WO2010031925A2 - Gaine de combustible nucleaibe a haute conductivite thermique et son procede de fabrication - Google Patents

Gaine de combustible nucleaibe a haute conductivite thermique et son procede de fabrication Download PDF

Info

Publication number
WO2010031925A2
WO2010031925A2 PCT/FR2009/001105 FR2009001105W WO2010031925A2 WO 2010031925 A2 WO2010031925 A2 WO 2010031925A2 FR 2009001105 W FR2009001105 W FR 2009001105W WO 2010031925 A2 WO2010031925 A2 WO 2010031925A2
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear fuel
matrix
sic
compound
carbide
Prior art date
Application number
PCT/FR2009/001105
Other languages
English (en)
Other versions
WO2010031925A3 (fr
Inventor
Julien Cabrero
René PAILLER
Fabienne Audubert
Original Assignee
Commissariat à l'Energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique filed Critical Commissariat à l'Energie Atomique
Priority to CN200980136879.XA priority Critical patent/CN102203879B/zh
Priority to EP09740177A priority patent/EP2335250B1/fr
Priority to US13/119,469 priority patent/US9031184B2/en
Priority to RU2011112480/07A priority patent/RU2504030C2/ru
Priority to AT09740177T priority patent/ATE544158T1/de
Priority to JP2011527369A priority patent/JP5318214B2/ja
Priority to PL09740177T priority patent/PL2335250T3/pl
Publication of WO2010031925A2 publication Critical patent/WO2010031925A2/fr
Publication of WO2010031925A3 publication Critical patent/WO2010031925A3/fr
Priority to ZA2011/02878A priority patent/ZA201102878B/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/20Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

Gaine de combustible nucléaire, constitute en tout ou partie d'un materiau composite a matrice ceramique comprenant des fibres de carbure de silicium SiC en tant que renf ort de ladite matrice et une couche d' interphase disposee entre ladite matrice et lesdites fibres, ladite matrice comprenant au moins un carbure choisi parmi Ie carbure de titane TiC, Ie carbure de zirconium ZrC ou Ie carbure ternaire de silicium et de titane Ti3SiC2. Une telle gaine permet, sous irradiation et a des temperatures comprises en 800 °C et 1200 °C, de maintenir mecaniquement Ie combustible nucleaire au sein de Ia gaine tout en assurant Ia transmission optimale de l'energie thermique vers Ie caloporteur. I´ invention concerne egalement un procede de fabrication de Ia gaine de combustible nucléaire.

Description

GAINE DE COMBUSTIBLE NUCLEAIRE A HAUTE CONDUCTIVITE THERMIQUE ET SON PROCEDE DE FABRICATION.
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se situe de façon générale dans le domaine du combustible nucléaire, et concerne en particulier une gaine de combustible nucléaire destinée aux réacteurs nucléaires « hautes températures » refroidis à l'hélium ainsi que son procédé de fabrication.
ETAT DE LA TECHNIQUE
Parmi les réacteurs nucléaires du futur figure le Réacteur à Neutrons Rapides (RNR) utilisant l'hélium comme caloporteur gaz (dit réacteur « RNR-He ») . Ce réacteur est dit « hautes températures » car la température de son cœur en fonctionnement est généralement comprise entre 800 0C et 1200 0C.
Comme décrit dans la demande de brevet EP 1 913 600, une gaine de combustible nucléaire mise en œuvre dans un tel réacteur peut se présenter sous la forme d'une plaque, d'un cylindre, d'une sphère ou d'un réseau d'alvéoles.
Soumises aux conditions de température précitées, cette gaine nécessite l'utilisation de matériaux réfractaires à haut point de fusion (afin d'assurer une stabilité thermomécanique suffisante pour maintenir le combustible au sein de la gaine) et doit présenter une conductivité thermique élevée sous irradiation (afin de transmettre au mieux l'énergie thermique produite vers le gaz caloporteur lors du fonctionnement du réacteur nucléaire) .
Les céramiques, bien que répondant à ces critères, sont généralement trop fragiles pour supporter les conditions d'exploitation d'une gaine de combustible nucléaire .
Les réactions de fission au sein du combustible nucléaire génèrent en effet des produits de fission solides et gazeux qui mènent au gonflement de la gaine. Soumis à de telles contraintes, les céramiques constituant la gaine peuvent se rompre et provoquer la perte du confinement du combustible.
Afin d'éviter une telle perte, il serait dès lors intéressant d'utiliser un matériau composite à matrice céramique (CMC) de type SiCf/SiC afin de disposer de propriétés mécaniques améliorées. Un tel matériau est généralement constitué d'un arrangement bidimensionnel ou tridimensionnel de fibres de carbure de silicium (notées SiCf) qui vient renforcer la matrice céramique en SiC dans laquelle elle est incorporée.
Toutefois, pour une température donnée, la conductivité thermique des CMC de type SiCf/SiC peut devenir très faible après avoir subi une irradiation.
Lors du fonctionnement d'un réacteur nucléaire « RNR- He » soumis à de hautes températures, de tels CMC s'avèrent donc inadaptés pour évacuer l'énergie thermique de la gaine de combustible nucléaire vers le gaz caloporteur.
EXPOSE DE L'INVENTION
Un des buts de l'invention est donc de fournir une gaine de combustible nucléaire constituée en tout ou partie d'un matériau qui, sous irradiation et à des températures comprises entre 800 0C et 1200 0C, soit capable de maintenir le combustible au sein de la gaine tout en assurant la transmission optimale de l'énergie thermique produite vers le gaz caloporteur.
L'objet de l'invention concerne ainsi une gaine de combustible nucléaire, constituée en tout ou partie d'un matériau composite à matrice céramique comprenant des fibres de carbure de silicium SiC en tant que renfort de la matrice et une couche d' interphase disposée entre la matrice et les fibres, la matrice comprenant au moins un carbure choisi parmi le carbure de titane TiC, le carbure de zirconium ZrC ou le carbure ternaire de silicium et de titane Ti3SiC2.
Comme illustré ci-après, sous irradiation et à des températures comprises entre 800 0C et 1200 0C (de préférence entre 800 0C et 1000 0C, voire égale à 8000C), la gaine de combustible nucléaire de l' invention présente une conductivité thermique permettant d'améliorer la transmission de la chaleur vers le caloporteur, et ce tout en préservant les propriétés thermomécaniques (haut point de fusion) et mécaniques (fragilité réduite) qui sont propres aux CMC et qui permettent d' assurer le confinement optimal du combustible contenu dans la gaine.
Selon un mode de réalisation préférentiel, la matrice du matériau composite à matrice céramique comprend en outre du carbure de silicium SiC. Ainsi, par exemple, le carbure de silicium SiC représente moins de 50% (typiquement de 1% à 50%) en volume de la matrice, préférentiellement moins de 25% (typiquement de 1% à 25%), encore plus préférentiellement moins de 10% (typiquement de 1% à 10%). L'ajout de ces quantités variables de SiC permet d'adapter au mieux les propriétés de la matrice (telles que la conductivité thermique) aux conditions rencontrées. L' incorporation de SiC dans la matrice permet également d'améliorer sa compatibilité thermomécanique avec les fibres de SiC : le rapprochement des coefficients de dilatation thermique permet par exemple de limiter les effets d'une dilatation différentielle entre la matrice et les fibres qui pourrait aboutir à la fissuration de la gaine de combustible nucléaire .
Dans un mode de réalisation préférentiel, le carbure de silicium SiC présent dans la matrice représente entre 5% et 15% en volume de la matrice (en particulier lorsque la matrice comprend du TiC) . De façon inattendue, corne cela est illustré ci-après, une telle composition de la matrice permet de bénéficier d'un optimum dans la conductivité thermique .
Optionnellement, la matrice présente une microstructure colonnaire.
Les fibres peuvent quant à elles être en tout ou partie ordonnées. Elles proviennent ainsi généralement d'une préforme fibreuse qui est le plus souvent constituée de fibres qui ne sont pas disposées de façon aléatoire mais qui sont au contraire ordonnées.
Ainsi, en particulier, les fibres peuvent se présenter sous une forme telle qu'un tissé bidimensionnel (par exemple sous forme de tresses) , pseudo-bidimensionnel (par exemple un tressé qui est ensuite cousu), tridimensionnel, un tricot, des feutres.
Préférentiellement, les fibres se présentent sous la forme de tresses ou de feutres lorsque la gaine de combustible nucléaire a respectivement la forme d'un tube ou d'une plaque.
Concernant leur composition, les fibres sont constituées de SiC, ce qui les rend particulièrement adaptées au contexte de l'invention car le SiC possède une très bonne stabilité neutronique et thermique. Une couche d' interphase est par ailleurs disposée entre les fibres et la matrice.
Cette couche peut être constituée en tout ou partie d'un composé comprenant plusieurs couches superposées, un tel composé étant préférentiellement le carbone pyrolytique.
Le caractère superposé de ces couches peut être :
- du à la structure intrinsèque du composé (à savoir que ce composé présente naturellement ce type de structure, comme c' est le cas pour le carbone pyrolytique qui est nécessairement constitué de plans de graphite : une telle structure est alors dite lamellaire) , ou
- obtenu à l'aide du procédé de fabrication du composé (un tel procédé étant par exemple un procédé de CVI puisée décrit ci-après : une telle structure est alors dite multicouche) .
La couche d' interphase peut présenter une épaisseur moyenne comprise entre 10 nm à 500 nm, préférentiellement 10 nm à 50 nm, encore plus préférentiellement 10 nm à 30 nm, sachant que la réduction de cette épaisseur s'accompagne le plus souvent d'une amélioration des propriétés mécaniques.
La porosité du matériau composite constituant tout ou partie de la gaine de combustible nucléaire selon l'invention est préférentiellement inférieure ou égale à 10% (voire 5%) en volume afin de favoriser une conductivité thermique élevée.
Un autre but de l'invention est de réaliser un procédé de fabrication de la gaine de combustible nucléaire selon l'invention. Ce procédé comprend l'élaboration du matériau composite selon les étapes successives suivantes : a) on réalise une préforme fibreuse à partir des fibres, b) on dépose par infiltration chimique en phase vapeur ladite couche d' interphase sur ladite préforme, c) on dépose par infiltration chimique en phase vapeur ladite matrice sur ladite préforme recouverte de ladite couche d' interphase.
La préforme fibreuse a généralement une géométrie proche de celle de la gaine de combustible nucléaire que l'on cherche à fabriquer. A l'issue du procédé de fabrication de l'invention, cette gaine se présente donc le plus souvent sous sa forme définitive ou ne nécessite tout au plus que quelques opérations de rectification.
Préférentiellement, l'infiltration chimique en phase vapeur de l'étape c) est réalisée à partir d'un mélange de précurseurs comprenant i) au moins un composé choisi parmi un composé de titane, de zirconium ou de silicium, ii) un hydrocarbure et iii) de l'hydrogène.
Encore plus préférentiellement, ces précurseurs sont alors tels que :
- le composé de titane est au moins un composé choisi parmi TiCl4, TiBr4 ou Ti [CH2C (CH3) 3] 4,
- le composé de zirconium est au moins un composé choisi parmi ZrCl4, ZrBr4 ou Zr[CH2C(CH3)S]4, le composé de silicium est au moins un composé choisi parmi SiCl4, SiH2Cl4 ou CH3SiCl3,
- l'hydrocarbure est au moins un composé choisi parmi CCl4H2, CH4, C4Hi0 ou C3H8.
Préférentiellement, au moins une des infiltrations chimiques en phase vapeur (à savoir l'infiltration pour réaliser la couche d' interphase selon l'étape b) ou celle pour déposer la matrice selon l'étape c) ) est de type puisé.
D'autres objets, caractéristiques et avantages de l' invention apparaîtront mieux à la lecture de la description qui suit, donnée à titre illustratif et non limitatif. DESCRIPTION BREVE DES FIGURES
La figure 1 représente l'évolution, en fonction de la température, de la conductivité thermique de matériaux céramiques à base de TiC et aux proportions variables de SiC.
La Figure 2 représente l'évolution, en fonction de la proportion de SiC, de la conductivité thermique à 8000C de matériaux céramiques irradiés à base de TiC.
DESCRIPTION DE MODES DE REALISATION PARTICULIERS DE L' INVENTION
Les exemples qui suivent illustrent la partie du procédé de fabrication de l'invention dans laquelle on élabore le matériau composite à matrice céramique (CMC) destiné à entrer dans la composition de la gaine de combustible nucléaire.
Comme indiqué précédemment, l'utilisation d'une préforme fibreuse de forme et dimensions proches ou identiques à celles de la gaine de combustible nucléaire permet, à l'issue du procédé de fabrication de l'invention, d' obtenir cette gaine sous forme d' ébauche voire sous une forme définitive.
Ces exemples de réalisation sont suivis d'une caractérisation avant et après irradiation des propriétés thermiques de matériaux céramiques (sans fibres et couche d' interphase) représentatifs des CMC élaborés.
1 - Fabrication de matériaux composites à matrice céramique (CMC) destinés à entrer dans la composition de la gaine de combustible nucléaire de l'invention.
Les fabrications qui suivent sont réalisées à l'aide d'un procédé connu de l'homme du métier, à savoir 1' infiltration chimique en phase vapeur, encore appelée CVI (Chemical Vapor Infiltration) .
A l'aide de la CVI, on peut former un carbure à partir de précurseurs puis le déposer sur une préforme fibreuse. Ces précurseurs se trouvent généralement sous forme gazeuse.
Un type particulier de CVI est la CVI puisée, telle que décrite par exemple dans les documents EP 0 385 869 ou « T. M. Besmann, Ceram. Trans., Vol. 58, pages 1-12, 1995 ».
Dans la CVI puisée, les précurseurs sont véhiculés par une séquence d'impulsions au sein de l'enceinte réactionnelle (par exemple un four) . Pour chaque impulsion, la pression des précurseurs dans le four évolue au cours du temps selon les trois phases suivantes :
- phase 1 : augmentation de la pression jusqu'à la pression de travail (généralement quelques kPa) afin d' introduire les précurseurs ;
- phase 2 : maintien de la pression de travail (palier au cours duquel le carbure se dépose) ;
- phase 3 : diminution de la pression pour évacuer les précurseurs en excès.
1.1 - Fabrication d'un CMC de type SiCf/TiC.
A l'aide d'un procédé de CVI, une préforme fibreuse constituée de fibres de carbure de silicium SiC ordonnées est revêtue d'une couche d' interphase d'une épaisseur moyenne de quelques dizaines à quelques centaines de nanomètres constituée d'un composé lamellaire, comme par exemple le carbone pyrolytique (PyC).
La préforme fibreuse est ensuite placée dans un four à 1050 0C aux parois chaudes et porté sous vide primaire.
Puis, par CVI puisée, on réalise la matrice du CMC en déposant à une pression de travail de 5 kPa du carbure de titane TiC par réaction en phase vapeur à partir des précurseurs gazeux TiCl4, CH4 et H2 initialement contenus dans une cuve de mélange à une pression de 40 kPa.
Afin d'obtenir le dépôt de carbure le plus homogène en termes de composition et de microstructure, il est préférable de limiter la vitesse de dépôt en travaillant à basse température (typiquement comprise entre 9000C et 12000C) et à basse pression de travail (typiquement comprise entre 1 kPa et 10 kPa) .
Il est à noter que des paramètres autres que la température et la pression peuvent également influer sur l'homogénéité du dépôt de carbure. Il s'agit notamment de la nature de l'hydrocarbure, de la proportion de carbone et du facteur de dilution.
Ainsi, par exemple, pour un dépôt de TiC : la proportion de carbone mc/Tl correspondant au rapport entre le nombre d' atomes de carbone et le nombre d'atomes de titane dans le mélange gazeux de précurseurs, bien qu'elle varie en fonction de l'hydrocarbure utilisé, doit généralement être comprise entre 1 et 18 ;
- le facteur de dilution α correspondant au rapport entre la concentration totale des précurseurs et la concentration de TiCl4 exprimées en moles/litre (soit α = ( [TiCl4] + [CH4] + [H2] )/ [TiCl4] ) doit généralement être compris entre 15 et 100.
Le débit des gaz vecteurs CH4 mais surtout H2 et le contrôle de la température d'ébullition de TiCl4 permettent de contrôler le débit de TiCl4 et donc le facteur de dilution α et la proportion de carbone mc/Tl.
La pression dans le four dépend également de ce débit ainsi que du temps d'ouverture des vannes.
Dans le cas présent, les paramètres de dépôt sont les suivants : - débit moyen des gaz vecteurs = 30 litres / heure
- temps d'ouverture des vannes (phase 1) = 0,2 à 0,3 s
- temps de résidence (phase 2) = 4 à 5 s
- temps de pompage (phase 3) = 1 s
- épaisseur déposée pour une impulsion = 1,5 nm
- α = 50
- mc/τi = 9
- vitesse de dépôt = environ 1 μm/h
Ceci a permis d'obtenir un CMC de type SiCf/TiC dans lequel la matrice est constituée de TiC stcechiométrique et présente une microstructure colonnaire et une épaisseur moyenne de 40 μm.
1.2 - Fabrication d'un CMC de type SiCf/ZrC.
Des conditions opératoires similaires à celles décrites dans l'exemple précédent peuvent être mises en œuvre pour réaliser un CMC dans lequel la matrice est composée de carbure de zirconium ZrC. Les seuls paramètres spécifiques sont alors les suivants :
- ZrCl4, C3H6, gaz H2 et Ar en quantité équivalente / 16000C / mc/Zr = 0,5 (vitesse de dépôt inférieure à 14 μm/h); ou
- ZrBr4, CH4, H2, Ar / 1000 0C à 15000C / 1 à 10 kPa
1.3 - Fabrication d'un CMC de type SiC£/TiC-SiC.
On réalise maintenant des CMC dans lesquels la matrice est de composition mixte, à savoir qu'elle est composée à la fois de carbure de titane TiC et de carbure de silicium SiC.
La CVI puisée est particulièrement adaptée à la fabrication des matrices mixtes puisqu'elle permet de varier aisément la proportion entre le TiC et le SiC en modifiant par exemple le nombre d' impulsions relatives aux précurseurs de chacun de ces carbures. Ceci a été mis à profit pour réaliser trois CMC mixtes SiCf/TiC-SiC dans lesquels la matrice présentait les compositions TiC/SiC en pourcentage volumique suivantes : 90/10, 75/25, 50/50.
Plusieurs modes de dépôt par CVI puisée sont envisageables .
Dans un premier mode de réalisation, le nombre d' impulsions au sein de chacune des séquences de dépôt de TiC et SiC est réduit afin que la couche déposée soit discontinue .
Les conditions de dépôt de TiC sont celles indiqués dans l'exemple précédent.
Pour le dépôt de SiC, les conditions sont également similaires à celles du dépôt de TiC, si ce n'est pour les paramètres suivants :
- précurseurs gazeux : H2 et MTS (méthyltrichlorosi- lane de formule CH3SiCl3)
- température de 9000C à 10500C
- pression de travail 1,5 kPa à 5 kPa
- αSlC (PH∑/PMTS) de H à 5 (de H à H, on observe la formation de carbone résiduel, à partir de 3, il n'y a plus de carbone résiduel. En revanche la vitesse de dépôt augmente avec αSlC) •
II est à noter que la vitesse de dépôt de la couche de SiC est proportionnelle aux valeurs de température et pression indiquées.
Dans le cas présent, les paramètres effectivement utilisés pour le dépôt de SiC sont les suivants :
- température = 1050 0C
- pression de travail = 4 kPa
- αSlC (EWPMTS) = 0,5
- épaisseur moyenne déposée par impulsion = 3 nm
- vitesse de dépôt = environ 0,3 à 1 μm/h La structure de la séquence d'impulsions est la suivante : 2 impulsions pour le dépôt de TiC suivies d'une impulsion pour le dépôt de SiC.
La matrice mixte obtenue est constituée de SiC et de TiC stœchiométrique et présente une épaisseur moyenne de 40 μm.
Dans un deuxième mode de réalisation, on réalise des dépôts nano-séquencés, à savoir des dépôts pour lesquels des couches de nature différentes d'une épaisseur moyenne de 10 à 100 nm sont successivement déposées. Pour cela, on fait se succéder les impulsions des précurseurs propres au TiC et au SiC (par exemple 40 impulsions pour SiC et 80 impulsions pour TiC, ou encore 20 impulsions pour SiC et 40 impulsions pour TiC) .
Dans un troisième mode de réalisation, on introduit simultanément les précurseurs du SiC et du TiC. Généralement, les précurseurs et les conditions opératoires sont alors choisis parmi les suivants :
- TiCl4, SiCl4, CCl4H2 / 9500C à 11500C / 100 kPa
- TiCl4, SiCl4, C3H8, H2 / 9500C à 1150°C / 4-40 kPa
- TiCl4, SiCl4, CH4, H2 / 9500C à 1150°C / 7 kPa
- TiCl4, SiH2Cl4, C4Hi0, H2 / 950°C à 1150°C / 100 kPa
- TiCl4, CH3SiCl3, H2 / 9500C à 1150°C / 1 kPa à 100 kPa
- TiCl4, SiCl4, C3H8, H2 / 9500C à 115O0C / 100 kPa
2 - Propriétés thermiques des matériaux composites à matrice céramique (CMC) comprenant du TiC.
Des matériaux céramiques (sans fibres et couche d' interphase) ayant la même composition que la matrice des quatre CMC à base de TiC réalisés précédemment sont fabriqués par frittage sous pression. Les quatre matériaux céramiques présentent les compositions TiC/SiC suivantes en pourcentage volumique : 100/0, 90/10, 75/25, 50/50.
Ces matériaux céramiques permettent de déterminer la conductivité thermique relative des quatre CMC à base de TiC réalisés précédemment car, même si la valeur absolue de leur conductivité thermique diffère de celle des CMC correspondants, leur valeur relative est comparable. En d'autres termes, le comportement de la conductivité thermique de ces matériaux céramiques les uns par rapport aux autres est similaire et représentatif du comportement des quatre CMC réalisés précédemment.
En pratique, la diffusivité thermique des matériaux céramiques est mesurée pour différentes températures.
Connaissant la densité et la capacité calorifique massique (noté Cp) de ces matériaux céramiques, la conductivité thermique est ensuite calculée selon la formule k = α.p.Cp, dans laquelle :
- k est la conductivité thermique (W.m"1. K""1)
- α est la diffusivité thermique (m2, s"1)
- p est la masse volumique (kg.m"3)
- Cp est la capacité calorifique massique ( J. kg"1. K"1) . Les expressions des Cp(T) de TiC et de SiC utilisées sont les suivantes : ,1946 x l O7
Cp (SiC) = 925,65 + 0,37727 - 7,9259 x 1 (T -55 T T2 3 2 -
( avec T en K)
Cp(TiC) = 0,7415 + 0,001 147 - 1,57655 x 10^72 + l,14714 χ 10-10r3 + 7,05467 x lO"13T4
( avec T en K) Lorsque le matériau céramique est de composition mixte (par exemple 75% TiC + 25% SiC) , sa capacité calorifique massique est la moyenne pondérée de la capacité calorifique massique de chaque carbure.
Après calcul, on obtient alors l'évolution de la conductivité thermique (courbes de tendance) en fonction de la température, telle qu'elle est représentée sur la Figure 1.
Il peut être déduit de la Figure 1 que l'ajout d'une quantité croissante de carbure de titane TiC dans la matrice d'un CMC de type SiCf/TiC-SiC non irradié permet de faire croître la conductivité thermique de ce CMC malgré l'élévation de température, en particulier pour des températures comprises entre 800 0C et 1200 0C et des teneurs en TiC supérieures à 50%.
Les mesures de conductivité thermique ci-après ont confirmé un tel comportement des matériaux céramiques après irradiation.
Ces mesures ont été menées selon le même protocole sur cinq matériaux céramiques irradiés, à savoir les quatre matériaux céramiques précédents et un matériau céramique constitué de 100% SiC (soit les matériaux céramiques à la composition TiC/SiC volumique suivante : 100/0, 90/10, 75/25, 50/50, 0/100) .
L' irradiation a consisté à simuler un flux neutronique par l'implantation d'ions Kr d'une énergie de 74 MeV afin d'atteindre une dose d'irradiation de 1 dpa (déplacement par atome) permettant de créer deux zones de dommage, celle des interactions nucléaires (simulant un dommage neutronique) et celle des interactions électroniques. La conductivité thermique a été mesurée à 8000C dans la zone des interactions nucléaires . Les résultats sont regroupés sur la Figure 2. Ils montrent que la conductivité thermique à 8000C de matériaux céramiques irradiés composés de TiC et SiC est améliorée lorsque la proportion de TiC augmente. Le matériau céramique de composition volumique 90% TiC + 10% SiC (typiquement un matériau comprenant en volume de 95% à 85% de TiC et le reste de SiC) présente même un optimum de conductivité thermique.
Des résultats complémentaires ont également montré, qu'après une irradiation par des ions Au (4 MeV, 8 dpa) , la conductivité thermique à 8000C d'un matériau céramique constitué de TiC était supérieure à celle d'un matériau céramique constitué de SiC.
Il apparaît donc que, pour fabriquer une gaine de combustible nucléaire, l'utilisation d'un matériau composite à matrice céramique comprenant des fibres de SiC, une couche d' interphase et une matrice comprenant au moins un carbure choisi parmi le carbure de titane TiC, le carbure de zirconium ZrC ou le carbure ternaire de silicium et de titane Ti3SiC2, permet d'améliorer la conductivité thermique de cette gaine sous irradiation à des températures généralement comprises entre 800 0C et 1200 0C.
Lors du fonctionnement d'un réacteur de type « RNR- He », la gaine de combustible nucléaire de l'invention peut ainsi maintenir mécaniquement le combustible nucléaire et assurer une transmission de la chaleur vers le gaz caloporteur qui est plus efficace que celle réalisée par une gaine constituée d'un CMC de type SiCf/SiC.

Claims

REVENDICATIONS
1) Gaine de combustible nucléaire, constituée en tout ou partie d'un matériau composite à matrice céramique comprenant des fibres de carbure de silicium SiC en tant que renfort de ladite matrice et une couche d' interphase disposée entre ladite matrice et lesdites fibres, ladite matrice comprenant au moins un carbure choisi parmi le carbure de titane TiC, le carbure de zirconium ZrC ou le carbure ternaire de silicium et de titane Ti3SiC2.
2) Gaine de combustible nucléaire selon la revendication 1, dans laquelle ladite matrice comprend en outre du carbure de silicium SiC.
3) Gaine de combustible nucléaire selon la revendication 2, dans laquelle ledit carbure de silicium SiC représente moins de 25% en volume de ladite matrice.
4) Gaine de combustible nucléaire selon la revendication 3, dans laquelle ledit carbure de silicium SiC représente moins de 10% en volume de ladite matrice.
5) Gaine de combustible nucléaire selon la revendication 3, dans laquelle ledit carbure de silicium SiC représente entre 5% et 15% en volume de ladite matrice.
6) Gaine de combustible nucléaire selon l'une quelconque des revendications précédentes, dans laquelle ladite matrice présente une microstructure colonnaire. 7) Gaine de combustible nucléaire selon l'une quelconque des revendications précédentes, dans laquelle lesdites fibres sont en tout ou partie ordonnées.
8) Gaine de combustible nucléaire selon l'une quelconque des revendications précédentes, dans laquelle ladite couche d' interphase est constituée en tout ou partie d'un composé comprenant plusieurs couches superposées.
9) Gaine de combustible nucléaire selon l'une quelconque des revendications précédentes, dans laquelle ladite couche d' interphase présente une épaisseur moyenne comprise entre 10 nm à 500 nm.
10) Gaine de combustible nucléaire selon l'une quelconque des revendications précédentes, dans laquelle ledit matériau composite présente une porosité inférieure ou égale à 10% en volume.
11) Procédé de fabrication d'une gaine de combustible nucléaire telle que définie dans l'une quelconque des revendications 1 à 10, comprenant l'élaboration dudit matériau composite selon les étapes successives suivantes : a) on réalise une préforme fibreuse à partir desdites fibres, b) on dépose par infiltration chimique en phase vapeur ladite couche d' interphase sur ladite préforme, c) on dépose par infiltration chimique en phase vapeur ladite matrice sur ladite préforme recouverte de ladite couche d' interphase .
12) Procédé de fabrication selon la revendication 11, dans lequel ladite infiltration chimique en phase vapeur de l'étape c) est réalisée à partir d'un mélange de précurseurs comprenant i) au moins un composé choisi parmi un composé de titane, de zirconium ou de silicium, ii) un hydrocarbure et iii) de l'hydrogène.
13) Procédé de fabrication selon la revendication 12, dans lequel : ledit composé de titane est au moins un composé choisi parmi TiCl4, TiB4 ou Ti [CH2C (CH3) 3] 4,
- ledit composé de zirconium est au moins un composé choisi parmi que ZrCl4, ZrB4 ou Zr [CH2C (CH3) 3] 4,
- ledit composé de silicium est au moins un composé choisi parmi SiCl4, SiH2Cl4 ou CH3SiCl3.
14) Procédé de fabrication selon la revendication 12 ou 13, dans lequel ledit hydrocarbure est au moins un composé choisi parmi CCl4H2, CH4, C4HiO ou C3He.
15) Procédé de fabrication selon l'une quelconque des revendications 11 à 14, dans lequel au moins une desdites infiltrations chimiques en phase vapeur est de type puisé.
PCT/FR2009/001105 2008-09-18 2009-09-18 Gaine de combustible nucleaibe a haute conductivite thermique et son procede de fabrication WO2010031925A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200980136879.XA CN102203879B (zh) 2008-09-18 2009-09-18 高热传导率核燃料包壳及其制备工艺
EP09740177A EP2335250B1 (fr) 2008-09-18 2009-09-18 Gaine de combustible nucleaire a haute conductivite thermique et son procede de fabrication
US13/119,469 US9031184B2 (en) 2008-09-18 2009-09-18 Nuclear fuel cladding with high heat conductivity and method for making same
RU2011112480/07A RU2504030C2 (ru) 2008-09-18 2009-09-18 Оболочка ядерного топлива с высокой удельной теплопроводностью и способ ее производства
AT09740177T ATE544158T1 (de) 2008-09-18 2009-09-18 Kernbrennstoffmantelung mit hoher wärmeleitfähigkeit und prozess zu ihrer herstellung
JP2011527369A JP5318214B2 (ja) 2008-09-18 2009-09-18 高熱伝導率を有する核燃料クラッディング及びその製造方法
PL09740177T PL2335250T3 (pl) 2008-09-18 2009-09-18 Kanał paliwa jądrowego o dużej przewodności cieplnej i sposób jego wytwarzania
ZA2011/02878A ZA201102878B (en) 2008-09-18 2011-04-18 Nuclear fuel cladding with high heat conductivity and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/05127 2008-09-18
FR0805127A FR2936088B1 (fr) 2008-09-18 2008-09-18 Gaine de combustible nucleaire a haute conductivite thermique et son procede de fabrication.

Publications (2)

Publication Number Publication Date
WO2010031925A2 true WO2010031925A2 (fr) 2010-03-25
WO2010031925A3 WO2010031925A3 (fr) 2010-07-01

Family

ID=40679541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001105 WO2010031925A2 (fr) 2008-09-18 2009-09-18 Gaine de combustible nucleaibe a haute conductivite thermique et son procede de fabrication

Country Status (11)

Country Link
US (1) US9031184B2 (fr)
EP (1) EP2335250B1 (fr)
JP (1) JP5318214B2 (fr)
KR (1) KR20110056417A (fr)
CN (1) CN102203879B (fr)
AT (1) ATE544158T1 (fr)
FR (1) FR2936088B1 (fr)
PL (1) PL2335250T3 (fr)
RU (1) RU2504030C2 (fr)
WO (1) WO2010031925A2 (fr)
ZA (1) ZA201102878B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129677A1 (fr) * 2011-03-28 2012-10-04 Torxx Group Inc. Encapsulations céramiques pour matériaux nucléaires et leurs systèmes et procédés de production et d'utilisation
CN105537578A (zh) * 2015-12-21 2016-05-04 无锡科莱欣机电制造有限公司 一种用于真空干燥机的金属复合材料
US9548139B2 (en) 2011-08-01 2017-01-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Multilayer tube in ceramic matrix composite material, resulting nuclear fuel cladding and associated manufacturing processes
CN111623957A (zh) * 2020-05-11 2020-09-04 中国科学院光电技术研究所 一种用于x射线聚焦镜拼接干涉检测的点云配准拼接方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180764A1 (fr) 2012-01-20 2013-12-05 Free Form Fibers Llc Fibres céramiques ayant une résistance mécanique élevée et leurs procédés de fabrication
CN103295652B (zh) * 2012-02-24 2017-02-08 上海核工程研究设计院 采用陶瓷包壳金属芯块的核燃料棒
CN103578575B (zh) * 2012-07-25 2016-08-31 李正蔚 球形燃料反应堆
US8971476B2 (en) 2012-11-07 2015-03-03 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application
CN103044054A (zh) * 2012-12-11 2013-04-17 中南大学 一种锆钛碳化物改性抗烧蚀炭/炭复合材料及其制备方法
WO2014150777A2 (fr) * 2013-03-15 2014-09-25 Rolls-Royce Corporation Composites à matrices céramiques à base de sic dotés de matrices en couches et procédés de fabrication de composites à matrices céramiques à base de sic dotés de matrices en couches
WO2014169138A1 (fr) 2013-04-10 2014-10-16 Areva Inc. Gaine de barre de combustible composite
CN104628395B (zh) * 2013-11-07 2017-09-26 中国科学院宁波材料技术与工程研究所 一种核燃料包壳元件的制备方法
CN104637551B (zh) * 2013-11-07 2017-10-03 中国科学院宁波材料技术与工程研究所 Ti3SiC2基陶瓷材料作为耐熔融氟盐腐蚀材料的应用
EP2905271A1 (fr) * 2014-02-11 2015-08-12 Alstom Technology Ltd Composite matriciel céramique pour application à haute température contenant des fibres céramiques revêtus par une phase MAX
JP6352711B2 (ja) 2014-07-22 2018-07-04 株式会社東芝 チャンネルボックス及びチャンネルボックスの製造方法
RU2578680C1 (ru) * 2015-02-12 2016-03-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Микротвэл ядерного реактора
CA2939288A1 (fr) * 2015-08-28 2017-02-28 Rolls-Royce High Temperature Composites, Inc. Composite de matrice ceramique comportant des fibres en carbure de silicium dans une matrice ceramique comportant un composant en phase max
CN105504806A (zh) * 2015-12-21 2016-04-20 无锡科莱欣机电制造有限公司 一种用于冷冻干燥机的金属复合材料
US9997406B2 (en) 2016-02-04 2018-06-12 International Business Machines Corporation Columnar interconnects and method of making them
US10872701B2 (en) * 2016-06-10 2020-12-22 Westinghouse Electric Company Llc Zirconium-coated silicon carbide fuel cladding for accident tolerant fuel application
CN105925872B (zh) * 2016-06-21 2017-08-25 中国科学院宁波材料技术与工程研究所 一种碳化硅作为增强相的金属基复合材料及其制备方法
US9748173B1 (en) 2016-07-06 2017-08-29 International Business Machines Corporation Hybrid interconnects and method of forming the same
US9875966B1 (en) 2016-08-01 2018-01-23 International Business Machines Corporation Method and structure of forming low resistance interconnects
US9793156B1 (en) 2016-09-12 2017-10-17 International Business Machines Corporation Self-aligned low resistance metallic interconnect structures
US10876227B2 (en) 2016-11-29 2020-12-29 Free Form Fibers, Llc Fiber with elemental additive(s) and method of making
CN106747453B (zh) * 2016-12-07 2020-02-21 中核北方核燃料元件有限公司 一种SiC复合纤维缠绕包壳的高温裂解处理方法
WO2019005525A1 (fr) 2017-06-26 2019-01-03 Free Form Fibers, Llc Matrice vitrocéramique haute température à fibres de renforcement incorporées
WO2019005911A1 (fr) 2017-06-27 2019-01-03 Free Form Fibers, Llc Structure fibreuse fonctionnelle à haute performance
ES2894683T3 (es) * 2017-07-31 2022-02-15 Toshiba Kk Método de reparación de un conjunto de combustible, método de producción de un conjunto de combustible y conjunto de combustible
US10224242B1 (en) 2017-11-14 2019-03-05 International Business Machines Corporation Low-resistivity metallic interconnect structures
CN110164573B (zh) * 2018-02-13 2023-12-12 韩国原子力研究院 导热率提高的核燃料粒料及其制备方法
US10600686B2 (en) 2018-06-08 2020-03-24 International Business Machines Corporation Controlling grain boundaries in high aspect-ratio conductive regions
CA3120260C (fr) * 2018-11-20 2024-01-23 Ut-Battelle, Llc Fabrication additive d'objets complexes utilisant des materiaux de matrice refractaire
CN109467450B (zh) * 2018-12-13 2021-09-24 湖南泽睿新材料有限公司 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
CN110903091B (zh) * 2019-12-06 2021-12-07 燕山大学 一种SiC-Ti3SiC2复合材料及其制备方法
CN111704475B (zh) * 2020-07-08 2022-05-06 山东合创明业精细陶瓷有限公司 短切碳化硅纤维增强ZrC多层包壳材料及其制备方法
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)
RU2762000C1 (ru) 2020-11-10 2021-12-14 Акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (АО "ВНИИНМ") Способ изготовления керамической многослойной трубки для оболочки тепловыделяющего элемента ядерной энергетической установки
CN112876257B (zh) * 2021-01-27 2022-05-17 中国核动力研究设计院 一种SiCf/SiC复合材料两层复合包壳管及其制备方法
CN115650751B (zh) * 2022-10-13 2023-10-31 广东核电合营有限公司 纤维强韧化的碳化硅包壳及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039524A1 (en) * 2004-06-07 2006-02-23 Herbert Feinroth Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants
WO2007017503A1 (fr) * 2005-08-10 2007-02-15 Commissariat A L'energie Atomique Element combustible de type plaque macrostructuree
US20070189952A1 (en) * 2006-02-16 2007-08-16 Easler Timothy E Silicon carbide material for nuclear applications, precursor and method for forming same, and structures including the material

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106943B2 (ja) * 1987-05-08 1995-11-15 松下電器産業株式会社 強靭性焼結体の製造方法
JP2732469B2 (ja) * 1989-09-22 1998-03-30 原子燃料工業株式会社 被覆燃料粒子
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating
US5122509A (en) * 1990-04-30 1992-06-16 Advanced Technology Materials, Inc. High temperature superconductor/diamond composite article, and method of making the same
FR2668480B1 (fr) * 1990-10-26 1993-10-08 Propulsion Ste Europeenne Procede pour la protection anti-oxydation d'un materiau composite contenant du carbone, et materiau ainsi protege.
JPH04243971A (ja) * 1991-01-25 1992-09-01 Sumitomo Electric Ind Ltd 被覆繊維強化傾斜機能材料
JP3031730B2 (ja) * 1991-03-25 2000-04-10 本田技研工業株式会社 セラミックス成形体およびセラミックス成形体の製造方法
JP3034084B2 (ja) * 1991-08-12 2000-04-17 川崎重工業株式会社 耐酸化性炭素繊維強化炭素複合材料及びその製造方法
JPH07209464A (ja) * 1994-01-19 1995-08-11 Nuclear Fuel Ind Ltd 軽水炉用核燃料
US6190725B1 (en) * 1997-12-02 2001-02-20 Korea Atomic Energy Research Institute Coating method for the preparation of coated nuclear fuels with carbides borides or nitrides by using high temperature and high pressure combustion synthesis
US6733907B2 (en) * 1998-03-27 2004-05-11 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
JP2002080280A (ja) * 2000-06-23 2002-03-19 Sumitomo Electric Ind Ltd 高熱伝導性複合材料及びその製造方法
US6783824B2 (en) * 2001-01-25 2004-08-31 Hyper-Therm High-Temperature Composites, Inc. Actively-cooled fiber-reinforced ceramic matrix composite rocket propulsion thrust chamber and method of producing the same
CN101019193A (zh) * 2004-06-07 2007-08-15 西屋电气有限责任公司 在核和化石发电厂中用于燃料安全壳屏蔽和其它应用的多层陶瓷管
US7899146B1 (en) * 2004-06-29 2011-03-01 Sandia Corporation Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
JP2006078401A (ja) * 2004-09-10 2006-03-23 Nuclear Fuel Ind Ltd 高温ガス炉用ペブルベット型核燃料とその製造方法
US20060227924A1 (en) * 2005-04-08 2006-10-12 Westinghouse Electric Company Llc High heat flux rate nuclear fuel cladding and other nuclear reactor components
JP2007121128A (ja) * 2005-10-28 2007-05-17 Nuclear Fuel Ind Ltd ガドリニウム含有重ウラン酸アンモニウム粒子およびその製造方法、並びに高温ガス炉燃料用の燃料核、高温ガス炉用の被覆粒子および高温ガス炉用燃料。
RU2333553C1 (ru) * 2007-03-23 2008-09-10 Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч" Микротвэл ядерного реактора
US8409491B1 (en) * 2007-09-28 2013-04-02 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) In-situ formation of reinforcement phases in ultra high temperature ceramic composites
JP2009210266A (ja) * 2008-02-29 2009-09-17 Ibiden Co Ltd 管状体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039524A1 (en) * 2004-06-07 2006-02-23 Herbert Feinroth Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants
WO2007017503A1 (fr) * 2005-08-10 2007-02-15 Commissariat A L'energie Atomique Element combustible de type plaque macrostructuree
US20070189952A1 (en) * 2006-02-16 2007-08-16 Easler Timothy E Silicon carbide material for nuclear applications, precursor and method for forming same, and structures including the material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129677A1 (fr) * 2011-03-28 2012-10-04 Torxx Group Inc. Encapsulations céramiques pour matériaux nucléaires et leurs systèmes et procédés de production et d'utilisation
US9548139B2 (en) 2011-08-01 2017-01-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Multilayer tube in ceramic matrix composite material, resulting nuclear fuel cladding and associated manufacturing processes
CN105537578A (zh) * 2015-12-21 2016-05-04 无锡科莱欣机电制造有限公司 一种用于真空干燥机的金属复合材料
CN111623957A (zh) * 2020-05-11 2020-09-04 中国科学院光电技术研究所 一种用于x射线聚焦镜拼接干涉检测的点云配准拼接方法

Also Published As

Publication number Publication date
PL2335250T3 (pl) 2012-07-31
JP2012503193A (ja) 2012-02-02
FR2936088B1 (fr) 2011-01-07
JP5318214B2 (ja) 2013-10-16
EP2335250B1 (fr) 2012-02-01
FR2936088A1 (fr) 2010-03-19
ATE544158T1 (de) 2012-02-15
RU2011112480A (ru) 2012-10-10
KR20110056417A (ko) 2011-05-27
CN102203879B (zh) 2015-07-01
US9031184B2 (en) 2015-05-12
US20110170653A1 (en) 2011-07-14
RU2504030C2 (ru) 2014-01-10
EP2335250A2 (fr) 2011-06-22
ZA201102878B (en) 2011-12-28
CN102203879A (zh) 2011-09-28
WO2010031925A3 (fr) 2010-07-01

Similar Documents

Publication Publication Date Title
EP2335250B1 (fr) Gaine de combustible nucleaire a haute conductivite thermique et son procede de fabrication
EP3024801B1 (fr) Procédé de fabrication de pièces en matériau composite par imprégnation a basse température de fusion
EP2782886B1 (fr) Procédé pour revêtir une pièce d'un revêtement de protection contre l'oxydation par une technique de dépôt chimique en phase vapeur, et revêtement et pièce
EP2483073B1 (fr) Piece en materiau composite a matrice ceramique et procede pour sa fabrication
WO2010034937A2 (fr) Procede de fabrication de pieces en materiau composite thermostructural.
WO2018060642A1 (fr) Composant nucléaire avec revetement de crc amorphe, procédé de fabrication par dli-mocvd et utilisations contre l'oxydation/hydruration
WO2018060644A1 (fr) Composant nucléaire composite, procédé de fabrication par dli-mocvd et utilisations contre l'oxydation/hydruration
EP3520118A1 (fr) Composant nucléaire avec revetement de cr metastable, procédé de fabrication par dli-mocvd et utilisations contre l'oxydation/hydruration
JP2022527222A (ja) アディティブマニュファクチャリング用の変性ポリマー由来セラミック、それを用いたアディティブマニュファクチャリング、およびそれによって製造されたセラミック体
CN111489837A (zh) 一种含复合碳化物包覆层的包覆燃料颗粒及其制备方法
WO2018060641A1 (fr) Composant nucléaire a substrat metallique, procédé de fabrication par dli-mocvd et utilisations contre l'oxydation/hydruration
Ford et al. Recent developments of coatings for GCFR and HTGCR fuel particles and their performance
EP1888813B1 (fr) Procede de densification rapide d'un substrat fibreux poreux par formation d'un depot solide au sein de la porosite du substrat
WO2022079385A1 (fr) Procede de fabrication d'une piece en materiau composite a matrice metallique renforcee avec des fibres courtes en sic
EP3698066A1 (fr) Procede de fabrication d'une piece de friction en materiau composite
FR3056815A1 (fr) Composant nucleaire a substrat metallique et utilisations contre l'oxydation/hydruration.
FR3056602A1 (fr) Procede de fabrication par dli-mocvd d'un composant nucleaire avec revetement de crc amorphe.
Al-Ajrash et al. High temperature oxidation of additively manufactured silicon carbide/carbon fiber nanocomposites
FR3056603A1 (fr) Procede de fabrication par dli-mocvd d'un composant nucleaire avec revetement de cr metastable.
FR3056818A1 (fr) Composant nucleaire composite et utilisations.
FR3056817A1 (fr) Composant nucleaire avec revetement de cr metastable et utilisations contre l'oxydation/hydruration.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136879.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740177

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011527369

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13119469

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009740177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011112480

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20117008696

Country of ref document: KR

Kind code of ref document: A