WO2010034140A1 - 具有太阳能电池组的发光元件检测机台及其检测方法 - Google Patents

具有太阳能电池组的发光元件检测机台及其检测方法 Download PDF

Info

Publication number
WO2010034140A1
WO2010034140A1 PCT/CN2008/001930 CN2008001930W WO2010034140A1 WO 2010034140 A1 WO2010034140 A1 WO 2010034140A1 CN 2008001930 W CN2008001930 W CN 2008001930W WO 2010034140 A1 WO2010034140 A1 WO 2010034140A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
solar cell
tested
sensing
Prior art date
Application number
PCT/CN2008/001930
Other languages
English (en)
French (fr)
Inventor
曾一士
Original Assignee
中茂电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2008201359948U external-priority patent/CN201273844Y/zh
Priority claimed from CN200810167875A external-priority patent/CN101726404B/zh
Application filed by 中茂电子(深圳)有限公司 filed Critical 中茂电子(深圳)有限公司
Priority to CN2008801311903A priority Critical patent/CN102159957B/zh
Priority to JP2011528157A priority patent/JP2012503758A/ja
Priority to KR1020117009080A priority patent/KR101380700B1/ko
Publication of WO2010034140A1 publication Critical patent/WO2010034140A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/44Testing lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a light-emitting element detecting machine and a detecting method thereof, and more particularly to a light-emitting element detecting machine having a solar battery pack and a detecting method thereof.
  • the industry In order to obtain the total luminous flux of the illuminating element, the industry often uses the integrating sphere to extract the light energy emitted by the illuminating element, and then analyzes and obtains the total luminous flux value of the illuminating element.
  • the measurement environment is as shown in FIG. 1.
  • the integrating sphere 11 is connected to the spectral energy analyzer through an optical fiber.
  • the inside of the integrating sphere 11 further includes a shutter 13.
  • the LED to be tested is positioned at the lower input portion of the integrating sphere 11, and the input portion is The size is the cross-sectional area of the input portion; the other end of the integrating sphere 11 has an output portion located above the other end of the input portion, and the size of the output portion is the cross-sectional area of the output portion.
  • the light energy enters the integrating sphere 11 from the input portion, and then passes through the internal refraction of the integrating sphere 11, and the light energy is collected and outputted by the output portion, that is, transmitted from the optical fiber to the spectral energy analyzer.
  • the total luminous flux of the LED to be tested can be obtained by comparing the standard light sources in the same environment. This detection mode is more suitable for a light source with directivity.
  • the size of the integrating sphere 11 is limited when it is required to be set. Usually, it is only planned in the laboratory, and the light source to be tested is continuously placed/extracted. The measurement of different LEDs to be tested is also quite time consuming, and the cost of the integrating sphere 11 is relatively high. Not too low.
  • the all-light flux detecting system has six solar cells disposed on the inner side of the light receiving device 20, and the output portion is the output point of the light receiving device 20, and the measured light bar to be tested is placed on the moving
  • the placement base on the device sequentially enters the light receiving device 20 through the vacant area 28, and is illuminated when the light to be tested is enabled by the placement and the light energy of the light to be measured is received through the solar cell.
  • the light energy of the light to be measured is transmitted through two paths, one path is transmitted to the processor via the transmitting device; the other path is transmitted to the spectral energy analyzer through the optical fiber, and then The spectral energy analyzer is sent to the processor via the transmitting device; the two paths are combined and analyzed by the processor to obtain the total luminous flux value of the light bar to be tested.
  • the structure of FIG. 2 not only makes the solar cell easy to obtain, is inexpensive, and is easy to maintain, and the action of the light stick to be tested is sequentially sent into the light receiving device 20 via the placement device of the mobile device. Significantly saves inspection time, combined with the spectral energy analyzer and processor, to obtain a more accurate total luminous flux value of the light bar to be tested.
  • the known technology only discusses its full luminous flux, and the invention can not only detect the light source to be measured by the solar cell, but also statically sense whether the entire light source to be tested is a good product, and can more accurately pass the dynamic brightness sensing.
  • the invention can not only detect the light source to be measured by the solar cell, but also statically sense whether the entire light source to be tested is a good product, and can more accurately pass the dynamic brightness sensing.
  • An object of the present invention is to provide a light-emitting element detecting machine which can quickly and clearly detect which of a plurality of light-emitting elements in a light-emitting module is unqualified.
  • Another object of the present invention is to provide a light-emitting element detecting machine which further maintains the original simple structure and is highly compatible.
  • Still another object of the present invention is to provide a light-emitting element detecting machine which is inexpensive and can be fully automated to reduce the cost of testing a lighting assembly.
  • Another object of the present invention is to provide a rapid detection of illumination without complicated devices and actions.
  • a further object of the present invention is to provide a light-emitting element detecting machine having a solar battery pack which has a small space for use, high use efficiency, and direct improvement in detection competitiveness.
  • the present invention is a light-emitting element batch detecting machine having a solar battery pack, comprising: a base for accommodating a plurality of light-emitting components having a light-emitting element to be tested, and respectively enabling the light-emitting elements to emit light; A mobile device for transferring a plurality of light emitting elements to be tested out of a susceptor; a set of solar cells including at least one solar cell.
  • the detection method of the above machine is a method for detecting a light-emitting component having a plurality of light-emitting elements, wherein the light-emitting elements in the light-emitting component are arranged along a length direction, and a light-emitting component in the light-emitting component is detected by a detecting machine a illuminating state, wherein the detecting machine comprises a pedestal; a set of solar cells disposed on the pedestal, having a sensing range covering the plurality of illuminating elements, sensing the illuminating of the illuminating element and converting the output into the sensing signal output And a set of moving devices for relatively moving the light-emitting component and the solar battery pack in a predetermined moving direction, the method comprising the following steps: a) placing one of the light-emitting components in a longitudinal direction in a predetermined moving direction, and The light-emitting element of the socket-enabled light-emitting component emits light; b) the light-
  • the sensing signal of the sensed illuminance varies with the state and time of the illuminating element in the sensing range.
  • the present invention provides a light-emitting element detecting machine having a solar battery pack and a detecting method thereof, which are obtained by sequentially arranging a plurality of light-emitting elements in a light-emitting component into/out of a sensing range.
  • Luminous brightness, step by step is simple to increase or decrease, once the increase or decrease state does not match the expected, according to the speed of entry/exit, the position of the light-emitting element in question is immediately calculated in the light-emitting component, and further achieved in the automatic detection operation, immediately resolved Wrong single component, speeding up subsequent repair or processing, increasing output rate; especially not limited by the length of the light-emitting component to be tested, more suitable Demand
  • FIG. 1 is a side elevational view of a conventional light-emitting device detecting machine
  • FIG. 2 is a perspective view of a conventional detection system for a solar cell light receiving device
  • FIG. 3 is a block diagram of a first embodiment of the present invention
  • Figure 4 is a perspective view of a first embodiment of the present invention.
  • Figure 5 is a partial perspective view of a first embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of a detecting machine according to a second embodiment of the present invention
  • FIG. 7 is a schematic cross-sectional view showing an operation of a light-emitting component at a preliminary position outside a sensing range according to a second embodiment of the present invention
  • FIG. 8 is a cross-sectional view showing the operation of the initial light-emitting element initially entering the sensing range of the solar battery unit according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing the operation of the entire sensing position of the light-emitting component in the sensing range of the solar battery module according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the operation of a preliminary detachment position in a sensing range of a solar cell group according to a second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the operation of the light-emitting component in a measurement position away from the sensing range of the solar battery module according to the second embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the electrical state of a detection process of a light-emitting component of a solar battery pack sensing good according to a second embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the electrical state of a light-emitting component detecting process of a solar battery module sensing a light-emitting component having a substandard standard according to a second embodiment of the present invention
  • Figure 14 is a top plan view showing a detecting unit of a light-emitting component according to a third embodiment of the present invention
  • FIG. 15 is a schematic diagram showing an electrical state of a detection process of a light-emitting component of a solar battery module sensing good product according to a third embodiment of the present invention
  • FIG. 15 is a schematic diagram showing an electrical state of a detection process of a light-emitting component of a solar battery module sensing good product according to a third embodiment of the present invention.
  • Fig. 16 is a view showing the electrical state of a light-emitting module detecting process of a solar battery module sensing a light-emitting element having a substandard standard according to a third embodiment of the present invention.
  • the block diagram is a block diagram of a first embodiment of the present invention.
  • the architecture of the detecting machine includes a base 30 for enabling and supporting the mobile device 32, and the mobile device 32 is for batch input and output to be tested.
  • the solar cell stack 33 includes at least one solar cell 331, and the detection signals received by the solar cell stack 33 are transmitted to the processing device 35 for further processing and analysis.
  • the actual structure of the first embodiment of the present invention is as shown in FIG. 4 and FIG. 5 , wherein the light-emitting element 70 to be tested is an example of a light-emitting diode die, and the light-emitting component 70 is divided by a wafer (WAFER) stage, and is separated and placed.
  • the mobile device 32 in this example, is a two-dimensional moving stage responsible for moving the susceptor 30, and can move a batch of thousands to tens of thousands of illuminating elements 70 cut from the entire wafer.
  • the solar cell group 33 in this example is exemplified by a single-piece solar cell 331, and is flipped by 180° for the sake of explanation.
  • the solar cell 331 faces the light-emitting element 70 to be tested with its active surface 622, and is directed toward the light-emitting element at the active surface 622.
  • the component 70 side is further configured as a color filter set of a color filter 624.
  • the transmission function of the selected color filter set is multiplied by the wavelength response function of the solar cell 331 to correspond to a standard visual effect function.
  • the solar cell 331 will be close to the light-emitting element 70 to be tested, so that the amount of light emitted by the light-emitting element 70 is mainly irradiated to the active surface 622 of the solar cell 331, and is large. The amount of luminescence that is dissipated outside the solar cell 331.
  • the illuminating unit detecting machine 3' is for measuring the illuminating state of the illuminating unit 7 having a plurality of illuminating elements 70, and includes: one for carrying The pedestal 30' of the illuminating assembly 7 is enabled, a set of sensing devices capable of simultaneously sensing the plurality of illuminating elements 70, and a set of moving devices 32'.
  • the solar cell group 33' is used as a sensing device, and a light bar having a plurality of light emitting diodes is exemplified as having a plurality of light emitting elements 70.
  • the detecting machine 3' starts to detect, the light-emitting component 7 to be tested is first placed on the mobile device 32', so that the light-emitting component 7 of the light-emitting component to be tested faces upward, and is located away from the sensing range of the solar battery group 33'.
  • the preliminary position 0 continues to enable the light-emitting component 7 to be tested by the susceptor 30' to cause the plurality of light-emitting elements 70 to emit light.
  • the moving device 32' drives the direction in which the light-emitting assembly 7 moves as shown in FIG. 8, which is referred to as a predetermined moving direction, which necessarily corresponds to the length direction of the above-described light-emitting assembly 7, so that In the light-emitting unit 7 to be tested of the example, the first light-emitting element 70 that is turned on enters the sensing range of the solar battery unit 33' from the preparatory position.
  • the illuminated light-emitting elements 70 are sequentially added to the sensing range, for example, at a constant speed.
  • the above-described procedure for measuring the increase in illumination can also be reversed as a decrement measurement procedure.
  • a preliminary disengagement position 82 when the first one of the illuminated light-emitting elements shown in FIG. 10 is about to be separated from the sensing range of the solar battery module 33', it is referred to as a preliminary disengagement position 82; and is gradually measured until as shown in FIG.
  • the measured light-emitting element 70 reaches the measurement position E which is completely out of the sensing range of the solar battery module 33'; thus, as shown in the second half of FIG. 12, the measured brightness is determined by the maximum value of the corresponding preliminary release position 82, step by step. Decrease to the original reference brightness corresponding to the measured position E.
  • any one of the foregoing two metric sensing processes is processed by the processing device 35' according to the sensing signals and time sequences corresponding to each other, and then sensed.
  • the signal is estimated to be a change in the electrical state of the solar cell group 33' (solar cell) in response to the light-emitting state of the test object, and it is detected whether the light-emitting component is a good product.
  • the third embodiment of the present invention is as shown in FIG.
  • the sensing range of the solar battery group 33" cannot cover all the light-emitting elements in the light-emitting assembly 7" at the same time; the sensing result will be as shown in FIG. 15 or FIG.
  • the speed of mechanical movement is much lower than the switching speed of the electric signal
  • the light-emitting elements on the left and right sides shown in FIG. 14 belong to different illumination groups respectively, or for example, two (or even more) light rods are as shown in the figure.
  • the left and right arrays of 14 are subjected to detection, and the left and right rows of crystal grains may be alternately illuminated, or two (or more) light bars may be illuminated in turn to further accelerate the output efficiency of the sensing.
  • the invention can quickly detect the illuminating state of the illuminating component which does not meet the standard according to the illuminating state reflected by the component sequence in the detection of each type of illuminating component, and maintain the correctness of the inspection result of the testing machine, and No need to pay too much cost, can immediately identify defective components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

具有太阳能电池组的发光元件检测机台及其检测方法 【技术领域】
本发明是关于一种发光元件检测机台及其检测方法,特别是具有太阳能 电池组的发光元件检测机台及其检测方法。 【背景技术】
为获取发光元件的全光通量, 业界常以积分球撷取发光元件受致能后发 出的光能, 进而分析求取发光元件的全光通量值。 量测环境如图 1所示, 积 分球 11通过光纤连结光谱能量分析仪, 积分球 11内部更包括一遮板 13, 待 测 LED是定位于积分球 11的下方输入部处,而输入部的大小为输入部截面 积;积分球 11相对于输入部的另一端具有一位于其上方处的输出部,而输出 部的大小为输出部截面积。
当待测 LED受致能点亮, 光能由输入部进入积分球 11 , 再透过积分球 11的内部折射, 将光能由输出部收取并输出, 即由光纤传递至光谱能量分析 仪, 经标准光源于相同环境量测比对后可得待测 LED 的全光通量, 此检测 模式较适用于具有指向性的光源。 而积分球 11 的大小造成需设置时有所限 制, 通常仅见规划于实验室中, 且不断置入 /取出待测光源, 进行不同待测 LED的量测也相当耗费时间, 积分球 11的造价也不低。
因此,如图 2所示的全光通量检测系统,光接收装置 20的内侧六面设置 有六片太阳能电池,输出部为光接收装置 20的输出点,受测的待测光棒载放 于移动装置上的置放座, 通过空缺区 28循序进入光接收装置 20中, 当受测 待测光棒受置放座致能而点亮, 待测光棒的光能即透过太阳能电池接收。
随后于光接收装置 20中,待测光棒的光能经两个路径传送,一路径为经 传输装置传输至处理器; 另一路径为通过光纤传送至光谱能量分析仪, 再由 光谱能量分析仪经传送装置至处理器; 结合两路径数据由处理器进行分析, 可获得待测光棒的全光通量值。
与图 1中的积分球系统相比, 图 2结构不仅太阳能电池取得容易、 价格 低廉、 易于维修保养, 将待测光棒循序经移动装置的置放座送进光接收装置 20中的动作, 更大幅节省检测时间, 结合光谱能量分析仪与处理器, 可获得 待测光棒更精确的全光通量值。
然而, 该公知技术仅论及其全光通量, 而本发明不仅可以太阳能电池对 待测光源就感测定位后静态感测整个待测光源是否为良品, 更能通过动态亮 度感测, 细部论究整个待测光源内拥有众多发光元件时, 众多发光元件中何 者有误; 亦即, 一旦发现某发光组件出现问题, 无须额外经由一个步骤确认 发光有误的元件何在, 即可正确分辨待测发光组件的所有发光元件是否均为 符合检测标准的良品, 迅速确认出非良品的受测元件, 将可加速后续修正处 理速度,就此提升产出良率;尤其当此种分辨是经由相同的自动化作业流程, 更能迅速在检测过程中, 大量检验待测发光组件而具备实用价值, 解决生产 发光组件与检测发光组件厂商的困境, 实为最佳的解决方案。 【发明内容】
本发明之一目的, 在提供一种可迅速且明确察知发光组件中的众多发光 元件何者不合格的发光元件检测机台。
本发明另一目的, 在提供一种进一步保有原先简单架构、 具有高度相容 性的发光元件检测机台。
本发明再一目的, 在提供一种成本低廉、 并可充分自动化而降低发光组 件测试成本的发光元件检测机台。
本发明又一目的, 在提供一种无需繁复装置及动作, 即可快速检测发光 组件中的众多发光元件何者不合格的发光元件检测方法。
本发明更一目的, 在提供一种建置耗用空间小, 使用效率高, 直接提升 检测竞争力的具有太阳能电池组的发光元件检测机台。
本发明是一种具有太阳能电池组的发光元件批次检测机台, 其包括: 一 个供容纳具多个待测发光元件的发光组件、 并分别致能发光元件使其发光的 基座; 一组供将多个待测发光元件批次输 移出基座的移动装置;一组包括 至少一片太阳能电池的太阳能电池组。
利用上述机台的检测方法即为一种具有多个发光元件的发光组件检测方 法, 其中发光组件中的发光元件是沿着一个长度方向配置, 并由一具检测机 台检测发光组件中发光元件发光状态, 其中检测机台包括一个基座; 一组设 于基座、 具有一个可涵盖多个发光元件的感测范围、 用以感测发光元件发光 并转换为感测讯号输出的太阳能电池组; 及一组将发光组件与太阳能电池组 沿一个预定移动方向相对移动的移动装置, 该方法包括下列步骤: a)将发光 组件之一以长度方向吻合于预定移动方向方式置放, 并以基座致能待测发光 组件的发光元件发光; b)以移动装置将发光组件与太阳能电池组沿预定移动 方向移动,使得待测发光组件的发光元件循序进入及 /或脱离太阳能电池组的 感测范围;及 c)由太阳能电池组感测依照发光元件进入及 /或脱离感测范围状 态, 输出所感测发光量随感测范围内发光元件状态及时间变化的感测讯号。
承上所述, 本发明提出一种具有太阳能电池组的发光元件检测机台及其 检测方法,藉由让发光组件中的多个发光元件循序进 Λ/脱离感测范围,使感 测所得的发光亮度, 循序简单递增或递减, 一旦增减状态与预期不符, 则依 照进入 /脱离的速度, 立即推算得知发生问题的发光元件在发光组件中位置, 进一步达成在自动化检测作业中, 立即分辨错误的单一元件, 加速后续修补 或处理流程, 提升产出速率; 尤其不受待测发光组件的长度限制, 更能切合 需求
【图式简单说明】 图 1为一常见发光元件检测机台的侧视示意图;
图 2为一常见具太阳能电池光接收装置的检测系统的立体示意图; 图 3是本发明第一实施例的方块图;
图 4是本发明第一实施例的立体图;
图 5是本发明第一实施例的部分立体图;
图 6为本发明第二实施例的检测机台立体示意图; 图 7为本发明第二实施例, 发光组件位于感测范围外的预备位置的作动 情形剖面示意图;
图 8为本发明第二实施例, 初位发光元件初始进入太阳能电池组感测范 围的作动情形剖面示意图;
图 9为本发明第二实施例, 发光组件位于太阳能电池组感测范围内的完 全感测位置的作动情形剖面示意图;
图 10为本发明第二实施例,末位发光元件位于太阳能电池组感测范围内 的预备脱离位置的作动情形剖面示意图;
图 11为本发明第二实施例,发光组件位于脱离太阳能电池组的感测范围 的完测位置的作动情形剖面示意图;
图 12为本发明第二实施例,太阳能电池组感测良品的发光组件检测流程 的电性状态示意图;
图 13为本发明第二实施例,太阳能电池组感测具有未达良品标准的发光 元件的发光组件检测流程的电性状态示意图;
图 14为本发明第三实施例, 发光组件检测机台的俯视示意图; 图 15为本发明第三实施例,太阳能电池组感测良品的发光组件检测流程 的电性状态示意图;
图 16为本发明第三实施例,太阳能电池组感测具有未达良品标准的发光 元件的发光组件检测流程的电性状态示意图。
【主要元件符号说明】
11...积分球 13...遮版
20...光接收装置 28...空缺区
3、 3\ 3"…检测机台 30、 30,...基座
32、 32'…移动装置 33、 33'、 33" ...太阳能电池组
331...太阳能电池 35、 35' ...处理装置
622...作用面 624...滤色片
70...发光元件 7、 7"…发光组件
0...预备位置 E...完测位置
81...完全感测位置 82...预备脱离位置
【具体实施方式】
有关本发明的技术内容、 特点与功效, 在以下配合说明书附图的较佳实 施例的详细说明中,将可清楚地呈现; 且为方便说明,文内所提的发光组件, 其所具有的多个发光元件沿一个长度方向配置, 并省略必备于机台基座的支 架线路, 以免图面紊乱。
敬请参考图 3, 所示内容为本发明第一实施例的方块图, 检测机台的架 构包括检测时致能与承载用的基座 30, 移动装置 32则供批次输入与输出待 测物, 太阳能电池组 33包括至少一片太阳能电池 331, 经太阳能电池组 33 接收的检测讯号则传送至处理装置 35进一步处理与分析。 本案第一实施例的实际结构如图 4及图 5所示, 其中待测发光元件 70 是以发光二极管晶粒为例, 发光元件 70是由晶圆 (WAFER)阶段分割, 并被 分离置放于基座 30上,移动装置 32在本例中则是负责移动基座 30的二维移 动载台, 可将整片晶圆所切割出的数千至数万颗发光元件 70批次移动。
本例中的太阳能电池组 33是以单一片太阳能电池 331为例,并为说明起 见翻转 180°绘示,太阳能电池 331以其作用面 622面向受测发光元件 70,且 在作用面 622朝向发光元件 70侧更配置例释为一片滤色片 624的滤色片组, 在此,选择滤色片组的透射函数系与太阳能电池 331的波长响应函数相乘后, 对应于标准视效函数, 藉以求得与视觉效果相对应的发光亮度; 为使量测误 差缩小, 太阳能电池 331将接近受测发光元件 70, 使得发光元件 70所发光 量主要照射于太阳能电池 331的作用面 622,且远大于逸散至太阳能电池 331 以外的发光量。
如图 6及图 7所示, 此为本发明第二实施例, 发光组件检测机台 3'系供 量测具有多个发光元件 70的发光组件 7的发光状态,并包括:一个用以承载、 致能发光组件 7的基座 30'、 一组可同时感测多个发光元件 70的感测装置及 一组移动装置 32'。
承上所示, 以太阳能电池组 33'为感测装置, 及以具有多个发光二极管 的光棒作为具有多个发光元件 70的例证。 当检测机台 3'开始进行检测时, 先将待测发光组件 7置放于移动装置 32', 使待测发光组件 7发光面朝上, 并坐落于远离太阳能电池组 33'感测范围的预备位置 0; 续由基座 30'致能待 测发光组件 7, 使多个发光元件 70发光。
在此需强调, 若以一条光棒上具有 60颗 LED晶粒, 并被区分为彼此间 隔交错的六组,则所谓致能多个发光元件发光,并非限制所有 LED晶粒都必 须同时发光, 亦可选择例如一组十颗晶粒同时被致能发光, 其余五组则暂时 不点亮, 其依照时序循序检测, 并无不可。
为便于说明起见, 定义下文步骤中, 移动装置 32'如图 8所示驱动发光 组件 7移动的方向, 称为预定移动方向, 此预定移动方向必然对应于上述发 光组件 7的长度方向, 使得本例的待测发光组件 7中, 被点亮的第一个发光 元件 70由上述预备位置进入太阳能电池组 33'的感测范围。 且被点亮的发光 元件 70是以例如一恒定速度依序加入感测范围中。直到如图 9所示,所有受 测发光元件 70完全进入太阳能电池组 33'感测范围, 并称此位置为完全感测 位置 81。 假设所有被量测的发光元件亮度均正常, 彼此发光亮度差异甚低, 则量得的亮度将如图 12所示,由预备位置 0的全无亮度,递增至标示为对应 完全感测位置 81的极大值。
当然, 如熟悉本技术领域者所能轻易理解, 上述量测发光递增的程序, 亦可被反向操作为递减量测程序。为便于说明,将图 10所示被点亮的各发光 元件中的第一颗即将脱离太阳能电池组 33'的感测范围时, 称为预备脱离位 置 82; 并逐步量测直到如图 11所示, 受测发光元件 70到达全数脱离太阳能 电池组 33'感测范围的完测位置 E; 从而取得如图 12后半程所示, 量得亮度 由对应预备脱离位置 82的极大值, 逐步递减至对应完测位置 E的原始基准 亮度。
如图 11所示,随后将前述两种度量感测过程中任选一者 (或两者皆处理), 由处理装置 35'依照彼此对应的感测讯号与时间顺序, 于后, 由感测讯号推 算太阳能电池组 33' (太阳能电池)对应受测物发光状态反应的电性状态变化, 检知发光组件是否为良品。 一旦有任何发光元件 70未达预定标准, 则如图 13所示,原先的递增上升趋势 (或递减的下降曲线)将产生一处非理想的折曲, 即可依时间顺序 (t)计算出此未达良品标准的发光元件位置在何处。
由于例如光棒的长度有日渐增长的趋势, 故如本发明第三实施例图 14 所示, 当检测机台 3"受到空间限制, 太阳能电池组 33"的感测范围无法同时 涵盖发光组件 7"内所有发光元件; 则感测结果将如图 15或图 16所示,仍可 由上述预备位置 0至所有被点亮发光元件中的最末一位进入感测位置的完全 感测位置, 或由预备脱离位置至完测位置 E的状态, 清楚分析出不合格发光 元件位置。
尤其,由于机械移动的速度远逊于电讯号切换速度,故当图 14所示左右 两侧的发光元件分别属于不同发光组别, 或者是将例如两条 (甚至更多条)光 棒如图 14的左右排列接受检测,亦可轮流点亮左右两排的晶粒、或轮流点亮 两 (或更多)条光棒, 藉以进一步加速感测的产出效率。
由此可见, 本发明可在各款式发光组件检测中, 循元件顺序所反应的发 光状态, 迅速检测其所具未符合标准的发光元件发光状态, 并保持检测机台 检验结果的正确性, 且无须付出过多的成本, 能立即分辨出不良品元件。
惟以上所述者, 仅为本发明的较佳实施例而已, 当不能以此限定本发明 实施和保护的范围, 即凡依本发明申请专利范围及发明说明内容所作简单的 等效变化与修饰, 皆仍属本发明专利涵盖的范围内。

Claims

权利要求书
1.一种具有太阳能电池组的发光元件批次检测机台, 包括:
一个供容纳具多个待测发光元件的发光组件、并分别致能所述发光元 件使其发光的基座;
一组供将多个待测发光元件批次输入 /移出该基座的移动装置; 一组包括至少一片太阳能电池的太阳能电池组。
2.如权利要求 1所述的检测机台, 其特征在于: 其中该至少一片太阳能电池 具有一个波长响应函数, 且该太阳能电池组更包括设置于该至少一片太阳 能电池作用面侧、 具有一个与该波长响应函数相乘后对应于标准视效函数 的透射函数的滤色片组。
3.如权利要求 1或 2所述的检测机台,其特征在于: 更包括一组接收该太阳 能电池组感测讯号的处理装置。
4.如权利要求 1或 2所述的检测机台, 其特征在于: 其中该至少一片太阳能 电池更包括具有一作用面, 该至少一片太阳能电池作用面朝向该基座、 供 将照射至该至少一片太阳能电池的光能转换为电能, 且该至少一片太阳能 电池与该基座距离系使当所述待测元件发光时、 照射至该至少一片太阳能 电池的光能是远大于照射至该太阳能电池作用面以外光能。
5.如权利要求 1或 2所述的检测机台, 其特征在于: 其中该至少一片太阳能 电池更包括具有一作用面, 该至少一片太阳能电池作用面具有一个可涵盖 该待测发光组件的多个发光元件的感测范围、 用以感测该待测发光组件发 光并转换为感测讯号输出的太阳能电池。
6.一种具有多个发光元件的发光组件检测方法,其中所述发光组件中的所述 发光元件是沿着一个长度方向配置, 并由一具检测机台检测所述发光组件 中发光元件发光状态, 其中该检测机台包括一个基座; 一组设于该基座、 具有一个可涵盖多个发光元件的感测范围、 用以感测所述发光元件发光并 转换为感测讯号输出的太阳能电池组; 及一组将所述发光组件与该太阳能 电池组沿一个预定移动方向相对移动的移动装置, 该方法包括下列步骤: a)将所述发光组件之一以该长度方向吻合于该预定移动方向方式置 放, 并以该基座致能该待测发光组件的发光元件发光;
b)以该移动装置将所述发光组件与该太阳能电池组沿该预定移动方向 移动,使得该待测发光组件的发光元件循序进入及 /或脱离该太阳能电池组 的感测范围; 及
c)由该太阳能电池组感测依照所述发光元件进入及 /或脱离感测范围 状态, 输出所感测发光量随该感测范围内发光元件状态及时间变化的感测 讯号。
7.如权利要求 6所述的检测方法, 其特征在于: 其中检测机台更包括一组用 以接收太阳能电池组感测讯号的处理装置, 所述检测方法更包括在步骤 c) ' 后, 以处理装置依照感测讯号的时变状态计算所述发光元件发光状态的处 理步骤 d)。
8.如权利要求 7所述的检测方法,其特征在于:其中该步骤 b)是由处理装置 指令移动装置以一个预定速度移动。
9.如权利要求 6、 7或 8所述的检测方法, 其特征在于: 其中所述发光元件 是发光二极管晶粒、 所述发光组件是其上设置有多个发光二极管晶粒的光 棒; 且步骤 b)是由移动装置将待测光棒沿对应待测光棒的长度方向的预定 移动方向, 从一个使得所述发光二极管晶粒全未进入该太阳能电池组感测 范围的预备位置, 朝向一个使所述发光二极管晶粒中沿长度方向排列的最 后一个进入所述感测范围的完全感测位置移动。
10.如权利要求 6、 7或 8项所述的检测方法, 其特征在于: 其中所述发光元 件是发光二极管晶粒、所述发光组件是其上设置有多个发光二极管晶粒的 光棒; 且步骤 b)是由移动装置将待测光棒沿对应该待测光棒的长度方向 的预定移动方向,从一个使所述发光二极管晶粒中沿长度方向排列的最先 一个即将脱离太阳能电池组感测范围的预备脱离位置,朝向一个使所述发 光二极管晶粒全数脱离所述感测范围的完测位置移动。
PCT/CN2008/001930 2008-09-27 2008-11-26 具有太阳能电池组的发光元件检测机台及其检测方法 WO2010034140A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801311903A CN102159957B (zh) 2008-09-27 2008-11-26 具有太阳能电池组的发光元件检测机台及其检测方法
JP2011528157A JP2012503758A (ja) 2008-09-27 2008-11-26 ソーラーモジュールを備える発光素子の測定装置及びその測定方法
KR1020117009080A KR101380700B1 (ko) 2008-09-27 2008-11-26 태양 전지 모듈을 구비한 발광소자 측정 장치 및 측정 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200820135994.8 2008-09-27
CNU2008201359948U CN201273844Y (zh) 2008-09-27 2008-09-27 具有太阳能电池组的发光元件批次检测机台
CN200810167875.5 2008-10-15
CN200810167875A CN101726404B (zh) 2008-10-15 2008-10-15 具有多个发光元件的发光组件的检测机台及其检测方法

Publications (1)

Publication Number Publication Date
WO2010034140A1 true WO2010034140A1 (zh) 2010-04-01

Family

ID=42059261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001930 WO2010034140A1 (zh) 2008-09-27 2008-11-26 具有太阳能电池组的发光元件检测机台及其检测方法

Country Status (4)

Country Link
JP (1) JP2012503758A (zh)
KR (1) KR101380700B1 (zh)
CN (1) CN102159957B (zh)
WO (1) WO2010034140A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576099A (zh) * 2013-07-30 2014-02-12 大连工业大学 一种led灯具闪烁测试系统及其实现测试方法
CN109031146A (zh) * 2018-08-16 2018-12-18 天津城建大学 一种便携式太阳能电池测试装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286571B2 (ja) * 2009-05-22 2013-09-11 大塚電子株式会社 全光束測定装置および全光束測定方法
CN102967449B (zh) * 2012-12-21 2015-06-03 广东威创视讯科技股份有限公司 一种用于led灯管光源检测的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611116A (en) * 1984-02-21 1986-09-09 Batt James E Light emitting diode intensity tester
DE19515865A1 (de) * 1995-04-29 1996-10-31 Schoeniger Karl Heinz Vorrichtung zum Prüfen und Vergleichen der Lichtleistung von Leuchtdioden
CN1825128A (zh) * 2005-02-22 2006-08-30 久元电子股份有限公司 量产式发光二极管测试装置
CN1959366A (zh) * 2006-11-30 2007-05-09 复旦大学 采用窄光束标准光源的led光通量测试装置及测试方法
CN200959025Y (zh) * 2006-10-09 2007-10-10 深圳市量子光电子有限公司 Led测试工作台
CN201096613Y (zh) * 2007-07-30 2008-08-06 张九六 一种大功率led全自动光、电参数测试装置
CN101266276A (zh) * 2007-03-14 2008-09-17 纬创资通股份有限公司 自动化测量发光二极管的测试设备及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239680A (ja) * 1985-04-16 1986-10-24 Hitachi Cable Ltd 発光ダイオ−ドアレイの試験方法
JPH021186A (ja) * 1988-04-06 1990-01-05 Nec Corp Ledアレイ測定装置
JPH02208950A (ja) * 1989-02-08 1990-08-20 Hitachi Cable Ltd 発光ダイオードウエハの特性評価方法
JPH08184529A (ja) * 1995-01-04 1996-07-16 Rohm Co Ltd 光半導体の発光検査装置
JPH10341041A (ja) * 1997-06-05 1998-12-22 Rohm Co Ltd 半導体光学デバイスの製造方法及びそのデバイス用検査 装置
JP4202683B2 (ja) * 2002-06-21 2008-12-24 株式会社テクノローグ 発光ダイオードの光量測定方法及び光量測定装置
JP4115253B2 (ja) * 2002-11-13 2008-07-09 京セラミタ株式会社 Ledの光量測定方法
JP4779342B2 (ja) * 2004-11-25 2011-09-28 パナソニック電工株式会社 無線センサ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611116A (en) * 1984-02-21 1986-09-09 Batt James E Light emitting diode intensity tester
DE19515865A1 (de) * 1995-04-29 1996-10-31 Schoeniger Karl Heinz Vorrichtung zum Prüfen und Vergleichen der Lichtleistung von Leuchtdioden
CN1825128A (zh) * 2005-02-22 2006-08-30 久元电子股份有限公司 量产式发光二极管测试装置
CN200959025Y (zh) * 2006-10-09 2007-10-10 深圳市量子光电子有限公司 Led测试工作台
CN1959366A (zh) * 2006-11-30 2007-05-09 复旦大学 采用窄光束标准光源的led光通量测试装置及测试方法
CN101266276A (zh) * 2007-03-14 2008-09-17 纬创资通股份有限公司 自动化测量发光二极管的测试设备及方法
CN201096613Y (zh) * 2007-07-30 2008-08-06 张九六 一种大功率led全自动光、电参数测试装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576099A (zh) * 2013-07-30 2014-02-12 大连工业大学 一种led灯具闪烁测试系统及其实现测试方法
CN109031146A (zh) * 2018-08-16 2018-12-18 天津城建大学 一种便携式太阳能电池测试装置
CN109031146B (zh) * 2018-08-16 2024-03-19 天津城建大学 一种便携式太阳能电池测试装置

Also Published As

Publication number Publication date
KR20110063555A (ko) 2011-06-10
CN102159957B (zh) 2013-04-10
CN102159957A (zh) 2011-08-17
KR101380700B1 (ko) 2014-04-03
JP2012503758A (ja) 2012-02-09

Similar Documents

Publication Publication Date Title
KR100863140B1 (ko) 반도체 웨이퍼의 이물 검사 및 리페어 시스템과 그 방법
CN104459510B (zh) 一种led阵列结温快速在线检测装置
US20090309606A1 (en) System and method for testing light-emitting devices
WO2008129010A3 (en) Test equipment for automated quality control of thin film solar modules
KR20110110730A (ko) 발광 측정 장치, 발광 측정 방법, 및 가독 기록 매체
US8461857B2 (en) Distance adjustment system for use in solar wafer inspection machine and inspection machine provided with same
US20120326060A1 (en) Testing method for led wafer
WO2010034140A1 (zh) 具有太阳能电池组的发光元件检测机台及其检测方法
KR20120098830A (ko) 엘이디 검사방법
JP3155989U (ja) ソーラーバッテリーを備えた発光組合せ体バッチ式検査装置
KR101632144B1 (ko) Led 패키지 검사 장치 및 방법
TWI467141B (zh) 量測裝置以及量測方法
KR20130008187A (ko) 솔더링을 위한 플럭스 검사 장치 및 그 검사 방법
KR101374880B1 (ko) 엘이디 검사장치
JP2007115836A (ja) 半導体デバイスの検査方法及び検査装置並びに検査システム
CN102788769A (zh) 晶圆检测装置及使用其的晶圆检测方法
TWI380003B (zh)
KR101447716B1 (ko) 에피웨이퍼의 검사 장치 및 에피웨이퍼의 검사 방법
US20110062317A1 (en) Testing Apparatus for Light-Emitting Devices
TW202146916A (zh) 光電檢測系統與檢測晶粒方法
TWI452285B (zh) Detecting light bar machine and method for detecting
TWI407094B (zh) Solar wafer speed photoelectric detection system, detection methods and testing machine
JP4726422B2 (ja) 探針プローブカード及びそれを用いたウエハ検査方法
KR20110029084A (ko) 발광 소자용 센싱 모듈 및 이 센싱 모듈을 이용한 시험 장치
TWI407091B (zh) Solar wafer rapid detection system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131190.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877019

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011528157

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117009080

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08877019

Country of ref document: EP

Kind code of ref document: A1