WO2010021446A1 - 위그선 날개 구조 - Google Patents

위그선 날개 구조 Download PDF

Info

Publication number
WO2010021446A1
WO2010021446A1 PCT/KR2009/001357 KR2009001357W WO2010021446A1 WO 2010021446 A1 WO2010021446 A1 WO 2010021446A1 KR 2009001357 W KR2009001357 W KR 2009001357W WO 2010021446 A1 WO2010021446 A1 WO 2010021446A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
downward
shape
wig
thickness
Prior art date
Application number
PCT/KR2009/001357
Other languages
English (en)
French (fr)
Other versions
WO2010021446A9 (ko
Inventor
강창구
이한진
이창민
Original Assignee
윙쉽테크놀러지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윙쉽테크놀러지 주식회사 filed Critical 윙쉽테크놀러지 주식회사
Priority to EP09808352A priority Critical patent/EP2322419A1/en
Priority to JP2011523728A priority patent/JP2012500157A/ja
Priority to CN2009801326547A priority patent/CN102131695A/zh
Priority to US13/059,945 priority patent/US20110206528A1/en
Publication of WO2010021446A1 publication Critical patent/WO2010021446A1/ko
Publication of WO2010021446A9 publication Critical patent/WO2010021446A9/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/001Flying-boats; Seaplanes with means for increasing stability on the water
    • B64C35/003Flying-boats; Seaplanes with means for increasing stability on the water using auxiliary floats at the wing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/18Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • B64C23/069Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips
    • B64C23/076Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips the wing tip airfoil devices comprising one or more separate moveable members thereon affecting the vortices, e.g. flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/12Canard-type aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/08Stabilising surfaces mounted on, or supported by, wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to a wing structure of the Wig wire, in particular, to form a vertically downwardly connected panel is connected seamlessly at both ends of the left and right main wing of the Wig wire to suppress the vortex and induced drag generated at both ends, in the drive body of the Wig ship hull It is possible to correct the thrust asymmetry of the left end and the right end generated during the start of the wig wire in accordance with the applied control, and relates to a wig wire that can secure the wiggle bow swing stability without the vertical tail wings.
  • the aircraft uses large vertical tail wings to secure bow movement stability and to compensate for asymmetry in left and right thrust. This is to enable the operation even when one of the left and right propellers is completely broken by regulations.
  • the wig ship it is possible to start the water surface in the event of an engine failure and perform necessary emergency measures and troubleshooting, and thus does not require an excessive vertical tail shape like an aircraft. Therefore, in the case of the wig line, if the means to secure the stability of bow shaking instead of the vertical tail wing can be secured by removing the vertical tail wing, the hull shape can be made more slim.
  • the vertical tail wing protruding from the rear of the wig line is usually equipped with a rudder (Rudder), so there is a problem that fuel consumption increases due to an increase in air resistance when starting the wig line.
  • rudder rudder
  • the present invention relates to the end plate structure extending to both ends of the main wing, the vortex is generally generated at the end of the Wig wire main wing, the vortex increases the Wig wire resistance. Therefore, there is a need for a wing structure that can suppress and improve this.
  • the end plate used in the current Wig line only plays a role of preventing the vortex, and it is generally installed to minimize the vortex to prevent the vortex because there is no additional role and function. Therefore, there is a great need to improve the shape of the end plate so as to increase lift and thrust when securing the wig ship and to ensure long-term reliability.
  • the present invention has been made to solve the above-described problems of the prior art, the object of the present invention is to suppress the eddy current and induced drag generated at both ends of the left and right main wings of the Wig ship, and applied from the driving body of the Wig ship hull According to the control to provide a wing structure of the wig wire to correct the thrust asymmetry of the left and right ends generated during the start.
  • Another object is to remove the vertical tail wings protruding from the rear of the wig wire of the prior art from the hull to reduce the weight of the wig wire and to slim the entire shape of the wig wire, using the rudder mounted on the back of the left and right downward wings It is to provide a wig ship wing structure that can ensure the stability against bow shake when rotating to the left or right of the hull.
  • Wig wire wing structure devised to solve the above problems, the main wing protruding outward from the central portion of the side of the hug wire hull, and the structure is fixed vertically downward from the outward end of the main wing Including a downward wing, a horizontal tail wing protruding outwardly horizontally from the wig hull aft, and a vertical tail installed vertically in the axial direction of the horizontal tail wing, the vertical cross-sectional shape of the downward wing Silver, the front part including the front edge is a round shape having a suitable thickness so that flow separation does not occur, the rear portion converges the thickness in the rear forward direction from the site having a peak thickness and the back edge is sharply converged, but the peak thickness is the front edge Characterized in that formed in the position ((3 to 4) / 10 "at the leading edge of the length before the trailing edge The.
  • the downward wing comprises a main blade protruding outward from the central portion of the side of the wig wire hull, a downward wing installed vertically downward from the outward end of the main wing, and a horizontal tail wing protruding horizontally outward from the rear end of the wig wire hull
  • the downward wing is composed of a downward panel fixed integrally in the downward direction at the end of the main wing, and a variable rudder (Rudder part) installed to face the bottom panel rear, the downward wing including the rudder
  • the vertical cross-sectional shape of the front part is a round shape having a proper thickness so that the front part including the front edge does not occur flow separation, the rear part converges the thickness in the direction of the back forward from the site having a peak thickness, but the rear edge is sharply converging.
  • the vertical cross-sectional shape of the downward wing is characterized in that the airfoil shape.
  • the horizontal tail wing is composed of a horizontal stabilizer plate having a fixed type one-piece panel structure, and a variable lifting elevating portion installed to face the rear surface of the horizontal stabilizing plate, but the side cross-sectional shape of the elevating rudder portion includes a front edge, which causes a flow peeling. It is composed of a round shape having an appropriate thickness so as not to converge the thickness from the site having a peak thickness, but the front edge is configured to sharply converge the date, the side cross-sectional shape of the entire horizontal tail wing is characterized in that the airfoil shape. .
  • the lower portion of the lower wing is characterized in that it is configured in an arcuate or streamlined "V" shape in order to reduce the frictional force with sea water and air near the sea surface.
  • the downward wing is characterized in that the material is carbon fiber aluminum.
  • the inside of the main wing is characterized in that it is provided with a plurality of air foil-shaped lip and a plurality of spar-shaped panel formed across the lip by connecting the front and rear front of the main wing.
  • the wing structure according to the present invention When the wing structure according to the present invention is mounted on the wig ship, it is possible to suppress the vortices and induced drag occurring at both ends of the left and right main wings of the wig ship, to enable the lifting force and increase the thrust, and to apply it from the driving body of the wig ship hull. According to the control, there is an effect that can correct the thrust asymmetry of the left end and the right end generated during startup.
  • the weight of the wig wire is reduced by removing the vertical tail wings protruding from the rear of the wig wire of the prior art, and using the rudder mounted on the rear of the left and right downward wings to swing to the left or the right side of the hull for bow movement. It is possible to secure the stability.
  • FIG. 1 is a perspective view showing a wing structure which is a first embodiment of the present invention
  • Figure 2 is a perspective view showing a wing structure which is a second embodiment of the present invention.
  • FIG. 3 is a perspective view of the main wing and the lower wing cut in Figures 1 and 2
  • Figure 4 is a perspective view of the main wing inside with a lip and spa in Figure 3
  • 5 and 6 is a view showing the shape of the lower wing lower shape
  • Figure 7 is a perspective view showing a wing structure which is a third embodiment of the present invention.
  • FIG. 8 and 9 are perspective views showing the main wing and the down wing structure in FIG.
  • FIG. 10 is a perspective view of the lower wing structure of FIGS. 8 and 9.
  • FIG. 11 is a perspective view showing the inside of the downward wing in the third embodiment.
  • FIG. 12 is a perspective view showing a wing structure which is a fourth embodiment of the present invention.
  • FIG. 13 and 14 are cutaway views of the main wing and the downward wing in FIG.
  • 15 and 16 is a view showing the shape of the lower wing lower shape
  • Figure 17 is a wiggle side structure diagram according to the present invention.
  • FIG. 18 is a conceptual diagram of the bow shake control using a downward wing according to the present invention.
  • 19 is a cross-sectional view of the airfoil-shaped wing using the end lift surface
  • Wig wire wing structure according to the present invention.
  • FIG. 1 is a perspective view showing a wing structure which is a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a wing structure which is a second embodiment of the present invention
  • FIG. 3 is a main wing and a downward wing in FIGS. 1 and 2.
  • Figure 4 is a perspective view of the inner blade with a lip and spa in Figure 3
  • Figure 5 and Figure 6 shows the lower wing shape
  • Figure 7 shows a wing structure which is a third embodiment of the present invention 8 and 9 are perspective views illustrating the main wing and the downward wing structure in FIG. 7
  • FIG. 10 is a cutaway perspective view of the lower wing shape in FIGS. 8 and 9,
  • FIG. 11 is a third embodiment.
  • FIG. 12 is a perspective view showing a wing structure in the fourth embodiment of the present invention
  • Figures 13 and 14 are a perspective view of the cutting blade and the main wing in Figure 12
  • Figures 15 and 16 are the lower wing lower shape Figure showing the shape
  • Figure 17 is a wiggle side structure according to the present invention
  • 18 is a conceptual diagram using a control was shaken downward wing according to the invention
  • Figure 19 is airfoil-shaped blade cross-section with end lifting surface.
  • the wig wire wing structure demonstrated based on an accompanying drawing, it is a structure in which the left / right side is symmetric about the hull axis of a wig ship. Therefore, even if the one wing structure is described, it is appropriate to consider the other wing structure as the same in this case.
  • Figure 1 is a first embodiment wing structure according to the present invention, the main wing 200 protruding outwardly from the central portion of the side of the wig ship hull, and vertically downward from the outward end of the main wing 200 seamlessly Downward wing 300, which is a fixed structure, the horizontal tail wing 400 protruding outwardly from the hull aft hull line 100, the vertical vertically installed in the axial direction of the hull in the horizontal tail wing 400 It comprises a tail wing 500.
  • the vertical cross-sectional shape of the downward wing 300, the front portion including the front edge is a round shape having a suitable thickness so that flow separation does not occur, the rear portion converges the thickness from the site having a peak thickness and the rear edge sharply Configure for date convergence.
  • the downward wing structure in the first embodiment is configured to have a streamlined wing cross-sectional shape such as an airfoil to suppress vortices and increase thrust. do.
  • a flow of fluid from the inside to the outside under the wing.
  • the fluid flow under the wing is constant with respect to the end plate. It will have an angle of incidence (zero angle) and this arrangement will create a lift in the end plate.
  • This lifting force can be divided into a wigg direction direction component and a horizontal direction component, of which the direction direction component serves to increase the thrust (thrust). Therefore, if the end plate has an airfoil cross section, which is a general wing cross section, this lifting force can be maximized.
  • the leading edge of the end lift surface is a round shape with a suitable thickness so that no flow separation occurs, and the trailing edge is sharp so that lift is maximized when peeling occurs and thus, In addition to reducing resistance, it can also play a role of increasing thrust.
  • the downward wing shape has a much larger volume than the existing end plate, it is possible to obtain an advantage in absorbing impact force and securing stability of sway at the time of take-off, and thus it is possible to replace float in the wig line and the seaplane. That is, in the case of the receiver is provided with a ski-like float as the landing aid, by configuring the downward wing cross-section and the bottom shape in such a streamline to replace the float to make the structure a little simpler.
  • the vertical tail wing in the first embodiment was removed, and the horizontal tail wing was moved forward from the hull end to the rear end, and the horizontal tail wing shape and structure were improved.
  • the downward wing 300 is connected vertically downward at the end of the main wing 200 without a seamless, the shape, the left / right of the leading edge (Leading edge) 301 is formed in a rounder (Minute) sensitively, the In the longitudinal direction from the leading edge 301 to the trailing edge 309 of the downward wing, the length of the left / right streamlined shape of the rounder is increased from the apex of the front edge 301 to the position "(3 to 4) / 10", and the "( The streamlined length of the left / right side is reduced from the 3 to 4) / 10 "position to the trailing anterior 309 and sharply converges at the third trailing edge apex.
  • a rounder Minute
  • a plurality of airfoil ribs 212 and the ribs are provided by connecting the front anterior 201 and the rear anterior 209 of the main wing 200.
  • This main wing 200 internal configuration acts as a factor to increase the lift. It also enables the use of spaces to hold fuel tanks or small cargoes inside.
  • the lower wing shape is preferably formed in an arcuate or streamlined "V" shape to minimize the surface or ground friction force.
  • the main wing 200 protrudes outward from the central portion of the side of the hug wire 100 hull and vertically downward from the outward end of the main wing 200 It comprises a downward wing 300 is installed, and a horizontal tail blade 400 protruding outwardly horizontally from the rear end of the Wig wire hull, the downward wing 300 is integrally downward from the end of the main blade 200
  • the lower panel 310 is fixed to the lower panel 310, which is composed of a variable rudder (Rudder portion, 320) is installed facing the rear panel 310, the downward wing 300 including the rudder 320
  • the vertical cross-sectional shape of the front part including the front 321 is a round shape having a suitable thickness so that flow separation does not occur, the rear portion of the thickness convergence from the site having a peak thickness, but the rear jeon 329 is a sharp converging date , Vertical cross-sectional shape of the entire downward wing 300 is formed in the shape of an airfoil
  • the driving unit 320 such as a rudder is installed, and the driving unit 320 is operated to ensure stability for bowing and to correct the asymmetry of the left and right thrust.
  • the vertical tail wing is removed and the horizontal tail wing 400 is installed at the top of the hull.
  • the main wing 200 protruding outwardly from the central portion of the side surface of the hug wire hull 100 and the outward end of the main wing 200. It can be seen that it consists of a downward wing 300 is formed vertically downward, and a horizontal tail wing 400 is formed to protrude horizontally outward from the hull aft.
  • the downward panel 310 is a fixed type that is connected vertically downward at the end of the main wing 200 seamlessly, the rudder part 320 of the downward panel 310 to maneuver the hull to the left or right It is a variable type mounted on the back.
  • the horizontal tail blades 400 protrude horizontally outward from the rear of the hug wire hull 100 so that the horizontal safety plate 410 fixed to the front and the horizontal safety plate for maneuvering the hull 100 up or down.
  • 410 comprises a lift 420 mounted on the rear surface.
  • the downward wing 300 and the horizontal tail wing 400 will be described in more detail as follows.
  • the main blade 200, the downward panel 310 and the horizontal safety plate 410 is of a fixed type at the start of the wig line, and the rudder part 320 for rotating the hull 100 left / right by manipulation of a driving unit or
  • the elevating part 420 for raising / lowering the hull has a variable structure.
  • the trailing edge 320 trailing edge (329) is rotated in the left / right direction, and the lifting edge trailing edge (429) is to be rotated in the up / down direction, for the bow movement Stability and asymmetry of the left and right thrust can be corrected.
  • Airfoil airfoil
  • the tadpole shape is the left / right shape of the front anterior 201 is a horizontal straight line
  • the upper and lower shapes are formed as a rounder (Round) sensitively, from the front anterior 201 to the rear anterior 209 of the, Increase the upper / lower streamline height of the rounder from the front edge 201 to the “(3 to 4) / 10” position, and up / down from the “(3 to 4) / 10” position to the rear edge 209. Reduce streamline height and converge to a sharp shape at the apex 209.
  • the main wing 200, the airfoil shape of the side of the tadpole-shaped material is preferably made of carbon fiber aluminum.
  • the downward panel 310 the material is composed of carbon fiber aluminum
  • the lower shape is preferably formed in an arcuate or streamlined "V" shape to minimize the surface or ground friction force.
  • the rudder 320 is spaced apart from the furrow 315 of the downward panel 310 by a predetermined distance so as to move with a directivity as a driving unit.
  • the front edge 321 is a round shape and the rear edge 329 is sharply formed so that one peeling occurs.
  • the plane is composed of a vertical straight line panel with a tadpole shape and the material is made of carbon fiber aluminum, and the lower part is preferably configured in an arcuate or streamlined "V" shape.
  • a rounder of the front rudder 321 of the rudder 320 is formed with the furrows. It is desirable to be rotatable without generating friction.
  • the horizontal tail wing 400 is composed of a fixed horizontal safety plate 410 and a variable lifting rudder 420
  • the horizontal safety plate 410 is the windshield of the conventional aircraft outward from the hull 100 aft.
  • the silver is softly rounded up and down, and the trailing edge 419 is sharply formed so that two peelings occur.
  • the horizontal safety plate is made of carbon fiber aluminum.
  • the elevating part 420 is mounted at a predetermined distance from the furrow 415 of the horizontal safety plate.
  • the elevating portion 420 the leading edge (421) is a rounded shape (Round) shape and the trailing edge (Trailing edge, 429) is formed sharply so that one peeling occurs.
  • the elevating portion 420 has a side of the tadpole shape is preferably made of carbon fiber aluminum.
  • the elevating portion 420 rotates the trailing edge 429 in the up / down direction by the operation of the driving unit, a rounder of the front edge 421 generates friction in the furrow 415. It is preferable to mount the lifting rudder part 420 by forming a predetermined space so as not to rotate.
  • the main wing 200 is fixedly protruded outward from the central portion of the hull, and the downward wing formed vertically downward on the outward end of the main wing 200 ( 300) and the horizontal tail blades 400 protruding outwardly from the rear of the hull 100, it is possible not to install the vertical tail wings of the prior art.
  • the shape of the horizontal wing consisting of a downward wing and a horizontal stabilization plate and the lifting rudder composed of a downward panel and a rudder are described in more detail.
  • the up / down direction of the front panel 311 of the down panel 310 is a vertical straight line and is formed in a rounder with a left / right direction, and the entire down wing 300 including the rudder part in the front panel 311.
  • the longitudinal direction up to the rear anterior 329 increase the left / right streamlined length of the rounder to the position "(3 to 4) / 10" at the apex of the front anterior 311, and the "(3 to 4) / 10"
  • the rudder part 320 serves as a rudder for maneuvering the hull 100 to the left or the right, and is formed in a tadpole shape, and the main blade 200 is operated on the left / right side by manipulating the driving unit when the wig ship hull is started. This function enables to compensate for asymmetric thrust occurring at left and right ends of
  • the tadpole shape is formed as a rounder (Round) in front of the rudder part 320 in front of the front 321, and in the longitudinal direction from the front 321 to the rear 311, the front 321 Increase the left / right streamlined length of the rounder from the apex to the "(3 to 4) / 10" position, and at the "(3 to 4) / 10" position, follow the shape of the downward wing airfoil 329.
  • the streamlined length of the left / right side is reduced to a) and sharply converges at the third trailing edge vertex.
  • the horizontal safety plate 410, the left / right of the front edge 411 is a vertical straight line and is formed in a rounder (upward / down) in a private round, (429) in front of the horizontal tail wing 400 in the front edge 411 To increase the height of the upper and lower streamline of the rounder up to the position "(3 to 4) / 10" at the apex of the front 411, and rearward of the horizontal tail wing at the position of (3 to 4) / 10.
  • the upper and lower streamlined height is reduced to (429), and the upper and lower streamlined ends of the upper and lower streamlined ends of the horizontal safety plate 410 at the front (419), respectively, are made of sharp (Sharp), respectively, the
  • the elevating portion 420 is formed in a tadpole shape, is a device for raising or lowering the hull. That is, the tadpole shape is formed as a rounder (Round) in front of the front 421 and the lower direction, and the horizontal tail blade 400 at the apex of the front 421, from the front 421 to the rear ward 429. Increase the height of the upper and lower streamlines of the rounder up to the position of (3 to 4) / 10 "along the airfoil shape of the head), and from the" (3 to 4) / 10 "position to the trailing edge 429. Decrease the streamline height at the bottom and sharply converge at the apex 429.
  • the tadpole shape is formed as a rounder (Round) in front of the front 421 and the lower direction, and the horizontal tail blade 400 at the apex of the front 421, from the front 421 to the rear ward 429.
  • the wings of the left and right symmetry are mounted symmetrically with respect to the hull of the wig line, and the wing structure of the wig line is described with only one wing structure, but the symmetric relationship The left and right wing structure is the same.
  • the downward wing has a much larger volume than the end plate, the shock force absorbed by the hull at the time of take-off and the roll stability of the hull are secured.
  • the down panel 310 and the rudder part 320 have the same shape but different coupling structures are disclosed. That is, the upper and lower length width of the rudder part 320 is smaller than the upper and lower length widths of the down panel 310 and the rear panel 310 has a receiving groove 317 enough to accommodate the rudder part 320. Is forming. Accordingly, the rudder part 320 is mounted in the rear panel accommodating groove 317 in the downward panel 310. In the Wig wire wing structure, the role of each part and other wing shapes are the same, and detailed descriptions that may overlap may be omitted.
  • FIG. 17 is a side view of a wigline without a vertical tail wing according to the present invention
  • FIG. 13 is a conceptual diagram of bow movement control using a downward wing according to the present invention.
  • FIG. 14 is a cross-sectional view of an airfoil-shaped wing using an end lift surface, as shown in the present invention, by forming an airplane wing airfoil shape, it is easy to increase lift and thrust by air flow and air pressure difference.
  • the aircraft uses large vertical tail wings to secure bow movement stability and to compensate for asymmetry in left and right thrust. This is to enable the operation even when one of the left and right propellers is completely broken by regulations.
  • the wig ship it is possible to start the water surface in the event of an engine failure and perform necessary emergency measures and troubleshooting, and thus does not require an excessive vertical tail shape like an aircraft. Therefore, in the case of the wig line, if the means to secure the stability of bow shaking instead of the vertical tail wing can be secured by removing the vertical tail wing, the hull shape can be made more slim.
  • the device for replacing the vertical tail wing in the Wig line has not been developed. The research and development of consortiums for the development of the Wig ship is being carried out not only in foreign countries but also in Korea, and the possibility of industrial use in various fields such as transportation means is very high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Body Structure For Vehicles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

본 발명은 위그선 날개 구조에 관한 것으로, 특히 위그선의 좌/우측 중앙 부분에서 외향으로 각각 측면상 올챙이 형상의 에어포일 모양의 민민한 판넬이 순차적으로 좁아지며 돌출되어 형성하는 좌/우측 주날개와, 좌/우측 주날개의 양단에서 이음매없이 연결되어 수직 하향하는 판넬을 형성하여 상기 양단에서 발생하는 와류와 유도항력을 억제하는 좌/우측 하향날개 및 위그선 선체의 구동체에서 인가되는 제어에 따라 기동시 발생하는 좌측단과 우측단의 비대칭을 보정하고, 상기 선체를 좌측 또는 우측으로 회전시키기 위해 상기 좌/우측 하향판넬의 배면에 소정 간격으로 이격시켜 장착된 방향타(Rudder)부로 구성된 것을 특징으로 하는 위그선의 날개 구조에 관한 것이다. 따라서, 본 발명의 위그선의 날개 구조에 의할 경우, 지면(=해안선면) 효과를 극대화하여 좌/우측 주날개의 양끝단에서 발생하는 와류와 유도항력을 최소화시킬 수 있고, 좌/우측 하향날개가 끝단판에 비해 훨씬 많은 부피를 가지므로 이착수시의 선체로 받는 충격력 흡수 및 상기 선체의 횡동요 안정성 확보에도 이점이 있다.

Description

위그선 날개 구조{WIG STRUCTURE OF WIG SHIPCRAFT}
본 발명은 위그선 날개 구조에 관한 것으로, 특히 위그선 좌/우측 주날개의 양단에서 이음매없이 연결되어 수직 하향하는 판넬을 형성하여 상기 양단에서 발생하는 와류와 유도항력을 억제하고, 위그선 선체의 구동체에서 인가되는 제어에 따라 위그선 기동시 발생하는 좌측단과 우측단의 추력 비대칭을 보정할 수 있도록 함으로써, 수직꼬리날개 없이도 위그선 선수동요 안정성을 확보할 수 있는 위그선에 관한 것이다.
일반적으로, 항공기의 경우는 선수동요 안정성을 확보하고 좌우 추력(Thrust)의 비대칭성을 보정하기 위해 커다란 수직꼬리날개를 사용한다. 이는 규정상 좌우 추진기 중 한 쪽 추진기가 완전히 고장난 경우에도 운항을 가능하게 하기 위함이다. 하지만, 위그선의 경우에는, 엔진 고장시 수면에 착수하여 필요한 비상조치 및 고장수리를 수행할 수 있으므로 항공기와 같이 과도한 수직 꼬리날개 형상을 요구하지는 않는다. 따라서 위그선의 경우에는 수직꼬리날개를 대신하여 선수동요 안정성을 확보할 수 있는 수단을 확보할 수 있다면 수직꼬리날개를 제거함으로써 선체 모양을 유선형으로 하여 더욱 슬림하게 제작할 수 있을 것이다. 일반적으로 위그선 후미에 돌출 장착되어 있는 수직꼬리날개에는 방향타(Rudder)가 장착되어 있는 것이 보통이므로 위그선 기동시 공기 저항력의 증가로 연료 소비량이 증가한다는 문제점이 있었다.
하지만, 현재까지는 위그선에서 수직꼬리날개를 대치할 수 있는 장치가 개발되어 있지 않고 있는 실정이다.
한편, 본 발명은 주날개 양 끝단 하부로 연장되는 끝단판 구조와 관련된 것으로, 일반적으로 위그선 주날개 끝단에서는 와류가 발생하게 되는데, 이러한 와류는 위그선 저항을 증가시키게 된다. 따라서 이를 억제하고 개선시킬 수 있는 날개 구조가 요구되고 있는 상황이다.
현재 위그선에서 사용되는 끝단판은 이러한 와류를 막는 역할만을 수행하며, 그 외의 추가적인 역할 및 기능 수행이 없어 와류를 막을 수 있는 범위 내에서 최소화하여 설치하는 것이 일반적이다. 따라서 이러한 끝단판 형상을 개선하여 위그선 기동시 양력 및 추력을 증가시키고 기동안정성을 확보할 수 있도록 할 필요성은 크다 할 것이다.
본 발명은 전술한 종래 기술의 문제를 해결하기 위해 안출된 것으로, 본 발명의 목적은, 위그선의 좌/우측 주날개의 양단에서 발생하는 와류와 유도항력을 억제하고, 위그선 선체의 구동체에서 인가되는 제어에 따라 기동시 발생하는 좌측단과 우측단의 추력 비대칭을 보정할 수 있는 위그선의 날개 구조를 제공하는 데 있다.
또 다른 목적은, 종래 기술의 위그선 후미에 돌출된 수직 꼬리날개를 선체에서 제거하여 위그선의 중량을 감소시키고 위그선 전체 모양을 슬림 유선형화 시키며, 좌/우측 하향날개의 배면에 장착된 방향타를 사용하여 상기 선체의 좌측 또는 우측으로 회전시 선수 동요에 대한 안정성을 확보할 수 있는 위그선 날개 구조를 제공하는 데 있다.
상기한 종래의 문제점을 해결하기 위하여 안출한 본 발명에 따른 위그선 날개 구조는, 위그선 선체의 측면 중앙 부분에서 외향으로 돌출된 주날개와, 상기 주날개의 외향 끝단에서 이음매없이 수직 하향되어 고정되는 구조인 하향날개와, 상기 위그선 선체 후미에서 외향으로 수평 돌출된 수평꼬리날개와, 상기 수평꼬리날개 중앙인 선체 축방향으로 수직하게 설치되는 수직꼬리날개를 포함하여 구성하되, 상기 하향날개의 수직 단면 형상은, 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고, 후면부는 정점 두께를 가지는 부위로부터 뒷전 방향으로 두께 수렴을 하며 뒷전은 샤프하게 일자 수렴하되, 상기 정점 두께는 앞전에서 뒷전까지 길이 중 앞전 정점에서 "(3내지4)/ 10" 위치에 형성하는 것을 특징으로 한다.
또한, 위그선 선체의 측면 중앙 부분에서 외향으로 돌출된 주날개와, 상기 주날개의 외향 끝단에서 수직 하향되어 설치되는 하향날개와, 상기 위그선 선체 후미에서 외향으로 수평 돌출된 수평꼬리날개를 포함하여 구성하고, 상기 하향날개는 상기 주날개 끝단에서 하방향으로 일체로 고정되는 하향판넬과, 상기 하향판넬 배면과 대면하게 설치되는 가변형의 방향타부(Rudder부)로 구성하되, 상기 방향타부를 포함하는 하향날개의 수직 단면 형상은 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고, 후면부는 정점 두께를 가지는 부위로부터 뒷전 방향으로 두께 수렴을 하되 뒷전은 샤프하게 일자 수렴하게 구성하며, 전체 하향날개의 수직 단면 형상은 에어포일 모양인 것을 특징으로 한다.
이 경우, 상기 수평꼬리날개는, 고정형 수편판넬 구조인 수평안정판과, 상기 수평안정판 배면과 대면하게 설치되는 가변형의 승강타부로 구성하되, 상기 승강타부의 측단면 형상은 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상으로 구성하고, 정점 두께를 가지는 부위로부터 두께 수렴을 하되 뒷전은 샤프하게 일자 수렴하게 하게 구성하며, 전체 수평꼬리날개의 측단면 형상은 에어포일 모양인 것을 특징으로 한다.
그리고, 상기 하향날개의 하부는 해수 및 해면 근처 공기와의 마찰력을 줄이기 위하여 아치형 또는 유선형 "V"자 형상으로 구성하는 것을 특징으로 한다.
이 때, 상기 하향날개는, 재질이 탄소 섬유 알루미늄인 것을 특징으로 한다.
그리고, 상기 주날개 내부에는, 주날개의 앞전과 뒷전을 연결하여 다수개 설치된 에어포일 형상의 립과, 상기 립을 가로질러 구성하는 판넬 형상인 다수개의 스파를 구비하는 것을 특징으로 한다.
본 발명에 따른 날개 구조를 위그선에 장착시에는, 위그선의 좌/우측 주날개의 양단에서 발생하는 와류와 유도항력을 억제하고 양력발생 및 및 추력증가를 가능하게 하며, 위그선 선체의 구동체에서 인가되는 제어에 따라 기동시 발생하는 좌측단과 우측단의 추력 비대칭을 보정할 수 있는 효과가 있다.
또한, 종래 기술의 위그선 후미에 돌출된 수직 꼬리날개를 선체에서 제거하여 위그선의 중량을 감소시키고, 좌/우측 하향날개의 배면에 장착된 방향타를 사용하여 상기 선체의 좌측 또는 우측으로 회전시 선수 동요에 대한 안정성을 확보할 수 있게 된다.
도 1은 본 발명의 제1 실시예인 날개 구조를 도시한 사시도
도 2는 본 발명의 제2 실시예인 날개 구조를 도시한 사시도
도 3은 도 1 및 도 2에서의 주날개와 하향날개의 절단사시도
도 4는 도 3에서 립과 스파를 구비한 주날개 내부 사시도
도 5 및 도 6은 하향날개 하부 형상 모양을 도시한 도면
도 7은 본 발명의 제3 실시예인 날개 구조를 도시한 사시도
도 8 및 9는 도 7에서 주날개 및 하향날개 구조를 도시한 사시도
도 10은 도 8 및 도 9에서의 하향날개 하부 형상 구조를 도시한 절단사시도
도 11은 제3 실시예에서의 하향날개 내부 사시도
도 12는 본 발명의 제4 실시예인 날개 구조를 도시한 사시도
도 13 및 14는 도 12에서의 주날개와 하향날개 절단사시도
도 15 및 16은 하향날개 하부 형상 모양을 도시한 도면
도 17은 본 발명에 따른 위그선 측면 구조도
도 18은 본 발명에 따른 하향날개를 이용한 선수동요 제어 개념도
도 19는 끝단양력면을 이용한 에어포일 형상 날개 단면도
*** 도면의 주요 부분에 대한 설명 ***
100: 위그선 선체 200: 주날개
300: 하향날개 310: 하향판넬
320: 방향타부 400: 수평꼬리날개
410: 수평안정판 420: 승강타부
500: 수직꼬리날개 600: 귀날개
이하, 첨부된 도면을 참조하여 본 발명에 따른 위그선 날개구조를 상세하게 설명하기로 한다.
도 1은 본 발명의 제1 실시예인 날개 구조를 도시한 사시도, 도 2는 본 발명의 제2 실시예인 날개 구조를 도시한 사시도, 도 3은 도 1 및 도 2에서의 주날개와 하향날개의 절단사시도, 도 4는 도 3에서 립과 스파를 구비한 주날개 내부 사시도, 도 5 및 도 6은 하향날개 하부 형상 모양을 도시한 도면, 도 7은 본 발명의 제3 실시예인 날개 구조를 도시한 사시도, 도 8 및 9는 도 7에서 주날개 및 하향날개 구조를 도시한 사시도, 도 10은 도 8 및 도 9에서의 하향날개 하부 형상 구조를 도시한 절단사시도, 도 11은 제3 실시예에서의 하향날개 내부 사시도, 도 12는 본 발명의 제4 실시예인 날개 구조를 도시한 사시도, 도 13 및 14는 도 12에서의 주날개와 하향날개 절단사시도, 도 15 및 16은 하향날개 하부 형상 모양을 도시한 도면, 도 17은 본 발명에 따른 위그선 측면 구조도, 도 18은 본 발명에 따른 하향날개를 이용한 선수동요 제어 개념도, 도 19는 끝단양력면을 이용한 에어포일 형상 날개 단면도이다.
이하, 첨부 도면에 의거하여 설명되는 위그선 날개 구조에서는, 위그선의 선체 축을 중심으로 좌/우측이 대칭인 구조이다. 따라서, 일측 날개 구조를 설명하여도 이 경우에는 타측 날개 구조도 동일한 것으로 보는 것이 마땅하다.
먼저, 도 1은 본 발명에 따른 제1 실시예 날개 구조로, 위그선 선체의 측면 중앙 부분에서 외향으로 돌출된 주날개(200)와, 상기 주날개(200)의 외향 끝단에서 이음매없이 수직 하향되어 고정되는 구조인 하향날개(300)와, 상기 위그선(100) 선체 후미에서 외향으로 수평 돌출된 수평꼬리날개(400)와, 상기 수평꼬리날개(400) 중앙인 선체 축방향으로 수직하게 설치되는 수직꼬리날개(500)를 포함하여 구성한다.
이 경우, 상기 하향날개(300)의 수직 단면 형상은, 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고, 후면부는 정점 두께를 가지는 부위로부터 두께 수렴을 하며 뒷전은 샤프하게 일자 수렴하도록 구성한다.
즉, 종래 하향날개가 수직 방향으로 일정 두께를 갖는 일자형 판넬 형상이었다면, 제1 실시 예에서의 하향날개 구조는 에어포일과 같은 유선형 날개단면 형상으로 구성함으로써 와류를 억제하고 추력을 증가시키는 역할을 하게 된다. 더욱 상세하게 설명하면, 일반적으로 날개 아래에서는 안쪽에서 바깥쪽으로 행하는 유체의 흐름이 있는데, 이 경우 날개 끝부분에 끝단판 또는 하향날개가 수직 방향으로 배치되면 날개 아래의 유체 흐름은 끝단판에 대해서 일정한 입사각(영각)을 가지게 되며 이러한 배치는 끝단판에서 양력(lift)을 발생시키게 된다. 이러한 양력은 위그선 진행 방향 성분과 수평방향 성분으로 나뉘어질 수 있는데, 이 중 진행 방향 성분이 추력(thrust)을 증가시키는 역할을 하게 된다. 따라서, 만약에 끝단판이 일반적인 날개 단면인 에어포일 단면을 가지면 이러한 양력 발생을 최대화할 수 있다.
다시 말하여, 끝단 양력면의 앞전(leading edge)은 유동 박리(separation)가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고 뒷전(trailing edge) 은 sharp해서 박리 발생시 양력이 극대화되며 이에 따라서 와류 억제에 의한 저항 감소뿐만 아니라 추력을 증가시키는 역할도 수행할 수 있게 된다. 또한 이러한 하향날개 형상은 기존 끝단판에 비하여 훨신 많은 부피를 가지므로 이착수시의 충격력 흡수 및 횡동요 안정성 확보에도 이점을 얻을 수 있으므로, 위그선 및 수상비행기에서 플로트(float)를 대신할 수 있다. 즉, 수상기의 경우 착륙 보조장치로 스키 모양의 플로트를 구비하게 되는데, 하향날개 단면 및 하부 형상을 이러한 유선형으로 구성함으로써 플로트를 대신할 수 있도록 하여 구조를 조금 더 단순하게 구성할 수 있도록 한 것이다.
도 2 내지 도 6을 참조하여 제2 실시예인 날개구조 및 하향날개 형상을 상세하게 살명하면 다음과 같다.
제2 실시예에서는 제1 실시예에서의 수직꼬리날개를 제거하고, 수평꼬리날개를 선체 끝단부에서 후미로 전진 이동하였으며, 수평꼬리날개 형상 및 구조를 개선하였다.
먼저, 하향날개(300)는 이음매 없이 주날개(200) 끝단에서 수직 하향 연결시키며, 형상은, 하향날개 앞전(Leading edge, 301)의 좌/우향은 민민하게 라운더(Round)로 형성하고, 상기 하향날개의 앞전(301)에서 뒷전(309)까지 길이 방향에서, 상기 앞전(301) 정점에서 "(3내지4)/10" 위치까지 상기 라운더의 좌/우측 유선형의 길이를 키우고, 상기 "(3내지4)/10" 위치에서 상기 뒷전(309)까지 좌/우측의 유선형 길이를 줄이며, 상기 제3 뒷전(Trailing edge) 정점에서 날카롭게 수렴하게 한다.
이 경우, 도 4에서와 같이 주날개(200) 내부에는, 주날개(200)의 앞전(201)과 뒷전(209)을 연결하여 다수개 설치된 에어포일 형상의 리브(rib, 212)과 상기 리브(212)를 가로질러 구성하는 판넬 형상인 다수개의 스파(spar, 211))로 구성된다. 이러한 주날개(200) 내부 구성은 양력을 증대시키는 요인으로 작용한다. 아울러 내부에 연료탱크 또는 작은 화물을 넣을 수 있는 공간 활용도 가능하게 한다.
그리고, 하향날개 하부 형상은 아치형 또는 유선형 "V"자 형상으로 형성하여 수면 또는 지면 마찰력을 최소화시키는 것이 바람직하다.
도 7내지 도 11을 참조하여, 본 발명에 따른 위그선 날개구조의 제3 실시 예에 대하여 설명하면 다음과 같다.
도시된 바와 같이, 제3 실시 예에 있어서 위그선 날개 구조는, 위그선(100) 선체의 측면 중앙 부분에서 외향으로 돌출된 주날개(200)와, 상기 주날개(200)의 외향 끝단에서 수직 하향되어 설치되는 하향날개(300)와, 상기 위그선 선체 후미에서 외향으로 수평 돌출된 수평꼬리날개(400)를 포함하여 구성하고, 상기 하향날개(300)는 상기 주날개(200) 끝단에서 하방향으로 일체로 고정되는 하향판넬(310)과, 상기 하향판넬(310) 배면과 대면하게 설치되는 가변형의 방향타부(Rudder부, 320)로 구성하되, 상기 방향타부(320)를 포함하는 하향날개(300)의 수직 단면 형상은 앞전(321)을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고, 후면부는 정점 두께를 가지는 부위로부터 두께 수렴을 하되 뒷전(329)은 샤프하게 일자 수렴하게 구성하며, 전체 하향날개(300)의 수직 단면 형상은 올챙이 형상인 에어포일 모양으로 형성한다.
상기 하향날개(300)에서 고정형인 하향판넬(310) 구조와 이와 대면하며 결합되는 가변형의 방향타부(320) 구조는, 위그선(100)에서 수직꼬리날개 대신에 하향날개(300)를 선수동요 제어에 사용할 수 있도록 하기 위함이다.
즉, 위그선(100)에서 날개를 동체 상단부에 배치하게 될 경우 지면효과를 극대화하기 위하여 상대적으로 큰 하향날개(300)를 부착하는데, 이 경우 양력면 형상을 응용하고 양력면 배면에 수직꼬리날개의 방향타와 같은 구동부(320)를 설치하게 되는데 이러한 구동부(320)를 작동하여 선수 동요에 대한 안정성을 확보하고 좌우 추력의 비대칭성을 보정하는 역할을 수행하게 하는 것이다. 이 경우에는 수직꼬리날개를 제거하고 수평꼬리날개(400)는 선체 상부에 설치한다.
이하, 제3 실시 예에 다른 날개 구조를 좀 더 상세하게 설명하면, 먼저, 위그선 선체(100)의 측면 중앙 부분에서 외향으로 돌출된 주날개(200)와, 상기 주날개(200)의 외향 끝단에서 수직 하향 형성되는 하향날개(300)와, 상기 선체 후미에서 외향으로 수평 돌출되어 형성되는 수평꼬리날개(400)로 구성되어 있음을 알 수 있다.
여기에서, 상기 하향판넬(310)은 이음매없이 주날개(200) 끝단에서 수직 하향 연결되는 고정식이며, 상기 방향타부(320)는 상기 선체를 좌측 또는 우측으로 기동하기 위해 상기 하향판넬(310)의 배면에 장착되는 가변식이다.
상기 수평꼬리날개(400)는, 상기 위그선 선체(100)의 후미에서 외향으로 수평으로 돌출되어 전방에 고정된 수평안전판(410)과 상기 선체(100)를 상승 또는 하강으로 기동하기 위해 상기 수평안전판(410) 배면에 장착된 승강타(420)를 포함하여 구성한다.
상기 하향날개(300) 및 수평꼬리날개(400) 구조를 더욱 상세하게 설명하면 다음과 같다.
위그선 기동시 상기 주날개(200)와 상기 하향판넬(310) 및 수평안전판(410)은 고정형으로 구성하며, 구동부의 조작에 의해 상기 선체(100)를 좌/우 회전시키는 방향타부(320) 또는 선체를 상승/하강 시키기 위한 승강타부(420)는 가변형 구조이다.
즉, 상기 방향타부(320) 뒷전(Trailing edge, 329)은 좌/우 방향으로 회전하며, 상기 승강타부 뒷전(Trailing edge, 429)은 상/하 방향으로 회전이 가능하도록 함으로써, 선수 동요에 대한 안정성 및 좌우 추력의 비대칭성을 보정할 수 있게 된다.
따라서, 선수동요 제어가 목적인 수직꼬리날개 구성을 제거한 위그선 날개 구조가 가능하게 되는 것이다.
상기 주날개(200)는, 위그선의 측면 중앙 부분에서 외향으로 종래 항공기의 풍판(Airfoil=에어포일)과 동일한 형상인 측면상 올챙이 형상의 민민한 판넬이 순차적으로 이어져 구성되며 앞전(201)과 뒷전(209)의 간격이 좁아지며 돌출된다. 즉, 상기 올챙이 형상은 상기 앞전(201)의 좌/우향 형상은 수평 일직선이며 상/하향 형상은 민민하게 라운더(Round)로 형성하고, 상기 앞전(201)에서 상기 뒷전(209)까지 중, 상기 앞전(201) 정점에서 "(3내지4)/10" 위치까지는 상기 라운더의 상/하측 유선형의 높이를 키우고, 상기 "(3내지4)/10" 위치에서 상기 뒷전(209)까지는 상/하측 유선형 높이를 줄이며 상기 뒷전(209) 정점에서 샤프한 형상으로 수렴하게 한다. 이때, 상기 주날개(200)는, 측면이 올챙이 형상인 에어포일 모양으로써 재질은 탄소 섬유 알루미늄으로 구성하는 것이 바람직하다.
상기 하향판넬(310)은 앞전(311)의 좌/우향 형상은 민민하게 라운더(Round)로 형성하며 뒷전(319)은 2개의 박리가 발생하도록 날카롭게 형성된다. 이때, 상기 2개의 박리를 평면상으로 설명하면, 박리 서로 간을 오목하게 수직 일직선으로 고랑(=홈, 315)을 형성한 것이다.
이 때, 상기 하향판넬(310)은, 재질이 탄소 섬유 알루미늄으로 구성하며, 하부 형상은 아치형 또는 유선형 "V"자 형상으로 형성하여 수면 또는 지면 마찰력을 최소화시키는 것이 바람직하다.
상기 방향타부(320)는, 상기 하향판넬(310)의 고랑(315)으로부터 소정 거리 이격시켜 구동부로서 방향성을 가지고 움직일 수 있도록 장착된다. 아울러, 앞전(321)이 라운더(Round) 형상이며 뒷전(329)은 1개의 박리가 발생하도록 날카롭게 형성된다. 이때, 평면이 올챙이 형상인 수직 일직선 판넬로 구성하고 재질은 탄소 섬유 알루미늄으로 구성하는 것이 바람직하며, 하부는 아치형 또는 유선형 "V"자 형상으로 구성하는 것이 바람직하다.
또한, 상기 방향타부(320)는, 상기 구동부의 조작에 의해 방향타부(320) 뒷전(329)을 좌/우측 방향으로 회전시킬 경우 상기 방향타부(320) 앞전(321)의 라운더가 상기 고랑과 마찰을 발생하지 않으며 회전 가능하도록 함이 바람직하다.
한편, 상기 수평꼬리날개(400)는, 고정형인 수평안전판(410)과, 가변형인 승강타부(420)로 구성되며, 상기 수평안전판(410)은 선체(100) 후미에서 외향으로 종래 항공기의 풍판(Airfoil=에어포일)과 동일한 형상인 측면상 올챙이 형상의 민민한 판넬이 순차적으로 앞전(Leading edge, 411)과 뒷전(Trailing edge, 419)의 간격이 좁아지며 돌출되며, 앞전(411)의 형상은 상/하향을 민민하게 라운더(Round)로 형성하며 뒷전(419)은 2개의 박리가 발생하도록 날카롭게 형성한다. 이 때, 상기 2개의 박리를 평면상으로 설명하면, 박리 서로 간을 오목하게 수직 일직선으로 고랑(=홈, 415)을 형성한 것이다. 아울러, 상기 수평안전판은, 재질이 탄소 섬유 알루미늄으로 하여 구성하는 것이 바람직하다.
여기서, 상기 승강타부(420)는, 상기 수평안전판의 고랑(415)으로부터 소정 거리 이격시켜 장착한다. 이때, 상기 승강타부(420)는, 앞전(Leading edge, 421)이 라운더(Round) 형상이며 뒷전(Trailing edge, 429)은 1개의 박리가 발생하도록 날카롭게 형성한다. 아울러, 상기 승강타부(420)는 측면이 올챙이 형상으로 재질은 탄소 섬유 알루미늄으로 구성하는 것이 바람직하다.
또한, 상기 승강타부(420)는, 상기 구동부의 조작에 의해 상기 뒷전(Trailing edge, 429)을 상/하측 방향으로 회전시킬 경우 상기 앞전(421)의 라운더가 상기 고랑(415)에 마찰이 발생하지 않으며 회전할 수 있도록 소정 공간을 형성하여 상기 승강타부(420)를 장착시키는 것이 바람직하다.
상기한 바와 같이, 제3 실시 예에 따른 상기 위그선 날개 구조는, 선체의 중앙 부분에서 외향으로 고정 돌출된 주날개(200)와, 상기 주날개(200)의 외향 끝단에 수직 하향 형성된 하향날개(300) 및 상기 선체(100) 후미에서 외향으로 돌출된 수평꼬리날개(400)로 구성함으로써 종래기술의 수직꼬리날개를 설치하지 않는 것이 가능하게 된다.
이하, 하향판넬과 방향타부로 구성된 하향날개와 수평안정판 및 승강타부로 구성된 수평꼬리날개 형상을 더욱 상세하게 설명하면 다음과 같다.
먼저, 상기 하향판넬(310) 앞전(311)의 상/하향이 수직 일직선 형상이고 좌/우향을 민민하게 라운더(Round)로 형성하며, 상기 앞전(311)에서 방향타부를 포함하는 전체 하향날개(300) 뒷전(329)까지 길이 방향에서, 상기 앞전(311) 정점에서 "(3내지4)/10" 위치까지 상기 라운더의 좌/우측 유선형의 길이를 키우고, 상기 "(3내지4)/10" 위치에서 상기 하향날개 뒷전(329)까지 좌/우측의 유선형 길이를 줄이며, 상기 하향판넬(310) 뒷전(319)에서 좌측 유선형 끝단과 우측 유선형 끝단이 각각 샤프(Sharp)하게 형성한 제1,2 샤프부로 이루어지며, 상기 제1,2 사프부 사이 공간을 내측으로 수직 오목하게 고랑(=홈, 315)을 형성한 것이다.
상기 방향타부(320)는, 상기 선체(100)를 좌측 또는 우측으로 기동시키기 위한 방향타 역할을 수행하며, 올챙이 형상으로 형성되며, 위그선 선체 기동시 구동부의 조작에 의해 좌/우측 상기 주날개(200)의 좌측단과 우측단에서 발생하는 비대칭 추력에 대한 보정이 가능하도록 기능한다.,
즉, 상기 올챙이 형상은 상기 방향타부(320) 앞전(321) 좌/우향을 민민하게 라운더(Round)로 형성하고, 상기 앞전(321)에서 뒷전(329)까지 길이 방향에서, 상기 앞전(321) 정점에서 "(3내지4)/10" 위치까지 상기 라운더의 좌/우측 유선형의 길이를 키우고, 상기 "(3내지4)/10" 위치에서 하향날개 에어포일 모양의 형상을 따라 상기 뒷전(329)까지 좌/우측의 유선형 길이를 줄이며, 상기 제3 뒷전(Trailing edge) 정점에서 날카롭게 수렴하게 한다.
상기 수평안전판(410)은, 앞전(411)의 좌/우향이 수직 일직선이고 상/하향을 민민하게 라운더(Round)로 형성하고, 상기 앞전(411)에서 수평꼬리날개(400) 뒷전(429)까지 중, 상기 앞전(411) 정점에서 "(3내지4)/10" 위치까지 상기 라운더의 상/하측 유선형의 높이를 키우고, 상기 "(3내지4)/10" 위치에서 상기 수평꼬리날개 뒷전(429)까지 상/하측의 유선형 높이를 줄이며, 상기 수평안전판(410) 뒷전(419)에서 상측 유선형 끝단과 하측 유선형 끝단이 각각 샤프(Sharp)하게 형성한 제4,5 샤프부로 이루어지고, 상기 제4,5 사프부 간 공간을 내측으로 수직 오목하게 고랑(=홈, 415)을 형성한 것이다.
여기서, 상기 승강타부(420)는, 올챙이 형상으로 형성되며, 선체를 상승 또는 하강시키기 위한 장치이다. 즉, 상기 올챙이 형상은 앞전(421) 상/하향을 민민하게 라운더(Round)로 형성하고, 상기 앞전(421)에서 뒷전(429)까지 중, 상기 앞전(421) 정점에서 상기 수평꼬리날개(400)의 에어포일 모양 형상을 따라 "(3내지4)/10" 위치까지 상기 라운더의 상/하측 유선형의 높이를 키우고, 상기 "(3내지4)/10" 위치에서 상기 뒷전(429)까지 상/하측의 유선형 높이를 줄이며, 상기 뒷전(429) 정점에서 날카롭게 수렴하게 한다.
전술한 바와 같이, 본 발명의 위그선의 날개 구조는, 위그선의 선체를 기준선을 중심으로 좌/우측의 날개가 각각 대칭으로 장착되며 상기 위그선의 날개 구조는, 일측 날개 구조만으로 설명하였으나 상기 대칭인 관계로 좌/우측 날개의 구조가 동일한 것이다.
따라서, 본 발명의 위그선의 날개 구조는, 항공기와 달리 수직꼬리날개를 별도로 설치하지 않고, 위그선의 특성인 지면(=해안선)효과를 극대화하여 주날개의 외향 끝단에서 발생하는 와류와 유도항력을 최소화하고, 하향날개가 끝단판에 비해 훨씬 많은 부피를 가지므로 이착수시의 선체로 받는 충격력 흡수 및 상기 선체의 횡동요(Roll) 안정성이 확보된다.
도 12 내지 도 17을 참조하여, 본 발명에 따른 위그선 날개구조 제4 실시 예에 대하여 설명하면 다음과 같다.
제4 실시 예에서는 하향판넬(310) 및 방향타부(320) 형상은 동일하나 결합 구조가 다른 경우를 개시하고 있다. 즉, 상기 방향타부(320)의 상하 길이 폭이 상기 하향판넬(310) 상하 길이 폭보다 작게 하고 하향판넬(310) 후면부는 방향타부(320)를 수용할 수 있을 정도의 수용홈(317)을 형성하게 하고 있다. 이에 따라서, 상기 방향타부(320)는 하향판넬(310) 후면부 수용홈(317) 내에 장착되게 된다. 위그선 날개 구조에 있어서, 각 부분의 역할 및 기타 날개 형상은 동일한 바 중복될 수 있는 상세한 설명은 생략하기로 한다.
그리고, 도 15 내지 16에 도시된 바와 같이, 하부 형상이 라운드진 원호 형상인 아치형의 경우와 유선형 V자 형상을 도시하고 있다. 이는, 위그선 기동시 수면 또는 수면 공기층과의 마찰을 최대한 억제시켜 양력 및 추력 효과를 더욱 극대화하기 위함이다. 그리고, 이러한 형상은 일 실시 예일 뿐 도시된 형상에만 국한하지 않음은 당연하다.
도 17는 본 발명에 따른 수직꼬리날개가 없는 위그선 측면 구조도, 도 13은 본 발명에 따른 하향날개를 이용한 선수동요 제어 개념도이다.
도 18에서와 같이, 수직꼬리날개를 제거함으로써 선체 전체 부피를 줄이면서 전체적으로는 위그선 선체의 슬림 유선형화가 가능하게 되며, 이는, 도 19에서와 같이, 하향날개 후면부인 방향타부(rudder부)가 공기 흐름 및 유체 압력에 따라 좌우 방향으로 가변적 움직임을 갖도록 함으로써 선체 제어를 보충함으로써 가능하게 된다. 도 14는 끝단양력면을 이용한 에어포일 형상 날개 단면도인데, 도시된 바와 같이, 본 발명에서는 비행기 날개 에어포일 형상을 구성함으로써 공기 흐름 및 공기 압력 차이에 의한 양력 및 추력 증대를 용이하게 하고 있다.
이상 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.
일반적으로, 항공기의 경우는 선수동요 안정성을 확보하고 좌우 추력(Thrust)의 비대칭성을 보정하기 위해 커다란 수직꼬리날개를 사용한다. 이는 규정상 좌우 추진기 중 한 쪽 추진기가 완전히 고장난 경우에도 운항을 가능하게 하기 위함이다. 하지만, 위그선의 경우에는, 엔진 고장시 수면에 착수하여 필요한 비상조치 및 고장수리를 수행할 수 있으므로 항공기와 같이 과도한 수직 꼬리날개 형상을 요구하지는 않는다. 따라서 위그선의 경우에는 수직꼬리날개를 대신하여 선수동요 안정성을 확보할 수 있는 수단을 확보할 수 있다면 수직꼬리날개를 제거함으로써 선체 모양을 유선형으로 하여 더욱 슬림하게 제작할 수 있을 것이다. 하지만, 현재까지는 위그선에서 수직꼬리날개를 대치할 수 있는 장치가 개발되어 있지 않고 있는 실정이다. 국외에서뿐만 아니라 국내에서도 위그선 개발에 대한 컨소시움 구성 등 연구 개발이 진행되고 있으며, 향후 운송수단 등 다양한 방면에서의 산업상 이용 가능성은 매우 크다.

Claims (6)

  1. 위그선 선체의 측면 중앙 부분에서 외향으로 돌출된 주날개와;
    상기 주날개의 외향 끝단에서 이음매없이 수직 하향되어 고정되는 구조인 하향날개와;
    상기 위그선 선체 후미에서 외향으로 수평 돌출된 수평꼬리날개와;
    상기 수평꼬리날개 중앙인 선체 축방향으로 수직하게 설치되는 수직꼬리날개;를 포함하여 구성하되,
    상기 하향날개의 수직 단면 형상은, 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고, 후면부는 정점 두께를 가지는 부위로부터 뒷전 방향으로 두께 수렴을 하며 뒷전은 샤프하게 일자 수렴하되, 상기 정점 두께는 앞전에서 뒷전까지 길이 중 앞전 정점에서 "(3내지4)/10" 위치에 형성하는 것을 특징으로 하는 위그선 날개 구조.
  2. 위그선 선체의 측면 중앙 부분에서 외향으로 돌출된 주날개와;
    상기 주날개의 외향 끝단에서 수직 하향되어 설치되는 하향날개와;
    상기 위그선 선체 후미에서 외향으로 수평 돌출된 수평꼬리날개;를 포함하여 구성하되,
    상기 하향날개는 상기 주날개 끝단에서 하방향으로 일체로 고정되는 하향판넬과, 상기 하향판넬 배면과 대면하게 설치되는 가변형의 방향타부(Rudder부)로 구성하되, 상기 방향타부를 포함하는 하향날개의 수직 단면 형상은 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상이고, 후면부는 정점 두께를 가지는 부위로부터 두께 수렴을 하되 뒷전은 샤프하게 일자 수렴하게 구성하며, 전체 하향날개의 수직 단면 형상은 에어포일 모양인 것을 특징으로 하는 위그선 날개 구조.
  3. 제 2항에 있어서,
    상기 수평꼬리날개는, 고정형 수편판넬 구조인 수평안정판과, 상기 수평안정판 배면과 대면하게 설치되는 가변형의 승강타부로 구성하되, 상기 승강타부의 측단면 형상은 앞전을 포함한 전면부는 유동박리가 발생하지 않도록 적절한 두께를 가지는 라운드 형상으로 구성하고, 정점 두께를 가지는 부위로부터 두께 수렴을 하되 뒷전은 샤프하게 일자 수렴하게 하게 구성하며, 전체 수평꼬리날개의 측단면 형상은 에어포일 모양인 것을 특징으로 하는 위그선 날개 구조.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 하향날개의 하부는 해수 및 해면 근처 공기와의 마찰력을 줄이기 위하여 아치형 또는 유선형 "V"자 형상으로 구성하는 것을 특징으로 하는 위그선 날개 구조.
  5. 제 4항에 있어서,
    상기 하향날개는, 재질이 탄소 섬유 알루미늄인 것을 특징으로 하는 위그선 날개 구조.
  6. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 주날개 내부에는, 주날개의 앞전과 뒷전을 연결하여 다수개 설치된 에어포일 형상의 립과, 상기 립을 가로질러 구성하는 판넬 형상인 다수개의 스파를 구비하는 것을 특징으로 하는 위그선 날개 구조.
PCT/KR2009/001357 2008-08-20 2009-03-18 위그선 날개 구조 WO2010021446A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09808352A EP2322419A1 (en) 2008-08-20 2009-03-18 Wing structure for wig vehicle
JP2011523728A JP2012500157A (ja) 2008-08-20 2009-03-18 地面効果翼機の翼構造
CN2009801326547A CN102131695A (zh) 2008-08-20 2009-03-18 地效翼船机翼结构
US13/059,945 US20110206528A1 (en) 2008-08-20 2009-03-18 Wing Structure for WIG Vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080081184A KR100910551B1 (ko) 2008-08-20 2008-08-20 수평꼬리날개가 없는 위그선
KR10-2008-0081184 2008-08-20

Publications (2)

Publication Number Publication Date
WO2010021446A1 true WO2010021446A1 (ko) 2010-02-25
WO2010021446A9 WO2010021446A9 (ko) 2010-05-06

Family

ID=41209441

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2009/001354 WO2010021445A1 (ko) 2008-08-20 2009-03-18 수평꼬리날개가 없는 위그선
PCT/KR2009/001357 WO2010021446A1 (ko) 2008-08-20 2009-03-18 위그선 날개 구조

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001354 WO2010021445A1 (ko) 2008-08-20 2009-03-18 수평꼬리날개가 없는 위그선

Country Status (6)

Country Link
US (1) US20110192663A1 (ko)
EP (2) EP2322419A1 (ko)
JP (2) JP2012500156A (ko)
KR (1) KR100910551B1 (ko)
CN (2) CN102131695A (ko)
WO (2) WO2010021445A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012107650A1 (fr) * 2011-02-11 2012-08-16 Airbus Operations (S.A.S) Avion à système propulsif arrière
CN103072691A (zh) * 2013-02-08 2013-05-01 郭建中 前后方向舵多动力翼飞机
CN103809464B (zh) * 2014-01-27 2016-09-07 中国人民解放军空军航空大学军事仿真技术研究所 直升机舰面效应影响的仿真方法
JP6606639B2 (ja) * 2015-04-27 2019-11-20 映二 白石 貨物輸送用の航空機
CN105329432A (zh) * 2015-11-12 2016-02-17 无锡德林船舶设备有限公司 一种节能船舵
CN108706093B (zh) * 2018-04-28 2023-09-12 昆明鞘翼科技有限公司 一种板翼机
US20200010071A1 (en) * 2018-07-03 2020-01-09 Jacob M. Brancato Payload transport and delivery method, system and multi-platform unmanned cargo delivery vehicle
CN110682994A (zh) * 2019-07-29 2020-01-14 浙江海洋大学 一种船舶易行装置
CN113911143B (zh) * 2021-09-22 2023-03-24 重庆理工大学 一种气动悬浮列车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134888A1 (en) * 2001-03-26 2002-09-26 Hall Allison Earl Variable airfoil wing
US20030168552A1 (en) * 2002-03-05 2003-09-11 Brown Paul Anthony Aircraft propulsion system and method
KR20070029232A (ko) * 2007-02-20 2007-03-13 이희성 탠덤/카나드형 위그선
KR100702446B1 (ko) * 2005-11-30 2007-04-03 한국해양연구원 20인승급 위그선
KR100910552B1 (ko) * 2008-08-20 2009-08-03 윙쉽테크놀러지 주식회사 위그선 날개 구조

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2271226A (en) * 1938-10-31 1942-01-27 Lockheed Aircraft Corp Airplane
US2697568A (en) * 1949-02-02 1954-12-21 Cons Vultee Aircraft Corp Aircraft rudder control
USD259554S (en) * 1978-07-05 1981-06-16 Carl Parise Aircraft
USD271485S (en) * 1980-12-12 1983-11-22 Tucson Morgan Z Aircraft
US4542866A (en) * 1983-09-30 1985-09-24 The Boeing Company Aircraft with directional controlling canards
US4881701A (en) * 1988-03-14 1989-11-21 Bullard Gary M Combination automobile and airplane
CN1073642A (zh) * 1991-12-24 1993-06-30 杨亚黎 带翼气垫飞船
KR100441112B1 (ko) * 2001-10-08 2004-07-21 한국해양연구원 최소수선단면을 갖는 삼동선형 위그선
KR100447116B1 (ko) * 2001-12-18 2004-09-04 한국해양연구원 내항성능 향상을 위하여 트랜섬 선미가 구비된 위그선
CN2568264Y (zh) * 2002-08-30 2003-08-27 李仲民 一种新型的无水平尾翼的模型飞机
US7735775B2 (en) * 2004-01-30 2010-06-15 Piet Ellnor Wing-in-ground-effect craft
CN200985093Y (zh) * 2006-12-22 2007-12-05 中国科技开发院 地效飞行器的水动布局
CN101239621B (zh) * 2008-02-15 2010-06-02 江龙飞 地效飞列
USD642968S1 (en) * 2009-09-02 2011-08-09 Jie Zhao Canard airplane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134888A1 (en) * 2001-03-26 2002-09-26 Hall Allison Earl Variable airfoil wing
US20030168552A1 (en) * 2002-03-05 2003-09-11 Brown Paul Anthony Aircraft propulsion system and method
KR100702446B1 (ko) * 2005-11-30 2007-04-03 한국해양연구원 20인승급 위그선
KR20070029232A (ko) * 2007-02-20 2007-03-13 이희성 탠덤/카나드형 위그선
KR100910552B1 (ko) * 2008-08-20 2009-08-03 윙쉽테크놀러지 주식회사 위그선 날개 구조

Also Published As

Publication number Publication date
JP2012500156A (ja) 2012-01-05
US20110192663A1 (en) 2011-08-11
CN102131695A (zh) 2011-07-20
EP2322418A1 (en) 2011-05-18
CN102131696A (zh) 2011-07-20
KR100910551B1 (ko) 2009-08-03
WO2010021445A1 (ko) 2010-02-25
WO2010021446A9 (ko) 2010-05-06
EP2322419A1 (en) 2011-05-18
JP2012500157A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2010021446A1 (ko) 위그선 날개 구조
CN102282070B (zh) 飞机水平稳定器
RU2302975C2 (ru) Компоновка самолета с улучшенными аэродинамическими характеристиками
EP0084686B2 (en) Improved aircraft
WO2017131284A1 (ko) 조인드윙형 무인항공기
CN105083551A (zh) 一种可倾转旋翼机及其控制方法
JP5290976B2 (ja) 主翼両持型飛行機
CN113232832A (zh) 一种水陆两栖飞机
CN107804469B (zh) 飞机
US4296896A (en) VTOL Airplane
US7040574B2 (en) Aircraft and watercraft adapted to float on main wing
US5865399A (en) Tail Boom for aircraft
WO2013108999A1 (ko) 카나드를 구비한 날개 동체 결합 비행체
KR100910552B1 (ko) 위그선 날개 구조
EP3626609B1 (en) A wing tip device
CN115402509B (zh) 垂直起降飞行器
CN203032931U (zh) 具有连翼构型的飞翼船结构
CN204871605U (zh) 一种可倾转旋翼机
US11299255B2 (en) Aircraft slat including angled outboard edge
CN113460282B (zh) 一种无人机气动布局
CN211364937U (zh) 一种无人机
CN217100451U (zh) 双垂尾无人机
CA2368566C (en) Aircraft and water-craft adapted to float on main wing
JPH0424159A (ja) 地面効果翼機
CN207129132U (zh) 旋翼机稳定舵半水滴状机构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132654.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011523728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009808352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13059945

Country of ref document: US