WO2010029792A1 - 内燃機関の排気浄化装置及びその制御方法 - Google Patents
内燃機関の排気浄化装置及びその制御方法 Download PDFInfo
- Publication number
- WO2010029792A1 WO2010029792A1 PCT/JP2009/059401 JP2009059401W WO2010029792A1 WO 2010029792 A1 WO2010029792 A1 WO 2010029792A1 JP 2009059401 W JP2009059401 W JP 2009059401W WO 2010029792 A1 WO2010029792 A1 WO 2010029792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reducing agent
- exhaust gas
- injection valve
- agent injection
- exhaust
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/14—Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
- F01N2410/02—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
- F01N2410/03—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of low temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
- F01N2410/08—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of clogging, e.g. of particle filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/05—Systems for adding substances into exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0821—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust gas purification apparatus for an internal combustion engine and a control method therefor.
- the present invention relates to an exhaust gas purification apparatus for an internal combustion engine that supplies a reducing agent upstream of a reduction catalyst by a reducing agent injection valve to purify exhaust gas and a control method therefor.
- NO X nitrogen oxides
- a reduction catalyst that selectively reduces NO x is disposed in the exhaust passage, and a reducing agent such as an aqueous urea solution is injected into the exhaust gas from a reducing agent injection valve disposed on the exhaust upstream side of the reduction catalyst, An exhaust purification device that performs reduction purification of NO x in the reduction catalyst is used.
- the urea aqueous solution used as the reducing agent has a property that urea crystallizes at a temperature at which only water as a solvent evaporates or freezes at a cold temperature. That is, when a urea aqueous solution is used as the reducing agent, depending on the temperature conditions, the urea aqueous solution may crystallize or freeze around the nozzle hole of the reducing agent injection valve and its surroundings, and the nozzle hole of the reducing agent injection valve There is a risk of clogging or abnormalities in jetting properties of the reducing agent.
- the reducing agent injection valve used in the exhaust purification device includes an electromagnetic control part for controlling the seating and separation of the valve body that opens and closes the nozzle hole, and this electromagnetic control part is relatively heated.
- the electromagnetic control part of the reducing agent injection valve is covered with a relatively heat-sensitive material such as a resin for the purpose of ensuring electrical insulation.
- a nozzle plate or the like may be provided at the tip of the reducing agent injection valve. If this nozzle plate is exposed to a high temperature, cracks may occur. is there.
- the reducing agent injection valve is cooled so that the electromagnetic control part, the resin part, etc. of the reducing agent injection valve are not exposed to high temperatures and are not damaged (hereinafter, this damage is referred to as “thermal damage”).
- thermal damage Various exhaust emission control devices configured to be able to do so have been proposed.
- it is an exhaust purification device that injects fuel as a reducing agent, a cooling water passage provided in a reducing agent injection valve connected to the exhaust passage, and a circulation passage that connects the cooling water passage and the cooling water passage of the internal combustion engine
- an exhaust purification device that circulates the cooling water between the cooling water passage and the cooling water passage of the internal combustion engine via the circulation passage (see, for example, Patent Document 2).
- JP 2008-180193 A (claims, etc.) JP-A-9-96212 (full text, full diagram)
- the exhaust emission control device described in Patent Document 2 can efficiently cool the reducing agent injection valve
- the exhaust water purifying device connects the cooling water passage of the reducing agent injection valve and the internal combustion engine to the reducing agent injection valve.
- the inventor of the present invention diligently worked, whether or not the reducing agent injection valve is in a state where it can be damaged by heat, the reducing agent is crystallized around the injection hole or around the injection hole of the reducing agent injection valve, It was determined whether or not crystallization and freezing occurred, and it was found that such a problem could be solved by switching the flow direction of the exhaust gas based on the determination result, and the present invention was completed. Is.
- the object of the present invention is a relatively simple and inexpensive configuration, preventing thermal damage of the reducing agent injection valve, preventing the crystallization of the reducing agent around or around the injection hole of the reducing agent injection valve, It is another object of the present invention to provide an exhaust purification device for an internal combustion engine that can dissolve crystallization and freezing of the reducing agent, and a control method therefor.
- the reducing agent injection valve that is provided in the exhaust passage of the internal combustion engine and supplies the reducing agent for purifying the exhaust gas into the exhaust passage, and is disposed on the exhaust downstream side of the reducing agent injection valve.
- a switching means that is disposed upstream of the reducing agent injection valve and switches the flow direction of the exhaust gas, and the reducing agent injection valve may be thermally damaged. Whether or not the reducing agent can be crystallized around the nozzle hole or the nozzle hole of the reducing agent injection valve, and the reducing agent crystallizes or freezes around the nozzle hole or the nozzle hole.
- An internal combustion engine comprising: an abnormality determination unit that determines at least one of whether or not a fuel cell is included; and a switching unit control unit that controls the switching unit based on a determination result by the abnormality determination unit.
- An exhaust purification device is provided to solve the above-mentioned problems. Can.
- the switching means control unit determines the flow of the exhaust gas when the abnormality determination unit determines that the reducing agent injection valve is in a state where it can be thermally damaged. It is preferable to control the switching means so as to divert the direction from the reducing agent injection valve.
- the switching means control unit when it is determined by the abnormality determination unit that the reducing agent is in a state that can be crystallized around the injection hole or the injection hole, It is preferable to control the switching means so that the flow direction of the exhaust gas is directed to the reducing agent injection valve.
- the switching means control unit determines that the abnormality determining unit determines that the reducing agent is crystallized or frozen around the injection hole or the injection hole.
- the switching means is preferably controlled so that the flow direction of the exhaust gas is directed to the reducing agent injection valve.
- the switching means control unit determines that the abnormality determining unit determines that the reducing agent is crystallized or frozen around the injection hole or the injection hole.
- the switching means is controlled so that the flow direction of the exhaust gas is directed to the reducing agent injection valve when the temperature of the exhaust gas is equal to or higher than a predetermined temperature.
- the switching means control unit is configured to divert the flow direction of the exhaust gas from the reducing agent injection valve for a predetermined period set in advance, or the reducing agent injection valve. It is preferable to control the switching means so that
- Another aspect of the present invention is a reducing agent injection valve provided in an exhaust passage of an internal combustion engine for supplying a reducing agent for purifying exhaust gas into the exhaust passage, and an exhaust downstream side of the reducing agent injection valve.
- the reducing agent injection valve is in a state where it can be thermally damaged or not. Whether or not the reducing agent is in a state capable of being crystallized around the nozzle hole or the nozzle hole, and whether or not the reducing agent is crystallized or frozen around the nozzle hole or the nozzle hole.
- This is a control method for an exhaust emission control device characterized in that one is determined and the flow direction of the exhaust gas on the upstream side of the reducing agent injection valve is switched based on the determination result.
- injection hole is a concept that includes not only a hole through which the reducing agent is actually injected, but also a reducing agent passage just before the hole.
- the exhaust gas purification apparatus for an internal combustion engine of the present invention it is provided with the switching means for switching the flow direction of the exhaust gas, the predetermined abnormality determination section, and the switching section control section, so that the estimated thermal reduction of the reducing agent injection valve.
- the flow direction of the exhaust gas is switched according to the state and the state of crystallization or freezing of the reducing agent around the nozzle hole or the nozzle hole.
- the flow direction of the exhaust gas is diverted from the reducing agent injection valve or directed to the reducing agent injection valve, so that thermal damage to the reducing agent injection valve is achieved despite a relatively simple and inexpensive configuration.
- the crystallization of the reducing agent in the injection hole of the reducing agent injection valve or around the injection hole is prevented, or the generated reducing agent crystals and the frozen reducing agent are easily dissolved.
- the switching means control unit diverts the flow direction of the exhaust gas from the reducing agent injection valve.
- the switching means control unit By controlling the switching means so that the flow direction is directed toward the reducing agent injection valve, the supply of exhaust heat to the injection hole or the periphery of the injection hole of the reducing agent injection valve is promoted. Crystallization of the reducing agent in the injection hole or around the injection hole of the injection valve is prevented.
- the switching means control unit By controlling the switching means so that the gas flow direction is directed to the reducing agent injection valve, supply of exhaust heat to the injection hole or the periphery of the injection hole of the reducing agent injection valve is promoted, and the exhaust heat is used, Crystals of the reducing agent and frozen reducing agent are easily dissolved.
- the temperature of the exhaust gas is predetermined.
- the switching means is controlled so that the flow direction of the exhaust gas is directed to the reducing agent injection valve when the temperature is higher than the temperature, the state around the injection hole of the reducing agent injection valve promotes the crystallization of the reducing agent. Such a state is prevented.
- the switching means control unit controls the switching means so that the flow direction of the exhaust gas is diverted from the reducing agent injection valve or directed toward the reducing agent injection valve.
- the exhaust gas purification method for an internal combustion engine of the present invention whether the reducing agent injection valve is in a state where it can be thermally damaged, or the reducing agent can be crystallized around the injection hole or around the injection hole of the reducing agent injection valve.
- the flow direction of the exhaust gas is switched based on the result of determining whether crystallization or freezing of the reducing agent can occur.
- the flow direction of the exhaust gas is diverted from the reducing agent injection valve or directed to the reducing agent injection valve, so that thermal damage to the reducing agent injection valve is achieved despite a relatively simple and inexpensive configuration.
- the crystallization of the reducing agent in the injection hole of the reducing agent injection valve or around the injection hole is prevented, or the generated reducing agent crystals and the frozen reducing agent are easily dissolved.
- the first embodiment of the present invention is arranged in the exhaust passage on the exhaust upstream side of the reducing agent injection valve, in a state where the switching means for switching the flow direction of the exhaust gas and the reducing agent injection valve can be damaged by heat.
- An exhaust gas purification apparatus for an internal combustion engine comprising: an abnormality determination unit that determines whether or not there is a switching unit control unit that controls the switching unit based on a determination result by the abnormality determination unit; and This is a control method for a simple exhaust purification device.
- FIG. 1 is a schematic diagram showing the overall configuration of the exhaust emission control device 10.
- This exhaust purification device 10 is provided in the middle of an exhaust passage connected to the internal combustion engine 5, and sequentially from the exhaust upstream side, an oxidation catalyst 14 and a particulate filter (hereinafter referred to as a particulate filter) that collects exhaust particulates in the exhaust gas. 15), the switching means 13 for switching the flow direction of the exhaust gas, the reducing agent injection valve 31 for supplying the reducing agent into the exhaust gas, and the NO in the exhaust gas using the reducing agent. And a reduction catalyst 17 for selectively reducing X.
- This exhaust purification device 10 is an exhaust purification device configured to remove both exhaust particulates and NO x contained in the exhaust gas.
- the exhaust particulates are collected by a filter 15, and NO x is reduced by a reduction catalyst 17. And decomposed into nitrogen, water, and carbon dioxide.
- the oxidation catalyst 14 is mainly used for regeneration of the filter 15 which is performed at a predetermined time in order to prevent the filter 15 from being clogged by the collected exhaust particulates. Specifically, the oxidation catalyst 14 is used to raise the temperature of the exhaust gas flowing into the filter 15 by oxidizing unburned fuel supplied when the filter 15 is regenerated. The exhaust gas collected by the filter 15 is combusted by the exhaust gas.
- the reducing agent injection valve 31 is configured as a part of the reducing agent supply device 20, and the reducing agent supply device 20 uses the reducing agent used in the reduction reaction of NO x in the reduction catalyst 17 as the reduction catalyst 17. Used to supply the exhaust upstream side.
- the reducing agent supply device 20 reduces the reducing agent in the storage tank 50, the reducing agent injection valve 31 fixed to the exhaust pipe 11 upstream of the reducing catalyst 17, the storage tank 50 storing the reducing agent, and the like.
- a pump module 42 including a pump 41 that pumps toward the agent injection valve 31.
- the reducing agent passage 58 that connects the pump module 42 and the reducing agent injection valve 31 is provided with a pressure sensor 43 that detects the pressure in the reducing agent passage 58 and the reducing agent injection in the reducing agent passage 58.
- a temperature sensor 33 is provided near the connection portion of the valve 31 to detect the temperature of the reducing agent supplied to the reducing agent injection valve 31.
- an aqueous urea solution is used as the reducing agent, but the reducing agent that can be used is not limited to the aqueous urea solution, and may be unburned fuel (HC).
- the exhaust purification device 10 includes a control device (hereinafter, referred to as “DCU: Dosing Control Unit”) 60A for controlling the reducing agent supply device 20 to inject the reducing agent into the exhaust passage. Yes.
- the DCU 60A is connected to a CAN (Controller Area Network) 65, which is referred to as a control unit (hereinafter referred to as “ECU: Electronic Control Unit”) for controlling the operating state of the internal combustion engine. ) 70 is also connected.
- CAN 65 Controller Area Network
- information related to the operating state of the internal combustion engine 5 such as the fuel injection amount, the injection timing, and the rotation speed, as well as the sensor information provided in the exhaust emission control device 10, is written.
- Information on CAN 65 can be read and information can be output on CAN 65.
- the ECU 70 and the DCU 60A are separate control units and can exchange information via the CAN 65.
- the ECU 70 and the DCU 60A are configured as a single control unit.
- the CAN 65 may be omitted.
- FIG. 2 is a partial cross-sectional view showing an example of the configuration of the electromagnetically controlled reducing agent injection valve 31.
- the reducing agent injection valve 31 includes a casing 91 including a magnetic cylinder 91a, a yoke 91b, and a resin cover 91c.
- the inside of the magnetic cylindrical body 91a of the casing 91 is a reducing agent passage 92, and the reducing agent passage 92 is supplied with a reducing agent pumped by a pump module (not shown).
- the upper end of the magnetic cylinder 91 a serves as an inflow port, and extends in the axial direction from the inflow port to the position of the valve body 93.
- a valve body 93 is disposed in the magnetic cylinder 91a.
- the valve body 93 is a cylindrical valve seat member, and is provided with an injection passage 93a for injecting a reducing agent.
- a nozzle plate 98 in which a plurality of nozzle holes 98a are formed is fixed to a tip end surface of the valve body 93 at a position covering the injection passage 93a.
- the injection passage 93a and the nozzle hole 98a are conceptualized as “injection holes”.
- a valve body 95 that can be displaced in the axial direction within the magnetic cylinder 91 a is accommodated between the core cylinder 94 and the valve body 93.
- An electromagnetic coil 88 is provided between the magnetic cylinder 91a and the yoke 91b.
- the armature 97 of the valve body 95 is magnetically attracted against the urging force of the valve spring 99.
- the valve member 96 is separated and the reducing agent is injected to the outside through the injection passage 93a and the nozzle hole 98a.
- a resin cover 91c is provided on the outer peripheral side of the magnetic cylinder 91a.
- the resin cover 91c is formed using a means such as injection molding in a state where the yoke 91b, the electromagnetic coil 88, and the like are assembled on the outer peripheral side of the magnetic cylinder 91a.
- the electromagnetic coil 88, the resin cover 91c, and the nozzle plate 98 are less susceptible to heat than other components such as the valve body 95 and the valve body 93.
- the heat-resistant temperature is, for example, about 160 ° C. for the electromagnetic coil 88 or the nozzle plate 98 in the reducing agent mist injection state and about 120 ° C. for the resin cover 91c.
- a plurality of radiating fins 121 are provided on the outer periphery of the casing 91 of the reducing agent injection valve 31 used in the exhaust purification device 10 of the present embodiment, and the exhaust pipe 11 is connected directly to the reducing agent injection valve 31. Exhaust heat that has been transmitted through is easily released.
- the heat radiation fin 121 is provided on the outer periphery of the reducing agent injection valve 31, the heat quantity of the reducing agent injection valve 31 may not be sufficiently radiated by the heat radiation fin 121 alone. is there.
- the temperature of the exhaust gas that passes through the filter and reaches the vicinity of the mounting position of the reducing agent injection valve 31 may be 600 ° C. or higher.
- the electromagnetic coil 88 and the resin cover 91c may not be protected from heat damage. Therefore, the exhaust purification device 10 of the present embodiment is provided with switching means 13 for switching the flow direction of the exhaust gas on the exhaust upstream side of the reducing agent injection valve 31.
- 3 (a) to 3 (b) are cross-sectional views of the exhaust passage provided with the switching means 13A as viewed from the side in the exhaust gas flow direction.
- the exhaust gas purification apparatus 10 is configured so that exhaust gas is discharged by a partition plate 18 formed in the exhaust gas flow direction on the exhaust upstream side of the attachment position of the reducing agent injection valve 31.
- the passage region has a flow dividing portion 16 divided into a first passage 21 on the attachment side of the reducing agent injection valve 31 and a second passage 22 on the opposite side. Both ends of the flow dividing portion 16 are formed in a tapered shape, and the passage area of the exhaust passage is narrowed at the outlet portion of the flow dividing portion 16.
- a switching means 13A comprising a pair of movable shielding plates 13a projecting into the exhaust passage from the attachment side of the reducing agent injection valve 31 and the opposite side thereof is provided at the outlet portion of the flow dividing portion 16. .
- This switching means 13 ⁇ / b> A moves the pair of shielding plates 13 a up and down, so that the effective outlet area of the first passage 21 on the attachment side of the reducing agent injection valve 31 and the attachment side of the reducing agent injection valve 31 are opposite to each other.
- the effective exit area of the second passage 22 can be changed.
- FIG. 3A shows the state of the switching means 13A in the normal state when there is no risk of thermal damage to the reducing agent injection valve 31, and the exhaust passage formed by the pair of shielding plates 13a is the diverter 16.
- the outlet effective area of the first passage 21 and the outlet effective area of the second passage 22 are equalized. In this state, the exhaust gas that passes between the pair of shielding plates 13a is not biased toward either the attachment side of the reducing agent injection valve 31 or the opposite side.
- the passage area of the exhaust passage formed between the pair of shielding plates 13a is smaller than the passage area of the front and rear exhaust passages. Therefore, the exhaust gas passing between the pair of shielding plates 13a tends to be turbulent on the downstream side, and the reducing agent supplied from the reducing agent injection valve 31 is likely to be dispersed in the exhaust gas.
- FIG. 3 (b) shows the state of the switching means 13 ⁇ / b> A when there is a risk of thermal damage to the reducing agent injection valve 31, and the effective area of the outlet of the second passage 22 on the outlet side of the flow dividing portion 16.
- the pair of shielding plates 13a is held so that the effective exit area of the first passage 21 is increased.
- the exhaust gas passing through the first passage 21 flows toward the side opposite to the attachment side of the reducing agent injection valve 31 along the tapered shape at the outlet portion
- Exhaust gas passing through the second passage 22 is also caused to flow toward the side opposite to the attachment side of the reducing agent injection valve 31 due to the effect of vortex flow at the outlet portion.
- the exhaust gas is caused to flow away from the reducing agent injection valve 31 as a whole, and heat transfer from the exhaust gas directly to the reducing agent injection valve 31 or through the exhaust pipe 11 is suppressed.
- switching means 13B shown in FIGS. 4 (a) to 4 (b) is configured by using a semicircular plate 13b that can rotate about the rotation axis P, and the passage area of the exhaust passage toward the downstream side. Is provided in the taper portion 19 where.
- FIG. 4A shows the state of the switching means 13B in the normal state when there is no risk of thermal damage to the reducing agent injection valve 31, and the plate 13b is held along the flow direction of the exhaust gas. .
- the exhaust gas passing through the tapered portion 19 is not biased toward either the attachment side of the reducing agent injection valve 31 or the opposite side.
- the passage area of the exhaust passage is narrowed at the tapered portion 19. Therefore, the exhaust gas passing through the tapered portion 19 tends to be turbulent on the downstream side, and the reducing agent supplied from the reducing agent injection valve 31 is likely to be dispersed in the exhaust gas.
- FIG. 4 (b) shows the state of the switching means 13 ⁇ / b> B when there is a risk of thermal damage to the reducing agent injection valve 31, and the end opposite to the rotation axis P is the end of the reducing agent injection valve 31.
- the plate 13b is held facing away from the mounting side.
- most of the exhaust gas passing through the tapered portion 19 exhaust gas passing through the upper side of FIG. 3B
- exhaust gas passing through the upper side of FIG. 3B is injected with the reducing agent along the tapered shape and the inclination of the plate 13b. It flows on the side opposite to the mounting side of the valve 31.
- the exhaust gas is caused to flow away from the reducing agent injection valve 31 as a whole, and heat transfer from the exhaust gas directly to the reducing agent injection valve 31 or through the exhaust pipe 11 is suppressed.
- FIG. 5 shows functional portions of the DCU 60A provided in the exhaust gas purification apparatus 10 of the present embodiment regarding a part relating to drive control of the reducing agent injection valve and the pump and a part relating to control of the switching means for the flow direction of the exhaust gas.
- a configuration example represented by blocks is shown.
- the DCU 60A is mainly configured by a microcomputer having a known configuration, and includes a CAN information extraction / generation unit (indicated as “CAN information extraction / generation” in FIG. 5) and a pump drive control unit (in FIG. 5, “pump drive”). Control ”), a reducing agent injection valve operation control unit (indicated as“ Udv operation control ”in FIG. 5), an abnormality determination unit (indicated as“ abnormality determination ”in FIG. 5), and switching means control.
- the unit (indicated as “switching means control” in FIG. 5) and the like are configured as main components. Each of these units is specifically realized by executing a program by a microcomputer (not shown).
- the CAN information extraction and generation unit reads information existing on the CAN 65 and outputs each information to each unit.
- the exhaust information estimated by the ECU 70 based on at least the sensor value Tdos of the temperature sensor 33 and the sensor value Pdos of the pressure sensor 43 and the operating state of the internal combustion engine by the CAN information extraction and generation unit.
- temperature Tgas and NO X flow rate Lnox information such as the is read, and is output to each unit.
- the pump drive control unit reads the sensor value Pdos of the pressure sensor 43 output from the CAN information extraction and generation unit, and performs feedback control of the pump 41 based on the sensor value Pdos. By the feedback control of the pump 41, the pressure in the reducing agent passage 58 is maintained in a substantially constant state.
- the operation control unit of the reducing agent injection valve information regarding the concentration Qtnk and temperature Ttnk of the reducing agent in the storage tank 50, the temperature Tgas of the exhaust gas, the temperature of the reduction catalyst 17 output from the CAN information extraction and generation unit. Information relating to Tcat and the like is read, a reducing agent injection amount Qdos necessary for reducing NO x in the exhaust gas is calculated, and an operation unit (not shown) that controls the operation of the reducing agent injection valve 31 is calculated. On the other hand, a control signal Sudv is output.
- the abnormality determination unit of the DCU 60A estimates the temperature Tnzl of the nozzle plate 98 portion of the reducing agent injection valve 31 based on the sensor value Tdos of the temperature sensor 33, the exhaust gas temperature Tgas, the operation state of the internal combustion engine 5, and the like.
- the reducing agent injection valve temperature estimation unit (denoted as “Udv temperature estimation” in FIG. 5) and the calculated temperature Tnzl of the nozzle plate 98 are in a state in which the reducing agent injection valve 31 can be damaged by heat.
- There is a thermal damage determination unit (denoted as “thermal damage determination” in FIG. 5) for determining whether or not there is.
- the portion of the reducing agent injection valve 31 to be estimated in the reducing agent injection valve temperature estimation unit is not particularly limited, but in the example of this embodiment, the temperature of the nozzle plate 98 portion is estimated.
- the nozzle plate 98 is located at a position closest to the exhaust pipe 11, and the temperature of the nozzle plate 98 exceeds the temperature of the electromagnetic coil 88 and the resin cover 91c of the reducing agent injection valve 31. Because there is no. Therefore, if the temperature Tnzl of the nozzle plate 98 is kept below the heat resistance temperature of the electromagnetic coil 88 and the resin cover 91c, thermal damage to the reducing agent injection valve 31 is prevented.
- the thermal damage determination unit compares the temperature Tnzl of the nozzle plate 98 estimated by the reducing agent injection valve temperature estimation unit with a predetermined heat-resistant temperature reference value Tnzl0, and the reducing agent injection valve 31 is damaged by heat. It is estimated whether it is in a state to obtain.
- the heat resistant temperature reference value Tnzl0 is set to a temperature lower than the heat resistant temperature of the electromagnetic coil 88 and the resin cover 91c.
- the determination result as to whether or not the reducing agent injection valve 31 is in a state where it can be damaged by heat is output to the switching means controller.
- the resin cover 91c has a lower heat resistant temperature, which is about 120 ° C. as an example.
- the reference value Tnzl0 is set to 120 to 140 ° C.
- the switching means 13 is controlled based on the determination result by the abnormality determination section, and the flow direction of the exhaust gas is switched.
- the flow direction of the exhaust gas is the attachment side of the reducing agent injection valve 31. Is directed to the opposite side.
- a timer is connected to the switching means control unit, and the elapsed time after the flow direction of the exhaust gas is switched is measured. Then, when a predetermined period elapses after switching the flow direction of the exhaust gas, the switching means 13 is controlled so that the flow direction of the exhaust gas is restored. Accordingly, the time during which the flow direction of the exhaust gas is switched is suppressed within a predetermined period, and the mixing property between the exhaust gas and the reducing agent is reduced due to the fact that the flow direction of the exhaust gas is biased in one direction. The flow direction of the exhaust gas is switched while suppressing the influence on the exhaust pressure caused by reducing the effective outlet area of the second passage 22.
- the condition for returning the flow direction to the original after switching the flow direction of the exhaust gas is not limited to the case where the above-mentioned predetermined period has passed, but after the flow direction of the exhaust gas is switched, the NO x purification in the reduction catalyst 17 is performed. It is also possible to monitor the transition of efficiency and set the flow direction of the exhaust gas to be restored when the purification efficiency deteriorates. Needless to say, the flow direction of the exhaust gas can be set back to the original based on the two conditions of elapsed time and NO x purification efficiency.
- step S10 after the start, the sensor value Tdos of the temperature sensor 33, the exhaust gas temperature Tgas estimated based on the operating state of the internal combustion engine 5, and other information related to the operating state of the internal combustion engine 5 are read.
- step S11 the temperature Tnzl of the nozzle plate 98 of the reducing agent injection valve 31 is calculated based on the information read in step S10.
- step S12 it is determined whether or not the calculated value of the temperature Tnzl of the nozzle plate 98 is equal to or higher than the above-described heat resistant temperature reference value Tnzl0.
- the process returns to step S10, and steps S10 and S11 are repeated until the temperature Tnzl of the nozzle plate 98 becomes equal to or higher than the heat resistant temperature reference value Tnzl0.
- step S13 where it is determined that the temperature Tnzl of the nozzle plate 98 is equal to or higher than the heat resistant temperature reference value Tnzl0, the reducing agent injection valve 31 may be damaged by heat.
- the flow direction of the exhaust gas is switched by the switching means 13 so as to deviate from the valve.
- the timer is activated in step S14, and it is determined whether or not the timer has expired in step S15. If it is determined in step S15 that the timer has expired, the process proceeds to step S16, and the flow direction of the exhaust gas is returned to the original by the switching means 13.
- step S10 the steps so far are repeated, and when the reducing agent injection valve 31 is in a state where thermal damage can occur, the flow direction of the exhaust gas is switched to divert from the reducing agent injection valve 31.
- Control of the means 13 is performed.
- the flow direction of the exhaust gas is diverted from the reducing agent injection valve 31 when there is a risk of thermal damage to the reducing agent injection valve 31. An increase in temperature is suppressed, and thermal damage to the reducing agent injection valve 31 is reduced.
- the control of the switching means 13 is performed while returning to the original state, so that the reducing agent supplied from the reducing agent injection valve 31 is performed. A decrease in the mixing property between the gas and the exhaust gas and an increase in the pressure loss of the exhaust gas can be avoided.
- a method of comparing the temperature of the nozzle plate portion of the reducing agent injection valve with the heat-resistant temperature reference value is adopted as a method for determining whether or not the reducing agent injection valve is in a state where thermal damage can occur.
- the second embodiment of the present invention includes a switching means that is disposed in an exhaust passage upstream of the reducing agent injection valve and switches the flow direction of the exhaust gas, and a nozzle hole of the reducing agent injection valve or around the injection hole
- the abnormality determination unit for determining whether or not the reducing agent is in a state that can be crystallized, and whether or not the reducing agent is crystallized or frozen around the nozzle hole, and the determination result by the abnormality determination unit
- An exhaust emission control device comprising a switching means control unit for controlling the switching means, and a control method for such an exhaust emission control device.
- FIG. 7 is a schematic diagram showing the overall configuration of the exhaust emission control device 100 according to the present embodiment.
- the exhaust gas purification device 100 of the present embodiment is provided in the middle of the exhaust passage connected to the internal combustion engine 5, and sequentially with the oxidation catalyst 14 from the exhaust upstream side.
- the filter 15, the switching means 13 for switching the flow direction of the exhaust gas, the reducing agent injection valve 31, and the reduction catalyst 17 are provided.
- Each of these constituent members has basically the same configuration as that of the first embodiment.
- the exhaust purification apparatus 100 of the present embodiment is an apparatus for improving the problem of urea crystallization and freezing, and an aqueous urea solution is used as the reducing agent.
- Cooling water circulation passage In the exhaust gas purification apparatus of the first embodiment, a plurality of radiating fins are provided in the reducing agent injection valve 31 in order to radiate heat from the reducing agent injection valve 31, but this embodiment
- the exhaust gas purification apparatus 100 is configured such that the cooling water of the internal combustion engine 5 flows around the reducing agent injection valve 31 so that the reducing agent injection valve 31 is more reliably cooled.
- the exhaust gas purification device 100 branches from a cooling water passage 86 provided in the internal combustion engine 5, passes through the periphery of the reducing agent injection valve 31 on the way, and joins the cooling water passage 86 again. 85.
- a cooling water flow rate adjusting valve 81 for adjusting the flow rate of the cooling water flowing through the cooling water circulation passage 85 is provided in the middle of the cooling water circulation passage 85. Then, the circulation pump 73 provided in the internal combustion engine 5 is driven, and the cooling water flow adjustment valve 81 is opened at a predetermined opening while the cooling water flows in the cooling water passage 86 in the internal combustion engine 5, thereby circulating the cooling water. Cooling water circulates in the passage 85, and the reducing agent injection valve 31 is cooled.
- FIG. 8 shows a state where the reducing agent injection valve 31 accommodated in the cooling jacket 101 is attached to the connection pipe 35 which is a part of the exhaust pipe 11.
- a cooling water passage 103 connected to the cooling water circulation passage 85 and configured as a part of the cooling water circulation passage 85 is provided inside the cooling jacket 101.
- the reducing agent injection valve 31 is accommodated in the cooling jacket 101, and the cooling device of the internal combustion engine 5 is allowed to pass through the cooling water passage 103 of the cooling jacket 101, thereby reducing the reducing agent injection valve 31. Cooling takes place. However, the cooling water of the internal combustion engine 5 is generally maintained at about 70 to 80 ° C. When the reducing agent injection valve 31 is cooled using this cooling water, the reducing agent injection valve 31 is efficiently cooled. On the other hand, the temperature of the reducing agent injection valve 31 is easily maintained at 80 to 100 ° C. where the solvent of the urea aqueous solution evaporates and urea is easily crystallized.
- the urea aqueous solution may freeze when it is cold.
- the freezing temperature varies depending on the concentration.
- the freezing temperature of an aqueous urea solution having a concentration of 32.5% is approximately ⁇ 11 ° C. Therefore, when the internal combustion engine 5 is in a stopped state during cold weather, the urea aqueous solution is frozen in the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31, and the reducing agent injection valve 31 is clogged when the internal combustion engine 5 is started. There is a risk that this will occur.
- the exhaust purification device 100 of the present embodiment includes the switching means 13 for switching the flow direction of the exhaust gas on the upstream side of the reducing agent injection valve 31 as in the first embodiment.
- FIGS. 9A and 9B show an example using the switching means 13A described in the first embodiment.
- FIG. 9A shows an injection passage 93a and a nozzle of the reducing agent injection valve 31.
- the exhaust passage formed by the pair of shielding plates 13a is formed at the center of the outlet portion of the flow dividing section 16, and the effective outlet area of the first passage 21 and the second The exit effective area of the passage 22 is made uniform. In this state, the exhaust gas that passes between the pair of shielding plates 13a is not biased toward either the attachment side of the reducing agent injection valve 31 or the opposite side.
- FIG. 9B shows a case where the reducing agent may crystallize around the injection passage 93a, the nozzle hole 98a, or the nozzle hole 98a of the reducing agent injection valve 31, or the reduction is performed at the injection passage 93a or the nozzle hole 98a.
- the state of the switching means 13A when the agent is crystallized or frozen is shown, and the outlet effective area of the second passage 22 with respect to the outlet effective area of the first passage 21 on the outlet side of the flow dividing section 16 is shown.
- the pair of shielding plates 13a are held so that the height becomes larger. In the state of FIG.
- the exhaust gas passing through the second passage 22 flows toward the attachment side of the reducing agent injection valve 31 along the tapered shape at the outlet portion, and the first passage 21.
- Exhaust gas that passes through the exhaust gas flows toward the attachment side of the reducing agent injection valve 31 due to the effect of vortex flow at the outlet portion.
- the exhaust gas flows as a whole close to the reducing agent injection valve 31, and the exhaust passage 93a and the vicinity of the nozzle hole 98a of the reducing agent injection valve 31 are heated by the exhaust heat.
- the configuration of the switching means 13 is not particularly limited as long as the flow direction of the exhaust gas can be switched.
- FIG. 10 shows functional portions of the DCU 60B provided in the exhaust gas purification apparatus 100 of the present embodiment regarding a portion relating to drive control of the reducing agent injection valve and the pump and a portion relating to control of the switching means for the flow direction of the exhaust gas.
- a configuration example represented by blocks is shown.
- the DCU 60B is mainly configured by a microcomputer having a known configuration, and includes a CAN information extraction / generation unit (indicated as “CAN information extraction / generation” in FIG. 10) and a pump drive control unit (in FIG. 10, “pump drive”). Control ”), a reducing agent injection valve operation control unit (indicated as“ Udv operation control ”in FIG. 10), an abnormality determination unit (indicated as“ abnormality determination ”in FIG. 10), and switching means control.
- the unit (noted as “switching means control” in FIG. 10) and the like are configured as main components. Each of these units is specifically realized by executing a program by a microcomputer (not shown).
- the functions of the CAN information extraction and generation unit, the pump drive control unit, and the operation control unit of the reducing agent injection valve are basically the same as those of the DCU of the first embodiment. Omitted.
- the abnormality determination unit of the DCU 60B is a reducing agent that estimates the temperature Tnzl of the nozzle plate 98 portion of the reducing agent injection valve 31 based on information such as the sensor value Tdos of the temperature sensor 33, the exhaust gas temperature Tgas, and the operating state of the internal combustion engine. Based on the injection valve temperature estimation unit (indicated as “Udv temperature estimation” in FIG. 10) and the calculated temperature Tnzl of the nozzle plate 98 portion, the injection passage 93a, nozzle hole 98a or nozzle hole of the reducing agent injection valve 31.
- a crystallization diagnosis unit (indicated as “crystallization diagnosis” in FIG.
- a clogging diagnosis unit (denoted as “clogging diagnosis” in FIG. 10) for diagnosing whether clogging has occurred is provided.
- the reducing agent injection valve temperature estimating unit estimates the temperature Tnzl of the nozzle plate 98 portion of the reducing agent injection valve 31 as in the reducing agent injection valve temperature estimating unit of the DCU 60A of the first embodiment. Further, in the crystallization diagnosis unit, the temperature Tnzl of the nozzle plate 98 estimated by the reducing agent injection valve temperature estimation unit is compared with a predetermined crystallization temperature reference value Tnzl1, and the injection passage 93a of the reducing agent injection valve 31 or the like. It is estimated whether or not the reducing agent can be crystallized around the nozzle hole 98a or the nozzle hole 98a.
- the crystallization temperature reference value Tnzl1 is set to 120 ° C.
- the clogging diagnosis unit continuously reads the sensor value Pdos of the pressure sensor 43, stops the pumping of the reducing agent by the pump 41, and opens the sensor value Pdos of the pressure sensor 43 when the reducing agent injection valve 31 is opened.
- the rate of decrease is monitored and the occurrence of clogging of the reducing agent injection valve 31 due to crystallization or freezing of the reducing agent is estimated.
- the determination result of whether or not clogging has occurred around the injection passage 93a, the nozzle hole 98a, or the nozzle hole 98a of the reducing agent injection valve 31 is output to the switching means control unit.
- the diagnostic method in each of these diagnostic units is not particularly limited, and various methods including known methods are conceivable.
- the switching means 13 is controlled based on the estimation result by the abnormality determination section, and the flow direction of the exhaust gas is switched.
- the DCU 60B provided in the exhaust purification apparatus 100 of the present embodiment, it is determined that the reducing agent can be crystallized around the nozzle hole 98a of the reducing agent injection valve 31, or the reducing agent is crystallized or frozen.
- the flow direction of the exhaust gas is directed to the attachment side of the reducing agent injection valve 31.
- a timer is connected to the switching means control unit, and the elapsed time after the flow direction of the exhaust gas is switched is measured. Then, when a predetermined period elapses after switching the flow direction of the exhaust gas, the switching means 13 is controlled so that the flow direction of the exhaust gas is restored. Accordingly, the time during which the flow direction of the exhaust gas is switched is suppressed within a predetermined period, and the mixing property between the exhaust gas and the reducing agent is reduced due to the fact that the flow direction of the exhaust gas is biased in one direction. The flow direction of the exhaust gas is switched while suppressing the influence on the exhaust pressure caused by reducing the effective outlet area of the first passage 21.
- the conditions for returning the flow direction to the original after switching the flow direction of the exhaust gas are the same as those in the DCU 60A of the first embodiment. It is also possible to use NO x purification efficiency as a condition, or to use two conditions of elapsed time and NO x purification efficiency in combination.
- step S20 after the start, the sensor value Tdos of the temperature sensor 33, the exhaust gas temperature Tgas estimated based on the operation state of the internal combustion engine 5, and other information related to the operation state of the internal combustion engine 5 are read.
- step S21 the temperature Tnzl of the nozzle plate 98 of the reducing agent injection valve 31 is calculated based on the information read in step S20.
- step S22 it is determined whether or not the calculated value of the temperature Tnzl of the nozzle plate 98 is less than the above-described crystallization temperature reference value Tnzl1. If the temperature Tnzl of the nozzle plate 98 is less than the crystallization temperature reference value Tnzl1, the reducing agent may crystallize around the injection passage 93a of the reducing agent injection valve, the nozzle hole 98a, or the nozzle hole 98a, step S24.
- step S23 based on the result of the clogging diagnosis, it is determined whether or not the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31 are clogged due to crystallization or freezing of the reducing agent.
- the process proceeds to step S24, while the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31 are clogged. If it is determined that there is no, the process returns to step S20, and the above steps are repeated again.
- step S24 it is determined whether or not the exhaust gas temperature Tgas discharged from the internal combustion engine 5 is equal to or higher than the switching temperature reference value Tgas0.
- the process proceeds to step S25, and the ECU 70 performs control to increase the exhaust gas temperature Tgas.
- step S25 the amount of unburned fuel contained in the exhaust gas is increased by a method such as increasing the fuel injection amount to the internal combustion engine 5 or delaying the injection timing. Control is performed.
- a method such as increasing the fuel injection amount to the internal combustion engine 5 or delaying the injection timing. Control is performed.
- the exhaust gas passes through the oxidation catalyst 14 provided on the upstream side of the switching means 13, the unburned fuel is oxidized, and the exhaust gas temperature Tgas rises due to the oxidation heat.
- various methods other than the method of increasing the amount of unburned fuel contained in the exhaust gas can be adopted as a method of increasing the exhaust gas temperature Tgas.
- step S25 After the exhaust gas temperature Tgas is raised in step S25, the process returns to step S24 again to determine whether or not the exhaust gas temperature Tgas is equal to or higher than the switching temperature reference value Tgas0, and the exhaust gas temperature Tgas is changed to the switching temperature reference value. The increase control of the exhaust gas temperature Tgas is continued until Tgas0 or more.
- step S26 After the exhaust gas temperature Tgas becomes equal to or higher than the switching temperature reference value Tgas0, in step S26, the exhaust gas is transmitted by the switching means 13 so that the exhaust heat is transmitted to the vicinity of the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31. The flow direction of the exhaust gas is switched, and the flow direction of the exhaust gas is directed to the reducing agent injection valve 31. Thereafter, the timer is activated in step S27, and it is determined whether or not the timer has expired in step S28. If it is determined in step S28 that the timer has expired, the process proceeds to step S29, where the switching means 13 returns the flow direction of the exhaust gas to the original.
- step S20 Thereafter, returning to step S20 again, the steps up to this point are repeated, and there is a possibility that the reducing agent may crystallize around the injection passage 93a of the reducing agent injection valve 31 and the nozzle hole 98a.
- the switching means 13 is controlled so that the flow direction of the exhaust gas is directed toward the reducing agent injection valve 31.
- the control method of the exhaust gas purification apparatus of the present embodiment there is a risk that the reducing agent may crystallize around the injection passage 93a, the nozzle hole 98a, or the nozzle hole 98a of the reducing agent injection valve 31, and the reducing agent injection valve.
- the flow direction of the exhaust gas is directed to the reducing agent injection valve 31 when the injection passage 93a and the nozzle hole 98a of 31 are clogged, the injection passage 93a, the nozzle hole 98a, or the nozzle hole 98a of the reducing agent injection valve 31 is directed.
- the ambient temperature of the liquid crystal is increased, crystallization of the reducing agent is prevented, or the reducing agent that has been crystallized or frozen is dissolved.
- the switching control is performed while the exhaust gas flow direction is directed to the reducing agent injection valve 31 for a preset time and then restored, the reducing agent and the exhaust gas supplied from the reducing agent injection valve 31 are exhausted. A decrease in miscibility with gas and an increase in exhaust gas pressure loss can be avoided.
- the third embodiment of the present invention is an exhaust purification device having a configuration in which the function of the abnormality determination unit of the second embodiment is added to the abnormality determination unit of the exhaust purification device described in the first embodiment. And a control method of such an exhaust purification device.
- the exhaust purification device of this embodiment and its control method will be described while omitting the description of the same points as the configurations of the exhaust purification device of the first embodiment and the second embodiment as appropriate.
- symbol is used about the member etc. which are common in the exhaust gas purification apparatus of 1st Embodiment and 2nd Embodiment, and description is abbreviate
- the exhaust purification device of the present embodiment is basically configured in the same manner as the exhaust purification device 10 described in the first embodiment shown in FIG.
- FIG. 12 is a functional diagram of a part relating to the drive control of the reducing agent injection valve 31 and the pump 41 and a part relating to the control of the switching means for the flow direction of the exhaust gas in the DCU 60C provided in the exhaust purification apparatus of the present embodiment. A configuration example represented by various blocks is shown.
- the DCU 60C is mainly configured by a microcomputer having a known configuration, and includes a CAN information extraction / generation unit (indicated as “CAN information extraction / generation” in FIG. 12) and a pump drive control unit (in FIG. 12, “pump drive”). Control ”), a reducing agent injection valve operation control unit (indicated as“ Udv operation control ”in FIG. 12), an abnormality determination unit (indicated as“ abnormality determination ”in FIG. 12), and switching means control. Section (indicated as “switching means control” in FIG. 12) and the like are configured as main components. Each of these units is specifically realized by executing a program by a microcomputer (not shown).
- the functions of the CAN information extraction and generation unit, the pump drive control unit, and the operation control unit of the reducing agent injection valve are basically the same as those of the DCU of the first embodiment, and thus description thereof is omitted. .
- the abnormality determination unit of the DCU 60C estimates the temperature Tnzl of the nozzle plate 98 portion of the reducing agent injection valve 31 based on the sensor value Tdos of the temperature sensor 33, the exhaust gas temperature Tgas, the operating state of the internal combustion engine, and the like. Based on the reducing agent injection valve temperature estimation unit (indicated as “Udv temperature estimation” in FIG. 12) and the calculated temperature Tnzl of the nozzle plate 98 portion, the reducing agent injection valve 31 is in a state where it can be damaged by heat.
- a thermal damage determination unit (indicated as “thermal damage determination” in FIG.
- a crystallization diagnosis unit (denoted as “crystallization diagnosis” in FIG. 12) for diagnosing whether or not the reducing agent can be crystallized around the hole 98a or the nozzle hole 98a, and an injection passage 93a of the reducing agent injection valve 31.
- nozzle hole 98a Blockage diagnosis unit for diagnosing whether Mari does not occur and a (in FIG. 12 as "diagnosing blockage” notation.) And.
- This routine may be executed all the time during the operation of the internal combustion engine 5, or may be executed as necessary.
- step S30 after the start, the sensor value Tdos of the temperature sensor 33, the exhaust gas temperature Tgas estimated based on the operating state of the internal combustion engine 5, and other information related to the operating state of the internal combustion engine 5 are read.
- step S31 the temperature Tnzl of the nozzle plate 98 of the reducing agent injection valve 31 is calculated based on the information read in step S30.
- step S32 it is determined whether or not the calculated value of the temperature Tnzl of the nozzle plate 98 is equal to or higher than the above-described heat resistant temperature reference value Tnzl0.
- the process proceeds to step S33, and the flow direction of the exhaust gas is diverted from the reducing agent injection valve.
- the flow direction of the exhaust gas is switched by the switching means 13.
- the process proceeds to step S34, and this time, the calculated value of the temperature Tnzl of the nozzle plate 98 is less than the crystallization temperature reference value Tnzl1 described above. It is determined whether or not there is. If the temperature Tnzl of the nozzle plate 98 is less than the crystallization temperature reference value Tnzl1, the reducing agent may crystallize around the injection passage 93a, the nozzle hole 98a or the nozzle hole 98a of the reducing agent injection valve 31.
- the reducing agent may crystallize around the injection passage 93a, the nozzle hole 98a, or the nozzle hole 98a of the reducing agent injection valve 31. Since there is no, the process proceeds to step S35.
- step S35 based on the result of the clogging diagnosis, it is determined whether or not the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31 are clogged due to crystallization or freezing of the reducing agent.
- the process proceeds to step S36, while the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31 are clogged. If it is determined that there is not, the process returns to step S30, and the steps so far are repeated.
- step S36 it is determined whether or not the exhaust gas temperature Tgas discharged from the internal combustion engine 5 is equal to or higher than the switching temperature reference value Tgas0.
- the process proceeds to step S37, and the ECU 70 performs control to increase the exhaust gas temperature Tgas.
- the method for raising the exhaust gas temperature Tgas is as described in the second embodiment.
- step S37 After the exhaust gas temperature Tgas is raised in step S37, the process returns to step S36 again to determine whether or not the exhaust gas temperature Tgas is equal to or higher than the switching temperature reference value Tgas0, and the exhaust gas temperature Tgas is changed to the switching temperature reference value. The increase control of the exhaust gas temperature Tgas is continued until Tgas0 or more.
- step S38 After the exhaust gas temperature Tgas becomes equal to or higher than the switching temperature reference value Tgas0, in step S38, the exhaust gas is transmitted by the switching means 13 so that the exhaust heat is transmitted to the vicinity of the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31. The flow direction of the exhaust gas is switched, and the flow direction of the exhaust gas is directed to the reducing agent injection valve 31.
- step S33 or step S38 when the flow direction of the exhaust gas is switched by the switching means 13, the process proceeds to step S39, the timer is operated, and then it is determined whether or not the timer has ended in step S40. When it is determined in step S40 that the timer has expired, the process proceeds to step S41, and the switching means 13 returns the flow direction of the exhaust gas to the original.
- the conditions for returning the flow direction of the exhaust gas to the original conditions are not limited to the case where the above-described predetermined period has elapsed, but are based on the NO x purification efficiency in the reduction catalyst 17, or the elapsed time and NO x purification. Two conditions of efficiency may be used in combination.
- step S30 the steps so far are repeated, and when the reducing agent injection valve 31 is in a state where thermal damage can occur, switching is performed so that the flow direction of the exhaust gas deviates from the reducing agent injection valve 31.
- Control of the means 13 is performed.
- the reducing agent may crystallize around the injection passage 93a, the nozzle hole 98a, or the nozzle hole 98a of the reducing agent injection valve 31, and the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31 are clogged. If it occurs, the switching means 13 is controlled so that the flow direction of the exhaust gas is directed toward the reducing agent injection valve 31.
- the flow direction of the exhaust gas is diverted from the reducing agent injection valve 31 when there is a risk of thermal damage to the reducing agent injection valve 31.
- An increase in temperature is suppressed, and thermal damage to the reducing agent injection valve 31 is reduced.
- the reducing agent may crystallize around the injection passage 93a, the nozzle hole 98a or the nozzle hole 98a of the reducing agent injection valve 31, and the injection passage 93a and the nozzle hole 98a of the reducing agent injection valve 31 are clogged.
- the flow direction of the exhaust gas is directed to the reducing agent injection valve 31, so that the temperature around the injection passage 93 a and the nozzle hole 98 a of the reducing agent injection valve 31 is raised, and crystallization of the reducing agent is prevented.
- the reducing agent that has been crystallized or frozen is dissolved. Therefore, while preventing thermal damage to the reducing agent injection valve 31, crystallization or freezing of the reducing agent is prevented, and the supply of the reducing agent from the reducing agent injection valve 31 is performed stably.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
比較的簡単かつ安価な構成で、還元剤噴射弁の熱損傷や、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化を防いだり、さらに、発生した還元剤の結晶化や凍結を溶解させたりすることのできる内燃機関の排気浄化装置、及びその制御方法を提供する。 内燃機関の排気通路に設けられる内燃機関の排気浄化装置において、還元剤噴射弁よりも排気上流側に配設され、排気ガスの流れ方向を切替える切替手段と、還元剤噴射弁が熱損傷を受け得る状態にあるか否か、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあるか否か、及び噴孔又は噴孔の周囲で還元剤が結晶化又は凍結しているか否か、のうちの少なくとも一つを判定する異常判定部と、異常判定部による判定結果をもとに切替手段を制御する切替手段制御部と、を備える。
Description
本発明は、内燃機関の排気浄化装置及びその制御方法に関する。特に、還元剤噴射弁によって還元触媒の上流側に還元剤を供給して排気ガスの浄化を行う内燃機関の排気浄化装置及びその制御方法に関する。
従来、ディーゼルエンジン等の内燃機関から排出される排気ガス中には窒素酸化物(以下、「NOX」と称する。)が含まれている。そのため、NOXを選択的に還元する還元触媒が排気通路中に配設され、還元触媒の排気上流側に配置された還元剤噴射弁から尿素水溶液等の還元剤を排気ガス中に噴射し、当該還元触媒中でNOXの還元浄化を行う排気浄化装置が用いられている。
このような排気浄化装置において、還元剤として用いられる尿素水溶液は、溶媒である水分のみが蒸発するような温度下において尿素が結晶化したり、冷寒時において凍結したりする性質がある。すなわち、還元剤として尿素水溶液を用いた場合には、温度条件によっては、尿素水溶液が還元剤噴射弁の噴孔やその周囲において結晶化したり凍結したりして、還元剤噴射弁の噴孔の詰まりや還元剤の噴射性状の異常が発生するおそれがある。還元剤噴射弁の噴孔の詰まりが生じていると、還元剤を噴射しづらくなったり噴射できなくなったりして、還元剤の噴射量が目標噴射量に対して不足しやすくなる。また、還元剤の噴射性状が異常な状態においては、噴射された還元剤が効率的に微粒化されずに、排気管の内面や還元触媒等に液状のまま付着したり、アンモニアへの分解が促進されづらくなったりする。そのため、還元剤噴射弁の噴孔に詰まりが生じているか否かの判定を行う自己診断機能が備えられた排気浄化装置がある(例えば、特許文献1参照)。
また、排気浄化装置において用いられる還元剤噴射弁は、噴孔の開閉を行う弁体の着座及び離座を制御するための電磁制御部分を備えており、この電磁制御部分は、比較的熱に弱いことが知られている。また、還元剤噴射弁の電磁制御部分は、電気絶縁性を確保する等の目的で、樹脂等の比較的熱に弱い材料で被覆されている。さらに、還元剤噴射弁が排気管に固定される際に、還元剤噴射弁の先端にノズルプレート等が設けられる場合があり、このノズルプレートについても、高温に晒されるとクラックが発生するおそれがある。
そのため、還元剤噴射弁の電磁制御部分や樹脂部分等が高温に晒されて損傷(以下、この損傷を「熱損傷」と称する。)することのないように、還元剤噴射弁を冷却させることができるように構成された排気浄化装置が種々提案されている。例えば、還元剤として燃料を噴射する排気浄化装置ではあるが、排気通路に接続された還元剤噴射弁に設けた冷却水通路と、冷却水通路と内燃機関の冷却水経路とを接続する循環通路と、冷却水を循環通路を介して冷却水通路と内燃機関の冷却水経路間で循環させる循環手段とを備えるようにした排気浄化装置が開示されている(例えば、特許文献2参照)。
ところで、還元剤噴射弁の噴孔の詰まりに限らず、噴孔又は噴孔の周囲における還元剤の結晶化や凍結が生じた場合には、その間、還元剤の噴射性状が異常な状態になり、NOXの還元効率が低下するため、還元剤噴射弁等を取り外すことによって修理や交換等を行わざるを得ない。そのような修理や交換を行っている間は、車両等の運転を行うことができなくなることから、還元剤噴射弁の噴孔の詰まりや、噴孔又は噴孔の周囲における還元剤の結晶化又は凍結が生じた場合に、還元剤噴射弁を取り外したりすることなく詰まりや結晶化や凍結を改善できる方法が望まれている。
また、特許文献2に記載の排気浄化装置は、還元剤噴射弁を効率的に冷却させることができるものの、還元剤噴射弁の冷却水通路や、内燃機関と還元剤噴射弁とを接続する循環通路を設けたり、冷却水の循環手段を設けたりする必要があり、排気浄化装置の構成が複雑化したり、コストが大幅に増加したりするおそれがある。
そこで、本発明の発明者は鋭意努力し、還元剤噴射弁が熱損傷を受け得る状態にあるか否かや、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化したり、結晶化や凍結が生じたりする状態にあるか否かを判定し、判定結果をもとに排気ガスの流れ方向を切替えることにより、このような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明の目的は、比較的簡単かつ安価な構成で、還元剤噴射弁の熱損傷を防いだり、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化を防いだり、さらに、発生した還元剤の結晶化や凍結を溶解させたりすることのできる内燃機関の排気浄化装置、及びその制御方法を提供することである。
本発明によれば、内燃機関の排気通路に設けられ、排気ガスを浄化するための還元剤を排気通路内に供給する還元剤噴射弁と、還元剤噴射弁よりも排気下流側に配置された還元触媒と、を備えた内燃機関の排気浄化装置において、還元剤噴射弁よりも排気上流側に配設され、排気ガスの流れ方向を切替える切替手段と、還元剤噴射弁が熱損傷を受け得る状態にあるか否か、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあるか否か、及び噴孔又は噴孔の周囲で還元剤が結晶化又は凍結しているか否か、のうちの少なくとも一つを判定する異常判定部と、異常判定部による判定結果をもとに切替手段を制御する切替手段制御部と、を備えることを特徴とする内燃機関の排気浄化装置が提供され、上述した問題を解決することができる。
また、本発明の内燃機関の排気浄化装置を構成するにあたり、切替手段制御部は、異常判定部により還元剤噴射弁が熱損傷を受け得る状態にあると判定された場合に、排気ガスの流れ方向を還元剤噴射弁から逸らすように切替手段を制御することが好ましい。
また、本発明の内燃機関の排気浄化装置を構成するにあたり、切替手段制御部は、異常判定部により噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあると判定された場合に、排気ガスの流れ方向を還元剤噴射弁に向けるように切替手段を制御することが好ましい。
また、本発明の内燃機関の排気浄化装置を構成するにあたり、切替手段制御部は、異常判定部により噴孔又は噴孔の周囲で還元剤が結晶化又は凍結していると判定された場合に、排気ガスの流れ方向を還元剤噴射弁に向けるように切替手段を制御することが好ましい。
また、本発明の内燃機関の排気浄化装置を構成するにあたり、切替手段制御部は、異常判定部により噴孔又は噴孔の周囲で還元剤が結晶化又は凍結していると判定された場合に、排気ガスの温度が所定温度以上であるときに排気ガスの流れ方向を還元剤噴射弁に向けるように切替手段を制御することが好ましい。
また、本発明の内燃機関の排気浄化装置を構成するにあたり、切替手段制御部は、あらかじめ設定された所定期間、排気ガスの流れ方向を還元剤噴射弁から逸らすように、又は、還元剤噴射弁に向けるように切替手段を制御することが好ましい。
また、本発明の別の態様は、内燃機関の排気通路に設けられ、排気ガスを浄化するための還元剤を排気通路内に供給する還元剤噴射弁と、還元剤噴射弁よりも排気下流側に配置された還元触媒と、を備えた内燃機関の排気浄化装置を制御するための排気浄化装置の制御方法において、還元剤噴射弁が熱損傷を受け得る状態にあるか否か、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあるか否か、及び、噴孔又は噴孔の周囲で還元剤が結晶化又は凍結しているか否か、のうちの少なくとも一つを判定し、判定の結果をもとに、還元剤噴射弁の上流側における排気ガスの流れ方向を切替えることを特徴とする排気浄化装置の制御方法である。
なお、本明細書において「噴孔」とは、実際に還元剤が噴射される孔だけでなく、その孔の直前の還元剤通路も含む概念である。
本発明の内燃機関の排気浄化装置によれば、排気ガスの流れ方向を切替える切替手段と、所定の異常判定部及び切替手段制御部とを備えることにより、推定される還元剤噴射弁の熱的状態や、噴孔又は噴孔の周囲における還元剤の結晶化又は凍結の状態に応じて、排気ガスの流れ方向が切替えられる。その結果、排気ガスの流れ方向が還元剤噴射弁から逸らされたり、還元剤噴射弁に向けられたりされることで、比較的簡単かつ安価な構成にもかかわらず、還元剤噴射弁の熱損傷や、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化が防止され、あるいは、発生した還元剤の結晶や凍結した還元剤が溶解されやすくなる。
また、本発明の内燃機関の排気浄化装置において、還元剤噴射弁が熱損傷を受け得る状態にあると判定されたとき、切替手段制御部が、排気ガスの流れ方向を還元剤噴射弁から逸らすように切替手段を制御することにより、直接的に又は排気管を介して生じる還元剤噴射弁への排気熱の伝達が抑制され、還元剤噴射弁の熱損傷が防止される。
また、本発明の内燃機関の排気浄化装置において、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあると判定されたとき、切替手段制御部が、排気ガスの流れ方向を還元剤噴射弁に向けるように切替手段を制御することにより、還元剤噴射弁の噴孔又は噴孔の周囲への排気熱の供給が促され、排気熱を利用して、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化が防止される。
また、本発明の内燃機関の排気浄化装置において、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化や凍結が生じていると判定されたとき、切替手段制御部が、排気ガスの流れ方向を還元剤噴射弁に向けるように切替手段を制御することにより、還元剤噴射弁の噴孔又は噴孔の周囲への排気熱の供給が促され、排気熱を利用して、還元剤の結晶や凍結した還元剤が溶解されやすくなる。
また、本発明の内燃機関の排気浄化装置において、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化や凍結が生じていると判定された場合において、排気ガスの温度が所定温度以上であるときに排気ガスの流れ方向を還元剤噴射弁に向けるように切替手段が制御されることにより、還元剤噴射弁の噴孔の周囲の状態が、還元剤の結晶化が促されるような状態になることが防止される。
また、本発明の内燃機関の排気浄化装置において、切替手段制御部が、排気ガスの流れ方向を還元剤噴射弁から逸らすように又は還元剤噴射弁に向けるように切替手段を制御する時間を、あらかじめ設定された所定期間とすることより、排気ガスの流れ方向が切替えられたことによる、排気ガスと還元剤との混合性の低下や排気圧力への影響が最小限に抑えられる。
また、本発明の内燃機関の排気浄化方法によれば、還元剤噴射弁が熱損傷を受け得る状態にあるか否や、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得るかあるいは還元剤の結晶化や凍結が生じ得るか否かを判定した結果をもとに、排気ガスの流れ方向が切替えられる。その結果、排気ガスの流れ方向が還元剤噴射弁から逸らされたり、還元剤噴射弁に向けられたりされることで、比較的簡単かつ安価な構成にもかかわらず、還元剤噴射弁の熱損傷や、還元剤噴射弁の噴孔又は噴孔の周囲における還元剤の結晶化が防止され、あるいは、発生した還元剤の結晶や凍結した還元剤が溶解されやすくなる。
以下、図面を参照しながら、本発明の内燃機関の排気浄化装置及びその制御方法にかかる実施の形態について具体的に説明する。ただし、この実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。
[第1の実施の形態]
本発明の第1の実施の形態は、還元剤噴射弁の排気上流側の排気通路に配設され、排気ガスの流れ方向を切替える切替手段と、還元剤噴射弁が熱損傷を受け得る状態にあるか否かを判定する異常判定部と、異常判定部による判定結果をもとに切替手段を制御する切替手段制御部と、を備えることを特徴とする内燃機関の排気浄化装置、及びそのような排気浄化装置の制御方法である。
本発明の第1の実施の形態は、還元剤噴射弁の排気上流側の排気通路に配設され、排気ガスの流れ方向を切替える切替手段と、還元剤噴射弁が熱損傷を受け得る状態にあるか否かを判定する異常判定部と、異常判定部による判定結果をもとに切替手段を制御する切替手段制御部と、を備えることを特徴とする内燃機関の排気浄化装置、及びそのような排気浄化装置の制御方法である。
1.内燃機関の排気浄化装置
(1)全体構成
まず、図1を用いて本実施形態の内燃機関の排気浄化装置(以下、単に「排気浄化装置」と称する場合がある。)10の構成例を説明する。
図1は排気浄化装置10の全体構成を表す概略図を示している。この排気浄化装置10は、内燃機関5に接続された排気通路の途中に設けられ、排気上流側から順次に、酸化触媒14と、排気ガス中の排気微粒子を捕集するパティキュレートフィルタ(以下、単に「フィルタ」と称する。)15と、排気ガスの流れ方向を切替える切替手段13と、排気ガス中に還元剤を供給する還元剤噴射弁31と、還元剤を利用して排気ガス中のNOXを選択的に還元する還元触媒17とを備えている。
(1)全体構成
まず、図1を用いて本実施形態の内燃機関の排気浄化装置(以下、単に「排気浄化装置」と称する場合がある。)10の構成例を説明する。
図1は排気浄化装置10の全体構成を表す概略図を示している。この排気浄化装置10は、内燃機関5に接続された排気通路の途中に設けられ、排気上流側から順次に、酸化触媒14と、排気ガス中の排気微粒子を捕集するパティキュレートフィルタ(以下、単に「フィルタ」と称する。)15と、排気ガスの流れ方向を切替える切替手段13と、排気ガス中に還元剤を供給する還元剤噴射弁31と、還元剤を利用して排気ガス中のNOXを選択的に還元する還元触媒17とを備えている。
この排気浄化装置10は、排気ガス中に含まれる排気微粒子及びNOXをともに除去するための構成の排気浄化装置であり、排気微粒子はフィルタ15によって捕集され、NOXは還元触媒17で還元され、窒素や水、二酸化炭素に分解される。
また、酸化触媒14は、主として、捕集された排気微粒子によってフィルタ15の目詰まりが発生することを防ぐために所定の時期に行われる、フィルタ15の再生に用いられる。具体的には、酸化触媒14は、フィルタ15の再生時に供給される未燃燃料を酸化することにより、フィルタ15に流入する排気ガスの温度を昇温するために用いられ、昇温させられた排気ガスによって、フィルタ15に捕集された排気微粒子が燃焼させられる。
また、還元剤噴射弁31は還元剤供給装置20の一部として構成されており、還元剤供給装置20は、還元触媒17中でのNOXの還元反応に用いられる還元剤を還元触媒17の排気上流側に供給するために用いられる。この還元剤供給装置20は、還元触媒17の排気上流側の排気管11に固定された還元剤噴射弁31と、還元剤が貯蔵された貯蔵タンク50と、貯蔵タンク50内の還元剤を還元剤噴射弁31に向けて圧送するポンプ41を含むポンプモジュール42とを備えている。また、ポンプモジュール42と還元剤噴射弁31とを接続する還元剤通路58には、還元剤通路58内の圧力を検出する圧力センサ43が設けられるとともに、還元剤通路58のうちの還元剤噴射弁31の接続部近くには温度センサ33が設けられ、還元剤噴射弁31に供給される還元剤の温度が検出される。
本実施形態の排気浄化装置10では、還元剤として尿素水溶液が用いられるが、使用できる還元剤は尿素水溶液に制限されるものではなく、未燃燃料(HC)であってもよい。
本実施形態の排気浄化装置10では、還元剤として尿素水溶液が用いられるが、使用できる還元剤は尿素水溶液に制限されるものではなく、未燃燃料(HC)であってもよい。
また、排気浄化装置10は、排気通路内に還元剤を噴射させるために還元剤供給装置20の制御を行うための制御装置(以下、「DCU:Dosing Control Unit」と称する。)60Aを備えている。DCU60AはCAN(Controller Area Network)65に接続されており、このCAN65には、内燃機関の運転状態を制御するためのコントロールユニット(以下、「ECU:Electronic Control Unit)」と称する。)70も接続されている。このCAN65上には、排気浄化装置10に備えられたセンサ情報をはじめとして、燃料噴射量や噴射タイミング、回転数等の内燃機関5の運転状態に関する情報が書き込まれるようになっており、DCU60Aは、CAN65上の情報を読み込み、また、CAN65上に情報を出力できるようになっている。
なお、本実施形態では、ECU70とDCU60Aとが別のコントロールユニットからなり、CAN65を介して情報のやり取りができるようにされているが、これらのECU70とDCU60Aとを一つのコントロールユニットとして構成しても構わないし、CAN65が省略されていても構わない。
(2)還元剤噴射弁
本実施形態の排気浄化装置10では、通電制御により開弁のON-OFFが制御可能な電磁制御式の還元剤噴射弁31が用いられる。図2は、電磁制御式の還元剤噴射弁31の構成の一例を示す部分断面図である。
この還元剤噴射弁31は、磁性筒体91a、ヨーク91b及び樹脂カバー91cからなるケーシング91を備えている。このケーシング91の磁性筒体91aの内部は還元剤通路92になっており、還元剤通路92にはポンプモジュール(図示せず。)によって圧送される還元剤が供給される。この燃料通路92は、磁性筒体91aの上端が流入口となり、この流入口からバルブボディ93の位置まで軸方向に延びている。
本実施形態の排気浄化装置10では、通電制御により開弁のON-OFFが制御可能な電磁制御式の還元剤噴射弁31が用いられる。図2は、電磁制御式の還元剤噴射弁31の構成の一例を示す部分断面図である。
この還元剤噴射弁31は、磁性筒体91a、ヨーク91b及び樹脂カバー91cからなるケーシング91を備えている。このケーシング91の磁性筒体91aの内部は還元剤通路92になっており、還元剤通路92にはポンプモジュール(図示せず。)によって圧送される還元剤が供給される。この燃料通路92は、磁性筒体91aの上端が流入口となり、この流入口からバルブボディ93の位置まで軸方向に延びている。
また、磁性筒体91a内にはバルブボディ93が配置されている。このバルブボディ93は筒状の弁座部材であって、還元剤を噴射する噴射通路93aが設けられている。また、バルブボディ93の先端面には、複数のノズル孔98aが穿設されたノズルプレート98が噴射通路93aを覆う位置に固着されている。この還元剤噴射弁31においては、噴射通路93a及びノズル孔98aが「噴孔」として概念される。
また、コア筒94とバルブボディ93との間に、磁性筒体91a内を軸方向に変位可能な弁体95が収容されている。また、磁性筒体91aとヨーク91bとの間には電磁コイル88が備えられている。この電磁コイル88に給電されることにより、弁体95のアーマチュア97がバルブスプリング99の付勢力に抗して磁気的に吸着される。その結果、弁部材96が離座し、還元剤が噴射通路93a及びノズル孔98aを介して外部に噴射される。
また、コア筒94とバルブボディ93との間に、磁性筒体91a内を軸方向に変位可能な弁体95が収容されている。また、磁性筒体91aとヨーク91bとの間には電磁コイル88が備えられている。この電磁コイル88に給電されることにより、弁体95のアーマチュア97がバルブスプリング99の付勢力に抗して磁気的に吸着される。その結果、弁部材96が離座し、還元剤が噴射通路93a及びノズル孔98aを介して外部に噴射される。
また、磁性筒体91aの外周側には樹脂カバー91cが設けられている。この樹脂カバー91cは、磁性筒体91aの外周側にヨーク91bや電磁コイル88等を組付けた状態で、射出成形等の手段を用いて形成されている。
このように構成された電磁制御式の還元剤噴射弁31において、電磁コイル88や樹脂カバー91c、ノズルプレート98は、弁体95やバルブボディ93等の他の構成部材と比較して熱に弱く、その耐熱温度は、例えば、電磁コイル88や還元剤霧噴射状態のノズルプレート98で160℃程度、樹脂カバー91cで120℃程度である。そのため、本実施形態の排気浄化装置10で用いられる還元剤噴射弁31のケーシング91の外周には複数の放熱フィン121が設けられており、還元剤噴射弁31に直接的に又は排気管11を介して伝達されてきた排気熱が放出されやすくなっている。
このように構成された電磁制御式の還元剤噴射弁31において、電磁コイル88や樹脂カバー91c、ノズルプレート98は、弁体95やバルブボディ93等の他の構成部材と比較して熱に弱く、その耐熱温度は、例えば、電磁コイル88や還元剤霧噴射状態のノズルプレート98で160℃程度、樹脂カバー91cで120℃程度である。そのため、本実施形態の排気浄化装置10で用いられる還元剤噴射弁31のケーシング91の外周には複数の放熱フィン121が設けられており、還元剤噴射弁31に直接的に又は排気管11を介して伝達されてきた排気熱が放出されやすくなっている。
(3)切替手段
上述したように、還元剤噴射弁31の外周には放熱フィン121が設けられているものの、放熱フィン121のみでは、還元剤噴射弁31の持つ熱量が十分に放熱されない場合がある。特に、上述したフィルタの再生制御時等には、フィルタを通過して還元剤噴射弁31の取付位置の近傍に到達する排気ガスの温度が600℃以上になる場合があり、放熱フィン121のみでは、電磁コイル88や樹脂カバー91cを熱損傷から守ることができないおそれがある。そのため、本実施形態の排気浄化装置10は、還元剤噴射弁31の排気上流側に、排気ガスの流れ方向を切替えるための切替手段13を備えている。
上述したように、還元剤噴射弁31の外周には放熱フィン121が設けられているものの、放熱フィン121のみでは、還元剤噴射弁31の持つ熱量が十分に放熱されない場合がある。特に、上述したフィルタの再生制御時等には、フィルタを通過して還元剤噴射弁31の取付位置の近傍に到達する排気ガスの温度が600℃以上になる場合があり、放熱フィン121のみでは、電磁コイル88や樹脂カバー91cを熱損傷から守ることができないおそれがある。そのため、本実施形態の排気浄化装置10は、還元剤噴射弁31の排気上流側に、排気ガスの流れ方向を切替えるための切替手段13を備えている。
図3(a)~(b)は、切替手段13Aが備えられた排気通路を排気ガスの流れ方向の側方側から見た断面図を示している。図3(a)~(b)に示す排気浄化装置10は、還元剤噴射弁31の取付位置の排気上流側に、排気ガスの流れ方向に沿って形成された仕切り板18によって、排気ガスの通過領域が、還元剤噴射弁31の取付側の第1の通路21と、その反対側の第2の通路22とに分けられた分流部16を有している。この分流部16の両端部はテーパ状に形成され、分流部16の出口部分では排気通路の通路面積が絞られている。
また、分流部16の出口部分には、還元剤噴射弁31の取付側及びその反対側からそれぞれ排気通路内に突設する一対の可動式の遮蔽板13aからなる切替手段13Aが設けられている。この切替手段13Aは、一対の遮蔽板13aを上下動させることで、還元剤噴射弁31の取付側の第1の通路21の出口有効面積と、還元剤噴射弁31の取付側とは反対側の第2の通路22の出口有効面積とを変化させることができる。
図3(a)は、還元剤噴射弁31の熱損傷のおそれがない場合の、通常時の切替手段13Aの状態を示しており、一対の遮蔽板13aによって形成される排気通路が分流部16の出口部分の中央部に形成されるとともに、第1の通路21の出口有効面積及び第2の通路22の出口有効面積が均等にされている。この状態では、一対の遮蔽板13aの間を通過する排気ガスが還元剤噴射弁31の取付側又はその反対側のいずれかに偏って流されることはない。
また、図3(a)に示す状態では、一対の遮蔽板13aの間に形成される排気通路の通路面積が、前後の排気通路の通路面積よりも小さくされている。そのため、一対の遮蔽板13aの間を通過する排気ガスは、下流側において乱流になりやすく、還元剤噴射弁31から供給される還元剤が排気ガス中に分散されやすくなる。
一方、図3(b)は、還元剤噴射弁31の熱損傷のおそれがある場合の切替手段13Aの状態を示しており、分流部16の出口側において、第2の通路22の出口有効面積に対して第1の通路21の出口有効面積が大きくなるように、一対の遮蔽板13aが保持されている。この図3(b)に示す状態では、第1の通路21を通過する排気ガスは、出口部分においてテーパ形状に沿って還元剤噴射弁31の取付側とは反対側に向かって流されるとともに、第2の通路22を通過する排気ガスは、出口部分において渦流の効果によって、やはり還元剤噴射弁31の取付側とは反対側に向かって流される。その結果、排気ガスは全体として還元剤噴射弁31から逸らされるように流されることになり、排気ガスから還元剤噴射弁31への直接的なあるいは排気管11を介しての熱伝達が抑制される。
切替手段は、図3(a)~(b)に示す構成以外にも種々採用することができる。例えば、図4(a)~(b)に示す切替手段13Bは、回転軸Pを中心に回動可能な半円状のプレート13bを用いて構成され、下流側に向けて排気通路の通路面積が小さくなるテーパ部分19に設けられている。
図4(a)は、還元剤噴射弁31の熱損傷のおそれがない場合の、通常時の切替手段13Bの状態を示しており、プレート13bが排気ガスの流れ方向に沿って保持されている。この状態では、テーパ部分19を通過する排気ガスが還元剤噴射弁31の取付側又はその反対側のいずれかに偏って流されることはない。
また、図4(a)に示す状態では、テーパ部分19において排気通路の通路面積が絞られている。そのため、テーパ部分19を通過する排気ガスは、下流側において乱流になりやすく、還元剤噴射弁31から供給される還元剤が排気ガス中に分散されやすくなる。
また、図4(a)に示す状態では、テーパ部分19において排気通路の通路面積が絞られている。そのため、テーパ部分19を通過する排気ガスは、下流側において乱流になりやすく、還元剤噴射弁31から供給される還元剤が排気ガス中に分散されやすくなる。
一方、図4(b)は、還元剤噴射弁31の熱損傷のおそれがある場合の切替手段13Bの状態を示しており、回転軸Pとは反対側の端部が還元剤噴射弁31の取付側とは反対側に向けられてプレート13bが保持されている。この図3(b)の状態では、テーパ部分19を通過する大部分の排気ガス(図3(b)の上側を通過する排気ガス)が、テーパ形状及びプレート13bの傾斜に沿って還元剤噴射弁31の取付側とは反対側に流される。その結果、排気ガスは全体として還元剤噴射弁31から逸らされるように流されることになり、排気ガスから還元剤噴射弁31への直接的なあるいは排気管11を介しての熱伝達が抑制される。
また、図3(a)~(b)や図4(a)~(b)に示す切替手段13A、13Bでは、排気ガスの流れ方向が切替えられた場合であっても、通常の状態と較べて排気通路の有効通路面積が小さくならないように構成されている。したがって、排気ガスの圧力損失の低下が抑えられ、内燃機関5に不具合を生じさせることがないため、好適な態様である。
(4)制御装置(DCU)
図5は、本実施形態の排気浄化装置10に備えられたDCU60Aにおける、還元剤噴射弁及びポンプの駆動制御に関する部分と、排気ガスの流れ方向の切替手段の制御に関する部分とについて、機能的なブロックで表した構成例を示している。
図5は、本実施形態の排気浄化装置10に備えられたDCU60Aにおける、還元剤噴射弁及びポンプの駆動制御に関する部分と、排気ガスの流れ方向の切替手段の制御に関する部分とについて、機能的なブロックで表した構成例を示している。
DCU60Aは、公知の構成からなるマイクロコンピュータを中心に構成されており、CAN情報取出生成部(図5では「CAN情報取出生成」と表記。)と、ポンプ駆動制御部(図5では「ポンプ駆動制御」と表記。)と、還元剤噴射弁の動作制御部(図5では「Udv動作制御」と表記)と、異常判定部(図5では「異常判定」と表記。)と、切替手段制御部(図5では「切替手段制御」と表記。)等を主要な構成要素として構成されている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプログラムの実行によって実現されるものである。
このうち、CAN情報取出生成部では、CAN65上に存在する情報が読み込まれるとともに、それぞれの情報が各部に対して出力される。本実施形態の排気浄化装置10においては、CAN情報取出生成部によって、少なくとも温度センサ33のセンサ値Tdos及び圧力センサ43のセンサ値Pdosや、内燃機関の運転状態に基づきECU70で推定された排気ガスの温度TgasやNOX流量Lnox等の情報が読み込まれ、各部に出力されるようになっている。
ポンプ駆動制御部では、CAN情報取出生成部から出力される、圧力センサ43のセンサ値Pdosが読み込まれ、このセンサ値Pdosをもとにポンプ41のフィードバック制御が行われる。このポンプ41のフィードバック制御によって、還元剤通路58内の圧力がほぼ一定の状態に維持される。
また、還元剤噴射弁の動作制御部では、CAN情報取出生成部から出力される、貯蔵タンク50内の還元剤の濃度Qtnkや温度Ttnk等に関する情報、排気ガスの温度Tgas、還元触媒17の温度Tcat等に関する情報が読み込まれ、排気ガス中のNOXを還元するために必要な還元剤の噴射量Qdosが算出され、還元剤噴射弁31の動作制御を行う操作部(図示せず。)に対して制御信号Sudvが出力される。
また、DCU60Aの異常判定部は、温度センサ33のセンサ値Tdosや、排気ガス温度Tgas、内燃機関5の運転状態等の情報に基づいて還元剤噴射弁31のノズルプレート98部分の温度Tnzlを推定する還元剤噴射弁温度推定部(図5では「Udv温度推定」と表記。)と、算出されたノズルプレート98部分の温度Tnzlをもとに還元剤噴射弁31が熱損傷を受け得る状態にあるか否かを判定する熱損傷判定部(図5では「熱損傷判定」と表記。)とを備えている。
このうち、還元剤噴射弁温度推定部において、還元剤噴射弁31のどの部分の温度を推定するかは特に制限されるものではないが、本実施形態の例においてノズルプレート98部分の温度を推定しているのは、ノズルプレート98が排気管11の最も近くに位置する部分であり、当該ノズルプレート98部分の温度が、還元剤噴射弁31の電磁コイル88や樹脂カバー91cの温度を超えることがないからである。したがって、このノズルプレート98部分の温度Tnzlが電磁コイル88や樹脂カバー91cの耐熱温度以下に保持されれば、還元剤噴射弁31の熱損傷が防止される。
また、熱損傷判定部では、還元剤噴射弁温度推定部で推定されたノズルプレート98部分の温度Tnzlと、所定の耐熱温度基準値Tnzl0とが比較され、還元剤噴射弁31が熱損傷を受け得る状態にあるか否かが推定される。この耐熱温度基準値Tnzl0は、電磁コイル88や樹脂カバー91cの耐熱温度よりも低い温度に設定されている。還元剤噴射弁31が熱損傷を受け得る状態にあるか否かの判定結果は、切替手段制御部に対して出力される。
上述のとおり、電磁コイル88と樹脂カバー91cとを比べると、樹脂カバー91cの方が耐熱温度が低く、一例として120℃程度であることから、本実施形態の排気浄化装置10においては、耐熱温度基準値Tnzl0は120~140℃に設定されている。
上述のとおり、電磁コイル88と樹脂カバー91cとを比べると、樹脂カバー91cの方が耐熱温度が低く、一例として120℃程度であることから、本実施形態の排気浄化装置10においては、耐熱温度基準値Tnzl0は120~140℃に設定されている。
また、切替手段制御部では、異常判定部による判定結果にもとづいて切替手段13の制御が行われ、排気ガスの流れ方向が切替えられる。本実施形態の排気浄化装置10に備えられたDCU60Aでは、還元剤噴射弁31が熱損傷を受け得る状態にあると判定されたときに、排気ガスの流れ方向が還元剤噴射弁31の取付側とは反対側に向けられる。
また、本実施形態の排気浄化装置10に備えられたDCU60Aでは、切替手段制御部にタイマが接続されており、排気ガスの流れ方向が切替えられてからの経過時間の計測が行われる。そして、排気ガスの流れ方向を切替えてから所定期間が経過すると、排気ガスの流れ方向が元に戻されるように切替手段13の制御が行われる。したがって、排気ガスの流れ方向が切替えられている時間が所定期間以内に抑えられて、排気ガスの流れ方向が一方向に偏っていることに起因する排気ガスと還元剤との混合性の低下や、第2の通路22の出口有効面積が小さくされることに起因する排気圧力への影響を抑えながら、排気ガスの流れ方向の切替えが行われる。
排気ガスの流れ方向を切替えた後、流れ方向が元に戻される条件は、上述の所定期間が経過した場合以外にも、排気ガスの流れ方向を切替えた後、還元触媒17におけるNOXの浄化効率の推移を監視し、当該浄化効率が悪化した場合に排気ガスの流れ方向を元に戻すように設定することもできる。言うまでもなく、経過時間及びNOXの浄化効率の2つの条件に基づき、排気ガスの流れ方向を元に戻すように設定することもできる。
2.排気浄化装置の制御方法
次に、図1に示す本実施形態の排気浄化装置10を用いて行われる排気浄化装置10の制御方法のルーチンの一例について、図1の排気浄化装置10の構成を参照しつつ、図6のフローに基づいて説明する。なお、このルーチンは、内燃機関5の運転時において常時実行されてもよいし、あるいは、必要に応じて実行されてもよい。
次に、図1に示す本実施形態の排気浄化装置10を用いて行われる排気浄化装置10の制御方法のルーチンの一例について、図1の排気浄化装置10の構成を参照しつつ、図6のフローに基づいて説明する。なお、このルーチンは、内燃機関5の運転時において常時実行されてもよいし、あるいは、必要に応じて実行されてもよい。
まず、スタート後のステップS10において、温度センサ33のセンサ値Tdosや、内燃機関5の運転状態に基づき推定される排気ガス温度Tgas、その他内燃機関5の運転状態に関する情報が読み込まれる。次いで、ステップS11では、ステップS10で読み込まれた情報に基づき、還元剤噴射弁31のノズルプレート98の温度Tnzlの演算が行われる。
次いで、ステップS12では、算出されたノズルプレート98の温度Tnzlの値が、上述した耐熱温度基準値Tnzl0以上であるか否かが判別される。ノズルプレート98の温度Tnzlが耐熱温度基準値Tnzl0よりも小さい場合にはステップS10に戻り、ノズルプレート98の温度Tnzlが耐熱温度基準値Tnzl0以上になるまでステップS10及びステップS11が繰り返される。
ノズルプレート98の温度Tnzlが耐熱温度基準値Tnzl0以上であると判別されて進んだステップS13では、還元剤噴射弁31が熱損傷を受けるおそれがあることから、排気ガスの流れ方向を還元剤噴射弁から逸らすように、切替手段13によって排気ガスの流れ方向が切替えられる。その後、ステップS14でタイマが作動させられ、ステップS15でタイマが終了したか否かの判別が行われる。そして、ステップS15でタイマが終了したと判別されると、ステップS16に進み、切替手段13によって排気ガスの流れ方向が元に戻される。
以降は、再びステップS10に戻りこれまでのステップが繰り返され、還元剤噴射弁31の熱損傷が生じ得る状態にある場合には、排気ガスの流れ方向を還元剤噴射弁31から逸らすように切替手段13の制御が行われる。
本実施形態の排気浄化装置の制御方法によれば、還元剤噴射弁31の熱損傷のおそれがある場合に排気ガスの流れ方向が還元剤噴射弁31から逸らされるため、還元剤噴射弁31の温度上昇が抑えられ、還元剤噴射弁31の熱損傷が低減される。また、あらかじめ設定された時間だけ排気ガスの流れ方向を還元剤噴射弁31から逸らした後、再び元に戻しながら切替手段13の制御が行われるため、還元剤噴射弁31から供給される還元剤と排気ガスとの混合性の低下や、排気ガスの圧力損失の増大が避けられる。
本実施形態の排気浄化装置の制御方法によれば、還元剤噴射弁31の熱損傷のおそれがある場合に排気ガスの流れ方向が還元剤噴射弁31から逸らされるため、還元剤噴射弁31の温度上昇が抑えられ、還元剤噴射弁31の熱損傷が低減される。また、あらかじめ設定された時間だけ排気ガスの流れ方向を還元剤噴射弁31から逸らした後、再び元に戻しながら切替手段13の制御が行われるため、還元剤噴射弁31から供給される還元剤と排気ガスとの混合性の低下や、排気ガスの圧力損失の増大が避けられる。
なお、本実施形態において、還元剤噴射弁の熱損傷が生じ得る状態にあるか否かを判定する方法として、還元剤噴射弁のノズルプレート部分の温度を耐熱温度基準値と比較する方法が採用されているが、これ以外にも、例えば、フィルタの再生制御が行われるか否かを判別し、フィルタの再生制御が行われるときに、還元剤噴射弁の熱損傷が生じ得る状態にあると判定することもできる。
[第2の実施の形態]
本発明の第2の実施の形態は、還元剤噴射弁の排気上流側の排気通路に配設され、排気ガスの流れ方向を切替える切替手段と、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあるか否か、及び噴孔又は噴孔の周囲で還元剤が結晶化又は凍結しているか否かを判定する異常判定部と、異常判定部による判定結果をもとに切替手段を制御する切替手段制御部と、を備えることを特徴とする排気浄化装置、及びそのような排気浄化装置の制御方法である。
以下、第1の実施の形態の排気浄化装置の構成と同じ点については適宜説明を省略しつつ、本実施形態の排気浄化装置及びその制御方法について説明する。なお、第1の実施の形態の排気浄化装置と共通する部材等については同一の符号が用いられ、適宜説明が省略されている。
本発明の第2の実施の形態は、還元剤噴射弁の排気上流側の排気通路に配設され、排気ガスの流れ方向を切替える切替手段と、還元剤噴射弁の噴孔又は噴孔の周囲で還元剤が結晶化し得る状態にあるか否か、及び噴孔又は噴孔の周囲で還元剤が結晶化又は凍結しているか否かを判定する異常判定部と、異常判定部による判定結果をもとに切替手段を制御する切替手段制御部と、を備えることを特徴とする排気浄化装置、及びそのような排気浄化装置の制御方法である。
以下、第1の実施の形態の排気浄化装置の構成と同じ点については適宜説明を省略しつつ、本実施形態の排気浄化装置及びその制御方法について説明する。なお、第1の実施の形態の排気浄化装置と共通する部材等については同一の符号が用いられ、適宜説明が省略されている。
1.内燃機関の排気浄化装置
(1)全体構成
図7は、本実施形態にかかる排気浄化装置100の全体構成を表す概略図を示している。
本実施形態の排気浄化装置100は、第1の実施の形態の排気浄化装置と同様に、内燃機関5に接続された排気通路の途中に設けられ、排気上流側から順次に、酸化触媒14と、フィルタ15と、排気ガスの流れ方向を切替える切替手段13と、還元剤噴射弁31と、還元触媒17とが備えられている。
これらの各構成部材は、基本的に第1の実施の形態と同様の構成となっている。ただし、本実施形態の排気浄化装置100は、尿素の結晶化や凍結の問題を改善するための装置であり、還元剤は尿素水溶液が用いられる。
(1)全体構成
図7は、本実施形態にかかる排気浄化装置100の全体構成を表す概略図を示している。
本実施形態の排気浄化装置100は、第1の実施の形態の排気浄化装置と同様に、内燃機関5に接続された排気通路の途中に設けられ、排気上流側から順次に、酸化触媒14と、フィルタ15と、排気ガスの流れ方向を切替える切替手段13と、還元剤噴射弁31と、還元触媒17とが備えられている。
これらの各構成部材は、基本的に第1の実施の形態と同様の構成となっている。ただし、本実施形態の排気浄化装置100は、尿素の結晶化や凍結の問題を改善するための装置であり、還元剤は尿素水溶液が用いられる。
(2)冷却水循環通路
第1の実施の形態の排気浄化装置では、還元剤噴射弁31の放熱を行うために、還元剤噴射弁31に複数の放熱フィンが設けられていたが、本実施形態の排気浄化装置100では、より確実に還元剤噴射弁31の冷却が行われるように、内燃機関5の冷却水が還元剤噴射弁31の周囲を流通するように構成されている。
具体的には、排気浄化装置100は、内燃機関5に設けられた冷却水通路86から分岐して、途中還元剤噴射弁31の周囲を通過し、再び冷却水通路86に合流する冷却水循環通路85を備えている。この冷却水循環通路85の途中には、冷却水循環通路85を流れる冷却水の流量を調節するための冷却水流量調節弁81が設けられている。そして、内燃機関5に備えられた循環ポンプ73が駆動され、内燃機関5内の冷却水通路86中を冷却水が流れる状態で冷却水流量調節弁81を所定開度で開くことにより、冷却水循環通路85内を冷却水が循環し、還元剤噴射弁31が冷却される。
第1の実施の形態の排気浄化装置では、還元剤噴射弁31の放熱を行うために、還元剤噴射弁31に複数の放熱フィンが設けられていたが、本実施形態の排気浄化装置100では、より確実に還元剤噴射弁31の冷却が行われるように、内燃機関5の冷却水が還元剤噴射弁31の周囲を流通するように構成されている。
具体的には、排気浄化装置100は、内燃機関5に設けられた冷却水通路86から分岐して、途中還元剤噴射弁31の周囲を通過し、再び冷却水通路86に合流する冷却水循環通路85を備えている。この冷却水循環通路85の途中には、冷却水循環通路85を流れる冷却水の流量を調節するための冷却水流量調節弁81が設けられている。そして、内燃機関5に備えられた循環ポンプ73が駆動され、内燃機関5内の冷却水通路86中を冷却水が流れる状態で冷却水流量調節弁81を所定開度で開くことにより、冷却水循環通路85内を冷却水が循環し、還元剤噴射弁31が冷却される。
図8は、冷却ジャケット101内に収容された還元剤噴射弁31が排気管11の一部である接続管35に取り付けられた状態を示している。この冷却ジャケット101の内部には、冷却水循環通路85に接続され、冷却水循環通路85の一部として構成される冷却水通路103が設けられている。この冷却ジャケット101に設けられた冷却水通路103内を冷却水が通過することにより、還元剤噴射弁31と冷却水との熱交換が行われ、還元剤噴射弁31が冷却される。
(3)切替手段
上述したように、還元剤噴射弁31は冷却ジャケット101内に収容され、内燃機関5の冷却装置を冷却ジャケット101の冷却水通路103を通過させることによって還元剤噴射弁31の冷却が行われる。ただし、内燃機関5の冷却水は、一般に70~80℃程度に保持されており、この冷却水を用いて還元剤噴射弁31の冷却が行われると、還元剤噴射弁31が効率的に冷却される一方、還元剤噴射弁31の温度が、尿素水溶液の溶媒が蒸発し、尿素が結晶化しやすい80~100℃に維持されやすくなる。
上述したように、還元剤噴射弁31は冷却ジャケット101内に収容され、内燃機関5の冷却装置を冷却ジャケット101の冷却水通路103を通過させることによって還元剤噴射弁31の冷却が行われる。ただし、内燃機関5の冷却水は、一般に70~80℃程度に保持されており、この冷却水を用いて還元剤噴射弁31の冷却が行われると、還元剤噴射弁31が効率的に冷却される一方、還元剤噴射弁31の温度が、尿素水溶液の溶媒が蒸発し、尿素が結晶化しやすい80~100℃に維持されやすくなる。
また、尿素水溶液は、寒冷時において凍結するおそれがある。凍結温度は濃度によって異なるが、例えば、濃度が32.5%の尿素水溶液の凍結温度はおよそ-11℃である。したがって、寒冷時において内燃機関5が停止状態にあるときに、尿素水溶液が還元剤噴射弁31の噴射通路93aやノズル孔98aで凍結し、内燃機関5の始動時に還元剤噴射弁31の詰まりが生じた状態になるおそれがある。
そのため、本実施形態の排気浄化装置100は、第1の実施の形態と同様に、還元剤噴射弁31の上流側に、排気ガスの流れ方向を切替えるための切替手段13を備えている。
図9(a)~(b)は、第1の実施の形態で説明した切替手段13Aを用いた例を示しており、図9(a)は、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがない場合、あるいは噴射通路93aやノズル孔98aで還元剤が結晶化又は凍結していない場合の、通常時の切替手段13Aの状態を示している。図9(a)に示す状態では、一対の遮蔽板13aによって形成される排気通路が分流部16の出口部分の中央部に形成されるとともに、第1の通路21の出口有効面積及び第2の通路22の出口有効面積が均等にされている。この状態では、一対の遮蔽板13aの間を通過する排気ガスが還元剤噴射弁31の取付側又はその反対側のいずれかに偏って流されることはない。
図9(a)~(b)は、第1の実施の形態で説明した切替手段13Aを用いた例を示しており、図9(a)は、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがない場合、あるいは噴射通路93aやノズル孔98aで還元剤が結晶化又は凍結していない場合の、通常時の切替手段13Aの状態を示している。図9(a)に示す状態では、一対の遮蔽板13aによって形成される排気通路が分流部16の出口部分の中央部に形成されるとともに、第1の通路21の出口有効面積及び第2の通路22の出口有効面積が均等にされている。この状態では、一対の遮蔽板13aの間を通過する排気ガスが還元剤噴射弁31の取付側又はその反対側のいずれかに偏って流されることはない。
一方、図9(b)は、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがある場合、あるいは噴射通路93aやノズル孔98aで還元剤が結晶化又は凍結していた場合の切替手段13Aの状態を示しており、分流部16の出口側において、第1の通路21の出口有効面積に対して第2の通路22の出口有効面積が大きくなるように、一対の遮蔽板13aが保持されている。この図9(b)の状態では、第2の通路22を通過する排気ガスは、出口部分においてテーパ形状に沿って還元剤噴射弁31の取付側に向かって流されるとともに、第1の通路21を通過する排気ガスは、出口部分において渦流の効果によって、やはり還元剤噴射弁31の取付側に向かって流される。その結果、排気ガスは全体として還元剤噴射弁31に近付けられるように流されることになり、排気熱によって還元剤噴射弁31の噴射通路93aやノズル孔98a近傍が加熱される。
なお、本実施形態においても、排気ガスの流れ方向が切替えられるものであれば切替手段13の構成は特に制限されものではない。
(4)制御装置(DCU)
図10は、本実施形態の排気浄化装置100に備えられたDCU60Bにおける、還元剤噴射弁及びポンプの駆動制御に関する部分と、排気ガスの流れ方向の切替手段の制御に関する部分とについて、機能的なブロックで表した構成例を示している。
図10は、本実施形態の排気浄化装置100に備えられたDCU60Bにおける、還元剤噴射弁及びポンプの駆動制御に関する部分と、排気ガスの流れ方向の切替手段の制御に関する部分とについて、機能的なブロックで表した構成例を示している。
DCU60Bは、公知の構成からなるマイクロコンピュータを中心に構成されており、CAN情報取出生成部(図10では「CAN情報取出生成」と表記。)と、ポンプ駆動制御部(図10では「ポンプ駆動制御」と表記。)と、還元剤噴射弁の動作制御部(図10では「Udv動作制御」と表記)と、異常判定部(図10では「異常判定」と表記。)と、切替手段制御部(図10では「切替手段制御」と表記。)等を主要な構成要素として構成されている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプログラムの実行によって実現されるものである。
このうち、CAN情報取出生成部、ポンプ駆動制御部、及び還元剤噴射弁の動作制御部の各部の機能は、基本的に第1の実施の形態のDCUと同様であるため、詳細な説明を省略する。
DCU60Bの異常判定部は、温度センサ33のセンサ値Tdosや、排気ガス温度Tgas、内燃機関の運転状態等の情報に基づいて還元剤噴射弁31のノズルプレート98部分の温度Tnzlを推定する還元剤噴射弁温度推定部(図10では「Udv温度推定」と表記。)と、算出されたノズルプレート98部分の温度Tnzlをもとに還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化し得る状態にあるかを診断する結晶化診断部(図10では「結晶化診断」と表記。)と、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていないかを診断する詰まり診断部(図10では「詰まり診断」と表記。)とを備えている。
このうち、還元剤噴射弁温度推定部では、第1の実施の形態のDCU60Aの還元剤噴射弁温度推定部と同様に、還元剤噴射弁31のノズルプレート98部分の温度Tnzlが推定される。
また、結晶化診断部では、還元剤噴射弁温度推定部で推定されたノズルプレート98の温度Tnzlと、所定の結晶化温度基準値Tnzl1とが比較され、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化し得る状態にあるか否かが推定される。還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化し得る状態にあるか否かの判定結果は、切替手段制御部に対して出力される。本実施形態の排気浄化装置100においては、結晶化温度基準値Tnzl1は120℃に設定されている。
また、結晶化診断部では、還元剤噴射弁温度推定部で推定されたノズルプレート98の温度Tnzlと、所定の結晶化温度基準値Tnzl1とが比較され、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化し得る状態にあるか否かが推定される。還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化し得る状態にあるか否かの判定結果は、切替手段制御部に対して出力される。本実施形態の排気浄化装置100においては、結晶化温度基準値Tnzl1は120℃に設定されている。
また、詰まり診断部では、圧力センサ43のセンサ値Pdosが継続的に読み込まれ、ポンプ41による還元剤の圧送を停止するとともに還元剤噴射弁31を開放した場合における圧力センサ43のセンサ値Pdosの低下率が監視され、還元剤の結晶化や凍結による還元剤噴射弁31の詰まりの発生が推定される。還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で詰まりが生じているか否かの判定結果は、切替手段制御部に対して出力される。
ただし、これらの各診断部における診断方法は特に制限されるものではなく、公知の方法を含めて種々の方法が考えられる。
また、切替手段制御部では、異常判定部による推定結果にもとづいて切替手段13の制御が行われ、排気ガスの流れ方向が切替えられる。本実施形態の排気浄化装置100に備えられたDCU60Bでは、還元剤噴射弁31のノズル孔98aの周囲で還元剤が結晶化し得る状態にあると判定されたり、あるいは、還元剤の結晶化又は凍結によって噴射通路93aやノズル孔98aが詰まっていると判定されたりしたときに、排気ガスの流れ方向が還元剤噴射弁31の取付側に向けられる。
また、本実施形態の排気浄化装置100に備えられたDCU60Bにおいても、切替手段制御部にタイマが接続されており、排気ガスの流れ方向が切替えられてからの経過時間の計測が行われる。そして、排気ガスの流れ方向を切替えてから所定期間が経過すると、排気ガスの流れ方向が元に戻されるように切替手段13の制御が行われる。したがって、排気ガスの流れ方向が切替えられている時間が所定期間以内に抑えられて、排気ガスの流れ方向が一方向に偏っていることに起因する排気ガスと還元剤との混合性の低下や、第1の通路21の出口有効面積が小さくされることに起因する排気圧力への影響を抑えながら、排気ガスの流れ方向の切替えが行われる。
なお、排気ガスの流れ方向を切替えた後、流れ方向が元に戻される条件は、第1の実施の形態のDCU60Aと同様に、上述の所定期間が経過した場合以外にも、還元触媒17におけるNOXの浄化効率を条件としたり、経過時間及びNOXの浄化効率の2つの条件を併用したりしてもよい。
2.排気浄化装置の制御方法
次に、図7に示す本実施形態の排気浄化装置100を用いて行われる排気浄化装置の制御方法のルーチンの一例について、図7の排気浄化装置100の構成を参照しつつ、図11のフローに基づいて説明する。なお、このルーチンは、内燃機関5の運転時において常時実行されてもよいし、あるいは、必要に応じて実行されてもよい。
次に、図7に示す本実施形態の排気浄化装置100を用いて行われる排気浄化装置の制御方法のルーチンの一例について、図7の排気浄化装置100の構成を参照しつつ、図11のフローに基づいて説明する。なお、このルーチンは、内燃機関5の運転時において常時実行されてもよいし、あるいは、必要に応じて実行されてもよい。
まず、スタート後のステップS20において、温度センサ33のセンサ値Tdosや、内燃機関5の運転状態に基づき推定される排気ガス温度Tgas、その他内燃機関5の運転状態に関する情報が読み込まれる。次いで、ステップS21では、ステップS20で読み込まれた情報に基づき、還元剤噴射弁31のノズルプレート98の温度Tnzlの演算が行われる。
次いで、ステップS22では、算出されたノズルプレート98の温度Tnzlの値が上述した結晶化温度基準値Tnzl1未満であるか否かが判別される。ノズルプレート98の温度Tnzlが結晶化温度基準値Tnzl1未満の場合には還元剤噴射弁の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあることからステップS24に進む一方、ノズルプレート98の温度Tnzlが結晶化温度基準値Tnzl1以上の場合には還元剤噴射弁の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがなく、ステップS23に進む。
ステップS23では、詰まり診断の結果に基づき、還元剤噴射弁31の噴射通路93aやノズル孔98aが、還元剤の結晶化や凍結によって詰まりを生じているか否かが判別される。還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていると判定された場合にはステップS24に進む一方、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていないと判定された場合にはステップS20に戻り、再びこれまでのステップが繰り返される。
還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていると判定されて進んだステップS24では、内燃機関5から排出される排気ガス温度Tgasが切替温度基準値Tgas0以上であるか否かが判別される。排気ガス温度Tgasが切替温度基準値Tgas0未満の場合には、ステップS25に進み、ECU70によって排気ガス温度Tgasを上昇させる制御が行われる。
本実施形態の排気浄化装置100の場合、ステップS25では、内燃機関5への燃料噴射量を増やしたり、噴射タイミングを遅らせたりするなどの方法によって排気ガスに含まれる未燃燃料の量を増大させる制御が行われる。その結果、排気ガスが切替手段13の上流側に備えられた酸化触媒14を通過する際に、未燃燃料が酸化され、その酸化熱によって排気ガス温度Tgasが上昇する。ただし、排気ガス温度Tgasを上昇させる方法は、排気ガスに含まれる未燃燃料の量を増大させる方法以外にも種々採用することができる。
本実施形態の排気浄化装置100の場合、ステップS25では、内燃機関5への燃料噴射量を増やしたり、噴射タイミングを遅らせたりするなどの方法によって排気ガスに含まれる未燃燃料の量を増大させる制御が行われる。その結果、排気ガスが切替手段13の上流側に備えられた酸化触媒14を通過する際に、未燃燃料が酸化され、その酸化熱によって排気ガス温度Tgasが上昇する。ただし、排気ガス温度Tgasを上昇させる方法は、排気ガスに含まれる未燃燃料の量を増大させる方法以外にも種々採用することができる。
ステップS25で排気ガス温度Tgasが上昇させられた後は、再びステップS24に戻り、排気ガス温度Tgasが切替温度基準値Tgas0以上になったか否かが判別され、排気ガス温度Tgasが切替温度基準値Tgas0以上になるまで、排気ガス温度Tgasの上昇制御が継続される。
排気ガス温度Tgasが切替温度基準値Tgas0以上になった後、ステップS26では、還元剤噴射弁31の噴射通路93aやノズル孔98a近傍に排気熱が伝達されるように、切替手段13によって排気ガスの流れ方向が切替えられ、排気ガスの流れ方向が還元剤噴射弁31に向けられる。その後、ステップS27でタイマが作動させられ、ステップS28でタイマが終了したか否かの判別が行われる。そして、ステップS28でタイマが終了したと判別されると、ステップS29に進み、切替手段13によって排気ガスの流れ方向が元に戻される。
以降は、再びステップS20に戻りこれまでのステップが繰り返され、還元剤噴射弁31の噴射通路93aやノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じている場合には、排気ガスの流れ方向が還元剤噴射弁31に向かうように切替手段13の制御が行われる。
本実施形態の排気浄化装置の制御方法によれば、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じている場合に排気ガスの流れ方向が還元剤噴射弁31に向けられるため、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲の温度が上昇させられ、還元剤の結晶化が防止され、あるいは、結晶化又は凍結していた還元剤が溶解される。また、あらかじめ設定された時間だけ排気ガスの流れ方向を還元剤噴射弁31に向けた後、再び元に戻しながらこの切替制御が行われるため、還元剤噴射弁31から供給される還元剤と排気ガスとの混合性の低下や、排気ガスの圧力損失の増大が避けられる。
本実施形態の排気浄化装置の制御方法によれば、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じている場合に排気ガスの流れ方向が還元剤噴射弁31に向けられるため、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲の温度が上昇させられ、還元剤の結晶化が防止され、あるいは、結晶化又は凍結していた還元剤が溶解される。また、あらかじめ設定された時間だけ排気ガスの流れ方向を還元剤噴射弁31に向けた後、再び元に戻しながらこの切替制御が行われるため、還元剤噴射弁31から供給される還元剤と排気ガスとの混合性の低下や、排気ガスの圧力損失の増大が避けられる。
[第3の実施の形態]
本発明の第3の実施の形態は、第1の実施の形態で説明した排気浄化装置の異常判定部に、第2の実施の形態の異常判定部の機能が付加された構成の排気浄化装置及びそのような排気浄化装置の制御方法である。
以下、第1の実施の形態及び第2の実施の形態の排気浄化装置の構成と同じ点については適宜説明を省略しつつ、本実施形態の排気浄化装置及びその制御方法について説明する。なお、第1の実施の形態及び第2の実施の形態の排気浄化装置と共通する部材等については同一の符号が用いられ、適宜説明が省略されている。
本発明の第3の実施の形態は、第1の実施の形態で説明した排気浄化装置の異常判定部に、第2の実施の形態の異常判定部の機能が付加された構成の排気浄化装置及びそのような排気浄化装置の制御方法である。
以下、第1の実施の形態及び第2の実施の形態の排気浄化装置の構成と同じ点については適宜説明を省略しつつ、本実施形態の排気浄化装置及びその制御方法について説明する。なお、第1の実施の形態及び第2の実施の形態の排気浄化装置と共通する部材等については同一の符号が用いられ、適宜説明が省略されている。
1.内燃機関の排気浄化装置
(1)全体構成
本実施形態の排気浄化装置は、基本的には図1に示す第1の実施の形態で説明した排気浄化装置10と同様に構成されている。
(1)全体構成
本実施形態の排気浄化装置は、基本的には図1に示す第1の実施の形態で説明した排気浄化装置10と同様に構成されている。
(2)制御装置(DCU)
図12は、本実施形態の排気浄化装置に備えられたDCU60Cにおける、還元剤噴射弁31及びポンプ41の駆動制御に関する部分と、排気ガスの流れ方向の切替手段の制御に関する部分とについて、機能的なブロックで表した構成例を示している。
図12は、本実施形態の排気浄化装置に備えられたDCU60Cにおける、還元剤噴射弁31及びポンプ41の駆動制御に関する部分と、排気ガスの流れ方向の切替手段の制御に関する部分とについて、機能的なブロックで表した構成例を示している。
DCU60Cは、公知の構成からなるマイクロコンピュータを中心に構成されており、CAN情報取出生成部(図12では「CAN情報取出生成」と表記。)と、ポンプ駆動制御部(図12では「ポンプ駆動制御」と表記。)と、還元剤噴射弁の動作制御部(図12では「Udv動作制御」と表記)と、異常判定部(図12では「異常判定」と表記。)と、切替手段制御部(図12では「切替手段制御」と表記。)等を主要な構成要素として構成されている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプログラムの実行によって実現されるものである。
このうち、CAN情報取出生成部、ポンプ駆動制御部、及び還元剤噴射弁の動作制御部の各部の機能は、基本的に第1の実施の形態のDCUと同様であるため、説明を省略する。
また、DCU60Cの異常判定部は、温度センサ33のセンサ値Tdosや、排気ガス温度Tgas、内燃機関の運転状態等の情報に基づいて還元剤噴射弁31のノズルプレート98部分の温度Tnzlを推定する還元剤噴射弁温度推定部(図12では「Udv温度推定」と表記。)と、算出されたノズルプレート98部分の温度Tnzlをもとに還元剤噴射弁31が熱損傷を受け得る状態にあるか否かを判定する熱損傷判定部(図12では「熱損傷判定」と表記。)と、算出されたノズルプレート98部分の温度Tnzlをもとに還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化し得る状態にあるかを診断する結晶化診断部(図12では「結晶化診断」と表記。)と、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていないかを診断する詰まり診断部(図12では「詰まり診断」と表記。)とを備えている。
異常判定部に備えられた各部の構成については、第1の実施の形態又は第2の実施の形態でそれぞれ説明した各部の構成と同じであるため、ここでの説明を省略する。
異常判定部に備えられた各部の構成については、第1の実施の形態又は第2の実施の形態でそれぞれ説明した各部の構成と同じであるため、ここでの説明を省略する。
2.排気浄化装置の制御方法
次に、本実施形態の排気浄化装置を用いて行われる排気浄化装置の制御方法のルーチンの一例について、図1の排気浄化装置10の構成を参照しつつ、図13のフローに基づいて説明する。なお、このルーチンは、内燃機関5の運転時において常時実行されてもよいし、あるいは、必要に応じて実行されてもよい。
次に、本実施形態の排気浄化装置を用いて行われる排気浄化装置の制御方法のルーチンの一例について、図1の排気浄化装置10の構成を参照しつつ、図13のフローに基づいて説明する。なお、このルーチンは、内燃機関5の運転時において常時実行されてもよいし、あるいは、必要に応じて実行されてもよい。
まず、スタート後のステップS30において、温度センサ33のセンサ値Tdosや、内燃機関5の運転状態に基づき推定される排気ガス温度Tgas、その他内燃機関5の運転状態に関する情報が読み込まれる。次いで、ステップS31では、ステップS30で読み込まれた情報に基づき、還元剤噴射弁31のノズルプレート98の温度Tnzlの演算が行われる。
次いで、ステップS32では、算出されたノズルプレート98の温度Tnzlの値が上述した耐熱温度基準値Tnzl0以上であるか否かが判別される。ノズルプレート98の温度Tnzlが耐熱温度基準値Tnzl0以上の場合には還元剤噴射弁31が熱損傷を受けるおそれがあることから、ステップS33に進み、排気ガスの流れ方向を還元剤噴射弁から逸らすように、切替手段13によって排気ガスの流れ方向が切替えられる。
一方、ノズルプレート98の温度Tnzlが耐熱温度基準値Tnzl0未満の場合には、ステップS34に進み、今度は、算出されたノズルプレート98の温度Tnzlの値が上述した結晶化温度基準値Tnzl1未満であるか否かが判別される。ノズルプレート98の温度Tnzlが結晶化温度基準値Tnzl1未満の場合には還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあることからステップS36に進む一方、ノズルプレート98の温度Tnzlが結晶化温度基準値Tnzl1以上の場合には還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがないことから、ステップS35に進む。
ステップS35では、詰まり診断の結果に基づき、還元剤噴射弁31の噴射通路93aやノズル孔98aが、還元剤の結晶化や凍結によって詰まりを生じているか否かが判別される。還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていると判定された場合にはステップS36に進む一方、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていないと判定された場合にはステップS30に戻り、再びこれまでのステップが繰り返される。
還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じていると判定されて進んだステップS36では、内燃機関5から排出される排気ガス温度Tgasが切替温度基準値Tgas0以上であるか否かが判別される。排気ガス温度Tgasが切替温度基準値Tgas0未満の場合には、ステップS37に進み、ECU70によって排気ガス温度Tgasを上昇させる制御が行われる。排気ガス温度Tgasを上昇させる方法は、第2の実施の形態で説明したとおりである。
ステップS37で排気ガス温度Tgasが上昇させられた後は、再びステップS36に戻り、排気ガス温度Tgasが切替温度基準値Tgas0以上になったか否かが判別され、排気ガス温度Tgasが切替温度基準値Tgas0以上になるまで、排気ガス温度Tgasの上昇制御が継続される。
排気ガス温度Tgasが切替温度基準値Tgas0以上になった後、ステップS38では、還元剤噴射弁31の噴射通路93aやノズル孔98a近傍に排気熱が伝達されるように、切替手段13によって排気ガスの流れ方向が切替えられ、排気ガスの流れ方向が還元剤噴射弁31に向けられる。
ステップS33又はステップS38において、切替手段13によって排気ガスの流れ方向が切替えられると、ステップS39に進みタイマが作動させられた後、ステップS40でタイマが終了したか否かの判別が行われる。そして、ステップS40でタイマが終了したと判別されると、ステップS41に進み、切替手段13によって排気ガスの流れ方向が元に戻される。
ステップS41で、排気ガスの流れ方向が元に戻される条件は、上述の所定期間が経過した場合以外にも、還元触媒17におけるNOXの浄化効率を条件としたり、経過時間及びNOXの浄化効率の2つの条件を併用したりしてもよい。
以降は、再びステップS30に戻りこれまでのステップが繰り返され、還元剤噴射弁31の熱損傷が生じ得る状態にある場合には、排気ガスの流れ方向が還元剤噴射弁31から逸れるように切替手段13の制御が行われる。一方、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じている場合には、排気ガスの流れ方向が還元剤噴射弁31に向かうように切替手段13の制御が行われる。
本実施形態の排気浄化装置の制御方法によれば、還元剤噴射弁31の熱損傷のおそれがある場合に排気ガスの流れ方向が還元剤噴射弁31から逸らされるため、還元剤噴射弁31の温度上昇が抑えられ、還元剤噴射弁31の熱損傷が低減される。さらに、還元剤噴射弁31の噴射通路93aやノズル孔98a又はノズル孔98aの周囲で還元剤が結晶化するおそれがあり、また、還元剤噴射弁31の噴射通路93aやノズル孔98aの詰まりが生じている場合に排気ガスの流れ方向が還元剤噴射弁31に向けられるため、還元剤噴射弁31の噴射通路93aやノズル孔98aの周囲の温度が上昇させられ、還元剤の結晶化が防止され、あるいは、結晶化又は凍結していた還元剤が溶解される。
したがって、還元剤噴射弁31の熱損傷を防止しつつ、還元剤の結晶化又は凍結が防止され、還元剤噴射弁31からの還元剤の供給が安定的に行われるようになる。
したがって、還元剤噴射弁31の熱損傷を防止しつつ、還元剤の結晶化又は凍結が防止され、還元剤噴射弁31からの還元剤の供給が安定的に行われるようになる。
Claims (7)
- 内燃機関の排気通路に設けられ、排気ガスを浄化するための還元剤を排気通路内に供給する還元剤噴射弁と、前記還元剤噴射弁よりも排気下流側に配設された還元触媒と、を備えた内燃機関の排気浄化装置において、
前記還元剤噴射弁よりも排気上流側に配設され、前記排気ガスの流れ方向を切替える切替手段と、
前記還元剤噴射弁が熱損傷を受け得る状態にあるか否か、前記還元剤噴射弁の噴孔又は前記噴孔の周囲で前記還元剤が結晶化し得る状態にあるか否か、及び前記噴孔又は前記噴孔の周囲で前記還元剤が結晶化又は凍結しているか否か、のうちの少なくとも一つを判定する異常判定部と、
前記異常判定部による判定結果をもとに前記切替手段を制御する切替手段制御部と、
を備えることを特徴とする内燃機関の排気浄化装置。 - 前記切替手段制御部は、前記異常判定部により前記還元剤噴射弁が熱損傷を受け得る状態にあると判定された場合に、前記排気ガスの流れ方向を前記還元剤噴射弁から逸らすように前記切替手段を制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 前記切替手段制御部は、前記異常判定部により前記噴孔又は前記噴孔の周囲で前記還元剤が結晶化し得る状態にあると判定された場合に、前記排気ガスの流れ方向を前記還元剤噴射弁に向けるように前記切替手段を制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 前記切替手段制御部は、前記異常判定部により前記噴孔又は前記噴孔の周囲で前記還元剤が結晶化又は凍結していると判定された場合に、前記排気ガスの流れ方向を前記還元剤噴射弁に向けるように前記切替手段を制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 前記切替手段制御部は、前記異常判定部により前記噴孔又は前記噴孔の周囲で前記還元剤が結晶化又は凍結していると判定された場合に、前記排気ガスの温度が所定温度以上であるときに前記排気ガスの流れ方向を前記還元剤噴射弁に向けるように前記切替手段を制御することを特徴とする請求項4に記載の内燃機関の排気浄化装置。
- 前記切替手段制御部は、あらかじめ設定された所定期間、前記排気ガスの流れ方向を前記還元剤噴射弁から逸らすように、又は、前記還元剤噴射弁に向けるように前記切替手段を制御することを特徴とする請求項1~5のいずれか一項に記載の内燃機関の排気浄化装置。
- 内燃機関の排気通路に設けられ、排気ガスを浄化するための還元剤を排気通路内に供給する還元剤噴射弁と、前記還元剤噴射弁よりも排気下流側に配置された還元触媒と、を備えた内燃機関の排気浄化装置を制御するための排気浄化装置の制御方法において、
前記還元剤噴射弁が熱損傷を受け得る状態にあるか否か、前記還元剤噴射弁の噴孔又は前記噴孔の周囲で前記還元剤が結晶化し得る状態にあるか否か、及び、前記噴孔又は前記噴孔の周囲で前記還元剤が結晶化又は凍結しているか否か、のうちの少なくとも一つを判定し、前記判定の結果をもとに、前記還元剤噴射弁の上流側における前記排気ガスの流れ方向を切替えることを特徴とする排気浄化装置の制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008235049 | 2008-09-12 | ||
JP2008-235049 | 2008-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029792A1 true WO2010029792A1 (ja) | 2010-03-18 |
Family
ID=42005055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059401 WO2010029792A1 (ja) | 2008-09-12 | 2009-05-22 | 内燃機関の排気浄化装置及びその制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010029792A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012022690A1 (de) * | 2010-08-18 | 2012-02-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Dosiereinheit für ein reduktionsmittel |
JP2014508882A (ja) * | 2011-02-18 | 2014-04-10 | テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド | 改装用インジェクタマウント |
WO2014156354A1 (ja) * | 2013-03-27 | 2014-10-02 | ボッシュ株式会社 | 内燃機関の排気浄化装置 |
WO2016132702A1 (ja) * | 2015-02-18 | 2016-08-25 | 株式会社デンソー | 内燃機関の排気浄化装置 |
EP2578834A4 (en) * | 2010-05-25 | 2017-03-01 | Isuzu Motors Limited | Return control system |
JP2017510747A (ja) * | 2014-03-27 | 2017-04-13 | ダイムラー・アクチェンゲゼルシャフトDaimler AG | Scr触媒を備える自動車内燃機関に接続された排気ガス浄化システムの運転方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231894A (ja) * | 2006-03-03 | 2007-09-13 | Bosch Corp | 内燃機関の排気浄化装置及び排気浄化方法 |
JP2008069657A (ja) * | 2006-09-12 | 2008-03-27 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2008180193A (ja) * | 2007-01-26 | 2008-08-07 | Bosch Corp | 還元剤噴射弁の詰まり判定装置及び還元剤噴射弁の詰まり判定方法 |
-
2009
- 2009-05-22 WO PCT/JP2009/059401 patent/WO2010029792A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231894A (ja) * | 2006-03-03 | 2007-09-13 | Bosch Corp | 内燃機関の排気浄化装置及び排気浄化方法 |
JP2008069657A (ja) * | 2006-09-12 | 2008-03-27 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2008180193A (ja) * | 2007-01-26 | 2008-08-07 | Bosch Corp | 還元剤噴射弁の詰まり判定装置及び還元剤噴射弁の詰まり判定方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2578834A4 (en) * | 2010-05-25 | 2017-03-01 | Isuzu Motors Limited | Return control system |
WO2012022690A1 (de) * | 2010-08-18 | 2012-02-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Dosiereinheit für ein reduktionsmittel |
US9249705B2 (en) | 2010-08-18 | 2016-02-02 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Metering unit for a reducing agent, method for metering reducing agent and motor vehicle having a metering unit |
JP2014508882A (ja) * | 2011-02-18 | 2014-04-10 | テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド | 改装用インジェクタマウント |
WO2014156354A1 (ja) * | 2013-03-27 | 2014-10-02 | ボッシュ株式会社 | 内燃機関の排気浄化装置 |
JPWO2014156354A1 (ja) * | 2013-03-27 | 2017-02-16 | ボッシュ株式会社 | 内燃機関の排気浄化装置 |
JP2017510747A (ja) * | 2014-03-27 | 2017-04-13 | ダイムラー・アクチェンゲゼルシャフトDaimler AG | Scr触媒を備える自動車内燃機関に接続された排気ガス浄化システムの運転方法 |
WO2016132702A1 (ja) * | 2015-02-18 | 2016-08-25 | 株式会社デンソー | 内燃機関の排気浄化装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009098805A1 (ja) | 温度センサの合理性診断装置及び合理性診断方法、並びに内燃機関の排気浄化装置 | |
JP4656039B2 (ja) | エンジンの排気浄化装置 | |
WO2010029792A1 (ja) | 内燃機関の排気浄化装置及びその制御方法 | |
JP4137838B2 (ja) | 排気ガス後処理装置用液体供給装置 | |
JP2009097479A (ja) | 還元剤供給装置の制御装置及び制御方法 | |
JP5573351B2 (ja) | Scrシステム | |
JP6663680B2 (ja) | 還元剤噴射装置の制御装置 | |
JP4895888B2 (ja) | 還元剤添加システムの解凍判定装置及びエンジンの排気浄化装置 | |
JP5547815B2 (ja) | 還元剤噴射弁の異常判定装置及び還元剤供給装置 | |
US20130118155A1 (en) | Control unit and control method for reductant supply device | |
JP2009097348A (ja) | 還元剤供給システムの制御装置及び制御方法 | |
JP4737312B2 (ja) | 排気浄化システムの異常診断装置及び排気浄化システム | |
JP2011080397A (ja) | 内燃機関の排気浄化装置 | |
WO2005028827A1 (ja) | エンジンの排気浄化装置 | |
JP6088865B2 (ja) | 還元剤供給装置の制御方法 | |
JP5181030B2 (ja) | 還元剤添加装置及びその制御方法 | |
JP2013245652A (ja) | 尿素水解凍装置 | |
JP2009228616A (ja) | 還元剤供給装置及び冷却水循環制御装置 | |
JP6501794B2 (ja) | エンジンの排気浄化装置 | |
JP2008163795A (ja) | 内燃機関の排気浄化装置 | |
WO2013051315A1 (ja) | 還元剤供給装置 | |
JP2010163985A (ja) | 内燃機関の排気浄化装置 | |
JP6028397B2 (ja) | 車両用暖房装置 | |
JP5533363B2 (ja) | Scrシステム | |
JP2014194171A (ja) | 建設機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09812940 Country of ref document: EP Kind code of ref document: A1 |