WO2010022585A1 - 太阳能电池背膜及其加工工艺 - Google Patents

太阳能电池背膜及其加工工艺 Download PDF

Info

Publication number
WO2010022585A1
WO2010022585A1 PCT/CN2009/000965 CN2009000965W WO2010022585A1 WO 2010022585 A1 WO2010022585 A1 WO 2010022585A1 CN 2009000965 W CN2009000965 W CN 2009000965W WO 2010022585 A1 WO2010022585 A1 WO 2010022585A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
fluorine
base layer
fluorosilicone
Prior art date
Application number
PCT/CN2009/000965
Other languages
English (en)
French (fr)
Inventor
林建伟
费植煌
张育政
Original Assignee
苏州中来太阳能材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州中来太阳能材料技术有限公司 filed Critical 苏州中来太阳能材料技术有限公司
Priority to US13/059,520 priority Critical patent/US8999508B2/en
Priority to EP09809170.5A priority patent/EP2333875A4/en
Priority to KR1020117006814A priority patent/KR101457260B1/ko
Publication of WO2010022585A1 publication Critical patent/WO2010022585A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • B32B2309/025Temperature vs time profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0875Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2331/00Polyvinylesters
    • B32B2331/04Polymers of vinyl acetate, e.g. PVA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to an assembly for use in a solar cell, and more particularly to a solar cell backsheet having high adhesion, and to a process for processing the backsheet.
  • the solar panel is usually a laminated structure, which mainly comprises a glass surface layer, an EVA sealing layer, a solar cell sheet, an EVA sealing layer and a solar cell back film, wherein the solar cell sheet is sealed by two layers of EVA sealing layer.
  • the main function of the solar cell back film is to improve the overall mechanical strength of the solar cell panel, and also prevent moisture from penetrating into the sealing layer, affecting the service life of the cell sheet.
  • a number of solutions for improving the backing film have appeared in the prior art. For example, the Chinese Patent Application No. CN200710185202. No.
  • the polymer filler is 0.5 to 3 parts; the polymer filler is 0.5 to 3 parts; 01 ⁇ 1 ⁇ The inorganic filler 0 ⁇ 1 parts; solvent 50 ⁇ 70 parts.
  • the above scheme has low production cost, excellent performance, high peeling strength, good water blocking performance and good weather resistance. Further, for example, European Patent Application No. EP 1938967, published on July 2, 2008, International Application No. PCT/JP2006/312501, International Publication No.
  • WO2007/010706 published on January 25, 2007, discloses a A solar cell backsheet having a good watertight plate, the solar cell backsheet assembly having a cured coating film on at least one surface of the waterproofing sheet, the cured coating film comprising a fluoropolymer-containing coating having a curable functional group.
  • the above solution improves the overall performance of the backsheet by making a fluorochemical coating and applying the fluorochemical coating to the substrate.
  • the fluorine material can improve the overall performance of the back sheet, sexuality, its surface energy is high, the surface is hydrophobic, and the bonding performance is poor.
  • the adhesion of the backsheet to the EVA is reduced, which complicates the bonding process between the backsheet and the EVA. Summary of the invention:
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art described above, and to provide a solar cell back film having high adhesion, high weather resistance, chemical resistance, high electrical insulation performance, and high water repellency. .
  • Another technical problem to be solved by the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a processing technique capable of processing a solar cell back film having high adhesion and good overall performance.
  • a solar cell back film having high adhesion includes a base layer and a fluorine-based film layer, and the fluorine-based film layer and the base layer have a fluorosilicone film-forming layer or silicon-titanium
  • the film formation layer has an outer surface of the fluorine-based film layer having a fluorosilicone film-forming layer or a silicitized film-forming layer.
  • a solar cell backsheet having high adhesion according to the present invention also has the following subsidiary technical features:
  • the fluorosilicone film-forming layer or the silico-formation film layer has a thickness of 0.01 ⁇ m to 5 ⁇ m.
  • the base layer is a PET base layer.
  • the base layer is a base layer of a polymer alloy material obtained by thermally blending PET with PBT or PEN, wherein the content of PBT or PEN is 1 to 50 parts by weight.
  • the base layer is formed by adding an inorganic oxide selected from the group consisting of silica, titania, alumina or zirconia to PET, wherein the content of the inorganic oxide is from 1 to 35 parts by weight.
  • the base layer is an ultrafine closed cell foam layer.
  • the base layer has a thickness of 0.1 mm to 10 mm.
  • the fluorine-based film layer is a film layer formed of a tetrafluoroethylene film layer or a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride or a chlorotrifluoroethylene film layer.
  • the content of the fluororesin in the fluorine-based film layer is from 30 to 95 parts by weight.
  • the surface of the base layer or the fluorine-based film layer is subjected to plasma fluorosilicone oxidation treatment to form the fluorosilicone oxide film-forming layer.
  • the fluorine-based film layer or the base layer is subjected to plasma silicidation to form the silicidation film-forming layer.
  • the processing technology of a solar cell back film having high adhesion according to the present invention mainly comprises the following steps:
  • the processing technology of a solar cell back film having high adhesion according to the present invention may further comprise the following steps:
  • the fluorine-based film layer containing the fluorosilicone oxidized film-forming layer or the silicidation film-forming layer is double-sided or single-sidedly laminated.
  • the solar cell back film with high adhesion provided according to the present invention has the following advantages compared with the prior art: First, the present invention performs fluorosilicone or silicon titanation on the fluorine-based film layer and/or the base layer. Processing, forming a fluorosilicone oxidized film-forming layer or a silicidation film-forming layer, so that the bonding property of the invention is better, the film layer is dense, and the barrier property is improved, especially for water vapor, which has better barrier and moisture resistance.
  • the two surfaces of the back mold have no difference, and can be applied to the bonding requirements of different types of adhesives, so that it is convenient to use the front and back surfaces when assembling the solar battery modules, and it is convenient to use. .
  • the processing technology of a solar cell back film with high adhesion provided according to the present invention has the following advantages: the battery back film manufactured by the processing method of the present invention has better adhesion, the film layer is dense, and the barrier is improved. Performance, and this process can achieve continuous production and improve production efficiency.
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention.
  • Figure 2 is a schematic view showing the structure of another embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of still another embodiment of the present invention.
  • Fig. 4 is a schematic structural view of still another embodiment of the present invention. detailed description:
  • the back film in the prior art is usually coated with DuPont Tendlar film on both sides of the PET base layer, and the Tendlar film is formed by a casting process and then stretched.
  • the film belongs to non-thermal melting
  • the film formed has an air gap between the swollen particles, and the mechanical strength of the film is low. It is bonded to the PET base layer by a solvent-based adhesive. Such a processing process is complicated, and the solvent is not easily volatilized. It is easy to form a weak point of the composite film.
  • the water vapor transmission rate of the film is as high as 4. 2g / m 2 d, which causes the photoelectric conversion efficiency of the solar cell to be quickly attenuated, thereby shortening the service life of the solar cell.
  • a solar cell back film having high adhesion comprises a base layer 3 and a fluorine-based film layer 2, and the fluorine-based film layer 2 and the base layer 3 have fluorine silicon oxide.
  • the film formation layer 1 is formed, and the outer surface of the fluorine-based film layer 2 has a fluorosilicone film-forming layer 1.
  • the outer surface of the fluorine-based film layer 2 and the base layer 3 and the fluorine-based film layer 2 are provided with a fluorosilicone-forming film layer 1, which not only makes the adhesion between the fluorine-based film layer 2 and the base layer 3
  • the knot is stronger and the backing film of the present invention is easily bonded to other solar cell modules.
  • the fluorine-based film layer 2 in this embodiment has a two-layer structure, which is located on both sides of the base layer 3, and therefore, the structure of the embodiment is a seven-layer structure, that is, a fluorosilicone film formed by sequentially laminating together.
  • Layer 1 fluorine-based film layer 2, fluorosilicone film-forming layer 1, base layer 3, fluorosilicone film-forming layer 1, fluorine-based film layer 2, and fluorosilicone film-forming layer 1.
  • the seven-layer structure makes the back film of the present invention unnecessary to distinguish between the front and back sides, and is more convenient to use.
  • the barrier property of the present invention is made better, and the overall moisture resistance, electrical properties and weather resistance are better.
  • the present invention may also be a four-layer structure, that is, a fluorosilicone-forming film layer, a fluorine-based film layer, a fluorosilicone film-forming layer, and a base layer which are sequentially laminated together, but this structure is required to be used. Identify the front and back.
  • the back film structure of the present invention may also have a five-layer structure, that is, a fluorosilicone-forming film layer 1, a fluorine-based film layer 2, and a fluorosilicone film-forming layer 1, which are sequentially laminated together.
  • Base layer fluorosilicone oxide layer 1.
  • the fluorosilicone film forming layer 1 has a thickness of from 0.01 ⁇ m to 5 ⁇ m, preferably from 0.1 ⁇ m to 2 ⁇ m.
  • the specific value can be selected according to the thickness of the base layer and the fluorine-based film layer: 0.05 ⁇ m, 0.1 ⁇ m, 0.3 ⁇ m, 0.8 ⁇ m, 1.2 microns, 1.8 microns, 2 microns, 2.5 microns, 3 microns, and the like.
  • the thickness is chosen here to meet the bonding requirements between the layers and to improve the overall performance of the backing film.
  • the base layer 3 in the present invention may be a PET base layer in which PET is polyethylene terephthalate.
  • the base layer 3 of the present invention may also be a base layer of a polymer alloy material obtained by hot-melt blending PET and PBT, wherein the PBT is polybutylene terephthalate, and the PET is modified by adding PBT, thereby improving the The overall performance of the base layer.
  • the content of PBT is from 1 to 50 parts by weight, preferably from 8 to 20 parts by weight. Specific values may be 1, 4, 8, 12, 15, 18, 20, 25, 30, 40 and 50 parts.
  • the base layer 3 of the present invention may also be a base layer of a polymer alloy material obtained by hot-melt blending PET and PEN, wherein the PEN is polyethylene naphthalate, and the PET is modified by adding PEN, thereby improving the The overall performance of the base layer.
  • the content of PEN is from 1 to 50 parts by weight, preferably from 8 to 20 parts by weight. Specific values may be 1, 4, 8, 12, 15, 18, 20, 25, 30, 40 and 50 parts.
  • the base layer 3 of the invention is alloyed with PBT or PEN, the crystallinity, processability and flatness are improved, the plasma uniformity of the surface of the base layer is improved, and the active group is uniformly dispersed, which is followed by silicidation and fluorosilicone.
  • the large and even area of the smelting has a reliable guarantee.
  • the base layer 3 in the present invention is formed by adding an inorganic oxide to PET, wherein the content of the inorganic oxide is from 1 to 35 parts by weight, preferably from 10 to 20 parts by weight. Specific values may be 1 part, 5 parts, 10 parts, 12 parts, 16 parts, 20 parts, 25 parts, 30 parts and 35 parts.
  • the inorganic oxide may be silica, titania, alumina or zirconia.
  • the base layer 3 in the present invention may also be formed of an ultra-fine closed-cell foamed layer by a superfine closed-cell foaming process, wherein the foamed pores in the foamed layer are closed structures, and the foamed pores are ultrafine structures.
  • the base layer of this structure has good support, is light in weight, and is easy to bend, and can be applied to curved solar panels.
  • the thickness of the base layer 3 is 0.1 mm - 10 mm, wherein the preferred thickness of the non-foamed base layer is 0.2-0.3 mm, and the specific values are 0.2 mm, 0.22 mm, 0.25 mm, 0.28. Mm, 0.3mm.
  • the thickness of the foam base layer is 1-3 mm, and the specific values are 1 mm, 2 mm, and 3 mm.
  • the fluorine-based film layer 2 is a tetrafluoroethylene film layer, and the film layer may be a JOLYWOOD FFC film or a tetrafluoroethylene (TFE) homopolymer film layer. .
  • the fluorine-based film layer 2 of the present invention may also be a film layer formed of a terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, i.e., a THV film layer.
  • the fluorine-based film layer 2 of the present invention may also be a chlorotrifluoroethylene film layer.
  • the content of the fluororesin in the fluorine-based film layer 2 of the present invention is from 30 to 95 parts by weight, preferably from 50 to 80 parts by weight.
  • the specific values are 30, 40, 50, 60, 70, 80, and 95 parts.
  • the fluorosilicone oxide film 1 is formed by plasma oxysilane oxidation treatment on the surface of the base layer 3 and/or the fluorine-based film layer 1.
  • the layer-forming film layer that is, the fluorosilicone film-forming layer 1 referred to in the present invention.
  • the processing technology of a solar cell back film with high adhesion mainly comprises the following steps:
  • plasma treatment on the surface of the base layer 3 to activate the surface of the base layer 3, and the plasma treatment process used may be a relatively mature plasma treatment process in the prior art.
  • the surface of the substrate containing the fluorine-based film layer is subjected to plasma treatment to activate the surface of the substrate; the plasma treatment process is the same as in the first step.
  • the fluorosilicone compound may also be applied to the surface of the base layer by roll coating or dipping, so that the surface of the base layer forms a fluorosilicone-forming layer.
  • the molecular formula of the fluorohalosiloxane compound used in the present invention is Rf_Si(0R) 3 , which is commercially available as a finished product.
  • the fluorosilicone compound is an organic compound and may be a solid or a liquid, and is ratiometrically matched with other liquids. Its characteristics make it have one end of the organic matter, and the other end can be pro-inorganic, thereby effectively improving the adhesion between the layers.
  • the processing of the back film is completed through the above-mentioned processing technology, and the back film can be sold as a finished product and used for solar energy. In the panel, it is bonded to other components in the solar panel.
  • the heating temperature may be 20-200 degrees Celsius
  • the heating baking time may be 1 to 600 seconds
  • the preferred range heating temperature is 80-130 degrees Celsius, heating time. It is 10 - 60 seconds.
  • the numerical selection can be based on the material of each layer, and different heating temperatures and times are selected. In addition, the higher the heating temperature, the shorter the heating time employed.
  • the specific values can be as follows: heating temperature is 20 degrees Celsius, heating time is 600 seconds; heating temperature is 40 degrees Celsius, heating time is 300 seconds; heating temperature is 60 degrees Celsius, heating time is 100 seconds; heating temperature is 80 degrees Celsius, heating time is 40 seconds; heating temperature is 120 degrees Celsius, heating time is 15 seconds; heating temperature is 150 degrees Celsius, heating time is 10 seconds; heating temperature is 200 degrees Celsius, heating time is 1 second.
  • the base layer may be heated to 50-200 degrees Celsius, preferably 80-150 degrees Celsius, and the specific values may be 50 degrees Celsius, 60 degrees Celsius, 80 degrees Celsius, 100 degrees Celsius, 120 degrees Celsius, 150 degrees Celsius, 180 degrees Celsius. 200 degrees Celsius.
  • the thickness of the fluorine-based film layer is 5 to 200 ⁇ m, preferably 10 to 40 ⁇ m. Specific values can be 5 mm, 10 mm, 15 mm, 25 mm, 35 mm, 40 mm, 60 mm, 100 mm, 150 mm, 200 mm.
  • the following processing technology can also be adopted, which mainly includes the following steps.
  • the surface of the fluorine-based film layer 2 is subjected to plasma treatment to activate the surface of the fluorine-based film layer; the plasma treatment process used may be a relatively mature plasma treatment process in the prior art.
  • the fluorosilicone compound can also be applied to the surface of the fluorine-based film layer by roll coating or dipping, thereby forming a fluorosilicone-forming film layer on both surfaces of the fluorine-based film layer.
  • the fluorine-based film layer containing the fluorosilicone oxide layer is double-coated.
  • the heating temperature may be 20-200 degrees Celsius
  • the heating baking time may be 1 to 600 seconds
  • the preferred range heating temperature is 80-130 degrees Celsius
  • the heating time is 10-60 seconds.
  • the value selection can be different depending on the material of each layer, and different heating temperatures and times are selected. In addition, the higher the heating temperature, the shorter the heating time employed.
  • the specific values can be as follows: heating temperature is 20 degrees Celsius, heating time is 600 seconds; heating temperature is 40 degrees Celsius, heating time is 300 seconds; heating temperature is 60 degrees Celsius, heating time is 100 seconds; heating temperature is 80 degrees Celsius, heating time is 40 seconds; heating temperature is 120 degrees Celsius, heating time is 15 seconds; heating temperature is 150 degrees Celsius, heating time is 10 seconds; heating temperature is 200 degrees Celsius, heating time is 1 second.
  • the base layer may be heated to 50-200 degrees Celsius, preferably 80-150 degrees Celsius, and the specific values may be 50 degrees Celsius, 60 degrees Celsius, 80 degrees Celsius, 100 degrees Celsius, 120 degrees Celsius, 150 degrees Celsius, 180 degrees Celsius. 200 degrees Celsius.
  • the thickness of the fluorine-based film layer is 5 to 200 ⁇ m, preferably 10 to 40 ⁇ m. Specific values can be 5 mm, 10 mm, 15 mm, 25 mm, 35 mm, 40 mm, 60 mm, 100 mm, 150 mm, 200 mm.
  • another embodiment according to the present invention includes a base layer 3 and a fluorine-based film layer 2, and a silicon-titanation film-forming layer 4 is formed between the fluorine-based film layer 2 and the base layer 3,
  • the outer surface of the fluorine-based film layer 2 has a hydrosilicide film-forming layer 4.
  • the outer surface of the fluorine-based film layer 2 and the base layer 3 and the fluorine-based film layer 2 are provided with a silicon titanation film-forming layer 4, which not only makes the bonding between the fluorine-based film layer 2 and the base layer 3 more It is strong and makes the back film of the present invention easy to bond with other solar cell modules.
  • the fluorine-based film layer 2 in this embodiment has a two-layer structure, which is located on both sides of the base layer 3, and therefore, the structure of the present embodiment has a seven-layer structure, that is, a silicon titanation film-forming layer 4 which is sequentially laminated together.
  • the seven-layer structure makes the back film of the present invention unnecessary to distinguish between the front and back sides, and is more convenient to use.
  • the barrier property of the present invention is better, and the overall moisture resistance, electrical properties and weather resistance are better.
  • the present invention may also be a four-layer structure, that is, a silicon titanation film layer, a fluorine-based film layer, a silicidation film-forming layer, and a base layer which are sequentially laminated together, but this structure is distinguished from the front and back surfaces in use.
  • the present invention may also be a five-layer structure, that is, a silicon titanation film formation layer 4, a fluorine-based film layer 2, a silicidation film formation layer 4, a base layer 3, and a silicon titanation film layer which are sequentially laminated together.
  • Layer 4 a silicon titanation film formation layer 4, a fluorine-based film layer 2, a silicidation film formation layer 4, a base layer 3, and a silicon titanation film layer which are sequentially laminated together.
  • the thickness of the silicosus formed film layer 4 is from 0.01 ⁇ m to 5 ⁇ m, preferably from 0.1 ⁇ m to 2 ⁇ m.
  • the specific value can be selected according to the thickness of the base layer and the fluorine-based film layer: 0.05 ⁇ m, 0.1 ⁇ m, 0.3 ⁇ m, 0.8 ⁇ m, 1.2 Micron, 1.8 micron, 2 micron, 2.5 micron, 3 micron, etc.
  • the thickness is chosen here to meet the bonding requirements between the layers and to improve the overall performance of the backing film.
  • the base layer 3 and the fluorine-based film layer 2 employed in the embodiment are the same as those in the above embodiment, and the detailed description thereof will not be repeated here.
  • the silicotious film-forming layer 4 is a film-forming layer formed by plasma silicidation on the surface of the base layer 3 or the fluorine-based film layer 2, that is, The silicosilized film-forming layer 4 referred to in the present invention.
  • plasma treatment on the surface of the base layer 3 to activate the surface of the base layer, and the plasma treatment process used may be a relatively mature plasma treatment process in the prior art.
  • the silicon-titanium compound may also be coated by roll coating or dipping.
  • the surface of the base layer 3 is coated so that the surface of the base layer forms the siliconized titanium film forming layer 4.
  • the surface of the substrate containing the fluorine-based film layer is subjected to plasma treatment to activate the surface of the substrate; the plasma treatment process is the same as in the first step.
  • the titanium-titanium compound may also be applied to the surface of the base layer by roll coating or dipping, thereby forming a surface of the base layer into a siliconized film.
  • Another processing technique can also be adopted for this embodiment, which mainly includes the following steps.
  • (1) The surface of the fluorine-based film layer 2 is subjected to plasma treatment to activate the surface of the fluorine-based film layer; the plasma treatment process used may be a relatively mature plasma treatment process in the prior art.
  • the silicon-titanium compound can also pass A surface of the fluorine-based film layer is applied by roll coating or dipping so that both surfaces of the fluorine-based film layer form a siliconized titanium film-forming layer.
  • the fluorine-based film layer containing the silicidation film-forming layer is double-coated.
  • the molecular formula of the silicon-titanium compound used in this embodiment SiOx, Ti0 2 , which is commercially available as a finished product.
  • the silicon-titanium compound is also an organic compound, which may be a solid or a liquid, and is ratiometrically matched with other liquids. Its characteristics make it have an organic substance at one end and an inorganic substance at the other end, thereby effectively improving the adhesion between the layers.
  • the invention adopts the above processing technology to realize continuous production of the back film processing and improve the production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Description

太阳能电池背膜及其加工工艺
技术领域:
本发明涉及一种用于太阳能电池中的组件,尤其涉及一种具有高 粘结性的太阳能电池背膜, 同时涉及一种加工该背膜的工艺。
背景技术:
太阳能电池板通常是一个叠层结构, 主要包括玻璃表层、 EVA密 封层、 太阳能电池片、 EVA密封层和太阳能电池背膜, 其中太阳能电 池片被两层 EVA密封层密封包裹。 太阳能电池背膜的主要作用是提高 太阳能电池板的整体机械强度, 另外可以防止水汽渗透到密封层中, 影响电池片的使用寿命。为了提高背膜的整体性能, 现有技术中出现 了大量针对背膜进行改进的方案。 例如, 中国专利申请号为 CN200710185202. 8号、 公开日为 2008年 5月 14日、 公开号为 CN101177514的发明专利申请, 公开了一种太阳能电池背板及其制备 方法, 该背板包括基材和含氟聚合物层, 含氟聚合物层各组分按重量 份数计为:含氟树脂 25〜45份;改性树脂 1. 5〜3份;聚合物填料 0. 5〜 3份; 无机填料 0. 1〜1份; 溶剂 50〜70份。 上述方案的生产成本低, 性能优良,其剥离强度高,阻水性能好,耐候性好。再例如, EP1938967 号欧洲专利申请, 公开日为 2008年 7月 2日, 国际申请号 PCT/JP2006/312501 , 国际公布号为 WO2007/010706, 公布日为 2007 年 1月 25日, 公开了一种具有良好不透水板的太阳能电池背板, 该太 阳能电池背板组件至少在防水板的一个表面上具有固化涂料膜,该固 化涂料膜包括具有可固化功能团的含氟聚合体的涂料。上述方案通过 制造一种含氟涂料, 并将含氟涂料涂覆在基材上, 从而提高背板的整 体性能。虽然氟材料能够提高背板的整体性能, 但由于氟材料本身特 性, 其存在表面能高, 表面憎水, 粘结性能差。 这种背板与 EVA的粘 接性能降低了, 使得背板与 EVA的粘接加工工艺变得复杂。 发明内容:
本发明所要解决的技术问题在于克服上述现有技术之不足,提供 一种具有高粘结性、且具有高耐候性、耐化学性、高的电气绝缘性能, 高的防水性的太阳能电池背膜。
本发明所要解决的另一技术问题在于克服上述现有技术之不足, 提供一种能够加工具有高粘结性、整体性能好的太阳能电池背膜的加 工工艺。
按照本发明提供的一种具有高粘结性的太阳能电池背膜,包括基 层和氟基膜层,所述氟基膜层与所述基层之间具有氟硅氧垸化成膜层 或硅钛化成膜层,所述氟基膜层的外表面具有氟硅氧垸化成膜层或硅 钛化成膜层。
按照本发明提供的一种具有高粘结性的太阳能电池背膜还具有 如下附属技术特征:
所述氟硅氧垸化成膜层或硅钛化成膜层的厚度为 0.01微米一 5微 米。
所述基层为 PET基层。
所述基层是 PET与 PBT或 PEN热融共混而成的高分子合金材料基 层, 其中 PBT或 PEN的含量以重量计为 1一 50份。
所述基层是在 PET中加入选自二氧化硅、 氧化钛、 氧化铝或氧化 锆的无机氧化物形成, 其中无机氧化物的含量以重量计为 1一 35份。
所述基层为超细闭孔式发泡层。
所述基层的厚度为 0.1毫米一 10毫米。 所述氟基膜层为四氟乙烯基膜层或四氟乙烯、六氟丙烯和偏氟乙 烯的三元共聚物所形成的膜层或三氟氯乙烯基膜层。
所述氟基膜层中氟树脂的含量以重量计为 30— 95份。
所述基层或所述氟基膜层的表面经等离子氟硅氧垸化处理形成 所述氟硅氧垸化成膜层。
所述氟基膜层或所述基层经等离子硅钛化处理形成所述硅钛化 成膜层。
按照本发明提供的一种具有高粘结性的太阳能电池背膜的加工 工艺, 主要包括以下步骤:
( 1 )、 在基层表面进行等离子化处理, 活化基层表面;
(2)、对活化后基层喷涂或滚涂或浸渍氟硅氧垸化合物或硅钛化 合物, 经 20— 200摄氏度加热 1一 600秒, 使基层表面形成氟硅氧垸化 成膜层或硅钛化成膜层;
( 3 )、对含有氟硅氧垸化成膜层或硅钛化成膜层的基层加热至 50 一 200摄氏度后双面或单面覆合厚度为 5— 200微米的氟基膜层, 形成 基材;
(4)、对含有氟基膜层的基材表面进行等离子处理, 活化基材表 面;
(5 )、对活化后基材喷涂或滚涂或浸渍氟硅氧垸化合物或硅钛化 合物, 经 20— 200摄氏度加热 1一 600秒, 使基材表面形成氟硅氧垸化 成膜层或硅钛化成膜层。
按照本发明提供的一种具有高粘结性的太阳能电池背膜的加工 工艺还可以为主要包括以下步骤:
( 1 )、对氟基膜层的两个表面进行等离子处理, 活化氟基膜层表 面; (2)、对活化后氟基膜层的两个表面喷涂或滚涂或浸渍氟硅氧垸 化合物或硅钛化合物, 经 20— 200摄氏度加热 1一 600秒, 使氟基膜层 的两个表面形成氟硅氧垸化成膜层或硅钛化成膜层;
( 3 )、 对基层加热至 50— 200摄氏度后双面或单面覆合含有氟硅 氧垸化成膜层或硅钛化成膜层的氟基膜层。
按照本发明提供的一种具有高粘结性的太阳能电池背膜与现有 技术相比具有如下优点: 首先, 本发明对氟基膜层和 /或基层进行氟 硅氧垸化或硅钛化处理, 形成氟硅氧垸化成膜层或硅钛化成膜层, 使 得本发明的粘结性能更好, 膜层密实, 提高了阻隔性能, 尤其对水蒸 气的具有更好阻隔, 防潮性能好, 电气性能和耐候性能更好; 其次, 经过上述处理后的背模的两个表面无差别,可以适用不同类型胶粘剂 的粘结需求,方便太阳能电池组件层压时无需辨别正反面,方便使用。
按照本发明提供的一种具有高粘结性的太阳能电池背膜的加工 工艺具有如下优点:通过本发明的加工工艺制造出来的电池背膜的粘 接性更好, 膜层密实, 提高了阻隔性能, 且这种加工工艺可以实现连 续化生产, 提高了生产效率。 附图说明:
图 1是本发明的一种实施例的结构示意图。
图 2是本发明的另一种实施例的结构示意图。
图 3是本发明的再一种实施例的结构示意图。
图 4是本发明的又一种实施例的结构示意图。 具体实施方式:
现有技术中的背膜通常在 PET基层的二面是覆杜邦 Tendlar薄膜, Tendlar膜是利用流延工艺成膜再经拉伸处理。 该膜是属于非热熔融 成的膜, 溶胀的粒子间有气隙, 膜的机械强度低, 它靠溶剂型粘接剂 与 PET基层粘接, 此类加工工艺复杂, 溶剂不易彻底挥发。 易形成复 合膜的薄弱点。 使膜的水蒸气透过率高达 4. 2g/ m2d, 造成太阳能电 池的光电转换效率很快衰减, 缩短了太阳能电池的使用寿命。
参见图 1, 按照本发明提供的一种具有高粘结性的太阳能电池背 膜, 包括基层 3和氟基膜层 2, 所述氟基膜层 2与所述基层 3之间具有氟 硅氧垸化成膜层 1,所述氟基膜层 2的外表面具有氟硅氧垸化成膜层 1。 本发明在所述氟基膜层 2和所述基层 3及氟基膜层 2外表面均设置有氟 硅氧垸化成膜层 1,不仅使得氟基膜层 2与基层 3之间的粘结更加牢固, 而且使得本发明的背膜易于与其他的太阳能电池组件粘结。本实施例 中的氟基膜层 2为两层结构, 分别位于所述基层 3的两面, 因此, 本实 施例的结构为七层结构, 即依次覆合在一起的氟硅氧垸化成膜层 1、 氟基膜层 2、 氟硅氧垸化成膜层 1、 基层 3、 氟硅氧垸化成膜层 1、 氟基 膜层 2和氟硅氧垸化成膜层 1。这种七层结构使得本发明的背膜在使用 时, 无须辨别正反面, 使用更加方便。 同时, 使得本发明的阻隔性更 好, 整体的防潮性能、 电气性能和耐候性能更好。
当然本发明也可以为四层结构,即依次覆合在一起的氟硅氧垸化 成膜层、 氟基膜层、 氟硅氧垸化成膜层和基层, 但这种结构在使用时 要辨别正反面。
参见图 2, 本发明的背膜结构也可以为五层结构, 即依次覆合在 一起的氟硅氧垸化成膜层 1、氟基膜层 2、氟硅氧垸化成膜层 1、基层 3、 氟硅氧垸化成膜层 1。
在本发明给出的上述实施例中, 所述氟硅氧垸化成膜层 1的厚度 为 0.01微米至 5微米, 优选厚度为 0.1微米至 2微米。具体数值可以根据 基层和氟基膜层的厚度选择 0.05微米、 0.1微米、 0.3微米、 0.8微米、 1.2微米、 1.8微米、 2微米、 2.5微米、 3微米等等。 这里厚度的选择, 要满足各层之间粘结的需求, 同时要提高背膜的整体性能。
在本发明中的所述基层 3可以为 PET基层,其中 PET为聚苯二甲酸 乙二醇酯。
本发明的所述基层 3也可以为 PET与 PBT热融共混而成的高分子 合金材料基层,其中 PBT为聚对苯二甲酸丁二酯,通过添加 PBT对 PET 进行改性, 从而提高所述基层的整体性能。 其中 PBT的含量以重量计 为 1一 50份, 优选为 8— 20份。 具体数值可以为 1份、 4份、 8份、 12份、 15份、 18份、 20份、 25份、 30份、 40份和 50份。
本发明的所述基层 3还可以为 PET与 PEN热融共混而成的高分子 合金材料基层,其中 PEN为聚萘二甲酸乙二醇酯,通过添加 PEN对 PET 进行改性, 从而提高所述基层的整体性能。 其中 PEN的含量以重量计 为 1一 50份, 优选为 8— 20份。 具体数值可以为 1份、 4份、 8份、 12份、 15份、 18份、 20份、 25份、 30份、 40份和 50份。
本发明的基层 3经 PET与 PBT或 PEN合金化后, 改进了结晶性、加工 性及平整性, 使基层表面等离子化均一性提高, 活性基团分散均匀, 为后续硅钛化及氟硅氧垸化大面积均匀牢固覆合有了可靠保证。
本发明中的所述基层 3是在 PET中加入无机氧化物形成, 其中无 机氧化物的含量以重量计为 1一 35份, 优选为 10— 20份。 具体数值可 以为 1份、 5份、 10份、 12份、 16份、 20份、 25份、 30份和 35份。 其中, 所述无机氧化物可以为二氧化硅、 氧化钛、 氧化铝、 氧化锆。
本发明中的基层 3也可以采用 PE, 通过超细闭孔式发泡工艺形成 超细闭孔式发泡层, 这里的发泡层中的发泡孔为封闭式结构, 且发泡 孔为超细结构。 这种结构的基层具有较好的支持力, 且重量轻, 易于 弯折, 可以应用于弯曲式太阳能电池板中。 在本发明给出的上述基层 3中, 所述基层 3的厚度为 0.1mm— 10mm,其中非发泡基层的优选厚度为 0.2-0.3mm,具体数值为 0.2mm、 0.22mm、 0.25mm、 0.28mm、 0.3mm。 发泡基层的厚度为 1— 3mm, 具体数值为 lmm、 2mm、 3mm
在本发明给出的上述实施例中, 所述氟基膜层 2为四氟乙烯基膜 层,这种膜层可以选用 JOLYWOOD FFC膜,也可以为四氟乙烯(TFE) 均聚物膜层。
本发明的氟基膜层 2也可以为四氟乙烯、 六氟丙烯和偏氟乙烯的 三元共聚物所形成的膜层, 即 THV膜层。
本发明的氟基膜层 2还可以为三氟氯乙烯基膜层。
本发明的所述氟基膜层 2中氟树脂的含量以重量计为 30— 95份, 优选为 50— 80份。 具体数值为 30份、 40份、 50份、 60份、 70份、 80 份、 95份。
本发明给出的上述实施例中, 所述氟硅氧垸化成膜 1是通过在所 述基层 3和 /或所述氟基膜层 1的表面经等离子氟硅氧垸化处理形成的 一层成膜层, 即本发明中所称的氟硅氧垸化成膜层 1。
本发明提供的一种具有高粘结性的太阳能电池背膜的加工工艺, 主要包括以下步骤:
( 1 )、在基层 3表面进行等离子化处理, 活化基层 3表面, 所采用 的等离子处理工艺可以为现有技术中比较成熟的等离子处理工艺。
(2 )、对活化后基层 3喷涂氟硅氧垸化合物, 经 100摄氏度加热烘 烤 20秒, 使基层表面形成氟硅氧垸化成膜层; 在此, 氟硅氧垸化合物 也可以通过滚涂或浸渍的方式涂覆在基层的表面,从而使基层的表面 形成氟硅氧垸化成膜层。 ( 3 )、对含有氟硅氧垸化成膜层的基层加热至 90摄氏度后双面覆 合厚度为 20微米的氟基膜层, 形成基材; 当然, 也可以在单面覆合氟 基膜层。
(4)、对含有氟基膜层的基材表面进行等离子处理, 活化基材表 面; 所采用的等离子处理工艺与第一步中的相同。
(5 )、 对活化后基材喷涂氟硅氧垸化合物, 经 100摄氏度加热烘 烤 20秒, 使基材表面形成氟硅氧垸化成膜层。在此, 氟硅氧垸化合物 也可以通过滚涂或浸渍的方式涂覆在基层的表面,从而使基层的表面 形成氟硅氧垸化成膜层。
本发明中所采用的氟硅氧垸化合物的分子式: Rf_Si (0R) 3 , 这 种化合物可以从市场上购买到成品。这种氟硅氧垸化合物为有机化合 物, 可以是固体或液体, 与其他液体进行配比。 它的特性使其具有一 端亲有机物, 另一端可以亲无机物, 从而有效的提高了各层之间的粘 经过上述加工工艺完成背膜的加工, 这种背膜可以作为成品销 售, 并用于太阳能电池板中, 与太阳能电池板中的其他组件相粘结。
本发明在步骤(2)和步骤(5 ) 中, 所采用的加热温度可以在 20 一 200摄氏度, 加热烘烤的时间可以为 1一 600秒, 优选范围加热温度 为 80— 130摄氏度, 加热时间为 10— 60秒。 其中, 数值选择可以根据 各层的材料不同,选用不同的加热温度和时间。另外,加热温度越高, 所采用的加热时间越短。 具体数值可以如下: 加热温度为 20摄氏度, 加热时间为 600秒; 加热温度为 40摄氏度, 加热时间为 300秒; 加热温 度为 60摄氏度, 加热时间为 100秒; 加热温度为 80摄氏度, 加热时间 为 40秒; 加热温度为 120摄氏度, 加热时间为 15秒; 加热温度为 150 摄氏度, 加热时间为 10秒; 加热温度为 200摄氏度, 加热时间为 1秒。 本发明在步骤(3 ) 中, 可以将基层加热到 50— 200摄氏度, 优选 80— 150摄氏度, 具体数值可以为 50摄氏度, 60摄氏度, 80摄氏度, 100摄氏度, 120摄氏度, 150摄氏度, 180摄氏度, 200摄氏度。 而氟 基膜层的厚度为 5— 200微米, 优选 10— 40微米。 具体数值可以为 5毫 米、 10毫米、 15毫米、 25毫米、 35毫米、 40毫米、 60毫米、 100毫米、 150毫米、 200毫米。
针对本实施例还可以采用如下加工工艺, 主要包括以下步骤
( 1 )、对氟基膜层 2的表面进行等离子处理, 活化氟基膜层表面; 所采用的等离子处理工艺可以为现有技术中比较成熟的等离子处理 工艺。
( 2 )、 对活化后氟基膜层 2的两面喷涂氟硅氧垸化合物, 经 100 摄氏度加热烘烤 20秒, 使氟基膜层的两个表面形成氟硅氧垸化成膜 层; 在此, 氟硅氧垸化合物也可以通过滚涂或浸渍的方式涂覆在氟基 膜层的表面, 从而使氟基膜层的两个表面形成氟硅氧垸化成膜层。
( 3 )、 对基层 3加热至 90摄氏度后双面覆合含有氟硅氧垸化成膜 层的氟基膜层。 当然, 也可以在单面覆合氟基膜层。
本发明在步骤(2 )中,所采用的加热温度可以在 20— 200摄氏度, 加热烘烤的时间可以为 1一 600秒, 优选范围加热温度为 80— 130摄氏 度,加热时间为 10— 60秒。其中,数值选择可以根据各层的材料不同, 选用不同的加热温度和时间。 另外, 加热温度越高, 所采用的加热时 间越短。 具体数值可以如下: 加热温度为 20摄氏度, 加热时间为 600 秒; 加热温度为 40摄氏度, 加热时间为 300秒; 加热温度为 60摄氏度, 加热时间为 100秒; 加热温度为 80摄氏度, 加热时间为 40秒; 加热温 度为 120摄氏度, 加热时间为 15秒; 加热温度为 150摄氏度, 加热时间 为 10秒; 加热温度为 200摄氏度, 加热时间为 1秒。 本发明在步骤(3 ) 中, 可以将基层加热到 50— 200摄氏度, 优选 80— 150摄氏度, 具体数值可以为 50摄氏度, 60摄氏度, 80摄氏度, 100摄氏度, 120摄氏度, 150摄氏度, 180摄氏度, 200摄氏度。 而氟 基膜层的厚度为 5— 200微米, 优选 10— 40微米。 具体数值可以为 5毫 米、 10毫米、 15毫米、 25毫米、 35毫米、 40毫米、 60毫米、 100毫米、 150毫米、 200毫米。
参见图 3, 按照本发明提供的另一种实施例, 包括基层 3和氟基膜 层 2, 所述氟基膜层 2与所述基层 3之间具有硅钛化成膜层 4, 所述氟基 膜层 2的外表面具有硅钛化成膜层 4。 本发明在所述氟基膜层 2和所述 基层 3及氟基膜层 2外表面均设置有硅钛化成膜层 4, 不仅使得氟基膜 层 2与基层 3之间的粘结更加牢固,而且使得本发明的背膜易于与其他 的太阳能电池组件粘结。 本实施例中的氟基膜层 2为两层结构, 分别 位于所述基层 3的两面, 因此, 本实施例的结构为七层结构, 即依次 覆合在一起的硅钛化成膜层 4、 氟基膜层 2、 硅钛化成膜层 4、 基层 3、 硅钛化成膜层 4、 氟基膜层 2和硅钛化成膜层 4。 这种七层结构使得本 发明的背膜在使用时, 无须辨别正反面, 使用更加方便。 同时, 使得 本发明的阻隔性更好, 整体的防潮性能、 电气性能和耐候性能更好。
当然本发明也可以为四层结构,即依次覆合在一起的硅钛化成膜 层、 氟基膜层、 硅钛化成膜层和基层, 但这种结构在使用时要辨别正 反面。
参见图 4, 本发明也可以为五层结构, 即依次覆合在一起的硅钛 化成膜层 4、 氟基膜层 2、 硅钛化成膜层 4、 基层 3、 硅钛化成膜层 4。
在本发明给出的上述实施例中, 所述硅钛化成膜层 4的厚度为 0.01微米至 5微米, 优选厚度为 0.1微米至 2微米。具体数值可以根据基 层和氟基膜层的厚度选择 0.05微米、 0.1微米、 0.3微米、 0.8微米、 1.2 微米、 1.8微米、 2微米、 2.5微米、 3微米等等。 这里厚度的选择, 要 满足各层之间粘结的需求, 同时要提高背膜的整体性能。
在实施例中采用的基层 3和氟基膜层 2与上述实施例中的相同,此 处对具体内容不再赘述。
本发明给出的实施例中,所述硅钛化成膜层 4是通过在所述基层 3 或所述氟基膜层 2的表面经等离子硅钛化处理形成的一层成膜层, 即 本发明中所称的硅钛化成膜层 4。
本发明本实施例的的加工工艺, 主要包括以下步骤:
( 1 )、 在基层 3表面进行等离子化处理, 活化基层表面, 所采用 的等离子处理工艺可以为现有技术中比较成熟的等离子处理工艺。
(2)、对活化后基层 3喷涂硅钛化合物, 经 110摄氏度加热烘烤 18 秒, 使基层表面形成硅钛化成膜层; 在此, 硅钛化合物也可以通过滚 涂或浸渍的方式涂覆在基层 3的表面, 从而使基层的表面形成硅钛化 成膜层 4。
(3 )、对含有硅钛化成膜层的基层加热至 90摄氏度后双面覆合厚 度为 20微米的氟基膜层, 形成基材; 当然, 也可以在单面覆合氟基膜 层。
(4)、对含有氟基膜层的基材表面进行等离子处理, 活化基材表 面; 所采用的等离子处理工艺与第一步中的相同。
(5 )、 对活化后基材喷涂硅钛化合物, 经 110摄氏度加热烘烤 18 秒, 使基材表面形成硅钛化成膜层。在此, 硅钛化合物也可以通过滚 涂或浸渍的方式涂覆在基层的表面,从而使基层的表面形成硅钛化成 膜层。
针对本实施例还可以采用另一种加工工艺, 主要包括以下步骤 ( 1 )、对氟基膜层 2的表面进行等离子处理, 活化氟基膜层表面; 所采用的等离子处理工艺可以为现有技术中比较成熟的等离子处理 工艺。
( 2 )、 对活化后氟基膜层的两面喷涂硅钛化合物, 经 110摄氏度 加热烘烤 18秒, 使氟基膜层表面形成硅钛化成膜层; 在此, 硅钛化合 物也可以通过滚涂或浸渍的方式涂覆在氟基膜层的表面,从而使氟基 膜层的两个表面形成硅钛化成膜层。
( 3 )、对基层加热至 90摄氏度后双面覆合含有硅钛化成膜层的氟 基膜层。 当然, 也可以在单面覆合氟基膜层。
本实施例中所采用的硅钛化合物的分子式: SiOx 、 Ti02, 这种 化合物可以从市场上购买到成品。 这种硅钛化合物也为有机化合物, 可以是固体或液体, 与其他液体进行配比。它的特性使其具有一端亲 有机物,另一端可以亲无机物,从而有效的提高了各层之间的粘结力。
本发明采用上述加工工艺可以实现背膜加工的连续化生产,提高 了生产效率。
本发明的产品与国外的同类产品相比, 各项数据如下:
Figure imgf000014_0001

Claims

权 利 要 求 书
1、一种具有高粘结性的太阳能电池背膜, 包括基层和氟基膜层, 其特征在于:所述氟基膜层与所述基层之间具有氟硅氧垸化成膜层或 硅钛化成膜层,所述氟基膜层的外表面具有氟硅氧垸化成膜层或硅钛 化成膜层。
2、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述氟硅氧垸化成膜层或硅钛化成膜层的厚度为 0.01微米 一 5微米。
3、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述基层为 PET基层。
4、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述基层是 PET与 PBT或 PEN热融共混而成的高分子合金 材料基层, 其中 PBT或 PEN的含量以重量计为 1一 50份。
5、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述基层是在 PET中加入选自二氧化硅、 氧化钛、 氧化铝 或氧化锆的无机氧化物形成, 其中无机氧化物的含量以重量计为 1一 35份。
6、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述基层为超细闭孔式发泡层。
7、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述基层的厚度为 0.1毫米一 10毫米。
8、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述氟基膜层为四氟乙烯基膜层或四氟乙烯、六氟丙烯和 偏氟乙烯的三元共聚物所形成的膜层或三氟氯乙烯基膜层。
9、如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其 特征在于: 所述氟基膜层中氟树脂的含量以重量计为 30— 95份。
10、 如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其特征在于:所述基层或所述氟基膜层的表面经等离子氟硅氧垸化处 理形成所述氟硅氧垸化成膜层。
11、 如权利要求 1所述的一种具有高粘结性的太阳能电池背膜, 其特征在于:所述氟基膜层或所述基层经等离子硅钛化处理形成所述 硅钛化成膜层。
12、一种具有高粘结性的太阳能电池背膜的加工工艺, 其特征在 于: 主要包括以下步骤:
( 1 )、 在基层表面进行等离子化处理, 活化基层表面;
(2)、对活化后基层喷涂或滚涂或浸渍氟硅氧垸化合物或硅钛化 合物, 经 20— 200摄氏度加热 1一 600秒, 使基层表面形成氟硅氧垸化 成膜层或硅钛化成膜层;
( 3 )、对含有氟硅氧垸化成膜层或硅钛化成膜层的基层加热至 50 一 200摄氏度后双面或单面覆合厚度为 5— 200微米的氟基膜层, 形成 基材;
(4)、对含有氟基膜层的基材表面进行等离子处理, 活化基材表 面;
(5 )、对活化后基材喷涂或滚涂或浸渍氟硅氧垸化合物或硅钛化 合物, 经 20— 200摄氏度加热 1一 600秒, 使基材表面形成氟硅氧垸化 成膜层或硅钛化成膜层。
13、一种具有高粘结性的太阳能电池背膜的加工工艺, 其特征在 于: 主要包括以下步骤:
( 1 )、对氟基膜层的两个表面进行等离子处理, 活化氟基膜层表 面;
(2)、对活化后氟基膜层的两个表面喷涂或滚涂或浸渍氟硅氧垸 化合物或硅钛化合物, 经 20— 200摄氏度加热 1一 600秒, 使氟基膜层 的两个表面形成氟硅氧垸化成膜层或硅钛化成膜层;
( 3 )、 对基层加热至 50— 200摄氏度后双面或单面覆合含有氟硅 氧垸化成膜层或硅钛化成膜层的氟基膜层。
PCT/CN2009/000965 2008-08-29 2009-08-21 太阳能电池背膜及其加工工艺 WO2010022585A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/059,520 US8999508B2 (en) 2008-08-29 2009-08-21 Back sheet of solar cell and manufacturing method thereof
EP09809170.5A EP2333875A4 (en) 2008-08-29 2009-08-21 REAR FILM OF SOLAR CELL AND MANUFACTURING METHOD THEREFOR
KR1020117006814A KR101457260B1 (ko) 2008-08-29 2009-08-21 고점결성을 갖는 태양전지 백시트 필름 및 가공방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810210177.9 2008-08-29
CN2008102101779A CN101661962B (zh) 2008-08-29 2008-08-29 一种具有高粘结性的太阳能电池背膜及加工工艺

Publications (1)

Publication Number Publication Date
WO2010022585A1 true WO2010022585A1 (zh) 2010-03-04

Family

ID=41720797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000965 WO2010022585A1 (zh) 2008-08-29 2009-08-21 太阳能电池背膜及其加工工艺

Country Status (5)

Country Link
US (1) US8999508B2 (zh)
EP (1) EP2333875A4 (zh)
KR (1) KR101457260B1 (zh)
CN (1) CN101661962B (zh)
WO (1) WO2010022585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033626A2 (en) 2010-09-10 2012-03-15 Saint-Gobain Performance Plastics Corporation Uv resistant clear laminates
CN110527128A (zh) * 2019-08-29 2019-12-03 苏州瀚海新材料有限公司 一种涂覆型太阳能背板的制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814542A (zh) * 2010-03-26 2010-08-25 明冠能源(江西)有限公司 高水汽阻隔率太阳能背膜及其制作方法
EP2639836A4 (en) * 2010-11-12 2016-08-24 Fujifilm Corp BACK SHEET FOR SOLAR CELLS AND PROCESS FOR PRODUCING THE SAME, AND SOLAR CELL MODULE
CN102555370B (zh) * 2010-12-31 2015-04-22 苏州中来光伏新材股份有限公司 一种非氟高耐候高粘结性太阳电池背膜及加工工艺
CN102555377B (zh) * 2010-12-31 2015-01-07 苏州中来光伏新材股份有限公司 一种eva胶一体化太阳电池背膜及加工工艺
CN102529259B (zh) * 2010-12-31 2014-12-03 苏州中来光伏新材股份有限公司 一种高粘结性太阳电池背膜及加工工艺
TW201307468A (zh) * 2011-07-14 2013-02-16 Fujifilm Corp 太陽電池用聚合物片及太陽電池模組
CN102911613A (zh) * 2011-08-02 2013-02-06 苏州中来光伏新材股份有限公司 一种涂覆型高粘接太阳电池背膜及制备工艺
TW201313848A (zh) * 2011-09-30 2013-04-01 Eternal Chemical Co Ltd 用於太陽能電池模組之封裝材料及其用途
CN103187468B (zh) * 2011-12-30 2015-11-04 苏州中来光伏新材股份有限公司 一种高散热性太阳电池背膜及加工工艺
CN103187471B (zh) * 2011-12-30 2016-06-01 苏州中来光伏新材股份有限公司 一种刚性太阳电池背板及其加工工艺
CN103367490B (zh) * 2012-03-27 2016-04-20 横店集团东磁股份有限公司 一种低温等离子体化处理的太阳能电池背膜及其制备方法
CN102709368B (zh) * 2012-06-21 2015-06-17 宁波长阳科技有限公司 一种太阳能电池背板及其制备方法
CN102931261B (zh) * 2012-10-22 2015-09-23 苏州中来光伏新材股份有限公司 一种光伏组件用太阳电池背膜及其加工工艺
CN102931262B (zh) * 2012-11-01 2016-06-22 乐凯胶片股份有限公司 一种透明太阳能电池背膜
JP6310858B2 (ja) * 2012-11-15 2018-04-11 デンカ株式会社 フッ素系樹脂フィルム、その製造方法、及び太陽電池モジュール
CN104282805A (zh) * 2014-09-29 2015-01-14 常州回天新材料有限公司 提高太阳能电池板背膜表面能的处理方法
CN104393077B (zh) * 2014-10-24 2016-08-24 无锡中洁能源技术有限公司 用于太阳能电池背板的有机硅涂层及其制备方法
CN104985895B (zh) * 2015-06-05 2017-03-08 苏州佳亿达电器有限公司 一种用于太阳能光电板的高寿命背膜
CN106229366A (zh) * 2016-08-24 2016-12-14 苏州中来光伏新材股份有限公司 一种新型太阳能电池背板及其组件和制备方法
JP7041916B2 (ja) * 2018-02-07 2022-03-25 積水化学工業株式会社 表面処理方法及び装置
CN109411558B (zh) * 2018-10-24 2020-05-12 苏州赛伍应用技术股份有限公司 一种太阳能电池背板及其制备方法
CN114621696B (zh) * 2020-12-11 2023-12-01 苏州阿特斯阳光电力科技有限公司 一种光伏组件电池串用固定胶带及其制备方法和应用
CN115274897B (zh) * 2022-07-18 2023-06-06 江苏中来新材科技有限公司 一种高反射的光转换光伏背板和双面光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176775A (ja) * 1993-12-17 1995-07-14 Canon Inc 太陽電池モジュール
JP2004214342A (ja) * 2002-12-27 2004-07-29 Nisshin Steel Co Ltd 接着性に優れた太陽電池基材
JP2006312501A (ja) 2005-05-06 2006-11-16 Hitachi Ltd エレベータの群管理制御方法、エレベータの群管理システム及びエレベータの群管理システム用表示装置
WO2007010706A1 (ja) 2005-07-22 2007-01-25 Daikin Industries, Ltd. 太陽電池のバックシート
CN101123296A (zh) * 2006-08-08 2008-02-13 中国科学院化学研究所 一种聚合物太阳能电池及其制备方法
CN101177514A (zh) 2007-11-08 2008-05-14 中国乐凯胶片集团公司 一种太阳能电池背板及其制备方法
CN201199526Y (zh) * 2008-08-29 2009-02-25 苏州中来太阳能材料技术有限公司 一种太阳能电池背膜
CN201199525Y (zh) * 2008-08-29 2009-02-25 苏州中来太阳能材料技术有限公司 一种具有高粘结性的太阳能电池背膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756082B2 (ja) * 1994-04-28 1998-05-25 キヤノン株式会社 太陽電池モジュールの製造方法
JP3061255B2 (ja) * 1995-08-18 2000-07-10 キヤノン販売株式会社 成膜方法
CN1169228C (zh) * 1995-08-24 2004-09-29 佳能株式会社 太阳能电池组件,其制造方法以及建筑物构件
EP1408007A3 (en) * 1996-08-30 2009-04-29 Showa Denko K.K. A glass tube, plastic cover, a window pane and a wall of a building comprising a titanium oxide film
EP1054456A3 (en) * 1999-05-17 2007-01-03 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
WO2001096114A1 (en) * 2000-06-13 2001-12-20 E.I. Du Pont De Nemours And Company Pen-pet-pen polymeric film
US20060166023A1 (en) * 2002-09-06 2006-07-27 Dai Nippon Printing Co., Ltd. Backside protective sheet for solar battery module and solar battery module using the same
US7553540B2 (en) * 2005-12-30 2009-06-30 E. I. Du Pont De Nemours And Company Fluoropolymer coated films useful for photovoltaic modules
ATE518255T1 (de) * 2006-08-30 2011-08-15 Keiwa Inc Benutzung einer rückplatte für photovoltaikmodule und photovoltaikmodule damit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176775A (ja) * 1993-12-17 1995-07-14 Canon Inc 太陽電池モジュール
JP2004214342A (ja) * 2002-12-27 2004-07-29 Nisshin Steel Co Ltd 接着性に優れた太陽電池基材
JP2006312501A (ja) 2005-05-06 2006-11-16 Hitachi Ltd エレベータの群管理制御方法、エレベータの群管理システム及びエレベータの群管理システム用表示装置
WO2007010706A1 (ja) 2005-07-22 2007-01-25 Daikin Industries, Ltd. 太陽電池のバックシート
EP1938967A1 (en) 2005-07-22 2008-07-02 Daikin Industries, Ltd. Back sheet of solar cell
CN101123296A (zh) * 2006-08-08 2008-02-13 中国科学院化学研究所 一种聚合物太阳能电池及其制备方法
CN101177514A (zh) 2007-11-08 2008-05-14 中国乐凯胶片集团公司 一种太阳能电池背板及其制备方法
CN201199526Y (zh) * 2008-08-29 2009-02-25 苏州中来太阳能材料技术有限公司 一种太阳能电池背膜
CN201199525Y (zh) * 2008-08-29 2009-02-25 苏州中来太阳能材料技术有限公司 一种具有高粘结性的太阳能电池背膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333875A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033626A2 (en) 2010-09-10 2012-03-15 Saint-Gobain Performance Plastics Corporation Uv resistant clear laminates
EP2613938A2 (en) * 2010-09-10 2013-07-17 Saint-gobain Performance Plastics Corporation Uv resistant clear laminates
CN103282200A (zh) * 2010-09-10 2013-09-04 美国圣戈班性能塑料公司 抗紫外线的透明层压板
EP2613938A4 (en) * 2010-09-10 2014-04-30 Saint Gobain Performance Plast UV-RESISTANT TRANSPARENT LAMINATES
CN110527128A (zh) * 2019-08-29 2019-12-03 苏州瀚海新材料有限公司 一种涂覆型太阳能背板的制备方法

Also Published As

Publication number Publication date
KR20110056529A (ko) 2011-05-30
CN101661962A (zh) 2010-03-03
KR101457260B1 (ko) 2014-11-03
US20110132454A1 (en) 2011-06-09
US8999508B2 (en) 2015-04-07
CN101661962B (zh) 2012-05-09
EP2333875A1 (en) 2011-06-15
EP2333875A4 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2010022585A1 (zh) 太阳能电池背膜及其加工工艺
CN101811384B (zh) 一种中等表面能聚四氟乙烯背板及加工工艺
JP5769037B2 (ja) 多層フィルム及びこれを含む光電池モジュール
JP2011124428A (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール
WO2014153997A1 (zh) 太阳能电池背板及太阳能电池组件
CN108638611B (zh) 一种自清洁隔热反射材料及其制备方法
CN207916225U (zh) 低热桥效应阻隔膜及采用该阻隔膜的真空绝热板
CN102529259B (zh) 一种高粘结性太阳电池背膜及加工工艺
CN110324920A (zh) 一种保温型石墨烯电热膜的制备方法
JP6262107B2 (ja) 表面改質フィルム及びその製造方法、並びに積層フィルム及びその製造方法
CN102555377B (zh) 一种eva胶一体化太阳电池背膜及加工工艺
JP2009073071A (ja) 転写シートおよび太陽電池用裏面保護シート
CN108081713A (zh) 一种低热桥效应阻隔膜及采用该阻隔膜的真空绝热板
CN102911613A (zh) 一种涂覆型高粘接太阳电池背膜及制备工艺
CN102555370B (zh) 一种非氟高耐候高粘结性太阳电池背膜及加工工艺
CN213425002U (zh) 一种金属背板及光伏构件
CN109244166B (zh) 一种封装前板及其制备工艺
CN210257552U (zh) 一种具有隔音性能的pvb胶片
CN202150470U (zh) 一种高阻隔耐水解太阳电池背膜
CN104393079B (zh) 防老化太阳能电池背板及其制备方法
CN215512725U (zh) 一种隔热夹胶玻璃
CN215435459U (zh) 一种耐高温效果好的pc保护膜
CN209447817U (zh) 一种太阳能复合封装板、太阳能组件
CN212010997U (zh) 一种太阳能电池背板
TWI569458B (zh) Sun battery with the back of the protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809170

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13059520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117006814

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009809170

Country of ref document: EP