Texas Instruments Incorporated Electronic color switching in field sequential video displays
US6771325B1 (en) * 1999-11-05 2004-08-03 Texas Instruments Incorporated Color recapture for display systems
US7102700B1 (en) * 2000-09-02 2006-09-05 Magic Lantern Llc Laser projection system
US7019881B2 (en) * 2002-06-11 2006-03-28 Texas Instruments Incorporated Display system with clock dropping
US7156522B2 (en) * 2003-07-16 2007-01-02 Plut William J Projection-type display devices with reduced weight and size
JP4121477B2 (ja) * 2004-03-31 2008-07-23 三洋電機株式会社 照明装置及び投写型映像表示装置
US8432339B2 (en) * 2005-02-16 2013-04-30 Texas Instruments Incorporated System and method for increasing bit-depth in a video display system using a pulsed lamp
JP4187030B2 (ja) * 2006-09-28 2008-11-26 セイコーエプソン株式会社 レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置並びにモニター装置
JP4259567B2 (ja) * 2006-11-02 2009-04-30 セイコーエプソン株式会社 プロジェクタ、プロジェクションシステム、プログラム、及び記録媒体
JP4858100B2 (ja) * 2006-11-14 2012-01-18 ウシオ電機株式会社 放電ランプ点灯装置およびプロジェクタ
US8614723B2 (en) * 2006-12-21 2013-12-24 Texas Instruments Incorporated Apparatus and method for increasing compensation sequence storage density in a projection visual display system
US7561322B1 (en) * 2007-12-19 2009-07-14 Silicon Quest Kabushiki-Kaisha Projection display system for modulating light beams from plural laser light sources

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717925A (en) * 1985-04-19 1988-01-05 Ricoh Company, Ltd. Optical scanner without extra convergent lens
US6061163A (en) * 1996-09-25 2000-05-09 University Of Washington Position detection of mechanical resonant scanner mirror
US20030117689A1 (en) * 2001-04-20 2003-06-26 Microvision, Inc. Frequency tunable resonant scanner with auxiliary arms
WO2003032046A1 (de) * 2001-10-05 2003-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Projektionsvorrichtung
JP2004279947A (ja) * 2003-03-18 2004-10-07 Ricoh Co Ltd 光走査装置および画像形成装置
WO2005078508A2 (en) * 2004-02-09 2005-08-25 Microvision, Inc. Method and apparatus for scanning a beam of light
WO2005121866A1 (de) * 2004-06-07 2005-12-22 Benq Mobile Gmbh & Co. Ohg Verfahren zur kompensation von nichtlinearitäten in einem laserprojektionssystem und laserprojektionssystem mit mitteln zur kompensation von nichtlinearitäten
WO2007146093A2 (en) * 2006-06-06 2007-12-21 Microvision, Inc. Beam scanner with reduced phase error
WO2008058671A2 (de) * 2006-11-14 2008-05-22 Osram Gesellschaft mit beschränkter Haftung Projektions-vorrichtung mit verbesserter projektionseigenschaft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG ET AL: "Implementation of phase-locked loop control for MEMS scanning mirror using DSP", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 133, no. 1, 20 December 2006 (2006-12-20), pages 243 - 249, XP005809117, ISSN: 0924-4247 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015104890A1 (de) 2015-03-30 2016-10-06 Gpi Gesellschaft Für Prüfstanduntersuchungen Und Ingenieurdienstleistungen Mbh Testsystem und Testverfahren zum Test einer fahrzeug- und/oder fahrzeugführerspezifischen Signalwahrnehmung und -reaktion sowie Konfigurationssystem und Konfigurationsverfahren zur fahrzeug- und/oder fahrzeugführerspezifischen Konfiguration wenigstens einer Fahrzeugführer-System-Schnittstelle
EP3101404A2 (de) 2015-03-30 2016-12-07 GPI Gesellschaft Für Prüfstanduntersuchungen und Ingenieurdienstleistungen MbH Testsystem und testverfahren sowie konfigurationssystem und konfigurationsverfahren zur konfiguration wenigstens einer fahrzeugführer-system-schnittstelle

Also Published As

Publication number Publication date
TWI474046B (zh) 2015-02-21
KR101280495B1 (ko) 2013-07-01
CN102165759B (zh) 2014-10-22
CN102165759A (zh) 2011-08-24
US8684538B2 (en) 2014-04-01
KR20110081252A (ko) 2011-07-13
TW201018961A (en) 2010-05-16
US20110227969A1 (en) 2011-09-22
DE102008049477A1 (de) 2010-04-08

Similar Documents

Publication Publication Date Title
WO2010034743A1 (de) Bildprojektion mit rasterabtastung eines modulierten lichtstrahls mittels spiegel
EP2514211B1 (de) Ablenkeinrichtung für eine projektionsvorrichtung, projektionsvorrichtung zum projizieren eines bildes und verfahren zum ansteuern einer ablenkeinrichtung für eine projektionsvorrichtung
DE69907936T2 (de) Verfahren und vorrichtung zur erzeugung einer nahtlosen verteilten darstellung
DE60300824T2 (de) Laserprojektionssystem
EP1570682B1 (de) Helligkeits- und farbregelung eines projektionsapparates
DE19702752C2 (de) Ansteuersystem für einen Scannerantrieb
DE102004060576B4 (de) Verfahren und Projektor zur Bildprojektion
EP1419411A1 (de) Projektionsvorrichtung
DE102009015538A1 (de) Verfahren zum Antreiben eines MEMS-Spiegelabtasters, Verfahren zum Antreiben eines MEMS-Betätigungsvorrichtungsabtasters und Verfahren zum Steuern des Drehwinkels einer MEMS-Betätigungsvorrichtung
DE112008003566B4 (de) Verfahren und Vorrichtung zum Projizieren mindestens eines Lichtstrahls
DE102007011425A1 (de) Projektionsvorrichtung zum scannenden Projizieren
DE60038601T2 (de) Schaltung zur Korrektur von Referenzfrequenz und von Fehlern zwischen Spiegelflächen
EP2850837A1 (de) Lasermodul mit duochromatischer laserdiode für einen tragbaren bildprojektor
DE3444581A1 (de) Verfahren und vorrichtung zur kompensation eines schattenphaenomens
DE19843596A1 (de) Pixeltaktgeber mit variabler Frequenz
EP1946041A1 (de) Vermessungssystem für dreidimensionale objekte
DE102017125342B3 (de) Laserlichtquelle und Laser-Projektor mit optischen Einrichtungen zur Reduzierung von Speckle-Rauschen sowie Verfahren zum Betreiben einer solchen Laserlichtquelle und eines solchen Laser-Projektors
EP1172010A1 (de) Bildprojektor
DE102012201492A1 (de) Ansteuervorrichtung für eine Laserdiode, Laserprojektionssystem und Verfahren zur Speckle-Reduktion bei einer Laserdiode
WO2003013150A1 (de) Rasterprojektion eines bildes mit hin- und hergehender lichtstrahlführung
DE4339908C2 (de) Verfahren und Vorrichtung zum Pyramidalfehlerausgleich
DE102005011898A1 (de) Variable-Frequenz-Generator
DE102012202026A1 (de) Projektionsvorrichtung und Verfahren zum Betreiben einer Projektionsvorrichtung
DE3417688A1 (de) Verfahren und einrichtung zur gleichlaufregelung eines elektromotors, insbesondere zum antrieb eines drehbaren reflektierenden elements eines optischen abtastsystems
DE19844651A1 (de) Vorrichtung und Verfahren zum Beschreiben von Darstellungsmaterial mit integriertem Wellenleiter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138513.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09783330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117009976

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13121412

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09783330

Country of ref document: EP

Kind code of ref document: A1