WO2010032762A1 - セルロース加水分解力強化酵母の作製および使用 - Google Patents

セルロース加水分解力強化酵母の作製および使用 Download PDF

Info

Publication number
WO2010032762A1
WO2010032762A1 PCT/JP2009/066193 JP2009066193W WO2010032762A1 WO 2010032762 A1 WO2010032762 A1 WO 2010032762A1 JP 2009066193 W JP2009066193 W JP 2009066193W WO 2010032762 A1 WO2010032762 A1 WO 2010032762A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cellulose
yeast
hydrolyzing
cbh2
Prior art date
Application number
PCT/JP2009/066193
Other languages
English (en)
French (fr)
Inventor
秀夫 野田
昌平 金子
昭彦 近藤
Original Assignee
関西化学機械製作株式会社
Bio-energy株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西化学機械製作株式会社, Bio-energy株式会社 filed Critical 関西化学機械製作株式会社
Priority to CN200980136588.0A priority Critical patent/CN102159700B/zh
Priority to US13/063,225 priority patent/US8574911B2/en
Priority to JP2010529776A priority patent/JP5616226B2/ja
Priority to CA2736975A priority patent/CA2736975A1/en
Publication of WO2010032762A1 publication Critical patent/WO2010032762A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01091Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to the production and use of a cellulose hydrolyzing power enhanced yeast.
  • non-edible carbon source soft biomass eg, rice straw, wheat straw, bagasse, rice husk, cotton Ethanol production from wastes such as bamboo, paper, and corn stover.
  • a method has been proposed in which a biomass containing cellulose or hemicellulose is subjected to an acid treatment or a supercritical treatment, and the raw material is treated to glucose that can be assimilated by fermentation microorganisms.
  • an acid saccharification method and an enzymatic saccharification method as a method for producing glucose using a cellulose material as a raw material.
  • acid saccharification methods there are known a dilute acid saccharification method using a dilute acid at a high temperature (200 ° C. or higher) and a saccharification method using concentrated sulfuric acid.
  • the cellulose material is hydrolyzed under extreme conditions, so that a secondary decomposition reaction of glucose, which is a decomposition product of the cellulose material, occurs, and the saccharification rate is as low as about 50%. It is necessary to remove the degradation product of glucose.
  • the enzymatic saccharification method can saccharify the cellulose material under mild conditions, but has a problem that the saccharification reaction rate is slow and sufficient saccharification takes a long time.
  • the commercially available enzyme used for saccharification has a low titer, a large amount of enzyme is required for sufficient saccharification, which increases the cost of the enzyme used.
  • a cell surface display technique is preferably used.
  • yeast that surface-displays a group of enzymes that hydrolyze cellulose is produced by cell surface display technology (Patent Documents 1 and 2).
  • Yeast Saccharomyces cerevisiae cannot metabolize xylose, but xylan-degrading enzyme Trichoderma reesei xylanase 2 (XYNII) and Aspergillus oryzae-derived ⁇ -xylosidase (XylA) is displayed on the surface and xylose reductase (XR) gene and xylitol dehydrogenase (XDH) gene (both derived from Pichia stipitis) and xylulokinase (XK) gene (derived from Saccharomyces cerevisiae) are expressed Saccharomyces cerevisiae has been produced, and an attempt has been made to produce ethanol from xylan as a cocoon using this yeast (Non-patent Document 1).
  • XYNII Trichoderma reesei xylanase 2
  • XylA Aspergillus oryzae-derived
  • An object of the present invention is to provide a yeast having a high cellulose hydrolyzing power. Furthermore, this invention aims at providing the method of producing ethanol efficiently from a cellulosic substance.
  • the present invention provides a method for producing a cellulose hydrolyzing power enhanced yeast.
  • This method A process for obtaining a transformed yeast by introducing a gene group of an enzyme capable of hydrolyzing cellulose into cellulose non-hydrolyzable yeast, wherein the gene group comprises an enzyme gene and an amorphous substance capable of hydrolyzing crystalline cellulose.
  • An enzyme gene capable of hydrolyzing crystalline cellulose, and an enzyme gene capable of hydrolyzing the crystalline cellulose and an enzyme gene capable of hydrolyzing the amorphous cellulose were introduced together with an increased number of incorporated copies. Including a process.
  • the enzyme capable of hydrolyzing the crystalline cellulose is cellobiohydrolase, and the enzyme capable of hydrolyzing the amorphous cellulose is endoglucanase.
  • the cellulose non-hydrolyzable yeast is introduced so that at least one of an enzyme capable of hydrolyzing the crystalline cellulose and an enzyme capable of hydrolyzing the amorphous cellulose is displayed on the surface. .
  • the gene group of enzymes capable of hydrolyzing cellulose further comprises an enzyme gene capable of hydrolyzing cellobiose or cellooligosaccharide.
  • the enzyme capable of hydrolyzing the crystalline cellulose and the enzyme capable of hydrolyzing the amorphous cellulose for one copy of the incorporated copy number of the gene of the enzyme capable of hydrolyzing the cellobiose or cellooligosaccharide The number of embedded copies of at least 2 copies.
  • the enzyme capable of hydrolyzing cellobiose or cellooligosaccharide is ⁇ -glucosidase.
  • the cellulose non-hydrolyzable yeast is introduced so that the enzyme capable of hydrolyzing cellobiose or cellooligosaccharide is displayed on the surface.
  • the present invention further provides a yeast having enhanced cellulose hydrolyzing power, which is obtained by the above method.
  • the present invention also includes a cellobiohydrolase gene, an endoglucanase gene, and a ⁇ -glucosidase gene, and each cellobiohydrolase gene and endoglucanase gene each have at least two copies relative to one copy of the ⁇ -glucosidase gene.
  • a cellulose hydrolyzing power-enhanced yeast incorporated in (1) is provided.
  • the cellobiohydrolase, endoglucanase, and ⁇ -glucosidase are displayed on the surface.
  • the present invention provides a method for producing ethanol.
  • This method A step of reacting the cellulosic material with the cellulose hydrolyzing power-enhanced yeast to produce ethanol is included.
  • a yeast having enhanced cellulose hydrolyzing power is provided.
  • This cellulose hydrolyzing power-enhanced yeast increases the ethanol production directly from cellulose. Furthermore, the use of this cellulose hydrolyzing power-enhanced yeast provides an efficient and economical method for producing ethanol from cellulosic materials.
  • FIG. 6 is a schematic diagram of plasmid pRS406 EG CBH2.
  • FIG. 6 is a schematic diagram of plasmid pRS403 EG CBH2.
  • FIG. 6 is a schematic diagram of plasmid pRS405 EG CBH2.
  • It is a schematic diagram of plasmid pILGP3-CBH2.
  • FIG. 5 is a schematic diagram of plasmid pRS405HCBH2 CBH2.
  • cellulose is hydrolyzed with respect to yeast (such as wild-type yeast) that has essentially no or almost no ability to hydrolyze cellulose (also referred to as “cellulose non-hydrolyzable yeast” in the present specification).
  • yeast such as wild-type yeast
  • cellulose non-hydrolyzable yeast By performing genetic recombination so as to express a group of enzymes that can be degraded, a transformed yeast having enhanced cellulose hydrolyzing power is produced.
  • An enzyme capable of hydrolyzing cellulose can be derived from any cellulose hydrolase-producing bacterium.
  • Cellulose hydrolase producing bacteria typically include the genus Aspergillus (for example, Aspergillus aculeatus, Aspergillus niger, and Aspergillus oryzae), Trichoderma (for example, Trichoderma reesei), Clostridium (eg, Clostridium thermocellum), Cellulomonas (eg, Cellulomonas fimi and Cellulomonas uda), Examples include microorganisms belonging to the genus Pseudomonas (for example, Pseudomonas fluorescence).
  • the enzyme capable of hydrolyzing cellulose can be an enzyme capable of cleaving a ⁇ 1,4-glucoside bond.
  • enzymes capable of cleaving a ⁇ 1,4-glucoside bond include endo ⁇ 1,4-glucanase (hereinafter simply referred to as “endoglucanase”), cellobiohydrolase, and ⁇ -glucosidase. It is not limited to.
  • Endoglucanase is an enzyme usually referred to as cellulase, which cleaves cellulose from the inside of the molecule to produce glucose, cellobiose, and cellooligosaccharide (the degree of polymerization is 3 or more and usually 10 or less. (“Cellulose intramolecular cleavage”)). Endoglucanase is highly reactive to low crystallinity or amorphous cellulose, such as non-crystallized cellulose, soluble cellooligosaccharides, and cellulose derivatives such as carboxymethylcellulose (CMC), but has a crystalline structure Reactivity to cellulose microfibrils is low.
  • CMC carboxymethylcellulose
  • Endoglucanase is a representative example of an enzyme capable of hydrolyzing amorphous cellulose (hereinafter also referred to as “amorphous hydrolase”).
  • amorphous hydrolase There are five types of endoglucanases, which are called endoglucanase I, endoglucanase II, endoglucanase III, endoglucanase IV, and endoglucanase V, respectively. These distinctions are differences in amino acid sequences, but are common in that they have a cellulose intramolecular cleavage action.
  • endoglucanase derived from Trichoderma reesei can be used, but is not limited thereto.
  • Cellobiohydrolase can be decomposed from either the reducing end or non-reducing end of cellulose to release cellobiose (“cellulose molecular end cleavage”).
  • Cellobiohydrolase can degrade crystalline cellulose such as cellulose microfibrils having a crystalline structure, but is reactive to low crystallinity or amorphous cellulose such as cellulose derivatives such as carboxymethylcellulose (CMC). Is low.
  • Cellobiohydrolase is a representative example of an enzyme capable of hydrolyzing crystalline cellulose (hereinafter also referred to as “crystalline hydrolase”).
  • cellobiohydrolase 1 Hydrolysis of crystalline cellulose by cellobiohydrolase is slower than hydrolysis of amorphous cellulose by endoglucanase due to the strong structure of crystalline cellulose due to intermolecular and intramolecular close hydrogen bonds.
  • Cellobiohydrolase 2 There are two types of cellobiohydrolase, which are called cellobiohydrolase 1 and cellobiohydrolase 2, respectively. These distinctions are differences in amino acid sequences, but are common in that they have a cellulose molecule end cleaving action. For example, but not limited to Trichoderma reesei cellobiohydrolase (particularly CBH2).
  • ⁇ -glucosidase is an exo-type hydrolase that separates glucose units from non-reducing ends in cellulose.
  • ⁇ -glucosidase can cleave ⁇ 1,4-glucoside bond between aglycone or sugar chain and ⁇ -D-glucose, and can hydrolyze cellobiose or cellooligosaccharide to produce glucose.
  • ⁇ -glucosidase is a representative example of an enzyme capable of hydrolyzing cellobiose or cellooligosaccharide.
  • One type of ⁇ -glucosidase is currently known and is referred to as ⁇ -glucosidase 1.
  • Aspergillus acreatas-derived ⁇ -glucosidase can be used, but is not limited thereto.
  • a transformed yeast can be prepared by introducing a gene group of enzymes capable of hydrolyzing cellulose.
  • the gene group of enzymes capable of hydrolyzing cellulose includes genes of enzymes capable of hydrolyzing crystalline cellulose and genes of enzymes capable of hydrolyzing amorphous cellulose.
  • An enzyme capable of hydrolyzing crystalline cellulose (“crystalline hydrolase”) refers to any enzyme capable of hydrolyzing cellulose having a crystal structure such as microfibril, and examples thereof include cellobiohydrolase. However, it is not limited to this.
  • an enzyme capable of hydrolyzing amorphous cellulose does not degrade cellulose having a crystalline structure, but has a low crystallinity or non-crystallinity such as amorphous cellulose. It refers to any enzyme capable of hydrolyzing a natural cellulose chain, and examples thereof include, but are not limited to, endoglucanase.
  • the gene group of enzymes capable of hydrolyzing cellulose may further include genes of enzymes capable of hydrolyzing cellobiose or cellooligosaccharide.
  • the cellooligosaccharide is as described above. Examples of the enzyme capable of hydrolyzing cellobiose or cellooligosaccharide include, but are not limited to, ⁇ -glucosidase.
  • a transformed yeast is produced. That is, the yeast is introduced into a non-hydrolyzable cellulose yeast with an incorporated copy number in which the gene copy number of each enzyme is increased together to obtain a transformed yeast.
  • the expression pattern of the crystalline hydrolase and the amorphous hydrolase is not limited as long as the expressed enzyme acts on the cellulose substrate.
  • the expression pattern can be surface presentation or secretory expression.
  • At least one or both of the crystalline hydrolase and the amorphous hydrolase can be surface-presented or secreted.
  • the yeast may be transformed so that surface presentation and secretion of crystalline and amorphous hydrolases occur simultaneously.
  • an enzyme gene that can hydrolyze cellobiose or cellooligosaccharide is preferably incorporated. Thereby, the ability to produce glucose from cellulose can be enhanced.
  • This enzyme can also be surface displayed or secreted, but is preferably surface displayed.
  • an enzyme capable of hydrolyzing cellobiose or cellooligosaccharide is also expressed in yeast.
  • the number of incorporated copies of the gene of the enzyme capable of hydrolyzing cellobiose or cellooligosaccharide is 1 copy, and the number of incorporated copies of each gene of the crystalline hydrolase and the amorphous hydrolase can be at least 2 copies.
  • cellobiohydrolase can be used as a crystalline hydrolase
  • endoglucanase can be used as an amorphous hydrolase.
  • a single yeast can be transformed with at least two vectors that together contain the expression cassettes for the genes of these enzymes (detailed below).
  • a single yeast may be transformed with at least two sets of combinations of vectors each containing an expression cassette for the gene of each of these enzymes.
  • the practical yeast does not originally have an auxotrophic marker and it is desirable to impart an auxotrophic marker. It is preferable in terms of the efficiency of the operation to prepare a vector containing the above expression cassettes (examples of vectors include the vectors described in the following Examples).
  • the transformed yeast may be one in which ⁇ -glucosidase is further incorporated as an enzyme capable of hydrolyzing cellobiose or cellooligosaccharide.
  • the ethanol production can be increased by increasing the cellobiohydrolase and endoglucanase integration copy numbers relative to the ⁇ -glucosidase gene integration copy number. Accordingly, at least two copies of each of the cellobiohydrolase and endoglucanase genes can be incorporated with respect to one copy copy of the ⁇ -glucosidase gene. Each of the genes for cellobiohydrolase and endoglucanase can be integrated in 3 copies or more for 1 copy of the ⁇ -glucosidase gene. By performing such genetic recombination on cellulose non-hydrolyzable yeast (such as wild-type yeast), yeast with increased ethanol production can be obtained.
  • cellulose non-hydrolyzable yeast such as wild-type yeast
  • cellobiohydrolase and endoglucanase are surface displayed or secreted, and ⁇ -glucosidase is incorporated to be surface displayed.
  • cellobiohydrolase, endoglucanase, and ⁇ -glucosidase can be displayed on the surface.
  • the transformed yeast obtained as described above is given the ability to hydrolyze cellulose and becomes an enhanced yeast.
  • a transformed yeast having the ability to hydrolyze cellulose and enhanced is also referred to as “cellulose hydrolyzing power enhanced yeast”.
  • yeast having enhanced cellulose hydrolyzing power that is, production of transformed yeast
  • the gene of the enzyme intended for expression can be obtained from a microorganism producing the enzyme by designing a primer or a probe based on known sequence information and using PCR or a hybridization method.
  • An expression cassette can be constructed using an enzyme gene.
  • the expression cassette may contain so-called regulatory elements such as operators, promoters, terminators, enhancers and the like that regulate the expression of the gene.
  • the promoter or terminator may be that of the gene intended for expression itself, or may be derived from another gene.
  • promoters and terminators such as GAPDH (glyceraldehyde 3′-phosphate dehydrogenase), PGK (phosphoglycerate kinase), GAP (glyceraldehyde 3′-phosphate) can be used.
  • GAPDH glycosaccharide
  • PGK phosphoglycerate kinase
  • GAP glycose
  • the selection of the terminator depends on the expression of the target enzyme gene and can be appropriately selected by those skilled in the art.
  • the expression cassette can further contain necessary functional sequences depending on the purpose of expression of the gene.
  • the expression cassette can also include a linker, if desired.
  • cell surface engineering techniques can be used. For example, (a) a method of presenting the cell surface localized protein on the cell surface via the GPI anchor, (b) a method of presenting on the cell surface via the sugar chain binding protein domain of the cell surface localized protein, and (c ) There is a method of presenting on the cell surface via a periplasmic free protein (other receptor molecule or target receptor molecule), but is not limited thereto.
  • a periplasmic free protein other receptor molecule or target receptor molecule
  • Cell surface localized proteins that can be used include ⁇ - or a-agglutinin which is a sex aggregation protein of yeast (used as a GPI anchor), Flo1 protein (Flo1 protein has various amino acid lengths on the N-terminal side, Can be used as a GPI anchor: for example, Flo42, Flo102, Flo146, Flo318, Flo428, etc .;
  • Non-patent document 2 Flo1326 represents a full-length Flo1 protein, Flo protein (having no GPI anchor function and aggregation Floshort or Flolong using non-patent document 3), invertase (not using GPI anchor) which is a periplasm localized protein, and the like.
  • a gene encoding a protein localized on the cell surface by a GPI anchor encodes a secretory signal sequence, a cell surface localized protein (sugar chain binding protein domain), and a GPI anchor attachment recognition signal sequence in this order from the N-terminal side.
  • a cell surface localized protein (glycan binding protein) expressed from this gene in the cell is guided to the outside of the cell membrane by a secretion signal, and the GPI anchor attachment recognition signal sequence is selectively cleaved at the C-terminal. It binds to the GPI anchor of the cell membrane via the portion and is fixed to the cell membrane. Thereafter, it is cut by the PI-PLC near the base of the GPI anchor, incorporated into the cell wall, fixed to the cell surface layer, and presented to the cell surface layer.
  • the secretory signal sequence generally refers to an amino acid sequence containing many amino acids rich in hydrophobicity, which is bound to the N-terminus of a protein (secretory protein) secreted extracellularly (including periplasm), Normally, secreted proteins are removed when they are secreted from inside the cell through the cell membrane.
  • Any secretory signal sequence can be used as long as it is a secretory signal sequence capable of leading the expression product to the cell membrane, regardless of its origin.
  • a glucoamylase secretion signal sequence, a yeast ⁇ - or a-agglutinin signal sequence, a secretion signal sequence of the expression product itself, and the like are preferably used as the secretion signal sequence. If the activity of other proteins fused to the cell surface binding protein is not affected, a part or all of the secretory signal sequence and the pro sequence may remain at the N-terminus.
  • GPI anchor refers to a glycolipid called ethanolamine phosphate-6 mannose ⁇ 1-2 mannose ⁇ 1-6 mannose ⁇ 1-4 glucosamine ⁇ 1-6 inositol phospholipid, called glycosylphosphatidylinositol (GPI).
  • GPI-PLC refers to phosphatidylinositol-dependent phospholipase C.
  • the GPI anchor adhesion recognition signal sequence is a sequence recognized when the GPI anchor binds to the cell surface localized protein, and is usually located at or near the C terminal of the cell surface localized protein.
  • the GPI anchor attachment signal sequence for example, the sequence of the C-terminal part of yeast ⁇ -agglutinin is preferably used. Since the GPI anchor adhesion recognition signal sequence is included on the C-terminal side of the sequence of 320 amino acids from the C-terminus of ⁇ -agglutinin, the gene used in the above method encodes a sequence of 320 amino acids from the C-terminus. DNA sequences are particularly useful.
  • a DNA encoding a secretory signal sequence-a structural gene encoding a cell surface localized protein-a sequence having a DNA sequence encoding a GPI anchor adhesion recognition signal, and a structural gene encoding this cell surface localized protein By substituting all or part of the sequence with a DNA sequence encoding the target enzyme, recombinant DNA for presenting the target enzyme on the cell surface via the GPI anchor can be obtained.
  • the cell surface localized protein is ⁇ -agglutinin
  • the enzyme presented on the cell surface by introducing such DNA into yeast and expressing it has its C-terminal side immobilized on the surface.
  • the sugar chain binding protein domain has a plurality of sugar chains, and this sugar chain interacts with or entangles with sugar chains in the cell wall. It is possible to stay. Examples thereof include sugar chain binding sites such as lectins and lectin-like proteins.
  • sugar chain binding sites such as lectins and lectin-like proteins.
  • an aggregation functional domain of GPI anchor protein and an aggregation functional domain of FLO protein can be mentioned.
  • the aggregation functional domain of the GPI anchor protein is a domain that is located on the N-terminal side of the GPI anchoring domain, has a plurality of sugar chains, and is considered to be involved in aggregation.
  • the enzyme is presented on the cell surface layer by binding the sugar chain binding protein domain (or aggregation function domain) of the cell surface localized protein to the target enzyme.
  • the enzyme is bound to the N-terminal side of the sugar chain binding protein domain (or aggregation functional domain) of the cell surface localized protein
  • the enzyme is bound to the C-terminal side
  • the same or different enzymes can be bound to both the N-terminal side and the C-terminal side.
  • DNA encoding secretory signal sequence-gene encoding target enzyme-structural gene encoding sugar chain binding protein domain (or aggregation functional domain) of cell surface localized protein or ( 2) DNA encoding secretory signal sequence-structural gene encoding sugar chain binding protein domain (or aggregation functional domain) of cell surface localized protein-gene encoding target enzyme; or (3) secretory signal sequence Encoding DNA-First gene encoding target enzyme-Structural gene encoding sugar chain binding protein domain (or aggregation functional domain) of cell surface localized protein-Second gene encoding target enzyme (However, the first gene and the second gene may be the same or different.
  • the aggregation functional domain since the GPI anchor is not involved in the cell surface presentation, only a part of the DNA sequence encoding the GPI anchor attachment recognition signal sequence may be present in the recombinant DNA. It does not have to exist.
  • the aggregation functional domain since the length of the domain can be easily adjusted (for example, either Floshort or Flolong can be selected), the enzyme can be displayed on the cell surface with a more appropriate length, and This is very useful in that it can be bound on either the N-terminus or C-terminus of the enzyme.
  • a method using a periplasm free protein (other receptor molecule or target receptor molecule) will be described.
  • the target enzyme can be expressed on the cell surface as a fusion protein with a periplasm free protein.
  • the periplasmic free protein include invertase (Suc2 protein).
  • the target enzyme can be appropriately fused to the N-terminal or C-terminal depending on these periplasmic free proteins.
  • a method for secreting an enzyme out of a cell and expressing it in yeast is well known to those skilled in the art.
  • a recombinant DNA in which the structural gene of the target enzyme is linked to the DNA encoding the secretory signal sequence may be prepared and introduced into yeast.
  • a recombinant gene linked to the target structural gene may be prepared and introduced into yeast without using the cell surface display technique or the secretion signal.
  • Synthesis and binding of DNA containing various sequences can be performed by techniques that can be commonly used by those skilled in the art.
  • the binding between the secretory signal sequence and the structural gene of the target enzyme can be performed using site-directed mutagenesis. By using this method, it is possible to cleave the secretory signal sequence accurately and to express the active enzyme.
  • the enzyme gene or expression cassette can be inserted into a vector in the form of a plasmid.
  • a shuttle vector of yeast and E. coli is preferable.
  • the vector can include regulatory sequences as described above.
  • a yeast selection marker for example, a drug resistance gene, an auxotrophic marker gene (for example, a gene encoding imidazoleglycerol phosphate dehydrogenase (HIS3), a gene encoding malate beta-isopropyl dehydrogenase (LEU2), a gene encoding tryptophan synthase (TRP5), a gene encoding argininosuccinate lyase (ARG4), N- (5′-phosphoribosyl) anthranilate isomerase (TRP1) gene, histidinol dehydrogenase (HIS4) gene, orotidine-5-phosphate decarboxylase (URA3) Genes, genes encoding dihydroorotate dehydrogenase (URA1), genes encoding dihydroorotate dehydrogenase (URA1), genes encoding dihydroorotate dehydrogenase (URA1), genes encoding dihydro
  • introduction of a gene or DNA means not only the introduction of a gene or DNA into a cell but also expression.
  • gene or DNA introduction include transformation, transduction, transfection, co-transfection, and electroporation.
  • specific examples of the introduction into yeast cells include a method using lithium acetate and a protoplast method.
  • the introduced DNA may be present in the form of a plasmid, or may be inserted into a chromosome by being inserted into a host gene or undergoing homologous recombination with a host gene.
  • the host yeast is a cellulose non-hydrolyzable yeast, which can be a wild type yeast.
  • the type of yeast is not particularly limited, but yeast belonging to the genus Saccharomyces is particularly preferable, and Saccharomyces cerevisiae is preferable.
  • it is a wild type yeast of a practical yeast. Wild-type yeast may be genetically modified to enhance the ability to ferment alcohol from a monosaccharide (eg, glucose) as a substrate.
  • a monosaccharide eg, glucose
  • “Practical yeast” refers to any yeast conventionally used in ethanol fermentation (for example, sake yeast, shochu yeast, wine yeast, brewer's yeast, baker's yeast, etc.).
  • sake yeast having high ethanol fermentation ability and high ethanol tolerance and genetically stable is preferable.
  • the “practical yeast” is a yeast having high ethanol tolerance, and is preferably a yeast that can survive even at an ethanol concentration of 10% or more. Further, it preferably has acid resistance, heat resistance and the like. More preferably, it may be cohesive.
  • Saccharomyces cerevisiae NBRC1440 strain MAT ⁇ , haploid yeast, heat and acid resistant, and cohesive
  • NBRC 1445 strain MATa, haploid yeast, heat and acid resistant, no cohesiveness).
  • yeasts Since practical yeasts have extremely high resistance to ethanol, they can be used for ethanol fermentation as they are after producing monosaccharides. Among them, since it is resistant to various culture stresses, it is preferable in terms of showing stable cell growth even in industrial production in which strict control is difficult and harsh culture conditions may occur. In addition, since practical yeasts are polyploid, it is possible to incorporate multiple gene constructs (expression vectors) into homologous chromosomes, and as a result, compared to the case of integrating into laboratory yeasts, which are often haploid, Increases the expression level of the target protein.
  • auxotrophic marker suitable for introducing the gene of interest is used as a practical yeast (particularly a yeast that does not have auxotrophy and has high ethanol resistance (preferably, even at an ethanol concentration of 10% or more).
  • the auxotrophic marker includes, but is not limited to, uracil requirement, trypsin requirement, leucine requirement, histidine requirement, etc. due to its genetic manipulation.
  • the uracil requirement can be imparted by transferring a ura3 - fragment obtained from a uracil requirement mutant (for example, Saccharomyces cerevisiae MT-8 strain) to a normal ura3 gene of a practical yeast.
  • auxotrophy for example, trypsin requirement, leucine requirement, histidine requirement, etc.
  • fragments are used to destroy these genes. Can be designed and granted.
  • the practical yeast into which the expression cassette is incorporated and the gene for expression is introduced can be selected with a yeast selection marker (for example, the above-mentioned auxotrophic marker) as described above. Furthermore, it can be confirmed by measuring the activity of the expressed protein. Whether the protein is immobilized on the cell surface layer can be confirmed, for example, by an immunoantibody method using an anti-protein antibody and a FITC-labeled anti-IgG antibody.
  • the cellulose hydrolyzing power-enhanced yeast as described above can be suitably used for ethanol production.
  • the cellulose hydrolyzing power enhanced yeast can be reacted with a cellulose substrate (eg, a cellulosic material as described below).
  • cellulosic material refers to any material, product, and composition containing cellulose.
  • cellulose refers to a fibrous polymer in which glucopyranose is linked by ⁇ 1,4-glucoside bonds, but also includes derivatives or salts thereof, or those whose degree of polymerization has been reduced by decomposition.
  • Cellulosic material includes, for example, paper products produced in the manufacture or recycling of paper, cotton products such as used clothing and waste towels, and wood parts or herbs of wood that are not harvested agriculturally or disposed of in the process of food production Also included are any materials containing cellulose, such as the foliage and skin (especially non-edible parts) of sex plants. “Cellulosic materials” can also include cellulose compounds such as carboxymethylcellulose (CMC) in which the cellulose is carboxymethylated, phosphate-swelled cellulose, and crystalline cellulose (eg, Avicel). Among cellulose compounds, phosphate-swelled cellulose is a cellulose that is often used as an alternative substrate for cellulose in actual biomass in order to measure the cellulose hydrolyzing power of an enzyme capable of hydrolyzing cellulose.
  • CMC carboxymethylcellulose
  • phosphate-swelled cellulose is a cellulose that is often used as an alternative substrate for cellulose in actual biomass in order to measure the cellulose hydrolyzing power of an
  • the material containing cellulose exemplified above may contain a plant cell wall component mainly composed of cellulose.
  • the plant cell wall usually contains hemicellulose and lignin as components in addition to cellulose.
  • the content of these components may vary, but as long as cellulose is included, any species can grow to the extent of growth. It can be used regardless.
  • cellulosic materials also include any materials and wastes and products that contain the plant cell wall components described above.
  • Insoluble dietary fiber is also included in the “plant cell wall component content”.
  • woody parts and the foliage and skin parts of herbaceous plants those processed from these parts (for example, corn fiber) are also included. This is preferable.
  • Cellulosic substances include cellulose compounds themselves and compositions containing cellulose compounds, agricultural waste such as rice husks, bamboo, bagasse, straw, corn cobs, wood (wood chips, waste wood), old newspapers, magazines , Cardboard, office waste paper, linter, cotton, pulp and waste pulp discharged from paper manufacturers.
  • agricultural waste such as rice husks, bamboo, bagasse, straw, corn cobs, wood (wood chips, waste wood), old newspapers, magazines , Cardboard, office waste paper, linter, cotton, pulp and waste pulp discharged from paper manufacturers.
  • Cellulase enzyme includes any form isolated as an enzyme.
  • “cellulase enzyme” includes an enzyme isolated and purified from a microorganism producing cellulase (ie, endoglucanase) as described above, and an enzyme produced by genetic recombination using a cellulase gene. It is done. Commercially available cellulase enzymes can also be used.
  • cellulase enzymes examples include, for example, Cellulase® SS from Genencor, cellulase derived from Trichoderma reesei: titer 7.6 FPU / mL (“FPU” is an abbreviation for “Filter Paper Unit”, and 1 ⁇ mol glucose per minute from the filter paper. The amount of the enzyme that produces a reducing sugar corresponding to is assumed to be “1FPU”).
  • a cellulase enzyme may be further added during the reaction with the cellulosic material in order to promote production efficiency.
  • hemicellulose-degradable xylose-assimilating yeast may be further added.
  • This yeast can be produced as follows. Xylose is obtained by enzymatic degradation from hemicellulose contained in a plant cell wall component containing cellulose as one of the main components.
  • xylose derived from hemicellulose is also ethanol-fermented by separately producing a yeast (preferably a practical yeast) that expresses a gene encoding a xylose utilization gene and / or a xylan-degrading enzyme.
  • yeast preferably a practical yeast
  • an enzyme that degrades hemicellulose for example, xylan-degrading enzyme
  • Examples of the xylan-degrading enzyme include xylanase (especially XYLII derived from Trichoderma reesei) and ⁇ -xylosidase (XylA derived from Aspergillus oryzae).
  • Examples of xylose-assimilating genes include xylose metabolism enzymes such as xylose reductase (XR) gene and xylitol dehydrogenase (XDH) gene (both derived from Pichia stipitis) and xylulokinase (XK) gene ( Saccharomyces cerevisiae).
  • xylanases especially XYLII (INSD accession number X69574; S51975) from Trichoderma reesei) and ⁇ -xylosidase (Aspergillus) to produce practical yeasts having both xylan degradation (hemicellulose degradation) and xylose utilization XylA derived from oryzae (INSD accession number AB013851)
  • xylose-utilizing genes particularly xylose reductase (XR) gene XYL1 (INSD accession number X59465) derived from Pichia stipitis) XYL2 (INSD accession number X55392) which is a xylitol dehydrogenase (XDH) gene derived from Stipitis, and a xylem derived from Saccharomyces cerevisiae Be recombinantly prepared to express Rokinaze (XK) is a gene
  • Non-Patent Document 1 The construction and transformation of an expression vector are described in Non-Patent Document 1 and Non-Patent Documents 5-7.
  • Yeast obtained by this recombinant preparation is also referred to as hemicellulose-degradable xylose-utilizing yeast.
  • the recombinant preparation of transformed yeast can also be carried out as described above.
  • the above reaction step can be usually performed under conditions for ethanol fermentation.
  • This reaction step is also referred to as a fermentation step in the present specification.
  • the fermentation process can be performed by culturing yeast in a medium containing a cellulosic material.
  • a fermentation process may be normally performed on the conditions which perform ethanol fermentation.
  • the fermentation medium may further include components necessary or desirable for yeast growth. Examples of the fermentation process include a batch process, a fed-batch process, a repeated batch process, and a continuous process, and any of these may be used.
  • the temperature during fermentation can usually be about 30-35 ° C.
  • the fermentation pH is preferably about 4 to about 6, more preferably about 5.
  • Fermentation culture can be performed anaerobically (dissolved oxygen concentration can be, for example, about 1 ppm or less, more preferably about 0.1 ppm or less, and even more preferably about 0.05 ppm or less).
  • Factors such as the yeast load, the cellulosic load, and the fermentation time can be appropriately determined depending on requirements such as the fermentation reaction capacity and the target production amount of ethanol.
  • the cellulosic material may be subjected to pressurized hot water treatment before being subjected to the fermentation process.
  • pressurized hot water treatment include a non-catalytic hydrothermal method as described in Patent Document 1.
  • a non-catalytic hydrothermal method for example, a cellulose unit or oligosaccharide having an appropriate length is formed, or a cross-link between fibers (for example, between cellulose) is removed, so that a cellulolytic enzyme can easily act. , May be processed.
  • the raw material cellulose fiber having a concentration of about 10% by mass is 120 to 300 ° C, preferably 150 to 280 ° C. More preferably, the treatment can be carried out at 180 to 250 ° C., and the treatment time is generally preferably in the range of 1 hour to 15 seconds.
  • the temperature can be raised slightly in relation to the heat history time, and the raw material cellulose fiber having a concentration of about 10% by mass is treated at 120 to 373 ° C., preferably 150 to 320 ° C., preferably 1 hour to 1 second. Can do.
  • the pressurization can be automatically or manually set by a device such that a temperature within the above range can be achieved.
  • Non-glycated parts such as lignin can be removed in advance from the woody part of wood and the foliage and skin parts (biomass) of herbaceous plants.
  • a pressurized hot water treatment can be used to remove lignin.
  • the pressurized hot water treatment is preferable because lignin can be removed without using a chemical such as acid or alkali.
  • the method described in Patent Document 1 can be used.
  • lignin can be separated by treating biomass with hot water at normal pressure or higher and 5 MPa or lower and 180 ° C. or higher and 374 ° C. or lower and then cooling to 100 ° C. or higher and 180 ° C. or lower.
  • the cellulosic material Before being subjected to the fermentation process, for example, according to the method described in Patent Document 1, the cellulosic material can be treated with pressurized hot water. This removes lignin (if present) and the cellulose can be treated to facilitate the action of enzymes that can hydrolyze the cellulose.
  • the ethanol-containing medium is withdrawn from the fermenter, and ethanol is isolated by a separation process commonly used by those skilled in the art, such as a separation operation using a centrifuge and a distillation operation.
  • Cellulose hydrolyzing power-enhanced yeast (if necessary and hemicellulose-degradable xylose-assimilating yeast and cellulase enzyme) is preferably immobilized on a carrier. As a result, reuse becomes possible.
  • the carrier and method to be immobilized are those commonly used by those skilled in the art, and examples thereof include a carrier binding method, a comprehensive method, and a crosslinking method.
  • a porous body is preferably used as the carrier.
  • foams or resins such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin porous body, and silicon foam are preferable.
  • the size of the opening of the porous body can be determined in consideration of the microorganism to be used and its size, but in the case of a practical yeast, it is preferably 50 to 1000 ⁇ m.
  • the shape of the carrier does not matter. Considering the strength of the carrier, the culture efficiency, etc., a spherical shape or a cubic shape is preferable.
  • the size may be determined depending on the microorganism to be used. In general, the diameter is preferably 2 to 50 mm for a spherical shape, and 2 to 50 mm square for a cubic shape.
  • the number of yeasts can be increased by culturing them under aerobic conditions before being subjected to fermentation.
  • the medium may be a selective medium or a non-selective medium.
  • the pH of the medium during culture is preferably about 4 to about 6, more preferably about 5.
  • the dissolved oxygen concentration in the medium during aerobic culture is preferably about 0.5 to about 6 ppm, more preferably about 1 to about 4 ppm, and still more preferably about 2 ppm.
  • the temperature during culture can be about 20 to about 45 ° C, preferably about 25 to about 35 ° C, more preferably about 30 ° C.
  • the total yeast cell concentration is 20 g (wet amount) / L or more, more preferably 50 g (wet amount) / L, and even more preferably 75 g (wet amount) / L or more. About 20 to about 50 hours.
  • a commercially available enzyme used for saccharification has a low titer, so that a sufficient amount of enzyme is required for sufficient saccharification, which increases the cost of the enzyme used.
  • yeast with enhanced cellulose hydrolyzing power it is possible to reduce the amount of cellulase enzyme required to achieve a suitable ethanol production rate or rate, particularly in industrial production.
  • ethanol production can be increased by using hemicellulose-degradable xylose-assimilating yeast.
  • strains Saccharomyces cerevisiae NBRC1440 (MAT ⁇ ) and Saccharomyces cerevisiae MT8-1 (MATa ade his3 leu2 trp1 ura3) used in this example were obtained from the National Institute of Technology and Evaluation.
  • yeast transformations shown in this example were performed with lithium acetate using a YEAST® MAKER yeast transformation system (Clontech® Laboratories, “Palo Alto, California, USA”).
  • the 5-fluoroorotic acid (FOA) medium was prepared as follows. Uracil dropout synthetic dextrose (SD) medium (Non-patent Document 8) supplemented with 50 mg / L uracilic acid and 2% (w / v) agar was autoclaved and maintained at 65 ° C. FOA was dissolved in dimethyl sulfoxide (DMSO) at a concentration of 100 mg / mL and added to the autoclaved medium at about 65 ° C. to make the final concentration of FOA 1 mg / mL.
  • DMSO dimethyl sulfoxide
  • URA3 was amplified using pRS406 plasmid (Stratagene) as a template; The fusion fragment was amplified by mixing the products from PCR1 and PCR2 as templates using PCR3, HIS3-Green U (SEQ ID NO: 3; Forward) and HIS3-40Uc (SEQ ID NO: 6; Reverse) primers.
  • NBRC1440 strain with URA3 marker prepared as described above was transformed by homologous recombination using the obtained fusion fragment. Strains without uracil requirement were selected on uracil dropout (uracil-free medium) plates. When this construct is integrated into the chromosome of the above-mentioned practical yeast NBRC1440, HIS3 gene disruption occurs, and the URA3 marker and the repeated sequences on both sides thereof are integrated into the chromosome.
  • this transformant was grown in YPD medium at 30 ° C. for 24 hours. They were then grown to 1.0 ⁇ 10 7 cells / 200 ⁇ L on 5-FOA media plates. All colonies that grew on 5-FOA media plates were of the uracil auxotrophic (Ura ⁇ ) phenotype and were selected. In the transformant grown on the 5-FOA medium plate, because of the homologous recombination caused by the repetitive sequence on both sides of the URA3 marker, the URA3 marker that should have been introduced by transformation is removed from the chromosome, and uracil nutrition The phenotype of requirement (Ura ⁇ ) was shown.
  • PCR1, TRP1-988 (SEQ ID NO: 7; Forward) and RP1-28r (SEQ ID NO: 8; Reverse) primers were used to amplify the TRP1 upstream partial sequence using the chromosomal DNA of Saccharomyces cerevisiae NBRC1440 as a template; URA3 was amplified using PCR2, TRP1-URA3 (SEQ ID NO: 9; Forward) and TRP1-40r (SEQ ID NO: 10; Reverse) primers, using pRS406 plasmid (Stratagene) as a template; The fusion fragment was amplified by mixing the products from PCR1 and PCR2 as templates using PCR3, TRP1-988 (SEQ ID NO: 7; Forward) and TRP1-40r (SEQ ID NO: 10; Reverse) primers.
  • the NBRC1440 strain provided with the HIS3 and URA3 markers prepared as described above was transformed in the same manner as in Preparation Example 1-2, and finally, the URA3, HIS3, and TRP1 markers NBRC1440 strain to which
  • the NBRC1440 strain provided with the URA3, HIS3, and TRP1, and LEU2 markers prepared as described above was transformed in the same manner as in Preparation Example 1-2, and finally, URA3 NBRC1440 strains with HIS3, TRP1, and LEU2 markers were obtained.
  • This strain is represented as “NBRC1440 / UHWL” for convenience.
  • PEG23u31H6 (non-patented) using as a template a 2719 bp DNA fragment encoding the secretory signal sequence of Rhizopus oryzae-derived glucoamylase gene and the 3 ′ half region of EGII gene and ⁇ -agglutinin gene (Non-patent document 9) Prepared by PCR using the primer pair of SEQ ID NO: 15 (Forward) and SEQ ID NO: 16 (Reverse).
  • the PGK promoter was digested with XhoI and NheI, the multicloning site was digested with NheI and BglII, the PGK terminator was digested with BglII and NotI, respectively, and cloned into the XhoI-NotI site of the pTA2 vector (TOYOBO, Osaka, Japan).
  • the obtained vector was digested with XhoI and NotI, the fragment was cloned into pRS406 (Stratagene), and the resulting vector was designated as pGK406.
  • the above 2719 bp DNA fragment is digested with NheI and XmaI, inserted between the NheI and XmaI sites of plasmid pGK406 containing the URA3 gene and its promoter and terminator, PGK promoter and PGK terminator, and the URA3 gene and its promoter and terminator,
  • a plasmid containing the PGK promoter, the secretory signal sequence of the Rhizopus oryzae-derived glucoamylase gene, the endoglucanase (EGII) gene, the 3 ′ half region of the ⁇ -agglutinin gene, and a PGK terminator was obtained.
  • the obtained plasmid was designated as pGK406 EG.
  • Non-patent Document 11 Using plasmid pFCBH2w3 (Non-patent Document 11) as a template, GAPDH (glyceraldehyde triphosphate dehydrogenase) promoter, secretion signal sequence of Rhizopus oryzae-derived glucoamylase gene, CBH2 gene from Trichoderma reesei, 3 ′ of ⁇ -agglutinin gene A fragment containing the side half region and the GAPDH terminator was amplified by PCR with a primer pair (SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse). The resulting fragment was digested with NotI and cloned into pGK406 EG digested with NotI.
  • the obtained plasmid was designated as pRS406 EG CBH2, and a schematic diagram thereof is shown in FIG.
  • UAA3 is a uracil gene marker
  • GAPDH is a glyceraldehyde-3-phosphate dehydrogenase promoter
  • PGK is a phosphoglycerate kinase promoter
  • ss is a Rhizopus oryzae-derived glucoamylase gene.
  • AG is the 3 ′ half region of ⁇ -agglutinin gene
  • EG is EGII gene derived from Trichoderma reesei
  • CBH2 is cellobiohydrolase 2 gene derived from Trichoderma reesei
  • tGAP Represents glyceraldehyde-3-phosphate dehydrogenase terminator
  • tPGK represents phosphoglycerate kinase terminator.
  • a fragment containing PGK promoter, lysopus oryzae-derived glucoamylase gene secretion signal sequence, EGII gene, and PGK terminator was excised from pGK406 with ApaI and NotI, and pRS403 (Stratagene) was similarly digested with ApaI and NotI. The fragment was cloned. The obtained plasmid was designated as pGK403 EG.
  • GAPDH glycosyl transfer protein
  • secretion signal sequence of lysopus oryzae-derived glucoamylase gene
  • CBH2 gene from Trichoderma reesei 3 ′ half region of ⁇ -agglutinin gene
  • a fragment containing the GAPDH terminator was amplified by PCR with primers (SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse).
  • SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse The resulting fragment was digested with NotI and cloned into NotI digested pGK403 EG.
  • the obtained plasmid was designated as pRS403 EG CBH2, and a schematic diagram thereof is shown in FIG. In FIG. 2, “HIS3” represents a histidine gene marker, and other notations are the same as in FIG.
  • pGK405 EG From pGK406, a fragment containing the PGK promoter, the secretory signal sequence of the Rhizopus oryzae-derived glucoamylase gene, EGII gene, and PGK terminator was excised with ApaI and NotI, and cloned into pRS405 (Stratagene) that was also digested with ApaI and NotI . The obtained plasmid was designated as pGK405 EG.
  • GAPDH glycosyl transfer protein
  • secretion signal sequence of lysopus oryzae-derived glucoamylase gene
  • CBH2 gene from Trichoderma reesei 3 ′ half region of ⁇ -agglutinin gene
  • a fragment containing the GAPDH terminator was amplified by PCR with primers (SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse).
  • SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse The resulting fragment was digested with NotI and cloned into NotI digested pGK405 EG.
  • the obtained plasmid was designated as pRS405 EG CBH2, and a schematic diagram thereof is shown in FIG. In FIG. 3, “LEU2” represents a leucine gene marker, and the other notations are the same as in FIG.
  • a 2816 bp DNA fragment derived from plasmid pFCBH2w3 prepared as described in Preparation Examples 2 to 4 above was digested with XmaI and XbaI and inserted between the XmaI and XbaI sites of plasmid pILGP3 containing the GAPDH promoter and GAPDH terminator, LEU2 gene and promoter and terminator thereof, GAPDH promoter, secretion signal sequence of glucoamylase gene derived from Rhizopus oryzae, cellobiohydrolase (CBH2) gene derived from Trichoderma reesei, 3 ′ half region of ⁇ -agglutinin gene, and GAPDH terminator
  • a plasmid containing was obtained.
  • the resulting plasmid was named pILGP3-CBH2, and a schematic diagram thereof is shown in FIG. In FIG. 4, “LEU2” represents a leucine gene marker, and the other notations are the same as in FIG.
  • This DNA fragment was digested with NcoI and XhoI, and the cell surface expression plasmid pIHCS (non-patent document 9) containing the secretory signal sequence of the Rhizopus oryzae-derived glucoamylase gene and the 3 ′ half region of the ⁇ -agglutinin gene (non-patent document 9) It was inserted into the NcoI-XhoI site of Patent Document 10). The resulting plasmid was named pIBG13.
  • PCR was performed using a primer pair (SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse), and the GAPDH promoter, Rhizopus oryzae-derived glucoamylase secretion signal sequence, BGL1 gene, ⁇ -agglutinin gene 3
  • SEQ ID NO: 23 Forward and SEQ ID NO: 24; Reverse
  • GAPDH promoter Rhizopus oryzae-derived glucoamylase secretion signal sequence
  • BGL1 gene ⁇ -agglutinin gene 3
  • This fragment was digested with NotI and cloned into NotI digested pRS 404.
  • the obtained plasmid was designated as pIWBGL, and a schematic diagram thereof is shown in FIG. In FIG.
  • TRP1 represents a tryptophan gene marker
  • GAPDH represents a glyceraldehyde-3-phosphate dehydrogenase promoter
  • ss represents a secretory signal sequence of a Rhizopus oryzae-derived glucoamylase gene
  • AG represents , The 3 ′ half region of the ⁇ -agglutinin gene
  • BGL represents the ⁇ -glucosidase 1 (BGL1) gene derived from Aspergillus acreatas.
  • Preparation Example 8 Preparation of yeast strain incorporating endoglucanase II having a copy number of 1
  • NBRC1440 / UHWL was transformed with the linearized pGK406 EG cut with the restriction enzyme NdeI, and a strain having no uracil requirement was selected on a uracil dropout (uracil-free medium) plate.
  • NBRC1440 / UHWL disrupted URA3 gene was restored by transformation with pGK406 EG, confirming gene introduction.
  • This strain was named “NBRC1440 / pGK406 EG”.
  • a surface-presenting strain of endoglucanase II having a copy number of 1 was prepared.
  • Preparation Example 9 Preparation of yeast strain in which both endoglucanase II and cellobiohydrolase 2 were incorporated at a copy number of 1
  • NBRC1440 / UHWL was transformed with the linearized pRS406 EG CBH2 cut with the restriction enzyme NdeI, and a strain having no uracil requirement was selected on a uracil dropout (uracil-free medium) plate.
  • NBRC1440 / UHWL disrupted URA3 gene was restored by transformation with pRS406 EG CBH2, confirming gene transfer.
  • This strain is named “NBRC1440 / pRS406 EG CBH2” and is also abbreviated as “NBRC1440 / EG-CBH2-1c”.
  • a surface-displaying strain of endoglucanase II and cellobiohydrolase 2 having a copy number of 1 was prepared.
  • Preparation Example 10 Preparation of a yeast strain into which endoglucanase II and cellobiohydrolase 2 were incorporated at a copy number of 2
  • NBRC1440 / pRS406 EG CBH2 was transformed with the linearized pRS403 EG CBH2 cut with the restriction enzyme NdeI, and a strain having no histidine requirement was selected on a histidine dropout (histidine-free medium) plate.
  • the transformation of pRS403 EG CBH2 restored the disrupted HIS3 gene of NBRC1440 / pRS406 EG CBH2, thereby confirming gene introduction.
  • This strain is named “NBRC1440 / pRS406 EG CBH2 / pRS403 EG CBH2” and is also abbreviated as “NBRC1440 / EG-CBH2-2c”.
  • surface-displaying strains of endoglucanase II and cellobiohydrolase 2 having a copy number of 2 were prepared.
  • This strain is named “NBRC1440 / pRS406 EG CBH2 / pRS403 EG CBH2 / pRS405 EG CBH2”, and is also abbreviated as “NBRC1440 / EG-CBH2-3c”.
  • surface display strains of endoglucanase II and cellobiohydrolase 2 having a copy number of 3 were prepared.
  • NBRC1440 / pRS406 EG CBH2 was transformed with the linearized pILGP3-CBH2 cut with the restriction enzyme HpaI, and a strain having no leucine requirement was selected on a leucine dropout (leucine-free medium) plate.
  • the transformation of pILGP3-CBH2 restored the disrupted LEU2 gene of NBRC1440 / EG-CBH2-1c, confirming gene introduction.
  • This strain is named “NBRC1440 / pRS406 EG CBH2 / pILGP3-CBH2” and is also abbreviated as “NBRC1440 / EG-CBH2-1c-CBH2”.
  • surface-presenting strains of endoglucanase II having a copy number of 1 and cellobiohydrolase 2 having a copy number of 2 were prepared.
  • NBRC1440 / pRS406 EG CBH2 was transformed with the linearized pRS405 CBH2 CBH2 cut with the restriction enzyme HpaI, and a strain not requiring leucine was selected on a leucine dropout (leucine-free medium) plate.
  • pRS405 CBH2 Transformation with CBH2 restored the disrupted LEU2 gene of NBRC1440 / EG-CBH2-1c, confirming gene introduction.
  • This strain is named “NBRC1440 / pRS406 EG CBH2 / pRS405 CBH2 CBH2” and is also abbreviated as “NBRC1440 / EG-CBH2-1c-CBH2 ⁇ 2”.
  • surface-displaying strains of endoglucanase II having a copy number of 1 and cellobiohydrolase 2 having a copy number of 3 were prepared.
  • Example 1 Evaluation of cellulose hydrolyzing power
  • PSC phosphoric acid swollen cellulose
  • FIG. 7 is a graph showing the cellulose hydrolyzing power of yeast that variously expresses endoglucanase and cellobiohydrolase.
  • the vertical axis represents enzyme activity (mU / g cell) per gram of yeast cells.
  • NBRC1440 (“1440" in the figure), NBRC1440 / pGK406 EG (“EG” in the figure;
  • Preparation Example 8 yeast strain incorporating endoglucanase II having a copy number of 1), NBRC1440 / EG-CBH2-1c (“EG CBH2” in the figure;
  • Preparation Example 9 Yeast strain in which both endoglucanase II and cellobiohydrolase 2 were incorporated at a copy number of 1), NBRC1440 / EG-CBH2-1c-CBH2 (“CBH2” of “EG CBH2” in the figure;
  • Preparation Example 12 Endoglucanase II and cellobiohydrolase 2 are both incorporated at a copy number of 1, and further a cellobiohydrolase of copy number 1) Yeast strain incorporating 2), NBRC1440 / EG-CBH2-1c-CBH
  • Example 2 Ethanol fermentation test
  • the PSC degradation activity increased each time the copy number was increased with the combination of “EG CBH2”. Therefore, in this example, ethanol fermentation from PSC was performed using strains into which two copies of the two cassettes of “EG CBH2” (two gene cassettes of EG and CBH2) were incorporated. It was.
  • each of these three strains (NBRC1440 / EG-CBH2-1c, NBRC1440 / EG-CBH2-2c, NBRC1440 / EG-CBH2-3c) was added to pIWBGL ( ⁇ - A strain into which a glucosidase surface display expression vector) was incorporated was used. That is, three types of cellulase surface-displaying yeasts “NBRC1440 / EG-CBH2-1c / BGL”, “NBRC1440 / EG-CBH2-2c / BGL”, and “NBRC1440 / EG-CBH2-3c / BGL” were used.
  • Yeast, SD medium supplemented with essential amino acids synthetic dextrose medium: yeast nitrogen source other than 6.7 g / L amino acids (Yeast nitro base without amino acids) [Difco) and appropriate supplements; 20 g / L Of glucose is added as a single carbon source) for 24 hours at a pH of about 5.0 at about 30 ° C. and aerobic (dissolved oxygen concentration: about 2 ppm), followed by 48 hours of YPD medium ( Yeast extract / polypeptone / dextrose medium: 10 g / L yeast extract, 20 g / L polypeptone, 20 g / L glucose). The culture supernatant and the cell pellet were separated by centrifugation at 6,000 ⁇ g for 10 minutes at 4 ° C. to obtain a cell pellet.
  • synthetic dextrose medium yeast nitrogen source other than 6.7 g / L amino acids (Yeast nitro base without amino acids) [Difco) and appropriate supplements; 20 g / L Of glucose is added as a single carbon source
  • the cell pellet is placed in a fermentation medium containing 11.2 g / L PSC, 10 g / L yeast extract, 20 g / L polypeptone, 50 mM citrate buffer (pH 5.0), and 0.5 g / L potassium disulfite. Vaccinated.
  • the subsequent fermentation was carried out anaerobically (dissolved oxygen concentration: about 0.05 ppm) at about 30 ° C.
  • the cell concentration was adjusted to 75 g / L (wet cells). Since the added PSC is 11.2 g / L, the theoretical yield of ethanol is 5.7 g / L.
  • the ethanol concentration during fermentation was measured by HPLC.
  • HPLC analysis was performed by using a refractive index (RI) detector (L-2490® RI detector, Hitachi, Ltd.).
  • the column used for the separation was Shim-pack SPR-Pb Column (Shimadzu Corporation).
  • the HPLC was operated at 80 ° C. with water at a flow rate of 0.6 mL / min as the mobile phase.
  • FIG. 8 shows three cellulase surface-displaying yeasts NBRC1440 / EG-CBH2-1c / BGL, NBRC1440 / EG-CBH2-2c / BGL, and NBRC1440 / EG-CBH2 in which the copy numbers of endoglucanase and cellobiohydrolase were sequentially increased. It is a graph which shows the time-dependent change of the amount of ethanol produced
  • the left vertical axis represents ethanol concentration (g / L), and the horizontal axis represents elapsed time (hours).
  • the black circle is NBRC1440 / EG-CBH2-3c / BGL (3 copies of endoglucanase II and cellobiohydrolase 2)
  • the black triangle is NBRC1440 / EG-CBH2-2c / BGL (endoglucanase II and cellobiohydrolase 2)
  • the black squares represent the amount of ethanol produced by yeast incorporating NBRC1440 / EG-CBH2-1c / BGL (one copy of both endoglucanase II and cellobiohydrolase 2).
  • NBRC1440 / EG-CBH2-3c / BGL which is a yeast incorporating 3 copies of endoglucanase and cellobiohydrolase for 1 copy of ⁇ -glucosidase, is 52.6% of the theoretical yield at 48 h. % Yield.
  • Plasmid pRS403 / ssEG2-CBH2 was constructed to have a histidine gene (HIS3) marker and to be incorporated to secrete endoglucanase II (EGII) and cellobiohydrolase 2 (CBH2).
  • GAPDH promoter multiple cloning using pUGP3 (Non-patent Document 12) as a template and a primer pair of XYL2c-Xho (F) (SEQ ID NO: 25; Forward) and XYL2c-NotI (R) (SEQ ID NO: 26; Reverse)
  • F XYL2c-Xho
  • R XYL2c-NotI
  • the site (SalI, XbaI, BamHI, SmaI, XmaI) and the gene sequence encoding the GAPDH terminator were PCR amplified.
  • the fragment was introduced into the XhoI / NotI site of pRS403 (Stratagene) to obtain plasmid pIHGP3.
  • Non-patent Document 10 Using a 1308 bp DNA fragment containing the secretory signal sequence of Rhizopus oryzae-derived glucoamylase gene and Trichoderma reesei-derived endoglucanase (EGII) gene as a template, pEG23u31H6 (Non-patent Document 10), SEQ ID NO: 29 (Forward) and SEQ ID NO: Prepared by PCR using 30 (Reverse) primer pairs.
  • the above 1308 bp DNA fragment is digested with SmaI, inserted into the SmaI part of the plasmid pIHGP3 containing the HIS3 gene and its promoter and terminator, GAPDH promoter and GAPDH terminator, and the secretion signal of the HIS3 gene and its promoter and terminator, GAPDH promoter and glucoamylase gene
  • a plasmid containing the sequence, EGII gene and GAPDH terminator was obtained.
  • the resulting plasmid was named pRS403 / ssEG2.
  • the above 1416 bp DNA fragment is digested with SmaI and inserted into the SmaI part of the plasmid pIHGP3 containing the HIS3 gene and its promoter and terminator, GAPDH promoter and GAPDH terminator, and the secretion signal of the HIS3 gene and its promoter and terminator, GAPDH promoter and glucoamylase gene
  • a plasmid containing the sequence, CBH2 gene and GAPDH terminator was obtained.
  • the resulting plasmid was named pRS403 / ssCBH2.
  • a fragment containing a GAPDH (glyceraldehyde triphosphate dehydrogenase) promoter, a secretion signal sequence of a lysopus oryzae-derived glucoamylase gene, a Trichoderma reesei-derived CBH2 gene, and a GAPDH terminator as a primer (SEQ ID NO: 23) ; And Forward and SEQ ID NO: 24; Reverse).
  • the resulting fragment was digested with NotI and cloned into pRS403 / ssEG2 digested with NotI.
  • the obtained plasmid was designated as pRS403 / ssEG2-CBH2.
  • PRS405 (Stratagene) having the LEU2 gene marker was digested with ApaI and NotI, and the fragment obtained above was inserted. The resulting plasmid was named pRS405 / ssCBH2.
  • Plasmid pRS403 / ssEG2 was used as a template and amplified by PCR with primers (SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse). The resulting fragment was digested with NotI and cloned into NotI digested pRS405 / ssCBH2. The obtained plasmid was designated as pRS405 / ssEG2-CBH2.
  • PRS406 (Stratagene) having the URA3 gene marker was digested with ApaI and NotI, and the fragment obtained above was inserted. The resulting plasmid was named pRS406 / ssCBH2.
  • Plasmid pRS403 / ssEG2 was used as a template and amplified by PCR with primers (SEQ ID NO: 23; Forward and SEQ ID NO: 24; Reverse). The resulting fragment was digested with NotI and cloned into pRS406 / ssCBH2 digested with NotI. The obtained plasmid was designated as pRS406 / ssEG2-CBH2.
  • Preparation Example 15-4 Preparation of yeast strain into which secretory endoglucanase II and cellobiohydrolase 2 were incorporated at a copy number of 1
  • NBRC1440 / UHWL was transformed with pRS406 / ssEG2-CBH2 linearized by cutting with the restriction enzyme NdeI, and a strain having no uracil requirement was selected on a uracil dropout (uracil-free medium) plate.
  • the transformation of pRS406 / ssEG2-CBH2 restored the URA3 gene in which NBRC1440 / UHWL was destroyed, confirming the introduction of the gene.
  • This strain is named “NBRC1440 / pRS406 / ssEG2-CBH2” and is also abbreviated as “NBRC1440 / ss-EG-CBH2-1c”.
  • secretory strains of endoglucanase II and cellobiohydrolase 2 having a copy number of 1 were prepared.
  • This strain is named “NBRC1440 / pRS406 / ssEG2-CBH2 / pRS403 / ssEG2-CBH2” and is also abbreviated as “NBRC1440 / ss-EG-CBH2-2c”.
  • NBRC1440 / ss-EG-CBH2-2c a copy number 2 endoglucanase II and cellobiohydrolase 2 secretion strain was prepared.
  • This strain is named “NBRC1440 / pRS406 / ssEG2-CBH2 / pRS403 / ssEG2-CBH2 / pRS405 ssEG2-CBH2”, and is also abbreviated as “NBRC1440 / ss-EG-CBH2-3c”.
  • endoglucanase II and cellobiohydrolase 2 secretion strains having a copy number of 3 were prepared.
  • NBRC1440 / ss-EG-CBH2-1c, NBRC1440 / ss-EG-CBH2-2c, and NBRC1440 / ss-EG-CBH2-3c were transformed with pIWBGL that had been cut and linearized with Bst1107I. Strains without tryptophan requirement were selected on tryptophan dropout (tryptophan-free medium) plates. Each disrupted TRP1 gene was restored by transformation with pIWBGL, confirming the introduction of ⁇ -glucosidase 1 gene.
  • strains are simplified to NBRC1440 / ss-EG-CBH2-1c / BGL, NBRC1440 / ss-EG-CBH2-2c / BGL, and NBRC1440 / ss-EG-CBH2-3c / Also referred to as “BGL”.
  • BGL NBRC1440 / ss-EG-CBH2-3c / Also referred to as “BGL”.
  • Example 3 Comparison between cellulase surface display yeast and cellulase-secreting yeast for ethanol production from phosphate-swelled cellulose
  • the subsequent fermentation was carried out anaerobically (dissolved oxygen concentration: about 0.05 ppm) at about 30 ° C.
  • the cell concentration was adjusted to 75 g / L (wet cells). Since the added PSC is 7.8 g / L, the theoretical yield of ethanol is 4.0 g / L.
  • the ethanol concentration during fermentation was measured.
  • FIG. 9 is a graph showing changes over time in the amount of ethanol produced from phosphate-swollen cellulose (PSC) in cellulase surface-displaying yeast and cellulase-secreting yeast.
  • the horizontal axis of this graph indicates fermentation time (hours), and the vertical axis indicates ethanol production (g / L).
  • the black circle is NBRC1440 / ss-EG-CBH2-1c / BGL
  • the black triangle is NBRC1440 / ss-EG-CBH2-2c / BGL
  • the black square is NBRC1440 / ss-EG-CBH2-3c / BGL
  • the white circle is NBRC1440 / EG-CBH2-1c / BGL
  • white triangles represent the results of NBRC1440 / EG-CBH2-2c / BGL
  • white squares represent the results of NBRC1440 / EG-CBH2-3c / BGL.
  • the ethanol fermentation yield from PSC increases as the copy number of endoglucanase and cellobiohydrolase increases with respect to one copy of ⁇ -glucosidase. Indicated.
  • a yeast for fermentation that can improve the hydrolysis power of cellulose and enhance ethanol production can be obtained. Therefore, ethanol can be efficiently produced from the cellulosic material, which can lead to cost reduction.
  • Such yeast is expected to be used for ethanol production from waste such as soft biomass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 本発明は、セルロース加水分解力強化酵母を作製する方法を提供する。この方法は、結晶性セルロースを加水分解し得る酵素および非晶性セルロースを加水分解し得る酵素のそれぞれの遺伝子を共に増大させた組み込みコピー数で、セルロース非加水分解性酵母に導入し、形質転換酵母を得る工程を含む。セルロース加水分解力強化酵母は、セルロース系物質からのエタノール生産に好適に利用され得る。

Description

セルロース加水分解力強化酵母の作製および使用
 本発明は、セルロース加水分解力強化酵母の作製および使用に関する。
 近年、食料穀物(例えば、トウモロコシ、イモ類、およびサトウキビ)からのバイオ燃料の増産が食物価格の高騰を招いており、非食用炭素源ソフトバイオマス(例えば、稲ワラ、麦ワラ、バガス、籾殻、綿、竹、紙、およびコーンストーバーのような廃棄物)からのエタノール生産が急務となっている。
 セルロースやヘミセルロースを含むバイオマスに対して酸処理または超臨界処理を施し、発酵微生物が資化できるグルコースにまで原料を処理する手法が提案されている。
 従来、セルロース材料を原料とするグルコースの製造方法としては、酸糖化法および酵素糖化法がある。酸糖化法としては、高温(200℃以上)で希酸を用いてセルロース系物質を糖化する希酸糖化方法と、濃硫酸などでセルロース材料を糖化する方法とが知られている。しかし、いずれの方法も過激な条件下でセルロース材料を加水分解するために、セルロース材料の分解物であるグルコースの二次分解反応が起こり、糖化率は約50%と低く、また、糖化液からグルコースの分解物を除去する必要がある。上記グルコースの分解物を除去せずに糖化液を発酵用炭素源として利用するには種々の問題がある。
 一方、酵素糖化法は、セルロース材料の糖化を温和な条件下で行うことができるが、糖化の反応速度が遅く十分な糖化には長時間を要するという問題がある。さらに、糖化に使用する市販の酵素の力価が低いことにより十分な糖化には酵素を大量に必要とするので、使用酵素のコストが高くなるという問題がある。
 ソフトバイオマスの主成分であるセルロース、ヘミセルロースなどを本来資化することができない発酵微生物を、生物工学的手法を用いて改変することにより、非食用炭素源からの直接エタノールを発酵させる試みがなされている。このような生物工学的手法として細胞表層提示技術が好適に利用されている。例えば、セルロースを加水分解する酵素群を表層提示した酵母が、細胞表層提示技術によって作製されている(特許文献1および2)。また、酵母サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)はキシロースを代謝することができないが、キシラン分解酵素であるトリコデルマ・リーセイ(Trichoderma reesei)由来キシラナーゼ2(XYNII)およびアスペルギルス・オリゼ(Aspergillus oryzae)由来β-キシロシダーゼ(XylA)を表層提示し、かつキシロースレダクターゼ(XR)遺伝子およびキシリトールデヒドロゲナーゼ(XDH)遺伝子(ともにピチア・スチピチス(Pichia stipitis)由来)ならびにキシルロキナーゼ(XK)遺伝子(サッカロマイセス・セレビシエ由来)を発現するサッカロマイセス・セレビシエが作製され、この酵母を用いて樺材のキシランからエタノールを生産する試みもなされている(非特許文献1)。
 しかし、工業上の実用性を鑑みるとさらなる検討が必要である。セルロース系バイオマスにおいては、結晶性部分と非晶性部分とが存在する。酵素による加水分解反応は、非晶性部分は結晶性部分に比較して容易であるが、結晶性部分は強固な分子内・分子間水素結合が存在しているため、加水分解速度は遅いと考えられている。このような複雑な構成を有するセルロースの加水分解をより効率的に行うことが重要である。
国際特許出願公開第01/79483号公報 特開2008-86310号公報 特開2006-255676号公報
S. Katahiraら, Applied and Environmental Microbiology, 2004年, 70巻, 5407-5414頁 Appl. Microbiol. Biotech., 2002年, 60巻, 469-474頁 Applied and Environmental Microbiology, 2002年, 68巻, 4517-4522頁 R. Akadaら, Yeast, 2006年, 23巻, 399-405頁 H. Okadaら, J. Biosci. Bioeng., 1999年, 88巻, 563頁 Y. Fujitaら, Journal of molecular Catalysis B: Enzymatic, 2002年, 17巻, 189-195頁 S. Katahiraら, Appl Microbiol Biotechnol., 2006年, 72巻, 1136-43頁 Roseら, Methods in Yeast genetics, A Laboratory Course Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1990年 P. N. Lipkeら, Mol. Cell. Biol., 1989年8月, 9(8), 3155-65頁 Y. Fujitaら, Applied and Environmental Microbiology, 2002年, 68巻, 5136-41頁 Y. Fujitaら, Applied and Environmental Microbiology, 2004年, 70巻, 1207-12頁 Takahashiら, Appl. Microbiol. Biotechnol., 2001年, 55巻, 454-462頁 C. S. Walseth, Tech. Assoc. Pulp Paper Ind., 1952年, 35巻, 228-233頁
 本発明は、高いセルロース加水分解力を有する酵母を提供することを目的とする。さらに、本発明は、セルロース系物質から効率的にエタノールを生産する方法を提供することを目的とする。
 本発明は、セルロース加水分解力強化酵母を作製する方法を提供する。この方法は、
 セルロースを加水分解し得る酵素の遺伝子群をセルロース非加水分解性酵母に導入して形質転換酵母を得る工程であって、上記遺伝子群が、結晶性セルロースを加水分解し得る酵素の遺伝子および非晶性セルロースを加水分解し得る酵素の遺伝子を含み、上記結晶性セルロースを加水分解し得る酵素の遺伝子および上記非晶性セルロースを加水分解し得る酵素の遺伝子が共に増大された組み込みコピー数で導入される、工程を含む。
 1つの実施態様では、上記結晶性セルロースを加水分解し得る酵素はセロビオヒドロラーゼであり、上記非晶性セルロースを加水分解し得る酵素はエンドグルカナーゼである。
 別の1つの実施態様では、上記結晶性セルロースを加水分解し得る酵素および上記非晶性セルロースを加水分解し得る酵素の少なくとも一方が表層提示されるように上記セルロース非加水分解性酵母に導入する。
 さらに別の実施態様では、上記セルロースを加水分解し得る酵素の遺伝子群は、セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子をさらに含む。
 さらなる実施態様では、上記セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子の組み込みコピー数の1コピーに対し、上記結晶性セルロースを加水分解し得る酵素および上記非晶性セルロースを加水分解し得る酵素の組み込みコピー数は少なくとも2コピーである。
 さらなる実施態様では、上記セロビオースまたはセロオリゴ糖を加水分解し得る酵素はβ-グルコシダーゼである。
 さらなる実施態様では、上記セロビオースまたはセロオリゴ糖を加水分解し得る酵素が表層提示されるように前記セルロース非加水分解性酵母に導入する。
 本発明はさらに、上記方法により得られる、セルロース加水分解力強化酵母を提供する。
 本発明はまた、セロビオヒドロラーゼ遺伝子、エンドグルカナーゼ遺伝子、およびβ-グルコシダーゼ遺伝子を有し、上記β-グルコシダーゼ遺伝子1コピーに対して、上記セロビオヒドロラーゼ遺伝子および上記エンドグルカナーゼ遺伝子のそれぞれが少なくとも2コピーで組み込まれた、セルロース加水分解力強化酵母を提供する。
 1つの実施態様では、上記セロビオヒドロラーゼ、エンドグルカナーゼ、およびβ-グルコシダーゼが表層提示されている。
 さらに、本発明は、エタノールを製造する方法を提供する。この方法は、
 セルロース系物質と、上記セルロース加水分解力強化酵母とを反応させて、エタノールを生産する工程
を含む。
 本発明によれば、セルロース加水分解力強化酵母が提供される。このセルロース加水分解力強化酵母により、セルロースからの直接エタノール生産量が高められる。さらに、このセルロース加水分解力強化酵母の利用により、セルロース系物質からの効率的で経済的なエタノール生産方法が提供される。
プラスミドpRS406 EG CBH2の模式図である。 プラスミドpRS403 EG CBH2の模式図である。 プラスミドpRS405 EG CBH2の模式図である。 プラスミドpILGP3-CBH2の模式図である。 プラスミドpRS405 CBH2 CBH2の模式図である。 プラスミドpIWBGLの模式図である。 エンドグルカナーゼおよびセロビオヒドロラーゼを種々に発現する酵母のセルロース加水分解力を示すグラフである。 エンドグルカナーゼおよびセロビオヒドロラーゼのコピー数を順次増大させた3種のセルラーゼ表層提示酵母によるリン酸膨潤セルロース(PSC)を材料とする発酵で生成されるエタノール量の経時変化を示すグラフである。 セルラーゼ表層提示酵母およびセルラーゼ分泌酵母のリン酸膨潤セルロース(PSC)からのエタノール生産量の経時変化を示すグラフである。
 (セルロース加水分解力強化酵母およびその作製)
 本発明においては、本来セルロースを加水分解する能力がないかまたはほとんどない酵母(野生型酵母など)(本明細書中では、「セルロース非加水分解性酵母」ともいう)に対して、セルロースを加水分解し得る酵素群を発現するように遺伝子組換えを行うことにより、セルロース加水分解力が強化された形質転換酵母が作製される。
 セルロースを加水分解し得る酵素は、任意のセルロース加水分解酵素生産菌に由来し得る。セルロース加水分解酵素生産菌としては、代表的には、アスペルギルス属(例えば、アスペルギルス・アクレアータス(Aspergillus aculeatus)、アスペルギルス・ニガー(Aspergillus niger)、およびアスペルギルス・オリゼ(Aspergillus oryzae))、トリコデルマ属(例えば、トリコデルマ・リーセイ(Trichoderma reesei))、クロストリディウム属(例えば、クロストリディウム・テルモセラム(Clostridium thermocellum)、セルロモナス属(例えば、セルロモナス・フィミ(Cellulomonas fimi)およびセルロモナス・ウダ(Cellulomonas uda))、シュードモナス属(例えば、シュードモナス・フルオレセンス(Pseudomonas fluorescence))などに属する微生物が挙げられる。
 セルロースを加水分解し得る酵素とは、β1,4-グルコシド結合を切断し得る酵素であり得る。β1,4-グルコシド結合を切断し得る酵素としては、代表的には、エンドβ1,4-グルカナーゼ(以下、単に「エンドグルカナーゼ」という)、セロビオヒドロラーゼ、およびβ-グルコシダーゼが挙げられるが、これらに限定されない。
 エンドグルカナーゼは、通常、セルラーゼと称される酵素であり、セルロースを分子内部から切断し、グルコース、セロビオース、およびセロオリゴ糖(重合度が3以上であり、そして通常、10以下であり得るが、これに限定されない)を生じ得る(「セルロース分子内切断」)。エンドグルカナーゼは、非結晶化されたセルロース、可溶性セロオリゴ糖、およびカルボキシメチルセルロース(CMC)のようなセルロース誘導体などの結晶化度の低いまたは非晶性のセルロースに対する反応性が高いが、結晶構造を有するセルロースミクロフィブリルへの反応性は低い。エンドグルカナーゼは、非晶性セルロースを加水分解し得る酵素(以下、「非晶性加水分解酵素」ともいう)の代表例である。エンドグルカナーゼには5種類あり、それぞれエンドグルカナーゼI、エンドグルカナーゼII、エンドグルカナーゼIII、エンドグルカナーゼIV、およびエンドグルカナーゼVと称される。これらの区別は、アミノ酸配列の差異であるが、セルロース分子内切断作用を有する点では共通する。例えば、トリコデルマ・リーセイ由来エンドグルカナーゼ(特に、EGII)が用いられ得るが、これに限定されない。
 セロビオヒドロラーゼは、セルロースの還元末端または非還元末端のいずれかから分解してセロビオースを遊離し得る(「セルロース分子末端切断」)。セロビオヒドロラーゼは、結晶構造を有するセルロースミクロフィブリルのような結晶性セルロースを分解し得るが、カルボキシメチルセルロース(CMC)のようなセルロース誘導体などの結晶化度の低いまたは非晶性のセルロースに対する反応性は低い。セロビオヒドロラーゼは、結晶性セルロースを加水分解し得る酵素(以下、「結晶性加水分解酵素」ともいう)の代表例である。結晶性セルロースの分子間および分子内の密な水素結合による強固な構造に起因して、セロビオヒドロラーゼによる結晶性セルロースの加水分解は、エンドグルカナーゼによる非晶性セルロースの加水分解に比較して遅くなり得る。セロビオヒドロラーゼには2種類あり、それぞれセロビオヒドロラーゼ1およびセロビオヒドロラーゼ2と称される。これらの区別は、アミノ酸配列の差異であるが、セルロース分子末端切断作用を有する点では共通する。例えば、トリコデルマ・リーセイ由来セロビオヒドロラーゼ(特に、CBH2)が用いられ得るが、これに限定されない。
 β-グルコシダーゼは、セルロースにおいては、非還元末端からグルコース単位を切り離していくエキソ型の加水分解酵素である。β-グルコシダーゼは、アグリコンまたは糖鎖とβ-D-グルコースとのβ1,4-グルコシド結合を切断し得、セロビオースまたはセロオリゴ糖を加水分解してグルコースを生成し得る。β-グルコシダーゼは、セロビオースまたはセロオリゴ糖を加水分解し得る酵素の代表例である。β-グルコシダーゼは現在、1種類知られており、β-グルコシダーゼ1と称される。例えば、アスペルギルス・アクレアータス由来β-グルコシダーゼ(特に、BGL1)が用いられ得るが、これに限定されない。
 本発明においては、以下に詳述するように、セルロースを加水分解し得る酵素の遺伝子群を導入することで、形質転換酵母が作製され得る。セルロースを加水分解し得る酵素の遺伝子群は、結晶性セルロースを加水分解し得る酵素の遺伝子および非晶性セルロースを加水分解し得る酵素の遺伝子を含む。結晶性セルロースを加水分解し得る酵素(「結晶性加水分解酵素」)とは、ミクロフィブリルのような結晶構造を有するセルロースを加水分解し得る任意の酵素をいい、例えば、セロビオヒドロラーゼが挙げられるがこれに限定されない。非晶性セルロースを加水分解し得る酵素(「非晶性加水分解酵素」)とは、結晶構造を有するセルロースは分解しないが、非結晶化されたセルロースのような結晶化度の低いまたは非晶性のセルロースの鎖を加水分解し得る任意の酵素をいい、例えば、エンドグルカナーゼが挙げられるがこれに限定されない。好ましくは、セルロースを加水分解し得る酵素の遺伝子群には、セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子がさらに含まれ得る。セロオリゴ糖については上述の通りである。セロビオースまたはセロオリゴ糖を加水分解し得る酵素としては、例えば、β-グルコシダーゼが挙げられるがこれに限定されない。
 本発明においては、セルロース非加水分解性酵母(野生型酵母など)に対して、結晶性加水分解酵素および非晶性加水分解酵素の発現が共に増大されるように遺伝子組換えを行うことにより、形質転換酵母が作製される。すなわち、それぞれの酵素の遺伝子のコピー数を共に増大させた組み込みコピー数でセルロース非加水分解性酵母に導入し、形質転換酵母を得る。結晶性加水分解酵素および非晶性加水分解酵素の発現様式は、発現された酵素がセルロース基質に対して作用する限り問わない。例えば、発現様式は、表層提示または分泌発現であり得る。結晶性加水分解酵素および非晶性加水分解酵素は、少なくとも一方、または両方が共に、表層提示または分泌され得る。結晶性加水分解酵素および非晶性加水分解酵素の表層提示と分泌とを同時に生じるように、酵母を形質転換してもよい。
 形質転換酵母には、セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子が組み込まれていることが好ましい。それにより、セルロースからのグルコースの生産能を高め得る。この酵素もまた、表層提示または分泌させ得るが、好ましくは表層提示される。セルロースからのエタノール発酵をさらに効率的に行うために、セロビオースまたはセロオリゴ糖を加水分解し得る酵素もまた酵母で発現されることが好ましい。
 セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子の組み込みコピー数が1コピーに対し、結晶性加水分解酵素および非晶性加水分解酵素のそれぞれの遺伝子の組み込みコピー数は少なくとも2コピーであり得る。
 一例として、結晶性加水分解酵素としてセロビオヒドロラーゼ、そして非晶性加水分解酵素としてエンドグルカナーゼが用いられ得る。これらの酵素の発現を共に増大させるために、これらの酵素の遺伝子の発現カセット(以下に詳述する)を一緒に含む少なくとも2つのベクターで単一の酵母を形質転換し得る。これらの各酵素の遺伝子の発現カセットを単独で含むそれぞれのベクターの組み合わせの少なくとも2組で単一の酵母を形質転換してもよい。実用酵母を形質転換する場合は、以下に詳述するように、実用酵母は、栄養要求性マーカーを本来有しておらず、栄養要求性マーカーを付与することが望ましいので、これらの酵素の遺伝子の発現カセットを一緒に含むベクター(ベクターの例としては、以下の実施例に説明するベクターが挙げられる)を調製することが操作の効率上好ましい。
 形質転換酵母は、セロビオースまたはセロオリゴ糖を加水分解し得る酵素として、β-グルコシダーゼがさらに組み込まれたものであり得る。
 β-グルコシダーゼ遺伝子の組み込みコピー数に対してセロビオヒドロラーゼおよびエンドグルカナーゼの組み込みコピー数を増大させることにより、エタノール生産量を増大させ得る。したがって、β-グルコシダーゼ遺伝子の組み込みコピー数1コピーに対して、セロビオヒドロラーゼおよびエンドグルカナーゼのそれぞれの該遺伝子が少なくとも2コピーが組み込まれ得る。セロビオヒドロラーゼおよびエンドグルカナーゼのそれぞれの該遺伝子は、β-グルコシダーゼ遺伝子の組み込みコピー数1コピーに対して3コピーまたはそれ以上でも、組み込まれ得る。セルロース非加水分解性酵母(野生型酵母など)にこのような遺伝子組換えを行うことにより、エタノール生産量を増大した酵母が得られ得る。
 1つの実施態様としては、セロビオヒドロラーゼおよびエンドグルカナーゼの少なくとも一方、または両方ともに表層提示または分泌され、そしてβ-グルコシダーゼが表層提示されるように組み込まれる。好ましくは、セロビオヒドロラーゼ、エンドグルカナーゼ、およびβ-グルコシダーゼが表層提示され得る。
 上述のようにして得られた形質転換酵母は、セルロースを加水分解する能力が付与され、そして強化された酵母となる。本明細書中では、このようなセルロースを加水分解する能力が付与され、そして強化された形質転換酵母を、「セルロース加水分解力強化酵母」ともいう。
 以下、セルロース加水分解力強化酵母の作製(すなわち、形質転換酵母の作製)について説明するが、これらに限定されない。
 発現を目的とする酵素の遺伝子は、酵素を産生する微生物から、既知の配列情報に基づいてプライマーまたはプローブを設計してPCRまたはハイブリダイゼーション法などによって取得し得る。
 酵素遺伝子を用いて発現カセットを構築し得る。発現カセットは、その遺伝子の発現を調節するオペレーター、プロモーター、ターミネーター、エンハンサーなどのいわゆる調節因子を含み得る。プロモーターまたはターミネーターは、発現を目的とする遺伝子自身のものであっても、他の遺伝子由来のものを利用してもよい。プロモーターおよびターミネーターとしては、GAPDH(グリセルアルデヒド3’-リン酸デヒドロゲナーゼ)、PGK(ホスホグリセリン酸キナーゼ)、GAP(グリセルアルデヒド3’-リン酸)などのプロモーターおよびターミネーターを利用し得るが、プロモーターおよびターミネーターの選択は、目的の酵素遺伝子の発現に依存し、当業者によって適宜選択され得る。必要に応じて、さらなる発現を調節する因子(例えば、オペレーターおよびエンハンサー)などをさらに含み得る。オペレーター、エンハンサーなどの発現調節因子についても、当業者によって適宜選択され得る。発現カセットは、この遺伝子の発現の目的に応じて、必要な機能配列をさらに含むこともできる。発現カセットは、必要に応じてリンカーも含み得る。
 酵母への酵素の表層提示発現のために、細胞表層工学の技術を利用し得る。例えば、(a)細胞表層局在タンパク質のGPIアンカーを介して細胞表層に提示する方法、(b)細胞表層局在タンパク質の糖鎖結合タンパク質ドメインを介して細胞表層に提示する方法、および(c)ペリプラズム遊離型タンパク質(他のレセプター分子または標的レセプター分子)を介して細胞表層に提示する方法があるが、これらに限定されない。細胞表層工学の技術は、例えば、特許文献1および2にも記載される。
 用いられ得る細胞表層局在タンパク質としては、酵母の性凝集タンパク質であるα-またはa-アグルチニン(GPIアンカーとして使用)、Flo1タンパク質(Flo1タンパク質は、N末端側のアミノ酸長を種々改変して、GPIアンカーとして使用し得る:例えば、Flo42、Flo102、Flo146、Flo318、Flo428など;非特許文献2:なお、Flo1326とは、全長Flo1タンパク質を表す)、Floタンパク質(GPIアンカー機能を有さず凝集性を利用する、FloshortまたはFlolong;非特許文献3)、ペリプラズム局在タンパク質であるインベルターゼ(GPIアンカーを利用しない)などが挙げられる。
 まず、(a)GPIアンカーを利用する方法について説明する。GPIアンカーにより細胞表層に局在するタンパク質をコードする遺伝子は、N末端側から順に、分泌シグナル配列、細胞表層局在タンパク質(糖鎖結合タンパク質ドメイン)、およびGPIアンカー付着認識シグナル配列をそれぞれコードする遺伝子を有している。細胞内でこの遺伝子から発現された細胞表層局在タンパク質(糖鎖結合タンパク質)は、分泌シグナルにより細胞膜外へ導かれ、その際、GPIアンカー付着認識シグナル配列は、選択的に切断されたC末端部分を介して細胞膜のGPIアンカーと結合して細胞膜に固定される。その後、PI-PLCにより、GPIアンカーの根元付近で切断され、細胞壁に組み込まれて細胞表層に固定され、細胞表層に提示される。
 ここで、分泌シグナル配列とは、一般に細胞外(ペリプラズムも含む)に分泌されるタンパク質(分泌性タンパク質)のN末端に結合している、疎水性に富んだアミノ酸を多く含むアミノ酸配列をいい、通常、分泌性タンパク質が細胞内から細胞膜を通過して細胞外へ分泌される際に除去される。発現産物を細胞膜へ導くことができる分泌シグナル配列であれば、どのような分泌シグナル配列でも用いられ得、起源は問わない。例えば、分泌シグナル配列としては、グルコアミラーゼの分泌シグナル配列、酵母のα-またはa-アグルチニンのシグナル配列、発現産物自身の分泌シグナル配列などが好適に用いられる。細胞表層結合性タンパク質に融合している他のタンパク質の活性に影響を及ぼさないのであれば、分泌シグナル配列およびプロ配列の一部または全部がN末端に残ってもよい。
 ここで、GPIアンカーとは、グリコシルホスファチジルイノシトール(GPI)と呼ばれるエタノールアミンリン酸-6マンノースα1-2マンノースα1-6マンノースα1-4グルコサミンα1-6イノシトールリン脂質を基本構造とする糖脂質をいい、PI-PLCとは、ホスファチジルイノシトール依存性ホスホリパーゼCをいう。
 GPIアンカー付着認識シグナル配列とは、GPIアンカーが細胞表層局在タンパク質と結合する際に認識される配列であり、通常、細胞表層局在タンパク質のC末端あるいはその近傍に位置する。GPIアンカー付着シグナル配列としては、例えば酵母のα-アグルチニンのC末端部分の配列が好適に用いられる。上記α-アグルチニンのC末端から320アミノ酸の配列のC末端側には、GPIアンカー付着認識シグナル配列が含まれるので、上記方法に使用する遺伝子としては、このC末端から320アミノ酸の配列をコードするDNA配列が特に有用である。
 したがって、例えば、分泌シグナル配列をコードするDNA-細胞表層局在タンパク質をコードする構造遺伝子-GPIアンカー付着認識シグナルをコードするDNA配列を有する配列において、この細胞表層局在タンパク質をコードする構造遺伝子の全部または一部の配列を、目的とする酵素をコードするDNA配列に置換することにより、GPIアンカーを介して目的の酵素を細胞表層に提示するための組換えDNAが得られる。細胞表層局在タンパク質がα-アグルチニンである場合、上記α-アグルチニンのC末端から320アミノ酸の配列をコードする配列を残すように、目的の酵素をコードするDNAを導入することが好ましい。このため、「α-アグルチニン遺伝子の3’側半分の領域」が利用され得る。このようなDNAを酵母に導入して発現させることによって細胞表層に提示された酵素は、そのC末端側が表層に固定されている。
 次に、(b)糖鎖結合タンパク質ドメインを利用する方法について説明する。細胞表層局在タンパク質が糖鎖結合タンパク質である場合、その糖鎖結合タンパク質ドメインは、複数の糖鎖を有し、この糖鎖が細胞壁中の糖鎖と相互作用または絡み合うことによって、細胞表層に留まることが可能である。例えば、レクチン、レクチン様タンパク質などの糖鎖結合部位などが挙げられる。代表的には、GPIアンカータンパク質の凝集機能ドメイン、FLOタンパク質の凝集機能ドメインが挙げられる。GPIアンカータンパク質の凝集機能ドメインとは、GPIアンカリングドメインよりもN末端側にあり、複数の糖鎖を有し、凝集に関与していると考えられているドメインをいう。
 この細胞表層局在タンパク質の糖鎖結合タンパク質ドメイン(または凝集機能ドメイン)と目的の酵素とを結合することにより、細胞表層に酵素が提示される。目的の酵素の種類により、細胞表層局在タンパク質の糖鎖結合タンパク質ドメイン(または凝集機能ドメイン)の(1)N末端側に酵素を結合させる、(2)C末端側に酵素を結合させる、および(3)N末端側およびC末端側の両方に、同一または異なる酵素を結合させることができる。本発明においては、(1)分泌シグナル配列をコードするDNA-目的とする酵素をコードする遺伝子-細胞表層局在タンパク質の糖鎖結合タンパク質ドメイン(または凝集機能ドメイン)をコードする構造遺伝子;あるいは(2)分泌シグナル配列をコードするDNA-細胞表層局在タンパク質の糖鎖結合タンパク質ドメイン(または凝集機能ドメイン)をコードする構造遺伝子-目的とする酵素をコードする遺伝子;あるいは(3)分泌シグナル配列をコードするDNA-目的とする酵素をコードする第一の遺伝子-細胞表層局在タンパク質の糖鎖結合タンパク質ドメイン(または凝集機能ドメイン)をコードする構造遺伝子-目的とする酵素をコードする第二の遺伝子(但し、第一の遺伝子と第二の遺伝子とは同じでも異なっていてもよい)、を作成することにより、細胞表層に目的の酵素を提示するための組換えDNAが得られる。凝集機能ドメインを利用する場合、GPIアンカーは細胞表層の提示には関与しないので、組換えDNA中に、GPIアンカー付着認識シグナル配列をコードするDNA配列は、一部のみ存在してもよいが、存在しなくてもよい。また、凝集機能ドメインを用いる場合は、ドメインの長さを調節しやすいため(例えば、FloshortまたはFlolongのいずれかを選択できる)、より適切な長さで酵素を細胞表層に提示できる点で、ならびに酵素のN末端またはC末端のどちらの側でも結合させることが可能な点で、非常に有用である。
 次に、(c)ペリプラズム遊離型タンパク質(他のレセプター分子または標的レセプター分子)を利用する方法について説明する。この場合は、目的とする酵素を、ペリプラズム遊離型タンパク質との融合タンパク質として細胞表層に発現させ得ることに基づく。ペリプラズム遊離型タンパク質としては、例えば、インベルターゼ(Suc2タンパク質)が挙げられる。目的の酵素は、これらのペリプラズム遊離型タンパク質に応じて、適宜N末端またはC末端側に融合され得る。
 酵母にて酵素を細胞外に分泌して発現させる方法は、当業者には周知である。上記分泌シグナル配列をコードするDNAに、目的の酵素の構造遺伝子を連結した組換えDNAを作成し、酵母に導入すればよい。
 酵母の細胞内にて遺伝子を発現させる方法もまた当然、当業者には周知である。この場合、上記細胞表層提示技術や上記分泌シグナルを用いることなく、目的の構造遺伝子を連結した組換え遺伝子を作成し、酵母に導入すればよい。
 各種配列を含むDNAの合成および結合は、当業者が通常用い得る技術で行われ得る。例えば、分泌シグナル配列と目的酵素の構造遺伝子との結合は、部位特異的突然変異法を用いて行うことができる。この方法を用いることにより、正確な分泌シグナル配列の切断および活性な酵素の発現が可能である。
 酵素遺伝子または発現カセットは、プラスミドの形態のベクターに挿入され得る。DNAの取得の簡易化の点からは、酵母と大腸菌とのシャトルベクターであることが好ましい。必要に応じて、ベクターは、上述したような調節配列を含み得る。ベクター作製の出発材料としては、例えば、酵母の2μmプラスミドの複製開始点(Ori)とColE1の複製開始点とを有しており、酵母選択マーカー(例えば、薬剤耐性遺伝子、栄養要求性マーカー遺伝子(例えば、イミダゾールグリセロールリン酸デヒドロゲナーゼ(HIS3)をコードする遺伝子、リンゴ酸ベータ-イソプロピルデヒドロゲナーゼ(LEU2)をコードする遺伝子、トリプトファンシンターゼ(TRP5)をコードする遺伝子、アルギニノコハク酸リアーゼ(ARG4)をコードする遺伝子、N-(5'-ホスホリボシル)アントラニル酸イソメラーゼ(TRP1)をコードする遺伝子、ヒスチジノールデヒドロゲナーゼ(HIS4)をコードする遺伝子、オロチジン-5-リン酸デカルボキシラーゼ(URA3)をコードする遺伝子、ジヒドロオロト酸デヒドロゲナーゼ(URA1)をコードする遺伝子、ガラクトキナーゼ(GAL1)をコードする遺伝子、およびアルファ-アミノアジピン酸レダクターゼ(LYS2)をコードする遺伝子など)および大腸菌の選択マーカー(薬剤耐性遺伝子など)を有することがさらに好ましい。
 本明細書で遺伝子またはDNAの「導入」とは、細胞の中に遺伝子またはDNAを導入するだけでなく、発現させることも意味する。遺伝子またはDNAの導入には、形質転換、形質導入、トランスフェクション、コトランスフェクション、エレクトロポレーションなどの方法がある。酵母細胞への導入の場合、具体的には、例えば、酢酸リチウムを用いる方法、プロトプラスト法などがある。導入されるDNAは、プラスミドの形態で存在してもよく、あるいは宿主の遺伝子に挿入して、または宿主の遺伝子と相同組換えを起こして染色体に取り込まれてもよい。
 宿主の酵母は、セルロース非加水分解性酵母であり、これは、野生型酵母であり得る。酵母の種類は特には限定されないが、特に、サッカロマイセス属に属する酵母が好ましく、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)が好ましい。好ましくは、実用酵母の野生型酵母である。野生型酵母は、基質である単糖(例えば、グルコース)からのアルコールの発酵能を高めるように遺伝子組換えされていてもよい。
 「実用酵母」とは、従来エタノール発酵に用いられる任意の酵母(例えば、清酒酵母、焼酎酵母、ワイン酵母、ビール酵母、パン酵母など)をいう。実用酵母の中でも、高いエタノール発酵能および高いエタノール耐性を有し、遺伝学的にも安定した清酒酵母が好ましい。「実用酵母」は、高いエタノール耐性を有する酵母であり、好ましくは、エタノール濃度10%以上でも生存できる酵母である。さらに耐酸性、耐熱性などを有することが好ましい。さらに好ましくは、凝集性であり得る。例えば、このような性質を有する実用酵母としては、独立行政法人製品評価技術基盤機構により入手可能であるサッカロマイセス・セレビシエNBRC1440株(MATα、1倍体酵母、耐熱性・耐酸性あり、凝集性あり)およびNBRC1445株(MATa、1倍体酵母、耐熱性・耐酸性あり、凝集性なし)が挙げられる。
 実用酵母は、エタノールに極めて高い耐性を有するため、単糖を生産した後、そのままエタノール発酵に供することができる。中でも、各種培養ストレスに強いことから、厳密な制御が難しく過酷な培養条件になる場合もある工業生産においても安定した細胞増殖を示す点で好ましい。また実用酵母は多倍体となるため、相同染色体に複数の遺伝子構築物(発現ベクター)を組み込むことが可能であり、その結果一倍体であることが多い実験室酵母に組み込む場合に較べて、目的タンパク質の発現量が高くなる。
 実用酵母は、多くの場合原栄養体であって形質転換体を選抜するための適切な栄養要求性マーカーを有しない。したがって目的の遺伝子を導入するに適した特定の栄養要求性マーカーを、実用酵母(特に、栄養要求性を有しない酵母であって、エタノール耐性の高い(好ましくは、エタノール濃度10%以上でも生存できる)酵母)に付与することにより、目的の遺伝子の導入が容易になる。栄養要求性マーカーとしては、その遺伝子操作上の利用から、ウラシル要求性、トリプシン要求性、ロイシン要求性、ヒスチジン要求性などが挙げられるがこれらに限定されない。ウラシル要求性に関しては、ウラシル要求性変異株(例えば、サッカロマイセス・セレビシエMT-8株)から獲得したura3断片を実用酵母の正常ura3遺伝子と乗り換えさせることによって付与することができる。ウラシル要求性以外の栄養要求性(例えば、トリプシン要求性、ロイシン要求性、ヒスチジン要求性など)に関しては、例えば、非特許文献4に記載の方法に準じて、これらの遺伝子を破壊するようにフラグメントを設計して付与することができる。
 上記発現カセットが組み込まれて発現を目的とする遺伝子が導入された実用酵母は、上で説明したように、酵母選択マーカー(例えば、上述した栄養要求性マーカー)で選択され得る。さらに、発現されたタンパク質の活性を測定することによって確認され得る。タンパク質が細胞表層に固定されていることは、例えば、抗タンパク質抗体とFITC標識抗IgG抗体とを用いる免疫抗体法によって確認し得る。
 (エタノールの製造)
 上述したようなセルロース加水分解力強化酵母は、エタノールの生産に好適に使用され得る。エタノールの生産のために、セルロース加水分解力強化酵母をセルロース基質(例えば、以下に説明するようなセルロース系物質)に反応させ得る。
 用語「セルロース系物質」は、本明細書中においては、セルロースを含有する任意の物質、産物、および組成物をいう。用語「セルロース」とは、β1,4-グルコシド結合によりグルコピラノースが連なった繊維状高分子をいうが、その誘導体または塩、あるいは分解により重合度が低下したものもまた含む。
 「セルロース系物質」には、例えば、紙の製造または再生において生じる紙粕、古着および廃タオルなどの綿製品、ならびに農業上収穫されずにまたは食品製造の過程で廃棄される木材の木質部もしくは草本性植物の茎葉部および皮部(特に非可食部)のような、セルロースが含まれている任意の材料をも包含される。「セルロース系物質」には、セルロースがカルボキシメチル化されたカルボキシメチルセルロース(CMC)、リン酸膨潤セルロース、および結晶性セルロース(例えば、アビセル)などのセルロース化合物もまた含まれ得る。セルロース化合物の中でも、リン酸膨潤セルロースは、セルロースを加水分解し得る酵素のセルロース加水分解力を測定するために、実際のバイオマスのセルロースの代替基質としてよく用いられるセルロースである。
 上記で例示したセルロースが含まれている材料(特に、木材の木質部、ならびに草本性植物の茎葉部および皮部)は、セルロースを主成分の1つとする植物細胞壁成分を含み得る。植物細胞壁は、通常、セルロースに加え、ヘミセルロースおよびリグニンを成分に含む。植物種(特に、木材であるかまたは草本性であるか)または植物の生育程度などに依存してそれらの成分の含有量は変動し得るが、セルロースを含む限りいずれの種でも生育の程度に関わらず用いられ得る。
 したがって、セルロース系物質としては、上述した植物細胞壁成分を含有する任意の物質および廃棄物および産物もまた挙げられる。不溶性食物繊維もまた、「植物細胞壁成分含有物」に含まれる。上述した木材の木質部や草本性植物の茎葉部・皮部に加え、これらの部分から加工したもの(例えば、コーンファイバー)も含むが、本発明は、廃棄される不要物を用いることが再利用の点で好ましい。
 セルロース系物質としては、セルロース化合物自体およびセルロース化合物を含む組成物に加え、籾殻、竹、バガス、ワラ類、トウモロコシ穂軸などの農産廃棄物、木材質(木材チップ、廃材)、古新聞、雑誌、段ボール、オフィス古紙、リンター、綿、パルプ及び製紙メーカーから排出する廃パルプなどが挙げられる。
 上記反応には、セルラーゼ酵素が含まれてもよい。「セルラーゼ酵素」とは、酵素として単離された任意の形態を含む。例えば、「セルラーゼ酵素」としては、上で説明したようなセルラーゼ(すなわち、エンドグルカナーゼ)を生産する微生物から単離精製された酵素、およびセルラーゼ遺伝子を用いて遺伝子組換えにより生産された酵素が挙げられる。市販のセルラーゼ酵素も使用可能である。市販のセルラーゼ酵素としては、例えば、ジェネンコア社のCellulase SS:トリコデルマ・リーセイ由来セルラーゼ:力価7.6FPU/mL(「FPU」は「Filter Paper Unit」の略であり、ろ紙から1分間に1μmolのグルコースに相当する還元糖を生成する酵素量が「1FPU」とされる)が挙げられる。特に、エタノールを工業的に製造する場合、生産効率を促進するために、セルロース系物質との反応の際に、セルラーゼ酵素をさらに添加してもよい。
 上記反応に、ヘミセルロース分解性キシロース資化性酵母をさらに添加してもよい。この酵母は、以下のように作製され得る。キシロースは、セルロースを主成分の1つとする植物細胞壁成分に含まれるヘミセルロースから、酵素分解により得られる。キシロース資化性のために、キシロース資化性遺伝子および/またはキシラン分解酵素をコードする遺伝子を発現する酵母(好ましくは、実用酵母)を別に作製することによって、ヘミセルロースに由来するキシロースをもエタノール発酵に利用し得る。ヘミセルロースを分解する酵素(例えば、キシラン分解酵素)が実用酵母の細胞表層に提示していることが好ましい。キシラン分解酵素としては、例えば、キシラナーゼ(特にトリコデルマ・リーセイ由来のXYLII)およびβ-キシロシダーゼ(アスペルギルス・オリゼ由来のXylA)が挙げられる。キシロース資化性遺伝子としては、キシロース代謝系酵素の遺伝子、例えば、キシロースレダクターゼ(XR)遺伝子およびキシリトールデヒドロゲナーゼ(XDH)遺伝子(ともにピチア・スチピチス(Pichia stipitis)由来)ならびにキシルロキナーゼ(XK)遺伝子(サッカロマイセス・セレビシエ由来)が挙げられる。
 例えば、キシラン分解(ヘミセルロース分解)およびキシロース資化性の両方を有する実用酵母を作製するために、キシラナーゼ(特にトリコデルマ・リーセイ由来のXYLII(INSDアクセッション番号X69574;S51975))およびβ-キシロシダーゼ(アスペルギルス・オリゼ由来のXylA(INSDアクセッション番号AB013851))を細胞表層に発現し、かつキシロース資化性遺伝子(特に、ピチア・スチピチス由来のキシロースレダクターゼ(XR)遺伝子XYL1(INSDアクセッション番号X59465)、ピチア・スチピチス由来のキシリトールデヒドロゲナーゼ(XDH)遺伝子であるXYL2(INSDアクセッション番号X55392)、およびサッカロマイセス・セレビシエ由来のキシルロキナーゼ(XK)遺伝子であるXKS1(INSDアクセッション番号X82408))を発現するように組換え調製し得る。発現ベクターの構築および形質転換に関しては、非特許文献1、および非特許文献5~7に記載されている。この組換え調製により得られた酵母を、ヘミセルロース分解性キシロース資化性酵母ともいう。形質転換酵母の組換え調製に関しては、上述に記載したようにも実施され得る。
 上記反応工程は、通常エタノール発酵を行う条件下で行い得る。この反応の工程を、本明細書中では、発酵工程ともいう。例えば、発酵工程は、セルロース系物質を含む培地で酵母を培養することで行われ得る。発酵工程は、通常、エタノール発酵を行う条件下で行われ得る。発酵培地には、酵母の生育に必要または望ましい成分がさらに含められ得る。この発酵工程の形式としては、回分(バッチ)工程、流加回分工程、繰り返し回分工程、連続工程などが挙げられるが、これらのいずれであってもよい。また、発酵時の温度は、通常、約30~35℃であり得る。発酵pHは、好ましくは約4~約6、より好ましくは約5である。発酵培養は嫌気的に行われ得る(溶存酸素濃度は、例えば、約1ppm以下、より好ましくは約0.1ppm以下、よりさらに好ましくは約0.05ppm以下であり得る)。酵母の負荷量、セルロース系物質の負荷量、および発酵時間などの要因は、発酵反応の容量、エタノールの目的生産量などの要件に依存して適宜決定され得る。
 発酵の進行とともにエタノールの発酵条件が変化するので、これらを一定の範囲に調節することが好ましい。発酵の経時変化は、例えば、ガスクロマトグラフ、HPLCなどの当業者が通常用いる手段でモニターすればよい。
 セルロース系物質は、発酵工程に供する前に、加圧熱水処理を行ってもよい。加圧熱水処理としては、例えば、特許文献1に記載されるような無触媒水熱法が挙げられる。この無触媒水熱法を用いて、例えば、適当な長さのセルロース単位あるいはオリゴ糖を形成する、あるいは繊維間(例えば、セルロース間)の架橋が外れ、セルロース分解酵素が作用し易くなるように、処理してもよい。特許文献1に記載の方法では、回分(バッチ)式の場合、処理する濃度にも依存するが、約10質量%濃度の、原料のセルロース繊維を120~300℃、好ましくは150~280℃、より好ましくは180~250℃で処理され得、そして処理時間は、一般に、1時間~15秒の範囲が好ましい。連続法の場合、熱履歴時間の関係で若干温度を高くでき、約10質量%濃度の原料のセルロース繊維を120~373℃、好ましくは150~320℃で、好ましくは1時間~1秒で処理し得る。なお、加圧は、上記範囲内の温度が達成され得る程度の圧力が、装置により自動または手動で設定され得る。
 木材の木質部や草本性植物の茎葉部および皮部(バイオマス)は、リグニンのような非糖化部が予め除去され得る。リグニンの除去には、加圧熱水処理が使用され得る。加圧熱水処理は、酸またはアルカリなどの薬剤を用いることなくリグニンを除去できるので好ましい。このような加圧熱水処理としては、特許文献1に記載の方法が用いられ得る。特許文献3に記載の方法もまた用いられ得る。特許文献3の方法では、常圧以上5MPa以下、かつ180℃以上374℃以下の熱水でバイオマスを処理し、次いで100℃以上180℃以下に冷却することにより、リグニンを分離することができる。
 発酵工程に供する前に、例えば、特許文献1に記載の方法に従って、セルロース系物質を加圧熱水処理し得る。これにより、リグニン(存在する場合)は除去され、そしてセルロースは、セルロースを加水分解し得る酵素が作用し易くなるように処理され得る。
 発酵工程終了後、エタノールを含む培地を発酵槽から抜き取り、例えば、遠心分離機による分離操作および蒸留操作などの当業者が通常用いる分離工程によって、エタノールが単離される。
 セルロース加水分解力強化酵母(必要に応じて、およびヘミセルロース分解性キシロース資化性酵母、ならびにセルラーゼ酵素)は、好ましくは、担体に固定される。そのことにより、再使用が可能となる。
 固定する担体および方法は、当業者が通常用いる担体および方法が用いられ、例えば、担体結合法、包括法、架橋法などが挙げられる。
 担体としては、多孔質体が好ましく用いられる。例えば、ポリビニルアルコール、ポリウレタンフォーム、ポリスチレンフォーム、ポリアクリルアミド、ポリビニルフォルマール樹脂多孔質体、シリコンフォームなどの発泡体あるいは樹脂が好ましい。多孔質体の開口部の大きさは、用いる微生物およびその大きさを考慮して決定され得るが、実用酵母の場合、50~1000μmが好ましい。
 また、担体の形状は問わない。担体の強度、培養効率などを考慮すると、球状あるいは立方体が好ましい。大きさは、用いる微生物により決定すればよいが、一般には、球状の場合、直径が2~50mm、立方体状の場合、2~50mm角が好ましい。
 酵母は、発酵に供する前に好気的条件下で培養することにより、その数を増加させ得る。培地は、選択培地であっても非選択培地であってもよい。培養時の培地のpHは、好ましくは約4~約6、より好ましくは約5である。好気的培養時の培地中の溶存酸素濃度は、好ましくは約0.5~約6ppm、より好ましくは約1~約4ppm、よりさらに好ましくは約2ppmである。また、培養時の温度は、約20~約45℃、好ましくは約25~約35℃、より好ましくは約30℃であり得る。培養時間は、総酵母の菌体濃度が20g(湿潤量)/L以上、より好ましくは50g(湿潤量)/L、さらに好ましくは75g(湿潤量)/L以上になるまで培養することが好ましく、約20~約50時間程度であり得る。
 従来、糖化に使用される市販の酵素の力価が低いことにより十分な糖化には酵素を大量に必要とするので、使用酵素のコストが高くなるという問題があった。セルロース加水分解力強化酵母を用いることにより、特に工業的製造において好適なエタノール生産量または速度を達成するのに要するセルラーゼ酵素の量を削減することができる。さらに、ヘミセルロース分解性キシロース資化性酵母を併用して、エタノール生産量を高め得る。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
 本実施例で用いた菌株サッカロマイセス・セレビシエNBRC1440(MATα)およびサッカロマイセス・セレビシエMT8-1(MATa ade his3 leu2 trp1 ura3)は、独立行政法人製品評価技術基盤機構から入手した。
 本実施例に示す全てのPCR増幅は、KOD-Plus-DNAポリメラーゼ(東洋紡社)を用いて実施した。
 本実施例に示す全ての酵母形質転換は、YEAST MAKER酵母形質転換システム(Clontech Laboratories, Palo Alto, California, USA)を用いて酢酸リチウムによって実施した。
 (調製例1:URA3、HIS3、TRP1、LEU2の栄養要求性マーカーを付与した酵母の調製)
 (調製例1-1:URA3マーカーの付与)
 変異URA3断片を、サッカロマイセス・セレビシエMT8-1(MATa ade his3 leu2 trp1 ura3)から、配列番号1および配列番号2で示されるプライマー対を用いてPCRにより取得した。この断片をサッカロマイセス・セレビシエNBRC1440(MATα)株に形質転換し、5-フルオロオロト酸(FOA)培地でURA3変異株を選択し、URA3マーカーが付与されたNBRC1440株を得た。
 なお、5-フルオロオロト酸(FOA)培地は以下のように調製した。50mg/Lウラシル酸および2%(w/v)寒天を添加したウラシルドロップアウト合成デキストロース(SD)培地(非特許文献8)をオートクレーブ処理し、65℃を維持した。FOAをジメチルスルホキシド(DMSO)に100mg/mLの濃度で溶解し、約65℃の上記オートクレーブした培地に添加し、FOAの最終濃度を1mg/mLとした。
 (調製例1-2:HIS3マーカーの付与)
 以下のようにして融合PCRを実施した:
 PCR1、HIS3-Green U(配列番号3;Forward)およびHIS3-Green R(配列番号4;Reverse)プライマーを用いて、サッカロマイセス・セレビシエNBRC1440株の染色体DNAを鋳型として用いてHIS3上流部分配列を増幅した;
 PCR2、URA3 fragment(配列番号5;Forward)およびHIS3-40Uc(配列番号6;Reverse)プライマーを用いて、鋳型としてpRS406プラスミド(Stratagene社)を鋳型として用いてURA3を増幅した;
 PCR3、HIS3-Green U(配列番号3;Forward)およびHIS3-40Uc(配列番号6;Reverse)プライマーを用いて、鋳型としてPCR1およびPCR2での産物を混合することにより融合フラグメントを増幅した。
 この得られた融合フラグメントを用いて、上記のように調製されたURA3マーカーが付与されたNBRC1440株を相同組換えにより形質転換した。ウラシルドロップアウト(ウラシル不含培地)プレート上でウラシル要求性を持たない株を選択した。この構築物が上記実用酵母NBRC1440の染色体に組み込まれると同時にHIS3遺伝子破壊が生じ、URA3マーカーおよびその両側の反復配列とが染色体内に組み込まれる。
 引き続き、この形質転換体を30℃にて24時間、YPD培地中で増殖させた。次いで5-FOA培地プレート上で1.0×107細胞/200μLまで増殖させた。5-FOA培地プレート上で増殖した全てのコロニーは、ウラシル要求性(Ura)の表現型であり、これを選択した。5-FOA培地プレート上で増殖した形質転換体では、URA3マーカーの両側にある反復配列により生じた相同組換えのため、形質転換により導入されたはずのURA3マーカーが染色体上から除去され、ウラシル栄養要求性(Ura)の表現型を示していた。
 最終的に、HIS3遺伝子およびURA3遺伝子が欠失してこれらの栄養要求性を有する株、すなわち、URA3およびHIS3マーカーが付与されたNBRC1440株が得られた。
 (調製例1-3:TRP1マーカーの付与)
 以下のようにして融合PCRを実施した:
 PCR1、TRP1-988(配列番号7;Forward)およびRP1-28r(配列番号8;Reverse)プライマーを用いて、サッカロマイセス・セレビシエNBRC1440株の染色体DNAを鋳型として用いてTRP1上流部分配列を増幅した;
 PCR2、TRP1-URA3(配列番号9;Forward)およびTRP1-40r(配列番号10;Reverse)プライマーを用いて、鋳型としてpRS406プラスミド(Stratagene社)を鋳型として用いてURA3を増幅した;
 PCR3、TRP1-988(配列番号7;Forward)およびTRP1-40r(配列番号10;Reverse)プライマーを用いて、鋳型としてPCR1およびPCR2での産物を混合することにより融合フラグメントを増幅した。
 この融合フラグメントを用いて、上記のように調製されたHIS3およびURA3マーカーが付与されたNBRC1440株を、調製例1-2と同様にして形質転換し、最終的に、URA3、HIS3、およびTRP1マーカーが付与されたNBRC1440株を得た。
 (調製例1-4:LEU2マーカーの付与)
 以下のようにして融合PCRを実施した:
 PCR1、LEU2-UP 3rd(配列番号11;Forward)およびLEU2-down 3rd(配列番号12;Reverse)プライマーを用いて、サッカロマイセス・セレビシエNBRC1440株の染色体DNAを鋳型として用いてLEU2上流部分配列を増幅した;
 PCR2、LEU2-URA3 3rd(配列番号13;Forward)およびLEU2-40r(配列番号14;Reverse)プライマーを用いて、鋳型としてpRS406プラスミド(Stratagene社)を鋳型として用いてURA3を増幅した;
 PCR3、LEU2-UP 3rd(配列番号11;Forward)およびLEU2-40r(配列番号14;Reverse)プライマーを用いて、鋳型としてPCR1およびPCR2での産物を混合することにより融合フラグメントを増幅した。
 この融合フラグメントを用いて、上記のように調製されたURA3、HIS3、およびTRP1、およびLEU2マーカーが付与されたNBRC1440株を、調製例1-2と同様にして形質転換し、最終的に、URA3、HIS3、およびTRP1、およびLEU2マーカーが付与されたNBRC1440株を得た。この株を、便宜上、「NBRC1440/UHWL」と表す。
 (調製例2:pRS406 EG CBH2の調製)
 まず、ウラシル遺伝子(URA3)マーカーを有し、かつトリコデルマ・リーセイ(Trichoderma reesei)由来エンドグルカナーゼII(EGII)遺伝子を表層提示されるように組み込むためのプラスミドpGK406 EGを構築した。
 リゾプス・オリゼ(Rhizopus oryzae)由来グルコアミラーゼ遺伝子の分泌シグナル配列とEGII遺伝子とα-アグルチニン遺伝子の3’側半分の領域(非特許文献9)をコードする2719bp DNAフラグメントを、鋳型としてpEG23u31H6(非特許文献10)を用い、配列番号15(Forward)および配列番号16(Reverse)のプライマー対を用いるPCRによって調製した。
 2つのDNA断片、PGK(ホスホグリセリン酸キナーゼ)プロモーターおよびPGKターミネーターを、サッカロマイセス・セレビシエBY4741ゲノムDNAを鋳型として、それぞれ設計したPGKプロモーター用プライマー対(配列番号17;Forwardおよび配列番号18;Reverse)およびPGKターミネーター用プライマー対(配列番号19;Forwardおよび配列番号20;Reverse)を用いてPCR増幅した。マルチクローニングサイトを、設計したマルチクローニングサイト用プライマー対(配列番号21;Forwardおよび配列番号22;Reverse)をアニーリングすることにより調製した。PGKプロモーターをXhoIおよびNheIで、マルチクローニングサイトをNheIとBglIIで、PGKターミネーターをBglIIおよびNotIでそれぞれ消化し、pTA2ベクター(TOYOBO, Osaka, Japan)のXhoI-NotI部位にクローニングした。得られたベクターをXhoIおよびNotIで消化し、その断片をpRS406(Stratagene)へクローニングし、得られたベクターをpGK406とした。
 上記2719bp DNAフラグメントをNheIおよびXmaIで消化し、URA3遺伝子およびそのプロモーターおよびターミネーター、PGKプロモーター、PGKターミネーターを含むプラスミドpGK406のNheI部位とXmaI部位との間に挿入し、URA3遺伝子およびそのプロモーターおよびターミネーター、PGKプロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、エンドグルカナーゼ(EGII)遺伝子、α-アグルチニン遺伝子の3’側半分の領域、およびPGKターミネーターを含むプラスミドが得られた。得られたプラスミドをpGK406 EGと命名した。
 プラスミドpFCBH2w3(非特許文献11)を鋳型とし、GAPDH(グリセルアルデヒド三リン酸デヒドロゲナーゼ)プロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、トリコデルマ・リーセイ由来CBH2遺伝子、α-アグルチニン遺伝子の3’側半分の領域、およびGAPDHターミネーターを含む断片を、プライマー対(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpGK406 EGにクローニングした。得られたプラスミドをpRS406 EG CBH2とし、その模式図を図1に示す。図1中、「URA3」はウラシル遺伝子マーカー、「GAPDH」はグリセルアルデヒド-3-リン酸デヒドロゲナーゼプロモーター、「PGK」はホスホグリセリン酸キナーゼプロモーター、「s.s.」は、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、「AG」は、α-アグルチニン遺伝子の3’側半分の領域、「EG」は、トリコデルマ・リーセイ由来EGII遺伝子、「CBH2」は、トリコデルマ・リーセイ由来セロビオヒドロラーゼ2遺伝子、「tGAP」はグリセルアルデヒド-3-リン酸デヒドロゲナーゼターミネーター、そして「tPGK」はホスホグリセリン酸キナーゼターミネーターを表す。
 (調製例3:pRS403 EG CBH2の調製)
 まず、ヒスチジン遺伝子(HIS3)マーカーを有し、かつトリコデルマ・リーセイ由来エンドグルカナーゼII(EGII)遺伝子を表層提示されるように組み込むためのプラスミドpGK403 EGを構築した。
 pGK406から、ApaIおよびNotIで、PGKプロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、EGII遺伝子、およびPGKターミネーターを含む断片を切り出し、同様にpRS403(Stratagene)をApaIおよびNotIで消化して上記した断片をクローニングした。得られたプラスミドをpGK403 EGとした。
 プラスミドpFCBH2w3をテンプレートとし、GAPDH(グリセルアルデヒド三リン酸デヒドロゲナーゼ)プロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、トリコデルマ・リーセイ由来CBH2遺伝子、α-アグルチニン遺伝子の3’側半分の領域、およびGAPDHターミネーターを含む断片を、プライマー(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpGK403 EGにクローニングした。得られたプラスミドをpRS403 EG CBH2とし、その模式図を図2に示す。図2中、「HIS3」はヒスチジン遺伝子マーカーを表し、それ以外の表記は図1と同様である。
 (調製例4:pRS405 EG CBH2の調製)
 まず、ロイシン遺伝子(LEU2)マーカーを有し、かつトリコデルマ・リーセイ由来エンドグルカナーゼII(EGII)遺伝子を表層提示されるように組み込むためのプラスミドpGK405 EGを構築した。
 pGK406から、ApaIおよびNotIで、PGKプロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、EGII遺伝子、およびPGKターミネーターを含む断片を切り出し、同様にApaIおよびNotIで消化したpRS405(Stratagene)にクローニングした。得られたプラスミドをpGK405 EGとした。
 プラスミドpFCBH2w3をテンプレートとし、GAPDH(グリセルアルデヒド三リン酸デヒドロゲナーゼ)プロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、トリコデルマ・リーセイ由来CBH2遺伝子、α-アグルチニン遺伝子の3’側半分の領域、およびGAPDHターミネーターを含む断片を、プライマー(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpGK405 EGにクローニングした。得られたプラスミドをpRS405 EG CBH2とし、その模式図を図3に示す。図3中、「LEU2」はロイシン遺伝子マーカーを表し、それ以外の表記は図1と同様である。
 (調製例5:pILGP3-CBH2の調製)
 pUGP3(非特許文献12)を鋳型として、XYL2c-XhoI(F)(配列番号25;Forward)およびXYL2c-NotI(R)(配列番号26;Reverse)のプライマー対を用いて、GAPDHプロモーター、マルチクローニングサイト(SalI, XbaI, BamHI, SmaI, XmaI)、およびGAPDHターミネーターをコードする遺伝子配列をPCR増幅した。その断片をpRS405(Stratagene)のXhoI/NotIサイトに導入してプラスミドpILGP3を得た。
 上記調製例2から4に記載のように調製したプラスミドpFCBH2w3由来の2816bp DNAフラグメントをXmaIおよびXbaIで消化し、GAPDHプロモーターおよびGAPDHターミネーターを含むプラスミドpILGP3のXmaI部位とXbaI部位との間に挿入し、LEU2遺伝子およびそのプロモーターおよびターミネーター、GAPDHプロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、トリコデルマ・リーセイ由来セロビオヒドロラーゼ(CBH2)遺伝子、α-アグルチニン遺伝子の3’側半分の領域、およびGAPDHターミネーターを含むプラスミドが得られた。得られたプラスミドをpILGP3-CBH2と命名し、その模式図を図4に示す。図4中、「LEU2」はロイシン遺伝子マーカーを表し、それ以外の表記は図1と同様である。
 (調製例6:pRS405 CBH2 CBH2の調製)
 プラスミドpFCBH2w3をテンプレートとし、GAPDH(グリセルアルデヒド三リン酸デヒドロゲナーゼ)プロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列とトリコデルマ・リーセイ由来CBH2遺伝子とα-アグルチニン遺伝子の3’側半分の領域、GAPDHターミネーターを含む断片をプライマー(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpILGP3-CBH2にクローニングした。得られたプラスミドをpRS405 CBH2 CBH2とし、その模式図を図5に示す。図5中、「LEU2」はロイシン遺伝子マーカーを表し、それ以外の表記は図1と同様である。
 (調製例7:pIWBGLの調製)
 アスペルギルス・アクレアタス(Aspergillus aculeatus)由来β-グルコシダーゼ1(BGL1)遺伝子をコードする2.5kbp NcoI-XhoI DNAフラグメントを、プラスミドpBG211(京都大学より贈与戴いた)を鋳型として使用し、bgl1プライマー1(配列番号27;Forward)およびbgl1プライマー2(配列番号28;Reverse)のプライマー対を用いてPCRによって調製した。このDNAフラグメントをNcoIおよびXhoIで消化し、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列およびα-アグルチニン遺伝子の3’側半分の領域(非特許文献9)を含有する細胞表層発現プラスミドpIHCS(非特許文献10)のNcoI-XhoI部位に挿入した。得られたプラスミドをpIBG13と命名した。
 このpIBG13をテンプレートにしてプライマー対(配列番号23;Forwardおよび配列番号24;Reverse)を用いてPCRを行い、GAPDHプロモーター、リゾプス・オリゼ由来グルコアミラーゼ分泌シグナル配列、BGL1遺伝子、α-アグルチニン遺伝子の3’側半分の領域、およびGAPDHターミネーターを含む断片を得た。この断片をNotIで消化し、そしてNotIで消化したpRS 404にクローニングした。得られたプラスミドをpIWBGLとし、その模式図を図6に示す。図6中、「TRP1」はトリプトファン遺伝子マーカーを表し、「GAPDH」はグリセルアルデヒド-3-リン酸デヒドロゲナーゼプロモーター、「s.s.」は、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、「AG」は、α-アグルチニン遺伝子の3’側半分の領域、そして「BGL」は、アスペルギルス・アクレアタス由来β-グルコシダーゼ1(BGL1)遺伝子を表す。
 (調製例8:コピー数1のエンドグルカナーゼIIを組み込んだ酵母株の調製)
 制限酵素NdeIで切断して直線状にしたpGK406 EGで、NBRC1440/UHWLを形質転換し、ウラシルドロップアウト(ウラシル不含培地)プレート上でウラシル要求性を持たない株を選択した。pGK406 EGでの形質転換により、NBRC1440/UHWLの破壊されたURA3遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/pGK406 EG」と命名した。本調製例8では、コピー数1のエンドグルカナーゼIIの表層提示株を作製した。
 (調製例9:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込んだ酵母株の調製)
 制限酵素NdeIで切断して直線状にしたpRS406 EG CBH2で、NBRC1440/UHWLを形質転換し、ウラシルドロップアウト(ウラシル不含培地)プレート上でウラシル要求性を持たない株を選択した。pRS406 EG CBH2での形質転換により、NBRC1440/UHWLの破壊されたURA3遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/pRS406 EG CBH2」と命名し、簡略化して「NBRC1440/EG-CBH2-1c」とも表記する。本調製例9では、コピー数1のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の表層提示株を作製した。
 (調製例10:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数2で組み込んだ酵母株の調製)
 制限酵素NdeIで切断して直線状にしたpRS403 EG CBH2で、NBRC1440/pRS406 EG CBH2を形質転換し、ヒスチジンドロップアウト(ヒスチジン不含培地)プレート上でヒスチジン要求性を持たない株を選択した。pRS403 EG CBH2での形質転換により、NBRC1440/pRS406 EG CBH2の破壊されたHIS3遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/pRS406 EG CBH2/pRS403 EG CBH2」と命名し、簡略化して「NBRC1440/EG-CBH2-2c」とも表記する。本調製例10では、コピー数2のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の表層提示株を作製した。
 (調製例11:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数3で組み込んだ酵母株の調製)
 制限酵素HpaIで切断して直線状にしたpRS405 EG CBH2で、NBRC1440/pRS406 EG CBH2/pRS403 EG CBH2を形質転換し、ロイシンドロップアウト(ロイシン不含培地)プレート上でロイシン要求性を持たない株を選択した。pRS405 EG CBH2での形質転換により、NBRC1440/pRS406 EG CBH2/pRS403 EG CBH2の破壊されたLEU2遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/pRS406 EG CBH2/pRS403 EG CBH2/pRS405 EG CBH2」と命名し、簡略化して「NBRC1440/EG-CBH2-3c」とも表記する。本調製例11では、コピー数3のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の表層提示株を作製した。
 (調製例12:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込み、さらにコピー数1のセロビオヒドロラーゼ2を組み込んだ酵母株の調製)
 制限酵素HpaIで切断して直線状にしたpILGP3-CBH2で、NBRC1440/pRS406 EG CBH2を形質転換し、ロイシンドロップアウト(ロイシン不含培地)プレート上でロイシン要求性を持たない株を選択した。pILGP3-CBH2での形質転換により、NBRC1440/EG-CBH2-1cの破壊されたLEU2遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/pRS406 EG CBH2/pILGP3-CBH2」と命名し、簡略化して「NBRC1440/EG-CBH2-1c-CBH2」とも表記する。本調製例12では、コピー数1のエンドグルカナーゼIIおよびコピー数2のセロビオヒドロラーゼ2の表層提示株を作製した。
 (調製例13:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込み、さらにコピー数2のセロビオヒドロラーゼ2を組み込んだ酵母株の調製)
 制限酵素HpaIで切断して直線状にしたpRS405 CBH2 CBH2で、NBRC1440/pRS406 EG CBH2を形質転換し、ロイシンドロップアウト(ロイシン不含培地)プレート上でロイシン要求性を持たない株を選択した。pRS405 CBH2 CBH2での形質転換により、NBRC1440/EG-CBH2-1cの破壊されたLEU2遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/pRS406 EG CBH2/pRS405 CBH2 CBH2」と命名し、簡略化して「NBRC1440/EG-CBH2-1c-CBH2×2」とも表記する。本調製例13では、コピー数1のエンドグルカナーゼIIおよびコピー数3のセロビオヒドロラーゼ2の表層提示株を作製した。
 (調製例14:表層提示β-グルコシダーゼ1遺伝子の組み込み)
 Bst1107Iで切断して直線状にしたpIWBGLで、NBRC1440/EG-CBH2-1c(調製例9)、NBRC1440/EG-CBH2-2c(調製例10)、およびNBRC1440/EG-CBH2-3c(調製例11)のそれぞれを形質転換した。トリプトファンドロップアウト(トリプトファン不含培地)プレート上でトリプトファン要求性を持たない株を選択した。pIWBGLでの形質転換により、各々の破壊されたTRP1遺伝子が復活することで、β-グルコシダーゼ1遺伝子の導入を確認した。したがって、コピー数1、2、または3のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の表層提示株にさらにβ-グルコシダーゼ1を表層提示した株が得られた。得られたそれぞれの形質転換株を、簡略化して、「NBRC1440/EG-CBH2-1c/BGL」、「NBRC1440/EG-CBH2-2c/BGL」、および「NBRC1440/EG-CBH2-3c/BGL」と表記する(便宜上、これらの形質転換株を「セルラーゼ表層提示酵母」ともいう)。
 (実施例1:セルロース加水分解力評価)
 上記調製例8から13で得られた各種酵母を、リン酸膨潤セルロース(PSC;非特許文献13により調製)と反応させることにより、それらのセルロース加水分解力を測定した。反応条件は次の通りである:50mM クエン酸緩衝液、10mg/mL PSC、酵母OD600=3.0、反応時間24時間。活性測定は、PSCを分解させ生じた還元糖をソモギ・ネルソン法により定量した。酵母1g当たり、1分間に1μモルのグルコースに相当する還元力を生成する活性を1Uとした。
 図7は、エンドグルカナーゼおよびセロビオヒドロラーゼを種々に発現する酵母のセルロース加水分解力を示すグラフである。図中、縦軸は、酵母細胞1g当たりの酵素活性(mU/g cell)を表す。図中、横軸の左から、以下の酵母株の結果を示す:
 NBRC1440(図中「1440」)、
 NBRC1440/pGK406 EG(図中「EG」;調製例8:コピー数1のエンドグルカナーゼIIを組み込んだ酵母株)、
 NBRC1440/EG-CBH2-1c(図中「EG CBH2」;調製例9:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込んだ酵母株)、
 NBRC1440/EG-CBH2-1c-CBH2(図中「EG CBH2」の「CBH2」;調製例12:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込み、さらにコピー数1のセロビオヒドロラーゼ2を組み込んだ酵母株)、
 NBRC1440/EG-CBH2-1c-CBH2×2(図中「EG CBH2」の「CBH2×2」;調製例13:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込み、さらにコピー数2のセロビオヒドロラーゼ2を組み込んだ酵母株)、
 NBRC1440/EG-CBH2-2c(図中「EG CBH2」の「×2」;調製例10:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数2で組み込んだ酵母株)、および
 NBRC1440/EG-CBH2-3c(図中「EG CBH2」の「×3」;調製例11:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数3で組み込んだ酵母株)。
 セルロース加水分解力の強化のために、最も加水分解が困難であると思われる結晶性部分の加水分解を高めるように、CBH(結晶性セルロースに作用する)のコピー数を増加させることを図った。しかし、それよりもCBHのコピー数を増加させると共にEGのコピー数を同時に増加させる方が、はるかにPSCの分解力が向上することが分かった。
 (実施例2:エタノール発酵試験)
 実施例1では、「EG CBH2」の組み合わせでコピー数を増加させるごとにPSC分解活性が上昇した。よって、本実施例では、「EG CBH2」の2カセット(EGおよびCBH2の2つの遺伝子カセット)のベクターを1コピー、2コピー、および3コピー組み込んだ株をそれぞれ用いてPSCからのエタノール発酵を行った。
 本実施例では、調製例14に記載したように、これら3種の株(NBRC1440/EG-CBH2-1c、NBRC1440/EG-CBH2-2c、NBRC1440/EG-CBH2-3c)にそれぞれpIWBGL(β-グルコシダーゼ表層提示発現ベクター)の組み込みを行った株を用いた。すなわち、「NBRC1440/EG-CBH2-1c/BGL」、「NBRC1440/EG-CBH2-2c/BGL」、および「NBRC1440/EG-CBH2-3c/BGL」の3種のセルラーゼ表層提示酵母を用いた。
 酵母を、必須アミノ酸を添加したSD培地(合成デキストロース培地:6.7g/Lのアミノ酸以外の酵母窒素源(yeast nitrogen base without amino acids)[Difco社製]と適切な補充物を含む;20g/Lのグルコースが単一炭素源として添加されている)中で24時間、pH 約5.0で約30℃にて好気的(溶存酸素濃度:約2ppm)に前培養し、次いで48時間、YPD培地(酵母エキス・ポリペプトン・デキストロース培地:10g/Lの酵母エキス、20g/Lのポリペプトン、20g/Lのグルコースを含む)中で同様の条件下で培養した。培養上清と細胞ペレットとを4℃にて10分間6,000×gの遠心分離によって分離し、細胞ペレットを得た。
 この細胞ペレットを、11.2g/LのPSC、10g/Lの酵母エキス、20g/Lのポリペプトン、50mM クエン酸緩衝液(pH 5.0)、および0.5g/Lの二亜硫酸カリウムを含有する発酵培地に接種した。続く発酵は、約30℃にて嫌気的(溶存酸素濃度:約0.05ppm)に実施した。発酵開始時には細胞濃度を75g/L(湿潤細胞)に調整した。加えたPSCが11.2g/Lであることより、エタノールの理論収率は5.7g/Lとなる。
 発酵中のエタノール濃度をHPLCで測定した。HPLC分析は、屈折率(RI)検出器(L-2490 RI detector、日立製作所)を用いることによって実施した。分離に用いたカラムは、Shim-pack SPR-Pb Column(島津製作所)であった。移動相として0.6mL/分の流速の水を用いてHPLCを80℃にて操作した。
 この結果を図8に示す。図8は、エンドグルカナーゼおよびセロビオヒドロラーゼのコピー数を順次増大させた3種のセルラーゼ表層提示酵母NBRC1440/EG-CBH2-1c/BGL、NBRC1440/EG-CBH2-2c/BGL、NBRC1440/EG-CBH2-3c/BGLによるPSCを材料とする発酵で生成されるエタノール量の経時変化を示すグラフである。図8において、左の縦軸はエタノール濃度(g/L)、そして横軸は経過時間(時間)を表す。黒丸はNBRC1440/EG-CBH2-3c/BGL(エンドグルカナーゼIIとセロビオヒドロラーゼ2とが共に3コピー)、黒三角はNBRC1440/EG-CBH2-2c/BGL(エンドグルカナーゼIIとセロビオヒドロラーゼ2とが共に2コピー)、そして黒四角はNBRC1440/EG-CBH2-1c/BGL(エンドグルカナーゼIIとセロビオヒドロラーゼ2とが共に1コピー)を組み込んだ酵母の産生エタノール量を表す。
 1コピーのβ-グルコシダーゼに対し、エンドグルカナーゼおよびセロビオヒドロラーゼのコピー数の増加と共にPSCからのエタノール発酵収率が高くなることが示された。NBRC1440/EG-CBH2-3c/BGL(これは、1コピーのβ-グルコシダーゼに対してエンドグルカナーゼおよびセロビオヒドロラーゼを3コピーで組み込んだ酵母である)は、48hでは、理論収率に対して52.6%の収率であった。
 (調製例15:セルラーゼ分泌酵母)
 以下に、β-グルコシダーゼを表層提示するが、エンドグルカナーゼおよびセロビオヒドロラーゼを分泌するように組み込んだ酵母(これを、便宜上、「セルラーゼ分泌酵母」ともいう)の調製手順を説明する。
 (調製例15-1:pRS403/ssEG2-CBH2プラスミド)
 ヒスチジン遺伝子(HIS3)マーカーを有し、かつエンドグルカナーゼII(EGII)およびセロビオヒドロラーゼ2(CBH2)を分泌させるように組み込むためのプラスミドpRS403/ssEG2-CBH2を構築した。
 pUGP3(非特許文献12)を鋳型として、XYL2c-Xho(F)(配列番号25;Forward)およびXYL2c-NotI(R)(配列番号26;Reverse)のプライマー対を用いて、GAPDHプロモーター、マルチクローニングサイト(SalI, XbaI, BamHI, SmaI, XmaI)、GAPDHターミネーターをコードする遺伝子配列をPCR増幅した。その断片をpRS403(Stratagene)のXhoI/NotIサイトに導入してプラスミドpIHGP3を得た。
 リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列およびトリコデルマ・リーセイ由来エンドグルカナーゼ(EGII)遺伝子を含む1308bp DNAフラグメントを、鋳型としてpEG23u31H6(非特許文献10)を用い、配列番号29(Forward)および配列番号30(Reverse)のプライマー対を用いるPCRによって調製した。
 上記1308bpDNAフラグメントをSmaIで消化し、HIS3遺伝子およびそのプロモーターおよびターミネーター、GAPDHプロモーター、GAPDHターミネーターを含むプラスミドpIHGP3のSmaI部分に挿入し、HIS3遺伝子およびそのプロモーターおよびターミネーター、GAPDHプロモーター、グルコアミラーゼ遺伝子の分泌シグナル配列、EGII遺伝子およびGAPDHターミネーターを含むプラスミドが得られた。得られたプラスミドをpRS403/ssEG2と命名した。
 リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列およびトリコデルマ・リーセイ由来CBH2遺伝子を含む1416bp DNAフラグメントを、プラスミドpFCBH2w3(非特許文献11)を鋳型とし、配列番号31(Forward)および配列番号32(Reverse)のプライマー対を用いるPCRによって調製した。
 上記1416bpDNAフラグメントをSmaIで消化し、HIS3遺伝子およびそのプロモーターおよびターミネーター、GAPDHプロモーター、GAPDHターミネーターを含むプラスミドpIHGP3のSmaI部分に挿入し、HIS3遺伝子およびそのプロモーターおよびターミネーター、GAPDHプロモーター、グルコアミラーゼ遺伝子の分泌シグナル配列、CBH2遺伝子およびGAPDHターミネーターを含むプラスミドが得られた。得られたプラスミドをpRS403/ssCBH2と命名した。
 プラスミドpFCBH2w3をテンプレートとし、GAPDH(グリセルアルデヒド三リン酸デヒドロゲナーゼ)プロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、トリコデルマ・リーセイ由来CBH2遺伝子、およびGAPDHターミネーターを含む断片を、プライマー(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpRS403/ssEG2にクローニングした。得られたプラスミドをpRS403/ssEG2-CBH2と命名した。
 (調製例15-2:pRS405/ssEG2-CBH2プラスミド)
 GAPDHプロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、セロビオヒドロラーゼ2(CBH2)遺伝子およびGAPDHターミネーターを含む断片を、pRS403/ssCBH2をApaIおよびNotIで消化することで得た。
 LEU2遺伝子マーカーを持つpRS405(Stratagene)をApaIおよびNotIで消化し、上記で得た断片を挿入した。得られたプラスミドをpRS405/ssCBH2と命名した。
 プラスミドpRS403/ssEG2をテンプレートにして、プライマー(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpRS405/ssCBH2にクローニングした。得られたプラスミドをpRS405/ssEG2-CBH2と命名した。
 (調製例15-3:pRS406/ssEG2-CBH2プラスミド)
 GAPDHプロモーター、リゾプス・オリゼ由来グルコアミラーゼ遺伝子の分泌シグナル配列、セロビオヒドロラーゼ2(CBH2)遺伝子およびGAPDHターミネーターを含む断片を、pRS403/ssCBH2をApaIおよびNotIで消化することで得た。
 URA3遺伝子マーカーを持つpRS406(Stratagene)をApaI, NotIで消化し、上記で得た断片を挿入した。得られたプラスミドをpRS406/ssCBH2と命名した。
 プラスミドpRS403/ssEG2をテンプレートにして、プライマー(配列番号23;Forwardおよび配列番号24;Reverse)によりPCRで増幅した。得られた断片をNotIで消化し、そしてNotIで消化したpRS406/ssCBH2にクローニングした。得られたプラスミドをpRS406/ssEG2-CBH2と命名した。
 (調製例15-4:分泌型エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数1で組み込んだ酵母株の調製)
 制限酵素NdeIで切断して直線状にしたpRS406/ssEG2-CBH2で、NBRC1440/UHWLを形質転換し、ウラシルドロップアウト(ウラシル不含培地)プレート上でウラシル要求性を持たない株を選択した。pRS406/ssEG2-CBH2での形質転換により、NBRC1440/UHWLの破壊されたURA3遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/ pRS406/ssEG2-CBH2」と命名し、簡略化して「NBRC1440/ss-EG-CBH2-1c」とも表記する。本調製例では、コピー数1のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の分泌株を作製した。
 (調製例15-5:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数2で組み込んだ酵母株の調製)
 制限酵素NdeIで切断して直線状にしたpRS403/ssEG2-CBH2で、NBRC1440/ pRS406/ssEG2-CBH2を形質転換し、ヒスチジンドロップアウト(ヒスチジン不含培地)プレート上でヒスチジン要求性を持たない株を選択した。pRS406/ssEG2-CBH2での形質転換により、NBRC1440/ pRS406/ssEG2-CBH2の破壊されたHIS3遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/ pRS406/ssEG2-CBH2/ pRS403/ssEG2-CBH2」と命名し、簡略化して「NBRC1440/ss-EG-CBH2-2c」とも表記する。本調製例では、コピー数2のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の分泌株を作製した。
 (調製例15-6:エンドグルカナーゼIIとセロビオヒドロラーゼ2とを共にコピー数3で組み込んだ酵母株の調製)
 制限酵素HpaIで切断して直線状にしたpRS405 ssEG2-CBH2で、NBRC1440/ pRS406/ssEG2-CBH2/ pRS403/ssEG2-CBH2を形質転換し、ロイシンドロップアウト(ロイシン不含培地)プレート上でロイシン要求性を持たない株を選択した。pRS405 ssEG2-CBH2での形質転換により、NBRC1440/ pRS406/ssEG2-CBH2/ pRS403/ssEG2-CBH2の破壊されたLEU2遺伝子が復活することで、遺伝子の導入を確認した。この株を「NBRC1440/ pRS406/ssEG2-CBH2/ pRS403/ssEG2-CBH2/ pRS405 ssEG2-CBH2」と命名し、簡略化して「NBRC1440/ss-EG-CBH2-3c」とも表記する。本調製例では、コピー数3のエンドグルカナーゼIIおよびセロビオヒドロラーゼ2の分泌株を作製した。
 (調製例15-7:β-グルコシダーゼ1遺伝子の組み込み)
 Bst1107Iで切断して直線状にしたpIWBGLで、NBRC1440/ss-EG-CBH2-1c、NBRC1440/ss-EG-CBH2-2c、およびNBRC1440/ss-EG-CBH2-3cを形質転換した。トリプトファンドロップアウト(トリプトファン不含培地)プレート上でトリプトファン要求性を持たない株を選択した。pIWBGLでの形質転換により、各々の破壊されたTRP1遺伝子が復活することで、β-グルコシダーゼ1遺伝子の導入を確認した。これらの株を簡略化して、それぞれ、「NBRC1440/ss-EG-CBH2-1c/BGL」、「NBRC1440/ss-EG-CBH2-2c/BGL」、および「NBRC1440/ss-EG-CBH2-3c/BGL」とも表記する。本調製例では、調製例15-4から15-6の分泌株においてさらに、1コピーのβ-グルコシダーゼを表層提示するようにした株を作製した。
 (実施例3:リン酸膨潤セルロースからのエタノール生産に関するセルラーゼ表層提示酵母およびセルラーゼ分泌酵母の比較)
 セルラーゼ表層提示酵母(調製例14)のNBRC1440/EG-CBH2-1c/BGL、NBRC1440/EG-CBH2-2c/BGL、およびNBRC1440/EG-CBH2-3c/BGL、ならびにセルラーゼ分泌酵母(調製例15)のNBRC1440/ss-EG-CBH2-1c/BGL、NBRC1440/ss-EG-CBH2-2c/BGL、およびNBRC1440/ss-EG-CBH2-3c/BGLのいずれかの細胞ペレットを、7.8g/LのPSC、10g/Lの酵母エキス、10g/Lのポリペプトン、50mM クエン酸緩衝液(pH 5.0)、および0.5g/Lの二亜硫酸カリウムを含有する発酵培地に接種した。続く発酵は、約30℃にて嫌気的(溶存酸素濃度:約0.05ppm)に実施した。発酵開始時には細胞濃度を75g/L(湿潤細胞)に調整した。加えたPSCが7.8g/Lであることより、エタノールの理論収率は4.0g/Lとなる。実施例2と同様にして、発酵中のエタノール濃度の測定を行った。
 この結果を図9に示す。図9は、セルラーゼ表層提示酵母およびセルラーゼ分泌酵母のリン酸膨潤セルロース(PSC)からのエタノール生産量の経時変化を示すグラフである。本グラフの横軸に発酵時間(時間)を示し、縦軸にエタノール生産量(g/L)を示す。図中、黒丸はNBRC1440/ss-EG-CBH2-1c/BGL、黒三角はNBRC1440/ss-EG-CBH2-2c/BGL、黒四角はNBRC1440/ss-EG-CBH2-3c/BGL、白丸はNBRC1440/EG-CBH2-1c/BGL、白三角はNBRC1440/EG-CBH2-2c/BGL、そして白四角はNBRC1440/EG-CBH2-3c/BGLの結果を表す。
 その結果、セルラーゼ表層提示酵母およびセルラーゼ分泌酵母のいずれにおいても、1コピーのβ-グルコシダーゼに対し、エンドグルカナーゼおよびセロビオヒドロラーゼのコピー数の増加と共に、PSCからのエタノール発酵収率が高くなることが示された。
 本発明によれば、セルロースの加水分解力が向上し、エタノール生産を増強し得る発酵用酵母が得られる。したがって、セルロース系物質から効率よくエタノールが生産でき、さらにコストの低減につながり得る。このような酵母は、ソフトバイオマスのような廃棄物からのエタノール生産への利用が期待される。

Claims (11)

  1.  セルロース加水分解力強化酵母を作製する方法であって、
     セルロースを加水分解し得る酵素の遺伝子群をセルロース非加水分解性酵母に導入して形質転換酵母を得る工程であって、該遺伝子群が、結晶性セルロースを加水分解し得る酵素の遺伝子および非晶性セルロースを加水分解し得る酵素の遺伝子を含み、該結晶性セルロースを加水分解し得る酵素の遺伝子および該非晶性セルロースを加水分解し得る酵素の遺伝子が共に増大された組み込みコピー数で導入される、工程
    を含む、方法。
  2.  前記結晶性セルロースを加水分解し得る酵素がセロビオヒドロラーゼであり、前記非晶性セルロースを加水分解し得る酵素がエンドグルカナーゼである、請求項1に記載の方法。
  3.  前記結晶性セルロースを加水分解し得る酵素および前記非晶性セルロースを加水分解し得る酵素の少なくとも一方が表層提示されるように前記セルロース非加水分解性酵母に導入する、請求項1または2に記載の方法。
  4.  前記セルロースを加水分解し得る酵素の遺伝子群が、セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子をさらに含む、請求項1から3のいずれかに記載の方法。
  5.  前記セロビオースまたはセロオリゴ糖を加水分解し得る酵素の遺伝子の組み込みコピー数の1コピーに対し、前記結晶性セルロースを加水分解し得る酵素および前記非晶性セルロースを加水分解し得る酵素のそれぞれの遺伝子の組み込みコピー数が少なくとも2コピーである、請求項4に記載の方法。
  6.  前記セロビオースまたはセロオリゴ糖を加水分解し得る酵素がβ-グルコシダーゼである、請求項4または5に記載の方法。
  7.  前記セロビオースまたはセロオリゴ糖を加水分解し得る酵素が表層提示されるように前記セルロース非加水分解性酵母に導入する、請求項4から6のいずれかに記載の方法。
  8.  請求項1から7のいずれかに記載の方法により得られる、セルロース加水分解力強化酵母。
  9.  セロビオヒドロラーゼ遺伝子、エンドグルカナーゼ遺伝子、およびβ-グルコシダーゼ遺伝子を有し、該β-グルコシダーゼ遺伝子1コピーに対して、該セロビオヒドロラーゼ遺伝子および該エンドグルカナーゼ遺伝子のそれぞれが少なくとも2コピーで組み込まれた、セルロース加水分解力強化酵母。
  10.  前記セロビオヒドロラーゼ、前記エンドグルカナーゼ、および前記β-グルコシダーゼが表層提示されている、請求項9に記載のセルロース加水分解力強化酵母。
  11.  エタノールを製造する方法であって、
     セルロース系物質と、請求項8から10のいずれかに記載のセルロース加水分解力強化酵母とを反応させて、エタノールを生産する工程
    を含む、方法。
PCT/JP2009/066193 2008-09-17 2009-09-16 セルロース加水分解力強化酵母の作製および使用 WO2010032762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980136588.0A CN102159700B (zh) 2008-09-17 2009-09-16 纤维素水解力强化酵母的制作和使用
US13/063,225 US8574911B2 (en) 2008-09-17 2009-09-16 Production and use of yeast having increased cellulose hydrolysis ability
JP2010529776A JP5616226B2 (ja) 2008-09-17 2009-09-16 セルロース加水分解力強化酵母の作製および使用
CA2736975A CA2736975A1 (en) 2008-09-17 2009-09-16 Production and use of yeast having increased cellulose hydrolysis ability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008237887 2008-09-17
JP2008-237887 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032762A1 true WO2010032762A1 (ja) 2010-03-25

Family

ID=42039586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066193 WO2010032762A1 (ja) 2008-09-17 2009-09-16 セルロース加水分解力強化酵母の作製および使用

Country Status (5)

Country Link
US (1) US8574911B2 (ja)
JP (1) JP5616226B2 (ja)
CN (1) CN102159700B (ja)
CA (1) CA2736975A1 (ja)
WO (1) WO2010032762A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139211A (ja) * 2010-12-16 2012-07-26 Kobe Univ エタノールの生産方法
WO2013146540A1 (ja) * 2012-03-26 2013-10-03 関西化学機械製作株式会社 エタノールの生産方法
US9816113B2 (en) 2013-09-04 2017-11-14 Kansai Chemical Engineering Co., Ltd. Method for producing ethanol

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142352A1 (en) 2012-03-20 2013-09-26 The Research Foundation Of State University Of New York Flocculation of lignocellulosic hydrolyzates
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079483A1 (fr) 2000-04-17 2001-10-25 Kansai Chemical Engineering Co., Ltd. Procede de fabrication d'alcool a partir de fibre cellulosique
JP2006255676A (ja) 2005-03-18 2006-09-28 Kri Inc リグニン物質分離方法
JP2008086310A (ja) 2006-09-04 2008-04-17 Gekkeikan Sake Co Ltd セルロース分解酵素を表層提示する酵母及びその利用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Abstracts of Autumn Meeting of the Society of Chemical Engineers, Japan, Aug.2008", vol. 40, article SHUHEI YANASE ET AL.: "Cellulase Hatsugen Kobo ni yoru Cellulose kara no Bioethanol Seisan", pages: X160 *
FUJITA, Y. ET AL.: "Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 70, no. 2, 2004, pages 1207 - 1212 *
TSUTOMU TANAKA ET AL.: "Saibo Hyoso Teiji Gijutsu o Mochiita Biseibutsu no Kokinoka to Yuyo Bussitsu Seisan", BIO INDUSTRY, vol. 25, no. 8, August 2008 (2008-08-01), pages 13 - 19 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139211A (ja) * 2010-12-16 2012-07-26 Kobe Univ エタノールの生産方法
WO2013146540A1 (ja) * 2012-03-26 2013-10-03 関西化学機械製作株式会社 エタノールの生産方法
JPWO2013146540A1 (ja) * 2012-03-26 2015-12-14 Bio−energy株式会社 エタノールの生産方法
US9580729B2 (en) 2012-03-26 2017-02-28 Kansai Chemical Engineering Co., Ltd. Method for producing ethanol
US9816113B2 (en) 2013-09-04 2017-11-14 Kansai Chemical Engineering Co., Ltd. Method for producing ethanol

Also Published As

Publication number Publication date
CN102159700B (zh) 2015-03-18
US8574911B2 (en) 2013-11-05
US20110183396A1 (en) 2011-07-28
CA2736975A1 (en) 2010-03-25
CN102159700A (zh) 2011-08-17
JPWO2010032762A1 (ja) 2012-02-09
JP5616226B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
AU2009316309B2 (en) Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose
EP2516663B1 (en) Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
EP3168300A1 (en) Yeast expressing saccharolytic enzymes for consolidated bioprocessing using starch and cellulose
JP5752049B2 (ja) エタノールの製造方法
JP5616226B2 (ja) セルロース加水分解力強化酵母の作製および使用
US9816113B2 (en) Method for producing ethanol
WO2009139349A1 (ja) 酵母細胞に遺伝子を導入する方法およびそのためのベクター
WO2014157141A1 (ja) 細胞表層発現用ポリヌクレオチド
CN111876338A (zh) 利用可溶性碳源葡萄糖生产纤维素酶的菌株及构建方法
JP5279061B2 (ja) エタノールの製造方法
JP5590140B2 (ja) 組換え酵母を用いたエタノールの製造方法
JP7289480B2 (ja) セルラーゼ剤の製造方法ならびに当該セルラーゼ剤を用いた糖化発酵産物の製造方法
WO2014021163A1 (ja) 組換え酵母を用いたエタノールの製造方法
JP6249391B2 (ja) キシロースを高温で発酵する方法
US11473072B2 (en) Saccharomyces cerevisiae strains expressing exogenous glucoamylase and xylanase enzymes and their use in the production of bioethanol
US20160298156A1 (en) Endoglucanase variants having improved activity, and uses of same
JP2011234683A (ja) セルロースの糖化力が増強された酵母
JP2011160727A (ja) 高温でセルロースからエタノールを生産する方法
JP2012065604A (ja) 組換え酵母及びエタノールの製造方法
JP2021090384A (ja) セルラーゼを細胞表層発現する形質転換酵母

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136588.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529776

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2736975

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13063225

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2490/CHENP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09814607

Country of ref document: EP

Kind code of ref document: A1