WO2010029911A1 - 供給側流路材、及びスパイラル型分離膜エレメント - Google Patents

供給側流路材、及びスパイラル型分離膜エレメント Download PDF

Info

Publication number
WO2010029911A1
WO2010029911A1 PCT/JP2009/065640 JP2009065640W WO2010029911A1 WO 2010029911 A1 WO2010029911 A1 WO 2010029911A1 JP 2009065640 W JP2009065640 W JP 2009065640W WO 2010029911 A1 WO2010029911 A1 WO 2010029911A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
separation membrane
antibacterial agent
flow path
antibacterial
Prior art date
Application number
PCT/JP2009/065640
Other languages
English (en)
French (fr)
Inventor
康弘 宇田
倉田 直記
祐司 山代
幸治 丸山
貴久 小西
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN2009801328307A priority Critical patent/CN102131565A/zh
Priority to US13/062,759 priority patent/US20110168623A1/en
Publication of WO2010029911A1 publication Critical patent/WO2010029911A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/16Oxygen or sulfur directly attached to an aromatic ring system with two or more oxygen or sulfur atoms directly attached to the same aromatic ring system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/143Specific spacers on the feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/10Use of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a supply-side channel material used for a spiral-type separation membrane element that separates components present in a liquid, and a spiral-type separation membrane element using the supply-side channel material, more specifically, The present invention relates to a technique for imparting antibacterial properties to a spiral separation membrane element.
  • a spiral separation membrane element one in which one or more of a separation membrane, a supply-side flow path material, and a permeate-side flow path material are wound around a perforated central tube is known.
  • the supply-side fluid raw water
  • the permeation-side fluid permeate
  • the supply side channel material a net made of resin such as polypropylene has been mainly used.
  • the separation membrane element feed solution contains bacteria and microorganisms, so in long-term operation, microorganisms grow around the raw water-side channel material and form a biofilm, which is called biofouling. It becomes.
  • biofouling since the flow resistance of the raw water-side channel material is increased, the load of the supply pump is increased, and the biofilm attached to the membrane surface becomes a resistance and the membrane performance is deteriorated. Therefore, when biofouling progresses, the user needs to perform chemical cleaning, which is a great burden in terms of cost and labor.
  • an antibacterial agent is introduced into the separation membrane by a manufacturing method in which a triclosan-based antibacterial agent is added to the dope (film forming solution) when forming the support membrane layer of the separation membrane.
  • Separation membrane elements are known.
  • the treated water permeates through the membrane in one direction, which is effective in controlling microorganisms in the permeated water. Antibacterial effect is difficult to occur. For this reason, there has been no direct effect of preventing bacteria and microorganisms from growing on the surface of the separation membrane or the supply-side flow path material, on which bacteria and the like are particularly likely to deposit.
  • the volume per unit area (volume) of the flow channel material on the supply side is larger, and the antibacterial agent is retained in the method of introducing the antibacterial agent into the separation membrane. Since the amount cannot be increased, it was difficult to maintain the antibacterial effect for a long time.
  • Patent Document 3 a separation membrane element formed by dispersing or coating an antibacterial agent on a supply side channel material is known.
  • the antibacterial agent include silver zeolite, a compound having an amidine group or a guanidine group, or a quaternary ammonium salt.
  • an object of the present invention is to provide a supply-side flow path material and a supply-side flow path material that can effectively prevent biofouling because sufficient antibacterial action is obtained even in a gap region between constituent yarns. It is to provide a spiral separation membrane element used.
  • the present inventors have found that the above object can be achieved by including a chlorophenol-based antibacterial agent in the net constituting yarn, and have completed the present invention.
  • the supply-side flow path material of the present invention is a supply-side flow path material used for a spiral separation membrane element, and the net constituting yarn constituting the net-shaped supply-side flow path material is made of a chlorophenol-based antibacterial agent. It is characterized by containing.
  • the supply-side flow path material of the present invention as shown in the results of the examples, by including the chlorophenol antibacterial agent in the net constituting yarn, sufficient antibacterial action is obtained even in the gap region between the constituting yarns. Therefore, it is possible to provide a supply-side channel material that can effectively prevent biofouling.
  • a sufficient antibacterial action can be obtained in the gap region between the constituent yarns even when the distance between the intersections of the net constituent yarns is 4 to 15 mm.
  • the chlorophenol antibacterial agent is preferably triclosan (2,4,4'-trichloro-2'-hydroxy diphenyl ether) or a derivative thereof.
  • the content of the chlorophenol antibacterial agent is preferably 0.005 to 10% by weight in the total weight.
  • the content of the antibacterial agent is such, a sufficient antibacterial action can be obtained even in the gap region between the constituent yarns, and the strength and the like of the flow path material can be sufficiently maintained.
  • the chlorophenol-based antibacterial agent is dispersed in the resin forming the net constituting yarn.
  • coatings are subject to deterioration over time, so that they can be dispersed in the resin that forms the net yarn in terms of durability of antibacterial effects.
  • it is.
  • the spiral type separation membrane element of the present invention is a spiral type separation element in which one or more of a separation membrane, a supply side flow channel material and a permeate side flow channel material are wound around a perforated hollow central tube.
  • the supply side flow path material is the supply side flow path material described above.
  • the spiral separation membrane element of the present invention since the supply-side flow path material of the present invention is used, sufficient antibacterial action can be obtained even in a gap region between constituent yarns, thereby effectively preventing biofouling. It is possible to provide a spiral-type separation membrane element that can be used.
  • the separation membrane preferably contains an inorganic antibacterial agent.
  • inorganic antibacterial agents have high safety and sustainability with respect to toxicity and the like, and have a wide range of applicable bacterial species, but their antibacterial and bactericidal powers are weak, for example, the antibacterial area is extremely narrow.
  • organic systems have high sustained release and diffusivity, they have high antibacterial and bactericidal activities, but have problems such as low persistence and a narrow range of applicable bacterial species.
  • triclosan an organic antibacterial agent
  • an inorganic antibacterial agent for the separation membrane through which water permeates and an organic antibacterial agent having a wide antibacterial range for the supply-side channel material through which the water passes the accumulation of bacteria is effectively suppressed. be able to.
  • the antibacterial range (antibacterial spectrum) affected by the use of a plurality of types of antibacterial agents is widened, and the growth of more bacteria than in the case of one type can be suppressed.
  • production of the resistant microbe by denaturation of microbe can also be suppressed.
  • the separation membrane is a composite semipermeable membrane in which a skin layer containing a polyamide-based resin obtained by reacting a polyfunctional amine component and a polyfunctional acid halide component is formed on the surface of the porous support, It is preferable that the antibacterial layer containing a silver type antibacterial agent and a polymer component is formed on the skin layer directly or via another layer.
  • this composite semipermeable membrane When this composite semipermeable membrane is used, it has an antibacterial layer containing a silver-based antibacterial agent and a polymer component, and the antibacterial contamination property can be maintained for a long time by the antibacterial layer.
  • the weight ratio of the silver antibacterial agent to the polymer component in the antibacterial layer is adjusted to 55:45 to 95: 5 (silver antibacterial agent: polymer component), and the silver antibacterial agent is excessive compared to the polymer component.
  • the antibacterial layer is formed on the skin layer directly or via another layer and the antibacterial agent is not dispersed in the skin layer, the denseness of the skin layer is maintained. Thereby, the fall of the performance of a skin layer can be suppressed and not only a contamination
  • the partially broken perspective view which shows an example of the nozzle used for the manufacturing method of the supply side flow-path material of this invention Explanatory drawing explaining operation of a nozzle hole
  • the figure which shows an example of the supply side channel material of this invention Photograph showing results obtained in Antibacterial Evaluation Test 1
  • the graph which shows the result obtained in antibacterial evaluation test 3 The partially broken perspective view which shows an example of the spiral type separation membrane element of this invention
  • the supply-side flow path material of the present invention is a supply-side flow path material used for a spiral separation membrane element, and is a net-constituting yarn 1, 2 constituting a net-shaped supply-side flow path material. Is characterized by containing a chlorophenol antibacterial agent.
  • the net-shaped supply-side flow path material may not have the net-constituting yarns 1 and 2 joined together, but the net-constituting yarns 1 and 2 are preferably joined together.
  • a chlorophenol antibacterial agent refers to an antibacterial agent which is a phenol compound and has a chlorine group.
  • Chlorophenol antibacterial agents include triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether), o-chlorophenol, m-chlorophenol, p-chlorophenol, 2,4-dichlorophenol pentachlorophenol O-cresol, m-cresol, p-cresol, 4-chloro-m-cresol, 2,3,6-trichlorophenol, 2,3-dichlorophenol, 2,4,5-trichlorophenol, 2,4, 6-trichlorophenol, 2,3,4,6-tetrachlorophenol, 4-chloro-3,5-xylenol, 2,4-dichloro-3,5-xylenol, 4-chloro-3-methyl-6-isophenol Propylbenzene, P-chloro-o, n-amylphenol, P-chloro-o,
  • triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether) represented by the chemical formula (Chemical Formula 1) or a derivative thereof can be preferably used.
  • Triclosan derivatives include those in which the chlorine group of triclosan is substituted with a hydrogen atom or other halogen group, homologues having different substitution positions, or phosphoric acid esters, phosphonic acid esters, sulfuric acid esters, glucuronic acid esters of triclosan. Succinic acid ester or glutamic acid ester.
  • a method of containing the chlorophenol-based antibacterial agent in the supply side channel material a method of mixing in advance in the raw material pellets when performing extrusion molding of the channel material, or after the extrusion molding, There is a method of post-processing the surface with a coating material containing an antibacterial agent.
  • the antibacterial agent is mixed and kneaded with the material for forming the supply-side channel material and dispersed in the resin forming the net constituting yarn. It is possible to achieve the purpose of this application by applying an antibacterial agent solution to the surface and fixing it by heat drying, etc. However, in applications where a water flow at high pressure is used, such as a spiral separation membrane element, deterioration with time is likely to occur. From the viewpoint of durability of the effect, it is preferable to disperse in the resin forming the net constituting yarn.
  • the content of the antibacterial agent is preferably 0.005 to 10% by weight in the total weight from the viewpoint of obtaining a sufficient antibacterial action even in the gap region between the constituent yarns and maintaining the strength of the flow path material and the like. .
  • the content is preferably 1% by weight or less, and more preferably 0.75% by weight or less.
  • the concentration is too low, it is difficult to obtain a sufficient antibacterial effect. Therefore, when used for a supply-side channel material for water treatment membrane applications, the antibacterial property is 0.020% by weight over the entire region of the supply-side channel material. The above is preferably used.
  • the amount is preferably 0.005 to 1% by weight, more preferably 0.01 to 0.1% by weight, based on the total weight of the coating material.
  • Examples of the resin constituting the net-like supply-side channel material or the base material before coating include resins such as polypropylene, polyethylene, nylon, and polyester, and polyolefin resins such as polypropylene and polyethylene are particularly preferable.
  • the supply-side flow path material or the base material before coating of the present invention can be produced by, for example, shear method molding or fusion method molding, and as shown in FIG. A net-like material joined with C can be obtained.
  • shear molding as an example.
  • the MFR of a resin such as polypropylene according to JIS K7210: 1999 is preferably 1.5 g / 10 min or more, and more preferably 1.7 to 4.0 g / 10 min. If the MFR is too low, a web-like deformation tends to occur at the intersection. On the other hand, if the MFR is too high, it becomes difficult to form the net.
  • the resin MFR can generally be adjusted by the weight average molecular weight, molecular weight distribution, type and amount of additives added to the resin, and the like.
  • the total thickness of the net obtained is preferably 0.3 to 2 mm
  • the diameter (width) of the constituent yarn is preferably 0.08 to 1 mm
  • the crossing angle is preferably 30 to 150 °. .
  • the thickness of the net is reduced, the linear velocity of the membrane surface increases and concentration polarization can be suppressed.
  • the thickness of the net is too small, the problem of floating components in the supply liquid blocking the flow path and the pump for feeding the supply liquid There is a problem that the required power of becomes large.
  • the thread spacing and diameter ratio of each of the net constituting threads 1 and 2 can be freely changed.
  • the intersection distance (thread spacing) is 4 to 15 mm, and the diameter ratio is 1 /. It is preferably 2 to 2/1, more preferably the intersection distance (thread distance) is 5 to 7 mm, and the diameter ratio is more preferably 2/3 to 3/2.
  • each net structure is formed from a large number of nozzle holes 14 and 10 arranged on two circumferences of the die of the extruder. While extruding the yarns 1 and 2, the nozzle holes 14 and 10 are rotated relative to each other so that the nozzle holes 14 and 10 overlap each other at the intersecting portion of the net constituting yarn to form one nozzle, and the net constituting yarn 1 and 1 are intersected at the intersecting portion. A net is formed while 2 are fused together.
  • FIG. 1 is a partially broken perspective view showing an example of a nozzle used in the method for manufacturing a supply-side flow path material of the present invention, and (b) is arranged on the inner circumference. It is the enlarged view of a nozzle hole.
  • 2A is a bottom view showing the rotation operation of the nozzle hole
  • FIGS. 2B to 2C are main part views showing the rotation operation of the nozzle hole
  • FIG. 2D is obtained by this rotation operation. It is a top view of a net.
  • the nozzle includes an inner rotary die 12 having nozzle holes 14 arranged on the inner circumference, and an outer rotary die 6 having nozzle holes 10 arranged on the outer circumference.
  • the outer peripheral surface 13 of 12 and the inner peripheral surface 9 of the outer rotating die 6 are in contact with each other and can rotate in the reverse direction.
  • the inner rotating die 12 is driven by the rotating shaft 4, and the outer rotating die 6 is driven by a gear 11 connected thereto.
  • the outer rotating die 6 is rotatably held by the die housings 5 and 7.
  • the resin extruded from the extruder is extruded from the nozzle holes 14 and 10 through a gap between the inner surface 5a of the die housing 5 and the outer surface 12a of the inner rotary die 12, and each net constituting yarn 1 and 2 is extruded. It becomes.
  • the nozzle holes 14 and 10 are relatively rotated (see FIG. 2B), and the position where both the nozzle holes 14 and 10 are overlapped to form one nozzle (see FIG. 2C) is the net. And the net constituting yarns 1 and 2 are fused to each other.
  • the MFR of the resin is low, the water scraping portion 3 is likely to be generated as shown in FIG.
  • the temperature at which the resin is extruded from the nozzle holes 14 and 10 is preferably 230 to 300 ° C, more preferably 250 to 270 ° C. If the temperature at the time of extrusion is less than 230 ° C., the fluidity of the resin is insufficient and it becomes difficult to form a net, and water web deformation tends to occur. Moreover, when the temperature at the time of extrusion exceeds 300 degreeC, there exists a tendency for fluidity
  • the extruded net is generally cooled in water or the like, wound up, and then cut into an appropriate size.
  • the antibacterial agent can be uniformly dispersed throughout the flow path material by previously mixing the antibacterial agent into the raw material pellets.
  • a method in which an antibacterial agent is mixed only in part of the raw material pellet master batch method
  • an antibacterial agent is previously supported on porous fine particles, and this support is mixed with the raw material pellet.
  • the porous fine particles include inorganic fine particles such as silica and zeolite, or porous polymer particles.
  • the coating method is a solution or melt of a mixture of a coating material such as a resin and an antibacterial agent.
  • a method of coating by coating, spray coating or the like is preferable.
  • the coating material a material having good adhesion to the base material of the flow path material is preferable.
  • a polyolefin resin is used as the base resin, it is preferable to use a polyvinyl alcohol (PVA) resin as the coating material.
  • PVA polyvinyl alcohol
  • the spiral separation membrane element of the present invention has a structure in which one or more of a separation membrane, a supply-side channel material, and a permeation-side channel material are wound around a perforated hollow central tube.
  • a separation membrane a separation membrane
  • a supply-side channel material a supply-side channel material
  • a permeation-side channel material a permeation-side channel material
  • the supply-side channel material conventionally known separation membranes, permeation-side channel materials, hollow central tubes, etc. Either can be adopted.
  • a plurality of supply-side channel materials and permeation-side channel materials are used, a plurality of membrane leaves are wound around a hollow central tube.
  • FIG. 7 is a partially broken perspective view showing an example of a conventional (invention) spiral separation membrane element.
  • a cylindrical wound body R wound in a spiral shape around a perforated center tube 25 in a state where the separation membrane 21, the supply-side channel material 22, and the permeation-side channel material 23 are laminated.
  • a sealing portion for preventing mixing of the supply-side fluid and the permeation-side fluid.
  • the sealing portion includes, for example, a both-end sealing portion 31 and an outer peripheral side sealing portion 32, and a sealing portion 33 may be formed for sealing around the central tube 25.
  • the separation membrane 21, the supply-side channel material 22, and the permeation-side channel material 23 are spirally wound around the perforated central tube 25 in a laminated state. It can be manufactured by a method including a step of forming the circular body R and a step of forming the sealing portions 31 and 32 for preventing the supply side fluid and the permeation side fluid from being mixed.
  • the spiral separation membrane element of the present invention is not intended to limit the application, but has a particularly large antibacterial action against Escherichia coli, so that the separation membrane used for separation treatment such as wastewater treatment, brine desalination, seawater desalination, etc. The effect is particularly exerted when used in an element.
  • the separation membrane used contains an inorganic antibacterial agent.
  • the inorganic antibacterial agent include an antibacterial glass, a quaternary ammonium salt, a quaternary phosphonium salt and the like in addition to a silver antibacterial agent described in detail later.
  • an ultrafiltration membrane, a loose reverse osmosis membrane, a reverse osmosis membrane or the like is preferably used.
  • a method of containing an inorganic antibacterial agent a method of containing an inorganic antibacterial agent in the separation membrane itself (for example, a skin layer of a reverse osmosis membrane), an antibacterial agent directly on the surface of the separation membrane or via another layer, and Examples thereof include a method for forming an antibacterial layer containing a polymer component.
  • the method of forming an antibacterial layer directly on the surface of the separation membrane or via another layer allows the antibacterial layer to maintain the microbial contamination resistance for a long period of time and to reduce the performance of the skin layer. This is preferable because not only the anti-contamination property but also the water permeation performance and the salt rejection can be kept high.
  • the separation membrane is a composite semipermeable membrane in which a skin layer containing a polyamide-based resin obtained by reacting a polyfunctional amine component and a polyfunctional acid halide component is formed on the surface of a porous support.
  • the antibacterial layer containing the silver antibacterial agent and the polymer component is preferably formed on the skin layer directly or via another layer.
  • a polyamide resin and a silver salt compound obtained by reacting a polyfunctional amine component and a polyfunctional acid halide component are used as a method of adding an inorganic antibacterial agent to the separation membrane itself (for example, a skin layer of a reverse osmosis membrane).
  • a method including a step of forming a skin layer including the surface of the porous support and a step of reducing the silver salt compound to deposit metallic silver in and / or on the skin layer is preferable.
  • the silver salt compound is preferably reduced with active energy rays, and silver nitrate is preferably used as the silver salt compound.
  • the polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic and alicyclic polyfunctional amines.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, xylylenediamine and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and n-phenyl-ethylenediamine.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, and the like.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • Examples of the polyfunctional acid halide include aromatic, aliphatic and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, chlorosulfonylbenzene dicarboxylic acid.
  • An acid dichloride etc. are mentioned.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, adipoid Examples include luhalides.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • the porous support for supporting the skin layer is not particularly limited as long as it can support the skin layer, and usually an ultrafiltration membrane having micropores with an average pore diameter of about 10 to 500 mm is preferably used.
  • the material for forming the porous support include various materials such as polysulfone and polyarylethersulfone such as polyethersulfone, polyimide, and vinylidene fluoride.
  • the thickness of such a porous support is usually about 25 to 125 ⁇ m, preferably about 40 to 75 ⁇ m, but is not necessarily limited thereto.
  • the porous support is reinforced by backing with a base material such as woven fabric or nonwoven fabric.
  • the method for forming the skin layer containing the polyamide resin on the surface of the porous support is not particularly limited, and any known method can be used.
  • an interfacial condensation method is a method in which a skin layer is formed by bringing an aqueous amine solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component to cause interfacial polymerization.
  • a polyamide resin skin layer is directly formed on a porous support by interfacial polymerization on the porous support. Details of the conditions of the interfacial condensation method are described in JP-A-58-24303 and JP-A-1-180208, and those known techniques can be appropriately employed.
  • the thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • an antibacterial layer containing a silver antibacterial agent and a polymer component is formed on the skin layer directly or via another layer.
  • the weight ratio of the silver antibacterial agent and the polymer component in the antibacterial layer is preferably 55:45 to 95: 5 (silver antibacterial agent: polymer component), more preferably 60:40 to 90:10. is there.
  • the silver antibacterial agent used in the present invention is not particularly limited as long as it is a compound containing a silver component, and examples thereof include metallic silver, silver oxide, silver halide, and a carrier containing silver ions. Of these, it is particularly preferable to use a support containing silver ions. Examples of the support include zeolite, silica gel, calcium phosphate, and zirconium phosphate. Of these, it is preferable to use zirconium phosphate. Zirconium phosphate is more hydrophobic than other carriers and can maintain the antibacterial effect of silver ions for a long period of time during water treatment.
  • the average particle size of the silver antibacterial agent is preferably 1.5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the measuring method of an average particle diameter is based on description of an Example.
  • the polymer component is not particularly limited as long as it does not dissolve the skin layer and the porous support and does not elute during the water treatment operation.
  • polyvinyl alcohol polyvinyl pyrrole, polyvinyl pyrrolidone, hydroxypropyl cellulose, polyethylene glycol, And saponified polyethylene-vinyl acetate copolymer.
  • polyvinyl alcohol it is preferable to use polyvinyl alcohol, and it is particularly preferable to use polyvinyl alcohol having a saponification degree of 99% or more.
  • the antibacterial layer is obtained by applying an aqueous solution containing the silver antibacterial agent and the polymer component directly on the skin layer or through another layer (for example, a protective layer containing a hydrophilic resin) and then drying. To form.
  • a coating method spraying, application
  • the solvent in addition to water, an organic solvent such as a skin layer that does not deteriorate the performance may be used in combination.
  • the concentration of the silver antibacterial agent in the aqueous solution is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight.
  • the concentration of the polymer component in the aqueous solution is preferably 0.01 to 1% by weight, more preferably 0.1 to 0.7% by weight.
  • the thickness of the antibacterial layer is not particularly limited, but is usually 0.05 to 5 ⁇ m, preferably 0.1 to 3 ⁇ m, more preferably 0.1 to 2 ⁇ m. If the thickness of the antibacterial layer is too thin, the antibacterial property is not sufficiently exhibited, and when the spiral element is wound, the film is likely to be scratched by rubbing, and the salt inhibition rate may be lowered. On the other hand, if the thickness of the antibacterial layer is too thick, the water permeation flux may be lowered to a practical range or less.
  • the silver content in the antibacterial layer is preferably 30 mg / m 2 or more, and more preferably 35 mg / m 2 or more. When the silver content is less than 30 mg / m 2 , it becomes difficult to maintain excellent antibacterial properties for a long period of time.
  • the silver content in the antibacterial layer is preferably 1000 mg / m 2 or less, more preferably 500 mg / m 2 or less, from the viewpoint of cost and prevention of film damage.
  • the produced flat membrane-like composite semipermeable membrane is cut into a predetermined shape and size and set in a cell for flat membrane evaluation.
  • An aqueous solution containing about 1500 mg / L NaCl and adjusted to pH 6.5 to 7.5 with NaOH is brought into contact with the membrane at 25 ° C. by applying a differential pressure of 1.5 MPa between the supply side and the permeation side of the membrane.
  • the permeation rate and conductivity of the permeated water obtained by this operation were measured, and the permeation flux (m 3 / m 2 ⁇ d) and the salt rejection (%) were calculated.
  • Salt rejection was calculated in advance using a correlation (calibration curve) between NaCl concentration and aqueous solution conductivity in advance.
  • Salt rejection (%) ⁇ 1 ⁇ (NaCl concentration in the permeate [mg / L]) / (NaCl concentration in the feed liquid [mg / L]) ⁇ ⁇ 100
  • Example 1 Using an extruder equipped with the nozzle shown in FIG. 1, by introducing pellets containing 0.025% by weight of triclosan as an antibacterial agent into polypropylene resin (F122G, manufactured by Mitsui Chemicals), melt extrusion at 260 ° C. A net-like supply-side channel material was formed by shearing molding.
  • the nozzle shape and the extrusion conditions were adjusted so that the net obtained had a total thickness of 0.79 mm, a constituent yarn diameter (width) of 0.3 mm, a yarn interval of 5 mm, and an intersection angle of 90 °.
  • Example 1 a flow path material was produced under the same conditions as in Example 1 except that pellets containing no antibacterial agent were used.
  • Example 2 the flow channel material was used under the same conditions as in Example 1 except that pellets containing 2% by weight of silver zeolite (manufactured by Kanebo Kasei Co., Ltd., bactekiller, silver content: 30% by weight) were used as the antibacterial agent. Was made.
  • pellets containing 2% by weight of silver zeolite manufactured by Kanebo Kasei Co., Ltd., bactekiller, silver content: 30% by weight
  • Antibacterial evaluation test 1 E. coli K-12 was inoculated into LB medium and cultured at 35 ° C. for 24 hours.
  • In order to attach Escherichia coli to the channel material prepare 10 3 to 10 4 cfu / ml physiological saline solution of Escherichia coli, put 20 ml of the bacterial solution in the centrifuge tube, put each channel material one by one, and shake for 1 hour did. The channel material was taken out, washed with 10 ml of physiological saline three times, placed on an SCDA medium, and cultured at 35 ° C. for 2 to 5 days.
  • Example 1 did not show bacterial growth.
  • the bacteria containing no antibacterial agent of Comparative Example 1 showed growth of many bacteria.
  • the growth of bacteria was less when the silver antibacterial agent of Comparative Example 2 was added than when there was no antibacterial agent, the growth of bacteria was observed.
  • Antibacterial evaluation test 2 E. coli K-12 was inoculated into LB medium and cultured at 35 ° C. for 24 hours.
  • As an inhibition circle formation test an Escherichia coli 10 6 to 10 7 cfu / ml physiological saline solution was prepared and smeared on an SCDA medium. Each channel material was placed thereon and cultured at 35 ° C. for 2 days.
  • the channel material containing triclosan of Example 1 had a region that prevented colony formation inside and around the channel material (a gap region between constituent yarns). On the other hand, in the case where the antibacterial agent of Comparative Example 1 was not contained, bacterial growth was observed around and inside the flow path material.
  • Antibacterial evaluation test 3 E. coli K-12 was inoculated into LB medium and cultured at 35 ° C. for 24 hours.
  • the prepared channel material is placed on a sterile petri dish, 400 ⁇ l of the prepared Escherichia coli 10 5 cfu / ml (500-fold diluted LB medium) bacterial solution is dropped and covered with a polyethylene film so that the liquid does not dry. I made it.
  • Example 2 An aqueous solution containing 1.0% by weight of a silver antibacterial agent having an average particle size of 0.9 ⁇ m (manufactured by Toagosei Co., Ltd., Novalon AG1100) and 0.5% by weight of polyvinyl alcohol (degree of saponification: 99%) Penetration composite membrane (manufactured by Nitto Denko Corporation, model: ES20, skin layer: polyamide resin, performance: permeation flux 1.2 (m 3 / m 2 ⁇ d), salt rejection 99.6 (% )) And then dried in an oven at 130 ° C. for 3 minutes to form an antibacterial layer to produce a composite semipermeable membrane. A spiral-type separation membrane element shown in FIG. 7 using this composite semipermeable membrane, the supply-side channel material obtained in Example 1, and the transmission-side channel material (PET resin, thickness 0.3 mm) was made.
  • water treated with activated sludge and MF membrane (SDI value 3 to 6) from industrial wastewater at the Hakozaki site in Fukuoka Prefecture has a permeation flux of 0.3 to 0.4 (m 3 / m 2 ⁇ d). Then, before and after flowing for about 1 month at a recovery rate of 15 to 20%, an evaluation test was performed by applying a pressure of 1.5 MPa using an evaluation water containing 1500 ppm of NaCl and pH 6.5 to 7.0. The permeation flux retention was 90% or more.
  • Example 3 18% by weight of polysulfone (P-3500, manufactured by Solvay Co., Ltd.) was dissolved in N, N monodimethylformamide (DMF) on a non-woven fabric substrate, and uniformly applied with a wet thickness of 200 ⁇ m, and then placed in a 40-50 ° C. water bath.
  • the porous support was produced by solidifying and washing by immersion. On this porous support, 3% by weight of m-phenylenediamine, 0.15% by weight of sodium lauryl sulfate, 3% by weight of triethylamine, 6% by weight of camphorsulfonic acid, 5% by weight of isopropyl alcohol, and 0.5% by weight of silver nitrate.
  • An aqueous solution coating layer was formed by applying the aqueous amine solution and then removing the excess aqueous amine solution.
  • an organic solution containing 0.2% by weight of trimesic acid chloride and naphthenic hydrocarbon (manufactured by Shin Nippon Oil Co., Ltd., naphthesol 160) was applied to the surface of the aqueous solution coating layer. Then, it hold
  • UV-A 320 ⁇ 390nm
  • UV-B 280 ⁇ 320nm
  • UV-C 250 ⁇ 260nm
  • the composite semipermeable membrane was produced by irradiating / cm 2 , UV-V: 70 mJ / cm 2 , reducing silver nitrate and precipitating metallic silver in the skin layer and / or on the surface.
  • the permeation flux of the membrane was 1.2 (m 3 / m 2 ⁇ d), and the salt rejection was 99 (%), and the produced composite semipermeable membrane had antibacterial properties.
  • Example 2 Using this composite semipermeable membrane, the supply-side channel material obtained in Example 1, and the transmission-side channel material (PET resin, thickness 0.3 mm), the spiral type separation membrane shown in FIG. An element was produced. When this element was evaluated in the same manner as in Example 2, the permeation flux retention was 80% or more.
  • Example 4 A supply-side channel material prepared in Example 1, a composite semipermeable membrane prepared in Example 2 without using a silver-based antibacterial agent, and a transmission-side channel material (made of PET resin, thickness 0.3 mm) The spiral separation membrane element was used to make it. When this element was evaluated in the same manner as in Example 2, the permeation flux retention was 75% or more.
  • Comparative Example 3 Using the supply-side channel material of Comparative Example 1, the composite semipermeable membrane prepared in Example 2 without using the silver-based antibacterial agent, and the transmission-side channel material (PET resin, thickness 0.3 mm) A spiral separation membrane element was produced. When this element was evaluated in the same manner as in Example 2, the permeation flux retention was about 60%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

 構成糸どうしの隙間領域においても、十分な抗菌作用が得られるため効果的にバイオファウリングを防止することができる供給側流路材および当該供給側流路材を用いたスパイラル型分離膜エレメントを提供する。 スパイラル型分離膜エレメントに用いる供給側流路材であって、ネット状の供給側流路材を構成するネット構成糸1,2が、クロロフェノール系抗菌剤を含有する供給側流路材、並びに分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられているスパイラル型分離膜エレメントにおいて、前記供給側流路材は、前記供給側流路材であることを特徴とするスパイラル型分離膜エレメント。

Description

供給側流路材、及びスパイラル型分離膜エレメント
 本発明は、液体中に存在している成分を分離するスパイラル型分離膜エレメントに用いる供給側流路材、並びに、当該供給側流路材を用いたスパイラル型分離膜エレメントに関し、より詳しくは、スパイラル型分離膜エレメントに抗菌性を付与する技術に関する。
 従来、スパイラル型分離膜エレメントの構造としては、分離膜、供給側流路材及び透過水側流路材の単数または複数が、有孔の中心管の周りに巻きつけられたものが知られている(例えば、特許文献1参照)。このようなスパイラル型分離膜エレメントでは、供給側流体(原水)が供給側流路材によって分離膜表面へ導かれ、分離膜を透過して分離された後、透過側流体(透過水)が透過側流路材に沿って中心管(集水管)まで導かれる。この供給側流路材としては、ポリプロピレン等の樹脂製のネットが主に使用されてきた。
 一般に分離膜エレメントの供給液には、細菌や微生物が含まれるため、長期間にわたる運転においては、原水側流路材の周りに微生物が増殖し、生物膜を形成してバイオファウリングと呼ばれる状態となる。この状態においては、原水側流路材の流れ抵抗が増大するため、供給ポンプの負荷が増大するほか、膜面に付着した生物膜が抵抗となり膜性能が低下するなどの弊害が生じる。そのためバイオファウリングが進行するとユーザーは化学的な洗浄を行う必要が生じ、コストおよび労力の面で大きな負担となっている。
 このため、塩素等の殺菌剤を用いて原水の殺菌を行う方法に加えて、分離膜エレメント自体に殺菌作用を付与する方法がこれまで知られている。例えば、下記の特許文献2には、分離膜の支持膜層を形成する際のドープ(製膜溶液)中に、トリクロサン系の抗菌剤を添加する製法によって、分離膜中に抗菌剤を導入した分離膜エレメントが知られている。
 しかし、分離膜中に抗菌剤を導入する方法では、処理水は膜内を一方向に透過していくので、透過水の微生物制御には効果があるものの、抗菌剤接触前の原水側への抗菌効果が生じにくい。このため、細菌等の堆積は特に生じ易い分離膜の表面や供給側流路材に、細菌や微生物が付着して繁殖することを防止する直接的な効果はなかった。
 更に、実際のスパイラルエレメント構成から考えると、その単位面積当たりのボリューム(体積)は供給側流路材の方が多く、分離膜中に抗菌剤を導入する方法では、抗菌剤が保持される絶対量を多くすることができないため、抗菌効果を長期間保持することが困難であった。
 また、下記の特許文献3には、供給側流路材に抗菌剤を分散又はコーティングしてなる分離膜エレメントが知られている。この抗菌剤としては、銀ゼオライト、アミジン基若しくはグアニジン基を有する化合物、又は第4級アンモニウム塩等が例示されている。
特開2000-42378号公報 米国特許第6540915号明細書 特開平8‐332489号公報
しかしながら、特許文献3に記載された上記抗菌剤は、供給側流路材に使用した場合、いずれも大腸菌に対する増殖抑制効果が十分とは言えないことが判明した。即ち、供給側流路材は、一般にネット状に形成されているため、ネットの構成糸どうしの隙間領域においても、抗菌作用が必要になるところ、上記の抗菌剤では、このような隙間領域における抗菌効果が十分得られないことが判明した。
 特に、特許文献3に記載された有機系抗菌剤を用いた場合、溶解性が大きすぎるため保持期間を長くすることが困難であった。また、銀系抗菌剤のような無機系の抗菌剤は徐放性や拡散作用が低いため、抗菌エリアが狭く、必要とされるスペース全体にその効果が及びにくいという問題があった。
 そこで、本発明の目的は、構成糸どうしの隙間領域においても、十分な抗菌作用が得られるため効果的にバイオファウリングを防止することができる供給側流路材および当該供給側流路材を用いたスパイラル型分離膜エレメントを提供することにある。
 本発明者らは、鋭意研究した結果、クロロフェノール系抗菌剤をネット構成糸に含有させることで上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明の供給側流路材は、スパイラル型分離膜エレメントに用いる供給側流路材であって、ネット状の供給側流路材を構成するネット構成糸が、クロロフェノール系抗菌剤を含有することを特徴とする。
 本発明の供給側流路材によると、実施例の結果が示すように、クロロフェノール系抗菌剤をネット構成糸に含有させることで、構成糸どうしの隙間領域においても、十分な抗菌作用が得られるため効果的にバイオファウリングを防止することができる供給側流路材を提供することができる。
 本発明では、前記ネット構成糸の交点間隔が4~15mmである場合でも、構成糸どうしの隙間領域において、十分な抗菌作用が得られる。
 本発明では、前記クロロフェノール系抗菌剤が、トリクロサン(2,4,4’‐trichloro-2’-hydroxy diphenyl ether)又はその誘導体であることが好ましい。
 また、前記クロロフェノール系抗菌剤の含有量が、全重量中0.005~10重量%であることが好ましい。このような抗菌剤の含有量であると、構成糸どうしの隙間領域においても、十分な抗菌作用が得られ、かつ流路材の強度等を十分維持することができる。
 更に、前記クロロフェノール系抗菌剤が、ネット構成糸を形成する樹脂中に分散していることが好ましい。スパイラル型分離膜エレメントのように高圧での水流が生じる用途では、コーティングの場合、経時劣化が生じやすく、このため抗菌効果の耐久性の点で、ネット構成糸を形成する樹脂中に分散させていることが好ましい。
 一方、本発明のスパイラル型分離膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられているスパイラル型分離膜エレメントにおいて、前記供給側流路材が上記記載の供給側流路材であることを特徴とする。
 本発明のスパイラル型分離膜エレメントによると、本発明の供給側流路材を用いるため、構成糸どうしの隙間領域においても、十分な抗菌作用が得られるため効果的にバイオファウリングを防止することができるスパイラル型分離膜エレメントが提供できる。
 上記において、前記分離膜は無機系抗菌剤を含有することが好ましい。一般に、無機系抗菌剤は、毒性等に関する安全性や持続性は高く、適応菌種の範囲は広いが、抗菌可能領域が著しく狭いなど、抗菌力や殺菌力は弱い。逆に有機系は徐放性や拡散性が高いため、抗菌力や殺菌力は高いが、持続性が低く、適応菌種の範囲が狭いなどの問題点がある。例えば、有機系抗菌剤であるトリクロサンは、緑膿菌、黒麹黴、カンジダ酵母などに対して、抗菌効果が小さいか又は比較的小さいが、無機系抗菌剤であるノバロン(銀系抗菌剤)は、緑膿菌、カンジダ酵母等に対しても十分な抗菌効果を示す。
 したがって、水が透過する分離膜には無機系抗菌剤、水が表面を通過する供給側流路材には抗菌範囲が広い有機系抗菌剤を用いることで、効果的に菌の堆積を抑制することができる。原水中には多種の菌が存在するが、複数種類の抗菌剤を用いることで影響する抗菌範囲(抗菌スペクトル)が広くなり、1種の場合よりも多くの菌の繁殖を抑制できる。また、菌の変性による耐性菌が発生することも抑制できる。
 特に、前記分離膜は、多官能アミン成分と多官能酸ハライド成分とを反応させてなるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜であって、スキン層上に直接又は他の層を介して銀系抗菌剤及びポリマー成分を含有する抗菌層が形成されていることが好ましい。
 この複合半透膜を用いる場合、銀系抗菌剤及びポリマー成分を含有する抗菌層を有しており、該抗菌層により耐微生物汚染特性を長期間持続することができる。特に、抗菌層中の銀系抗菌剤とポリマー成分との重量比を55:45~95:5(銀系抗菌剤:ポリマー成分)に調整し、ポリマー成分に比べて銀系抗菌剤を過剰に添加することにより、抗菌層表面に銀系抗菌剤の一部を露出させることができ、それにより優れた耐微生物汚染特性が発現する。また、スキン層上に直接又は他の層を介して抗菌層を形成し、スキン層中に抗菌剤を分散させていないためスキン層の緻密性が維持されている。それにより、スキン層の性能の低下を抑制でき、耐汚染特性だけでなく水透過性能及び塩阻止率を高く維持することができる。
本発明の供給側流路材の製造方法に用いられるノズルの一例を示す一部破断した斜視図 ノズル孔の動作を説明する説明図 本発明の供給側流路材の一例を示す図 抗菌性評価試験1で得られた結果を示す写真 抗菌性評価試験2で得られた結果を示す写真 抗菌性評価試験3で得られた結果を示すグラフ 本発明のスパイラル型分離膜エレメントの一例を示す部分破断した斜視図
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 本発明の供給側流路材は、図3に示すように、スパイラル型分離膜エレメントに用いる供給側流路材であって、ネット状の供給側流路材を構成するネット構成糸1,2が、クロロフェノール系抗菌剤を含有することを特徴とする。ネット状の供給側流路材は、ネット構成糸1,2同士が接合されていなくてもよいが、ネット構成糸1,2同士が接合されていることが好ましい。
 クロロフェノール系抗菌剤とは、フェノール化合物であって塩素基を有する抗菌剤を指す。クロロフェノール系抗菌剤としては、トリクロサン(2,4,4'-トリクロロ-2'-ヒドロキシジフェニルエーテル)、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール、2,4-ジクロロフェノールペンタクロロフェノール、o-クレゾール、m-クレゾール、p-クレゾール、4-クロロ-m-クレゾール、2,3,6-トリクロロフェノール、2,3-ジクロロフェノール、2,4,5-トリクロロフェノール、2,4,6-トリクロロフェノール、2,3,4,6-テトラクロロフェノール、4-クロロ-3,5-キシレノール、2,4-ジクロロ-3,5-キシレノール、4-クロロ-3-メチル-6-イソフプロピルベンゼン、P-クロロ-o,n-アミルフェノール、P-クロロ-o,n-ヘキシルフェノール、p-クロロ-o,n-オクチルフェノール、p-クロロ-o-チクロヘキシル・フェノール、p-クロロ-o-チクロペンチル・フェノール、p-クロロ-o-ベンジル・フェノール、p-クロロ-o-ベンジル-m-クレゾール、ジクロロ-(p-クロロベンジル)-m-クレゾール、p-クロロ-o-フェニル・フェノールジクロロフェン、ブロムクロロフェン、ヘキサクロロフェン、ビチオノールや、その誘導体など、その抗菌作用に応じて限定されることなく用いることができる。なかでも、抗菌効果や保持性能とのバランスから、ベンゼン環を1個または2個有するものが良く、特に水処理に用いる場合のその保持性能からベンゼン環2個のものが好ましい。
 なかでも、化学式(化1)に示すトリクロサン(2,4,4'-トリクロロ-2'-ヒドロキシジフェニルエーテル)又はその誘導体を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000001
 トリクロサン誘導体としては、トリクロサンの塩素基が水素原子もしくは他のハロゲン基で置換されたものや、それらの置換位置が異なる同族体、またはトリクロサンのリン酸エステル、ホスホン酸エステル、硫酸エステル、グルクロン酸エステル、コハク酸エステルまたはグルタミン酸エステル等が挙げられる。
 クロロフェノール系抗菌剤を供給側流路材へ含有させる方法としては、流路材の押し出し成形を行う際の原料ペレットに予め混入しておいて全体に均一に分散させる方法、あるいは押し出し成形後、抗菌剤を含むコーティング材で表面に後加工する方法などがある。
 本発明では、抗菌剤を供給側流路材の形成材料に混合して練りこんで、ネット構成糸を形成する樹脂中に分散させていることが好ましい。抗菌剤溶液を表面に塗布して加熱乾燥等で固定することで本願の目的を達することは可能だが、スパイラル型分離膜エレメントのように高圧での水流が生じる用途では経時劣化が生じやすく、抗菌効果の耐久性の点で、ネット構成糸を形成する樹脂中に分散させていることが好ましい。
 抗菌剤の含有量は、構成糸どうしの隙間領域においても、十分な抗菌作用が得られ、かつ流路材の強度等を維持する観点から、全重量中、0.005~10重量%が好ましい。特に、濃度が高すぎると過剰に溶出した抗菌剤成分が膜面に付着して透過量を低下させたり、供給側流路材を成形加工する際に抗菌剤を混合する場合には、供給側流路材の強度や作業時に不具合が生じやすくなるため、1重量%以下が好ましく、0.75重量%以下がより好ましい。一方で濃度が低すぎると十分な抗菌効果が得られにくくなるため、水処理膜用途の供給側流路材に用いる場合、抗菌性が供給側流路材の領域全体に及ぶ0.020重量%以上が好ましく用いられる。
 コーティング材で表面に後加工する場合、同様の観点から、コーティング材の全重量中、0.005~1重量%が好ましく、0.01~0.1重量%がより好ましい。
 ネット状の供給側流路材又はコーティング前の基材を構成する樹脂としては、ポリプロピレン、ポリエチレン、ナイロン、ポリエステル等の樹脂が挙げられ、特にポリプロピレン、ポリエチレン等のポリオレフィン系樹脂が好ましい。
 本発明の供給側流路材又はコーティング前の基材は、例えば剪断法成形や融着法成形にて作製することができ、図3に示すように、ネット構成糸1,2同士が交差部Cで接合されたネット状物を得ることができる。以下、剪断法成形を例にとり説明する。
 剪断法成形を行う場合、ポリプロピレン等の樹脂のJIS K7210:1999によるMFRは、1.5g/10min以上が好ましく、より好ましくは、1.7~4.0g/10minである。MFRが低すぎると、交差部に水掻き状の変形が生じやすくなる。また、逆にMFRが高すぎるとネットの成形が難しくなる。
 樹脂のMFRは、一般的に、重量平均分子量、分子量分布、樹脂に添加された添加剤の種類や量などによって調整することができる。
 剪断法成形にて得られたネットは、後述するように、ノズル孔から樹脂が押し出される際に交差部で予め一体化した状態で押し出されるため、ネット構成糸1,2に融着界面が存在しない構造となる。
 なお、融着法成形では、ノズル孔から樹脂が押し出される際に、交差部で一体化せずに押し出された後に融着するため、ネット構成糸1,2に融着界面が存在する構造となる。また、融着法成形によると、上記のように、交差部に水掻き状の変形が生じにくくなる。
 また、剪断法成形によりネットを製造する上で、得られるネットの全厚み0.3~2mmが好ましく、構成糸の径(幅)0.08~1mmが好ましく、交差角度30~150°が好ましい。これらはノズル形状と押出条件を調整することで達成できる。
 なお、ネットの厚みは、薄くすれば、膜面の線速度が大きくなり濃度分極を抑制できるが、あまり薄くすると供給液中の浮遊成分が流路を閉塞させるという問題や供給液を送水するポンプの必要動力が大きくなるという問題がある。
 本発明において、ネット構成糸1,2の各々の糸間隔や径の比率などは自由に変えることができるが、本発明では、交点間隔(糸間隔)が4~15mm、径の比率は1/2~2/1が好ましく、交点間隔(糸間隔)が5~7mm、径の比率は2/3~3/2がより好ましい。
 剪断法成形は、例えば図1~図2に示すようなノズルを備える押出機を用いて、押出機のダイスの内外2つの円周上に配置した多数のノズル孔14,10から各々のネット構成糸1,2を押出しながら、ネット構成糸の交差部で両者のノズル孔14,10が重なって1つのノズルとなるようにノズル孔14,10を相対回転させて交差部でネット構成糸1,2を互いに融着させつつネットを成形するものである。
 ここで、図1の(a)は、本発明の供給側流路材の製造方法に用いられるノズルの一例を示す一部破断した斜視図であり、(b)は内側の円周上に配置したノズル孔の拡大図である。図2の(a)はノズル孔の回転動作を示す底面図であり、(b)~(c)はノズル孔の回転動作を示す要部図であり、(d)はこの回転動作で得られるネットの平面図である。
 上記のノズルは、内側の円周上に配置したノズル孔14を形成した内側回転ダイ12と、外側の円周上に配置したノズル孔10を形成した外側回転ダイ6とを備え、内側回転ダイ12の外周面13と外側回転ダイ6の内周面9とが、当接しつつ両者が逆回転できるようになっている。内側回転ダイ12は回転軸4により駆動され、外側回転ダイ6はこれに連結されたギヤ11により駆動される。外側回転ダイ6はダイハウジング5,7に回転自在に保持されている。
 押出機から押し出された樹脂は、ダイハウジング5の内面5aと内側回転ダイ12の外面12aとの間の間隙を経由して、ノズル孔14,10から押出され、各々のネット構成糸1,2となる。その際、ノズル孔14,10を相対回転させており(図2(b)参照)、両者のノズル孔14,10が重なって1つのノズル(図2(c)参照)となる位置が、ネットの交差部Cとなり、ネット構成糸1,2が互いに融着した状態となる。このとき、樹脂のMFRが低いと、図3(b)に示すように水掻き部3が生じ易くなる。
 ノズル孔14,10から樹脂が押し出される際の温度としては、230~300℃が好ましく、250~270℃がより好ましい。押し出される際の温度が230℃未満では、樹脂の流動性が不十分でネット形成が困難となり、水掻き変形が生じ易くなる傾向がある。また、押し出される際の温度が300℃を超えると、糸の形成が困難になるほど流動性が高くなる、あるいは熱分解によりネットの強度が低下する傾向がある。
 押し出されたネットは、一般には、水中等で冷却され、巻き取られた後、適当なサイズに切断される。
 以上のような剪断法成形において、原料ペレットに予め抗菌剤を混入しておくことで、流路材の全体に均一に抗菌剤を分散させることができる。また、原料ペレットの一部にだけ予め抗菌剤を混入しておく方法(マスターバッチ方式)や、抗菌剤を予め多孔性の微粒子などに担持させておき、この担持体を原料ペレットに混合することも可能である。多孔性の微粒子としては、シリカ、ゼオライトなどの無機微粒子、又は多孔性ポリマー粒子などが挙げられる。
 一方、コーティング材で表面に後加工して、ネット構成糸に抗菌剤を含有させる場合、コーティングの方法としては、樹脂等のコート材と抗菌剤との混合物の溶液や溶融液を用いて、浸漬塗布、スプレー塗布などにより、コーティングする方法が好ましい。
 コート材としては、流路材の基材との接着性が良好なものが好ましい。例えば、基材樹脂としてポリオレフィン系樹脂を用いる場合、ポリビニルアルコール(PVA)樹脂をコート材として用いることが好ましい。
 本発明のスパイラル型分離膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられている構造を有する。かかる膜エレメントの詳細は、前記の特許文献1などにも詳細に記載されており、供給側流路材の以外に関しては、従来公知の分離膜、透過側流路材、中空状中心管などが何れも採用できる。例えば、供給側流路材と透過側流路材が複数用いられる場合には、複数の膜リーフが中空状中心管の周りに巻きつけられた構造となる。
 図7は、従来(本発明)のスパイラル型分離膜エレメントの一例を示す部分破断した斜視図である。この例では、分離膜21、供給側流路材22、および透過側流路材23が積層状態で、有孔の中心管25の周囲にスパイラル状に巻回された円筒状巻回体Rを備えると共に、供給側流体と透過側流体の混合を防ぐための封止部が設けられている。封止部には、例えば、両端封止部31と外周側封止部32が含まれ、また、中心管25の周囲の封止を行うために封止部33を形成してもよい。
 このようなスパイラル型分離膜エレメントは、分離膜21と供給側流路材22と透過側流路材23とを積層状態で有孔の中心管25の周囲にスパイラル状に巻回して円筒状巻回体Rを形成する工程と、供給側流体と透過側流体の混合を防ぐための封止部31,32を形成する工程とを含む方法で製造することができる。
 本発明のスパイラル型分離膜エレメントは、用途をなんら限定するものではないが、大腸菌に対する抗菌作用が特に大きいことから、排水処理、かん水脱塩、海水淡水化などの分離処理に使用される分離膜エレメントに用いられる際に、その効果が特に発揮される。
 本発明では、用いられる分離膜が無機系抗菌剤を含有することが好ましい。無機系抗菌剤としては、後に詳述する銀系抗菌剤の他、抗菌性ガラス、第4級アンモニウム塩、第4級ホスホニウム塩などが例示される。分離膜としては、限外ろ過膜、ルーズ逆浸透膜、逆浸透膜などが好ましく用いられる。
 無機系抗菌剤を含有させる方法としては、分離膜自体(例えば逆浸透膜のスキン層)に無機系抗菌剤を含有させる方法や、分離膜表面上に直接又は他の層を介して抗菌剤及びポリマー成分を含有する抗菌層を形成する方法等が挙げられる。本発明では、分離膜表面上に直接又は他の層を介して抗菌層を形成する方法が、該抗菌層により耐微生物汚染特性を長期間持続することができると共に、スキン層の性能の低下を抑制でき、耐汚染特性だけでなく水透過性能及び塩阻止率を高く維持することができるので好ましい。
 本発明では、特に前記分離膜が、多官能アミン成分と多官能酸ハライド成分とを反応させてなるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜であって、スキン層上に直接又は他の層を介して銀系抗菌剤及びポリマー成分を含有する抗菌層が形成されていることが好ましい。
 また、分離膜自体(例えば逆浸透膜のスキン層)に無機系抗菌剤を含有させる方法としては、多官能アミン成分と多官能酸ハライド成分とを反応させてなるポリアミド系樹脂及び銀塩化合物を含むスキン層を多孔性支持体の表面に形成する工程、及び前記銀塩化合物を還元して前記スキン層中及び/又は表面に金属銀を析出させる工程を含む方法が好ましい。その際、銀塩化合物を活性エネルギー線で還元することが好ましく、銀塩化合物として硝酸銀を用いることが好ましい。
 多官能アミン成分とは、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族及び脂環式の多官能アミンが挙げられる。
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。
 脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。多官能酸ハライドとしては、芳香族、脂肪族及び脂環式の多官能酸ハライドが挙げられる。
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。
 スキン層を支持する多孔性支持体は、スキン層を支持しうるものであれば特に限定されず、通常平均孔径10~500Å程度の微孔を有する限外濾過膜が好ましく用いられる。多孔性支持体の形成材料としては、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ボリフッ化ビニリデンなど種々のものをあげることができる。かかる多孔性支持体の厚さは、通常約25~125μm、好ましくは約40~75μmであるが、必ずしもこれらに限定されるものではない。なお、多孔性支持体は織布、不織布等の基材による裏打ちにて補強されている。
 ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する方法は特に制限されず、あらゆる公知の手法を用いることができる。例えば、界面縮合法、相分離法、薄膜塗布法などが挙げられる。界面縮合法とは、具体的に、多官能アミン成分を含有するアミン水溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させて界面重合させることによりスキン層を形成し、該スキン層を多孔性支持体上に載置する方法や、多孔性支持体上での前記界面重合によりポリアミド系樹脂のスキン層を多孔性支持体上に直接形成する方法である。かかる界面縮合法の条件等の詳細は、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、それらの公知技術を適宜採用することができる。
 多孔性支持体上に形成したスキン層の厚みは特に制限されないが、通常0.05~2μm程度であり、好ましくは、0.1~1μmである。
 スキン層を多孔性支持体の表面に形成した後、該スキン層上に直接又は他の層を介して銀系抗菌剤及びポリマー成分を含有する抗菌層を形成する。抗菌層中の銀系抗菌剤とポリマー成分との重量比は、55:45~95:5(銀系抗菌剤:ポリマー成分)であることが好ましく、より好ましくは60:40~90:10である。
 本発明で用いる銀系抗菌剤は、銀成分を含む化合物であれば特に制限されず、例えば、金属銀、酸化銀、ハロゲン化銀、銀イオンを含有する担持体などが挙げられる。これらのうち、特に銀イオンを含有する担持体を用いることが好ましい。担持体としては、例えば、ゼオライト、シリカゲル、リン酸カルシウム、及びリン酸ジルコニウムなどが挙げられる。これらのうち、リン酸ジルコニウムを用いることが好ましい。リン酸ジルコニウムは、他の担持体よりも疎水性が強く、水処理時において銀イオンの抗菌効果を長期間持続させることができる。
 銀系抗菌剤の平均粒子径は、1.5μm以下であることが好ましく、より好ましくは1μm以下である。なお、平均粒子径の測定方法は実施例の記載による。
 ポリマー成分は、スキン層及び多孔性支持体を溶解せず、また水処理操作時に溶出しないポリマーであれば特に制限されず、例えば、ポリビニルアルコール、ポリビニルピロール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、及びケン化ポリエチレン-酢酸ビニル共重合体などが挙げられる。これらのうち、ポリビニルアルコールを用いることが好ましく、特にケン化度が99%以上のポリビニルアルコールを用いることが好ましい。
 抗菌層は、前記銀系抗菌剤及び前記ポリマー成分を含有する水溶液をスキン層上に直接又は他の層(例えば、親水性樹脂を含む保護層など)を介して塗工し、その後乾燥することにより形成する。塗工方法としては、例えば、噴霧、塗布、シャワーなどが挙げられる。溶媒としては、水の他、スキン層等の性能を低下させない有機溶媒を併用してもよい。
水溶液中の銀系抗菌剤の濃度は、0.1~10重量%であることが好ましく、より好ましくは0.5~5重量%である。また、水溶液中のポリマー成分の濃度は、0.01~1重量%であることが好ましく、より好ましくは0.1~0.7重量%である。
 抗菌層の厚さは特に制限されないが、通常0.05~5μmであり、好ましくは0.1~3μm、より好ましくは0.1~2μmである。抗菌層の厚さが薄すぎると抗菌性が十分に発揮されず、またスパイラルエレメントを巻き付ける際に擦れにより膜に傷が付きやすく塩阻止率が低下するおそれがある。一方、抗菌層の厚さが厚すぎると水透過流束が実用範囲以下にまで低下するおそれがある。
 抗菌層中の銀の含有量は、30mg/m以上であることが好ましく、より好ましくは35mg/m以上である。銀の含有量が30mg/m未満の場合には、長期間優れた抗菌特性を維持することが困難になる。また、抗菌層中の銀の含有量は、コスト及び膜の傷付き防止の観点から1000mg/m以下であることが好ましく、より好ましくは500mg/m以下である。
 以下、本発明の構成と効果を具体的に示す実施例等について説明する。
 (透過流束及び塩阻止率の測定)
 作製した平膜状の複合半透膜を所定の形状、サイズに切断し、平膜評価用のセルにセットする。約1500mg/LのNaClを含みかつNaOHを用いてpH6.5~7.5に調整した水溶液を25℃で膜の供給側と透過側に1.5MPaの差圧を与えて膜に接触させる。この操作によって得られた透過水の透過速度および電導度を測定し、透過流束(m/m・d)および塩阻止率(%)を算出した。塩阻止率は、NaCl濃度と水溶液電導度の相関(検量線)を事前に作成し、それらを用いて下式により算出した。 
 塩阻止率(%)={1-(透過液中のNaCl濃度[mg/L])/(供給液中のNaCl濃度[mg/L])}×100
 実施例1
 図1に示すノズルを備えた押出機を用いて、ポリプロピレン樹脂(三井化学製、F122G)に抗菌剤としてトリクロサンを0.025重量%含有するペレットを導入し、260℃で溶融押出しすることで、剪断法成形にてネット状の供給側流路材を形成した。このとき、得られるネットが、全厚み0.79mm、構成糸の径(幅)0.3mm、糸間隔5mm、交差角度90°になるようにノズル形状と押出条件を調整した。
 比較例1
 実施例1において、抗菌剤を含有しないペレットを用いたこと以外は、実施例1と同じ条件で流路材を作製した。
 比較例2
 実施例1において、抗菌剤として銀ゼオライト(カネボウ化成(株)製、バクテキラー、銀含有量30重量%)2重量%含有するペレットを用いたこと以外は、実施例1と同じ条件で流路材を作製した。
 抗菌性評価試験1
 大腸菌K-12をLB培地に植菌し35℃×24時間培養した。流路材への大腸菌を付着させるために、大腸菌10~10cfu/ml生理食塩水溶液を調製し、菌液20mlを遠沈管に入れ、各流路材を1枚ずつ入れ、1時間振盪した。流路材を取り出し生理食塩水10mlで3回洗浄後、SCDA培地上に置き、35℃で2~5日培養した。
 その結果を図4に示す。実施例1のトリクロサン入り流路材は、菌の増殖が見られなかった。比較例1の抗菌剤の入っていないものは5日目において多くの菌の増殖が見られた。また、比較例2の銀系抗菌剤を入れたものは抗菌剤なしよりは菌の増殖は少ないものの、菌の増殖が見られた。
 抗菌性評価試験2
 大腸菌K-12をLB培地に植菌し35℃×24時間培養した。阻止円形成試験として、大腸菌10~10cfu/ml生理食塩水溶液を調製し、SCDA培地上に塗沫した。各流路材をその上に置き、35℃で2日間培養した。
 その結果を図5に示す。実施例1のトリクロサン入りの流路材は、流路材の内部(構成糸どうしの隙間領域)と周囲に、コロニー形成を阻止する領域があった。一方、比較例1の抗菌剤の入っていないものでは、流路材の周辺および内部に菌の増殖が見られた。
 抗菌性評価試験3
 大腸菌K-12をLB培地に植菌し35℃×24時間培養した。抗菌力試験として、準備した流路材を滅菌シャーレ上に置き、調整した大腸菌10cfu/ml(500倍希釈LB培地)菌液を400μl滴下し、ポリエチレンフィルムをかぶせて、液体が乾かないようにした。35℃(湿度90%以上)24H培養する。培養後菌液を回収し、その菌数をSCDA培地にて計数した。
 その結果を図6に示す。比較例1の抗菌剤無しに比べ、実施例1のトリクロサン入りで菌数は1/1000になった。一方、比較例2の銀系抗菌剤入りでは、菌数は1/10程度であり、実施例1で用いたトリクロサンに比べ、効果が低かった。
 実施例2
 平均粒子径0.9μmの銀系抗菌剤(東亜合成社製、ノバロンAG1100)1.0重量%、及びポリビニルアルコール(ケン化度:99%)0.5重量%を含む水溶液を、超低圧逆浸透複合膜(日東電工社製、型式:ES20、スキン層:ポリアミド系樹脂、性能:前記測定方法で透過流束1.2(m/m・d)、塩阻止率99.6(%))のスキン層上に塗布し、その後オーブンにて130℃で3分間乾燥させて抗菌層を形成して複合半透膜を作製した。この複合半透膜と、実施例1で得られた供給側流路材と、透過側流路材(PET樹脂製、厚み0.3mm)とを用いて図7に示したスパイラル型分離膜エレメントを作製した。
 このエレメントに対して、福岡県箱崎サイトにおける工業排水を活性汚泥処理およびMF膜処理した水(SDI値3~6)を透過流束0.3~0.4(m/m・d)、回収率15~20%で約1カ月間流した前後に、NaClを1500ppm含有しpH6.5~7.0の評価水を用いて1.5MPaの圧力を加えて、評価試験を行ったところ、透過流束の保持率は90%以上であった。
 実施例3
 不織布基材上にポリスルホン(Solvay社製、P-3500)18重量%をN,N一ジメチルホルムアミド(DMF)に溶解し、Wet厚み200μmで均一に塗布した後、40~50℃の水浴中に浸漬させることで凝固、洗浄して多孔性支持体を作製した。この多孔性支持体上にm-フェニレンジアミン3重量%、ラウリル硫酸ナトリウム0.15重量%、トリエチルアミン3重量%、カンファースルホン酸6重量%、イソプロピルアルコール5重量%、及び硝酸銀0.5重量%を含有するアミン水溶液を塗布し、その後余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.2重量%及びナフテン系炭化水素(新日本石油株式会社製、ナフテゾール160)を含有する有機溶液を塗布した。その後、120℃の熱風乾燥機中で3分間保持して、多孔性支持体上にポリアミド系樹脂及び硝酸銀を含むスキン層を形成した。その後さらにスキン層表面に高圧水銀ランプの紫外線(UV-A(320~390nm):280mJ/cm、UV-B(280~320nm):200mJ/cm、UV-C(250~260nm):150mJ/cm、UV-V:70mJ/cm、を照射して、硝酸銀を還元してスキン層中及び/又は表面に金属銀を析出させて複合半透膜を作製した。作製した複合半透膜の透過流束は1.2(m/m・d)、塩阻止率は99(%)であった。また、作製した複合半透膜は抗菌性を有していた。
 この複合半透膜と、実施例1で得られた供給側流路材と、透過側流路材(PET樹脂製、厚み0.3mm)とを用いて、図7に示したスパイラル型分離膜エレメントを作製した。このエレメントに対して実施例2と同様の評価を行ったところ、透過流束の保持率は80%以上であった。
 実施例4
 実施例1で作製した供給側流路材と、実施例2において銀系抗菌剤を用いずに作製した複合半透膜と、透過側流路材(PET樹脂製、厚み0.3mm)とを用いてスパイラル型分離膜エレメントを作製した。このエレメントに対して実施例2と同様の評価を行ったところ、透過流束の保持率は75%以上であった。
 比較例3
 比較例1の供給側流路材と、実施例2において銀系抗菌剤を用いずに作製した複合半透膜と、透過側流路材(PET樹脂製、厚み0.3mm)とを用いてスパイラル型分離膜エレメントを作製した。このエレメントに対して実施例2と同様の評価を行ったところ、透過流束の保持率は約60%程度であった。
 1    ネット構成糸
 2    ネット構成糸
 3    水掻き部
 10   ノズル孔(外側)
 14   ノズル孔(内側)
 C    交差部
 21   分離膜
 22   供給側流路材
 23   透過側流路材
 25   中空状中心管

Claims (8)

  1.  スパイラル型分離膜エレメントに用いる供給側流路材であって、ネット状の供給側流路材を構成するネット構成糸が、クロロフェノール系抗菌剤を含有する供給側流路材。
  2.  前記ネット構成糸の交点間隔が4~15mmである請求項1記載の供給側流路材。
  3.  前記クロロフェノール系抗菌剤が、トリクロサン(2,4,4’‐trichloro-2’-hydroxy diphenyl ether)又はその誘導体である請求項1又は2に記載の供給側流路材。
  4.  前記クロロフェノール系抗菌剤の含有量が、全重量中0.005~10重量%である請求項1~3いずれかに記載の供給側流路材。
  5.  前記クロロフェノール系抗菌剤が、ネット構成糸を形成する樹脂中に分散している請求項1~4いずれかに記載の供給側流路材。
  6.  分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられているスパイラル型分離膜エレメントにおいて、前記供給側流路材は、請求項1~5いずれかに記載の供給側流路材であることを特徴とするスパイラル型分離膜エレメント。
  7.  前記分離膜は無機系抗菌剤を含有する請求項6に記載のスパイラル型分離膜エレメント。
  8.  前記分離膜は、多官能アミン成分と多官能酸ハライド成分とを反応させてなるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜であって、スキン層上に直接又は他の層を介して銀系抗菌剤及びポリマー成分を含有する抗菌層が形成されている請求項7に記載のスパイラル型分離膜エレメント。
     
PCT/JP2009/065640 2008-09-09 2009-09-08 供給側流路材、及びスパイラル型分離膜エレメント WO2010029911A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801328307A CN102131565A (zh) 2008-09-09 2009-09-08 供给侧流路材料和螺旋型分离膜元件
US13/062,759 US20110168623A1 (en) 2008-09-09 2009-09-08 Feed side passage material and spiral separation membrane element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008231182 2008-09-09
JP2008-231182 2008-09-09

Publications (1)

Publication Number Publication Date
WO2010029911A1 true WO2010029911A1 (ja) 2010-03-18

Family

ID=42005164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065640 WO2010029911A1 (ja) 2008-09-09 2009-09-08 供給側流路材、及びスパイラル型分離膜エレメント

Country Status (5)

Country Link
US (1) US20110168623A1 (ja)
JP (1) JP5231362B2 (ja)
KR (1) KR20110052748A (ja)
CN (1) CN102131565A (ja)
WO (1) WO2010029911A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447397A1 (de) * 2010-10-29 2012-05-02 Carl Freudenberg KG Vliesstoffe aus synthetischen Polymeren sowie Rotationsspinnverfahren zur Herstellung derselben
CN104411385A (zh) * 2012-06-26 2015-03-11 康韦德塑料制品有限公司 使用低能量进料间隔件的膜过滤

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791363A (zh) * 2010-01-15 2012-11-21 海德拉罗迪克斯公司 用于过滤装置的盐水密封件
CN105120973A (zh) * 2012-12-25 2015-12-02 墨尔本大学 材料和方法
KR101647966B1 (ko) * 2013-03-29 2016-08-12 충남대학교산학협력단 미량 유해가스 탈취 및 제거용 복합섬유필터의 제조방법
USD800747S1 (en) 2015-03-17 2017-10-24 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
JP6135721B2 (ja) * 2015-08-10 2017-05-31 大日本印刷株式会社 樹脂付リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
CN106474945A (zh) * 2015-08-28 2017-03-08 中国石油化工股份有限公司 一种抗菌聚酰胺高分子膜及其制备方法和应用
JP6719291B2 (ja) * 2016-06-24 2020-07-08 オルガノ株式会社 水処理装置の有機分離膜の洗浄方法
US11673095B2 (en) 2018-04-19 2023-06-13 Crosstek Membrane Technology Helical separation membranes and technologies utilizing the same
CN109632678A (zh) * 2018-11-16 2019-04-16 蓝星(杭州)膜工业有限公司 一种聚酰胺复合膜片残留胺含量的检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190394U (ja) * 1983-06-01 1984-12-17 日本電子材料株式会社 清水装置
JPH04214741A (ja) * 1990-11-30 1992-08-05 Asahi Glass Co Ltd 防黴性イオン交換膜及び製造法と硫酸の回収法
JPH05115760A (ja) * 1991-10-25 1993-05-14 Mitsubishi Rayon Co Ltd 抗菌性親水化多孔質膜及びその製法
JPH08332489A (ja) * 1995-06-08 1996-12-17 Toray Ind Inc 抗菌性流体分離素子
JP2000042378A (ja) * 1999-08-20 2000-02-15 Toray Ind Inc 流体分離素子
US20030038074A1 (en) * 1998-06-29 2003-02-27 Patil Arvind S. Antimicrobial semi-permeable membranes
JP2005313151A (ja) * 2004-03-30 2005-11-10 Toray Ind Inc 水の処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191515A (ja) * 1989-01-19 1990-07-27 Nishiyama:Kk 抗菌作用を有するろ過膜
JPH05245349A (ja) * 1991-11-06 1993-09-24 Nitto Denko Corp 抗菌性を有する液体分離膜及びその製造方法
US5817325A (en) * 1996-10-28 1998-10-06 Biopolymerix, Inc. Contact-killing antimicrobial devices
US5868933A (en) * 1995-12-15 1999-02-09 Patrick; Gilbert Antimicrobial filter cartridge
JP3575916B2 (ja) * 1996-05-20 2004-10-13 日東電工株式会社 逆浸透膜スパイラルエレメントおよびそれを用いた処理システム
JP2001300271A (ja) * 2000-04-25 2001-10-30 Toray Ind Inc 流体分離素子
JP2005103516A (ja) * 2003-10-02 2005-04-21 Nitto Denko Corp スパイラル型膜エレメント及びその製造方法
CA2731952A1 (en) * 2008-06-20 2009-12-23 Irving Shelby Cross-flow filtration apparatus with biocidal feed spacer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190394U (ja) * 1983-06-01 1984-12-17 日本電子材料株式会社 清水装置
JPH04214741A (ja) * 1990-11-30 1992-08-05 Asahi Glass Co Ltd 防黴性イオン交換膜及び製造法と硫酸の回収法
JPH05115760A (ja) * 1991-10-25 1993-05-14 Mitsubishi Rayon Co Ltd 抗菌性親水化多孔質膜及びその製法
JPH08332489A (ja) * 1995-06-08 1996-12-17 Toray Ind Inc 抗菌性流体分離素子
US20030038074A1 (en) * 1998-06-29 2003-02-27 Patil Arvind S. Antimicrobial semi-permeable membranes
JP2000042378A (ja) * 1999-08-20 2000-02-15 Toray Ind Inc 流体分離素子
JP2005313151A (ja) * 2004-03-30 2005-11-10 Toray Ind Inc 水の処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447397A1 (de) * 2010-10-29 2012-05-02 Carl Freudenberg KG Vliesstoffe aus synthetischen Polymeren sowie Rotationsspinnverfahren zur Herstellung derselben
CN104411385A (zh) * 2012-06-26 2015-03-11 康韦德塑料制品有限公司 使用低能量进料间隔件的膜过滤
US11084198B2 (en) 2012-06-26 2021-08-10 Conwed Plastics Llc Membrane filtration using low energy feed spacer

Also Published As

Publication number Publication date
JP2010089081A (ja) 2010-04-22
US20110168623A1 (en) 2011-07-14
JP5231362B2 (ja) 2013-07-10
CN102131565A (zh) 2011-07-20
KR20110052748A (ko) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5231362B2 (ja) 供給側流路材、及びスパイラル型分離膜エレメント
ES2386868T3 (es) Aparato de filtración de flujo cruzado con espaciador de alimentación de biocida
Lee et al. Fouling mitigation in forward osmosis and membrane distillation for desalination
Li et al. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes
JP6242887B2 (ja) 低エネルギーフィードスペーサを用いる膜ろ過
US6540915B2 (en) Antimicrobial semi-permeable membranes
US9861940B2 (en) Additives for salt rejection enhancement of a membrane
JP2009006279A (ja) 複合半透膜及びその製造方法
Zhang et al. Highly chlorine-tolerant performance of three-channel capillary nanofiltration membrane with inner skin layer
CN105848764B (zh) 高流量正渗透膜集合体及包含其的正渗透模块
JP3591618B2 (ja) 中空糸型分離膜素子
JP2019510623A (ja) バイオリアクターアセンブリ
Lee et al. Fabrication and properties of nanofiltration membranes assembled with chitosan on poly (ether sulfone) membranes surface-functionalized with acyl chloride groups
EP3107643B1 (en) Filtration element
JP6164366B2 (ja) 吸着部材
ES2811675B2 (es) Membrana de ósmosis inversa resistente a las incrustaciones, procedimiento de fabricación de la misma y módulo de ósmosis inversa resistente a las incrustaciones que la incluye
CN101484390A (zh) 二卤代-羟基二苯醚作为抗微生物剂在水处理中的用途
JP2009011913A (ja) 膜分離方法及び膜分離装置
KR100460012B1 (ko) 역삼투 분리막 및 역삼투 분리막 모듈의 보존 처리방법
Kumano Advances in hollow-fiber reverse-osmosis membrane modules in seawater desalination
KR20050100833A (ko) 항균성 복합 중공사막 및 그의 제조방법
JP2014008430A (ja) 分離膜エレメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132830.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13062759

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117008203

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09813057

Country of ref document: EP

Kind code of ref document: A1