WO2010021258A1 - 測光測色装置 - Google Patents

測光測色装置 Download PDF

Info

Publication number
WO2010021258A1
WO2010021258A1 PCT/JP2009/064100 JP2009064100W WO2010021258A1 WO 2010021258 A1 WO2010021258 A1 WO 2010021258A1 JP 2009064100 W JP2009064100 W JP 2009064100W WO 2010021258 A1 WO2010021258 A1 WO 2010021258A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
probe
main body
measurement
spectroscopic
Prior art date
Application number
PCT/JP2009/064100
Other languages
English (en)
French (fr)
Inventor
晋二 清水
敏彦 唐崎
廣治 山元
計弥 清井
慶郎 長井
克敏 鶴谷
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Priority to CN200980131971.7A priority Critical patent/CN102124310B/zh
Priority to JP2010525659A priority patent/JP5375826B2/ja
Publication of WO2010021258A1 publication Critical patent/WO2010021258A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy

Definitions

  • the present invention relates to a photometric colorimetric apparatus, and more particularly to a photometric colorimetric apparatus that has a plurality of probe units and can measure multiple points simultaneously with a chromaticity meter or a spectrophotometric colorimeter.
  • the reference measurement light is measured with the connected measurement probe before measurement, and calibration data is calculated from the measured value and recorded in the main unit.
  • the color value is calculated using the calibration data at the time of measurement (for example, see Patent Document 1 (D1)).
  • a stimulus value direct reading type probe unit has three optical sensors configured to include a filter unit and a sensor unit, and the spectral response of each of them includes the spectral transmittance of the filter unit and the spectral value of the sensor unit. It is determined based on the degree of response.
  • this spectral response is completely the same as the color matching function defined in so-called CIE 1931, the chromaticity and luminance obtained using the stimulus value direct reading type probe part do not include an absolute value error.
  • the spectral response of the stimulus value direct-reading colorimeter cannot be made to completely match the color matching function, and the difference between them causes an absolute value error.
  • a spectroscopic measuring instrument has a polychromator including a dispersion element such as a diffraction grating and a plurality of photoelectric conversion elements arranged in an array. Such a spectroscopic measuring instrument directly reads a stimulus value. Compared with a type of photometric colorimetric device, it is possible to measure with higher accuracy, but there are cases where the light receiving sensitivity is relatively low. For this reason, such a spectroscopic measuring instrument may be disadvantageous when measuring a low-luminance display device, for example.
  • the present invention is an invention made in view of the above circumstances, and its purpose is to easily calibrate a stimulus value direct reading type probe unit in a photometric colorimetric apparatus having a plurality of probe units, Furthermore, another object is to provide a photometric colorimetric device that enables selective or simultaneous measurement of a stimulus value direct reading type probe unit and a spectroscopic type probe unit according to a measurement object.
  • a photometric colorimetric device includes a plurality of probe units and one or a plurality of main body units configured to control measurement operations of the plurality of probe units and to be detachable from the plurality of probe units.
  • the plurality of probe units include a spectroscopic probe unit and a stimulus value direct reading type probe unit. Therefore, the photometric colorimetry apparatus having such a configuration can easily calibrate the stimulus value direct reading type probe unit based on the measurement result of the spectroscopic type probe unit, and can control the measurement object by controlling the main body unit. Accordingly, it is possible to selectively or simultaneously execute the stimulus value direct reading type probe unit and the spectroscopic type probe unit.
  • FIG. 2 is a functional block diagram of a control unit that controls a measurement operation and a calibration operation in the colorimeter shown in FIG. 1. It is a flowchart for demonstrating the measurement operation
  • FIG. 7 is a graph showing a change in luminance with respect to a change in input signal level for explaining white balance adjustment of a display in the colorimeter having the configuration shown in FIG. 6 and showing a state before adjustment. It is a figure which shows the display display screen and probe arrangement
  • a 2nd form it is a graph for demonstrating the method of comprising the sensor which has a desired spectral response degree by combining multiple sensors with a different spectral response degree mutually.
  • a 2nd form it is a graph for demonstrating the method of comprising the sensor which has a desired spectral response degree by combining multiple sensors with a different spectral response degree mutually.
  • FIG. 18 is a block diagram showing an electrical configuration of a colorimeter capable of multipoint measurement.
  • FIG. 19 is a diagram schematically illustrating a configuration of an optical sensor unit in a stimulus value direct reading type probe unit.
  • FIG. 20 is a graph showing the spectral response of a stimulus value direct reading type measuring instrument.
  • FIG. 21 is a block diagram for explaining a method of calibrating the probe unit of the stimulus value direct reading type in the colorimeter shown in FIG.
  • the colorimeter 1 shown in FIG. 18 has a plurality of stimulus value direct reading type (filter type) probe parts p1, p2,..., Pn, which are routed through cables l1, l2,.
  • the plurality of probes p are configured to be connected to a common main body 2. Then, each probe part p is directed to the measurement light source m such as a display so as to face each of the plurality of measurement sites m1, m2,..., Mn in the measurement light source m. The luminance value and the colorimetric value are measured simultaneously.
  • the stimulus value direct reading type probe unit p includes an optical sensor unit 3, a signal amplification unit 4, and an interface unit 5.
  • the optical sensor unit 3 includes an objective lens 3b, a filter unit 3c, and a sensor unit 3d.
  • the light 3a emitted from the light source m to be measured is condensed from the filter unit 3c to the sensor unit 3d through the objective lens 3b.
  • Three optical filters 3cx, 3cy, 3cz are sequentially arranged in the circumferential direction in the filter unit 3c, and three sensors 3dx, 3dy, 3dz are also arranged in the circumferential direction in the sensor unit 3d.
  • the optical sensor unit 3 has a color matching function x ( ⁇ ) defined by the CIE1931. ), Y ( ⁇ ), and z ( ⁇ ) are designed to have spectral responsivities (see broken lines in FIG. 20).
  • the outputs of the sensors 3dx, 3dy, and 3dz are amplified by the signal amplifying unit 4 and then output to the main body 2 through the interface unit 5.
  • the main body 2 receives a signal input from the optical sensor unit 3 through an interface unit 6 and is digitized by an analog / digital conversion unit (A / D unit) 7.
  • the digital values X, Y, and Z corresponding to the outputs of the sensors 3dx, 3dy, and 3dz obtained here are the spectral radiances of the light source m to be measured, S ( ⁇ ), and the spectral values of the sensors 3dx, 3dy, and 3dz.
  • S ( ⁇ ) the spectral radiances of the light source m to be measured
  • the spectral values of the sensors 3dx, 3dy, and 3dz.
  • X ⁇ S ( ⁇ ) ⁇ x ′ ( ⁇ ) d ⁇ (1-1)
  • Y ⁇ S ( ⁇ ) ⁇ y ′ ( ⁇ ) d ⁇ (1-2)
  • Z ⁇ S ( ⁇ ) ⁇ z ′ ( ⁇ ) d ⁇ (1-3)
  • is a wavelength
  • the wavelength range is a wavelength region of visible light.
  • the control unit 8 calculates chromaticity x, y and luminance Lv by performing calculations according to equations (2-1) to (2-3). can do.
  • x X / (X + Y + Z) (2-1)
  • y Y / (X + Y + Z) (2-2)
  • Lv Y (2-3)
  • the above-described measurement and calculation are sequentially performed for a plurality of probe units p in response to an operation from the operation unit 9, and the calculation result is stored in the memory 10, and the control unit is operated by the operation from the operation unit 9. 9 is displayed on the display unit 11 selectively or collectively.
  • the spectral response of each of the stimulus value direct reading type probe units p is determined by the combination of the spectral transmittance of the filter unit 3c and the spectral response of the sensor unit 3d. If this spectral responsivity is completely the same as the color matching function defined in the CIE 1931, there will be no absolute value error in the chromaticity and luminance obtained using the stimulus value direct reading type probe unit p. However, as shown in FIG. 20, it is difficult to design the spectral response (solid line) of the stimulus value direct-reading color meter 1 so as to completely match the color matching function (dashed line). However, this causes an absolute value error.
  • a method of calibrating a stimulus value direct reading type measuring device by using a more accurate spectroscopic type measuring device is used.
  • calibration using a measuring device having a relatively small absolute value error such as a spectroscopic measuring device, is performed at the time of factory shipment or periodic inspection.
  • the spectroscopic measuring instrument 12 is directly connected to a personal computer (PC) 13 that performs calibration, and the main body 2 of the measuring instrument 1 is connected to the personal computer 13 via its interface section 14.
  • PC personal computer
  • the same light source m to be measured is measured by the spectroscopic measuring instrument 12 and each stimulus value direct reading type probe unit p, and the measured values are respectively (X0, Y0, Z0), (X1, Y1, Z1), and the personal computer 13 captures these measured values (X0, Y0, Z0), (X1, Y1, Z1).
  • the personal computer 13 sets the calibration coefficients AX, AY, AZ to the formula (3) in order to match the measurement values (X1, Y1, Z1) with large errors to the measurement values (X0, Y0, Z0) with small errors. -1) through the calculation of equation (3-3) and stored in the memory 10 of the main unit 2.
  • AX X0 / X1 (3-1)
  • AY Y0 / Y1 (3-2)
  • AZ Z0 / Z1 (3-3)
  • the measured values in the stimulus value direct reading type probe part p are the values before calibration (X1, Y1, Z1), as shown by the following formulas (4-1) to (4-3), respectively.
  • a calibration value (X2, Y2, Z2) multiplied by a calibration coefficient (AX, AY, AZ) is output to, for example, the display unit 11 or the like.
  • X2 X1 ⁇ AX (4-1)
  • Y2 Y1 ⁇ AY (4-2)
  • Z2 Z1 ⁇ AZ (4-3)
  • the embodiment will be described below based on the calibration method of the colorimeter 1 including the stimulus value direct-reading type probe unit p.
  • FIG. 1 is a block diagram showing an electrical configuration of a colorimeter according to the first embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of the optical sensor unit in the spectroscopic probe unit of the colorimeter shown in FIG.
  • FIG. 3 is a functional block diagram of a control unit that controls the measurement operation and the calibration operation in the colorimeter shown in FIG.
  • the colorimeter 21 includes a plurality of probe portions P (P1, P2,..., Pn) and a main body portion 22 common to the plurality of probe portions P.
  • a part of the plurality of probe parts P is a spectroscopic probe, and the remaining probe part P (FIG. 1).
  • the probe portions P1 to Pn-1) are stimulus value direct reading type (filter type) probes.
  • These probe portions P are connected to the interface portion 28 of the main body portion 22 through connectors Q1, Q2,..., Qn that are detachable from the cables L1, L2,.
  • each probe unit P faces a plurality of measurement sites M1, M2,..., Mn-1 of the light source M to be measured with respect to the light source M to be measured such as a display.
  • the luminance value and the colorimetric value are measured simultaneously.
  • the optical sensor unit 3 of the stimulus value direct reading type probe units P1 to Pn-1 includes, for example, an objective lens 3b, a filter unit 3c, and a sensor unit 3d as shown in FIG. 19, as described above. Composed.
  • the spectroscopic probe portion Pn includes an objective lens 23b, an illumination lens 23c, a diffraction grating 23d, a condenser lens 23e, and a CCD linear sensor 23f. .
  • the light 23a emitted from the light source M to be measured is condensed through the objective lens 23b, further converted into parallel light through the illumination lens 23c, and applied to the diffraction grating 23d.
  • the reflected light reflected by the diffraction grating 23d is condensed on the CCD linear sensor 23f via the condenser lens 23e.
  • the reflection angle of the reflected light at the diffraction grating 23d differs depending on the wavelength, and therefore the image forming position on the CCD linear sensor 23f differs for each wavelength.
  • the pixel output of the CCD linear sensor 23f is proportional to the wavelength-resolved light intensity, that is, the spectral energy.
  • the CCD linear sensor 23f can obtain spectroscopic data with a pitch of 10 nm.
  • Each pixel output of the CCD linear sensor 23f is amplified by the signal amplifier 24.
  • each pixel output after amplification is converted from an analog signal to a digital signal by an analog / digital conversion unit (A / D unit) 25, and each pixel of the digital signal is converted by a control unit 26.
  • a / D unit analog / digital conversion unit
  • each pixel of the digital signal is converted by a control unit 26.
  • the spectral radiance S ′ ( ⁇ ) of the light source M to be measured is calculated, converted to a predetermined signal format, and output from the interface unit 27 to the main body unit 22.
  • a signal representing the type (spectral type) of the optical sensor unit 23 is added to the signal of the spectral radiance S ′ ( ⁇ ) representing the measurement result.
  • the colorimeter 21 may be configured so that a signal indicating the type (spectral type) of the optical sensor unit 23 is transmitted only once when the power is turned on or when the connector Q is connected. Good.
  • the control unit 26 performs a measurement operation in response to a measurement instruction from the main body unit 22.
  • the memory 33 stores, for example, a calibration coefficient or the like that is measured by a manufacturer or the like and used to calculate the spectral radiance S ′ ( ⁇ ).
  • the spectral output signals from the sensors 3dx, 3dy, 3dz of the sensor unit 3d in the optical sensor unit 3 are also transmitted to the signal amplification unit 4 in the probe unit P1 to Pn-1 of the stimulus value direct reading type.
  • the analog / digital conversion unit 25 ′ so as to become digital values X, Y, and Z according to the equations (1-1) to (1-3), and then the control unit 26 Entered in '.
  • the chromaticity x, y and the luminance Lv are calculated from these digital values X, Y, Z according to the equations (2-1) to (2-3) and converted into the predetermined signal format.
  • the data is output from the interface unit 27 to the main body unit 22.
  • a signal representing the type (stimulus value direct reading type) of the optical sensor unit 3 is added to the signals of the chromaticity x, y and the luminance Lv representing the measurement result.
  • the colorimeter 21 is configured so that a signal indicating the type (stimulus value direct reading type) of the optical sensor unit 3 is transmitted only once when the power is turned on or when connected to the connector Q. Also good.
  • the main-body part 22 is the interface part 28 which communicates with the interface part 27 of each probe part P, the control part 29 which controls a measurement and calibration operation
  • the spectral radiance S ′ ( ⁇ ) obtained by the control unit 26 of the spectroscopic probe unit Pn is used as a measurement value as it is, and in the calibration mode, the stimulus value direct reading type probe units P1 to Pn are used. Is used to determine the calibration coefficients AX, AY, and AZ used by the control unit 26 ′ of ⁇ 1 to calculate the chromaticity x, y and the luminance Lv.
  • the calculation of the calibration coefficients AX, AY, AZ is performed as follows. First, when the color matching functions are x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ), the control unit 29 performs the calculations of Expressions (5-1) to (5-3) to obtain The measured values X, Y, and Z of digital values can be calculated in the same manner as the stimulus value direct reading type probe units P1 to Pn-1.
  • ⁇ S ′ ( ⁇ ) ⁇ x ( ⁇ ) ⁇ ⁇ (5-1)
  • Y ⁇ S ′ ( ⁇ ) ⁇ y ( ⁇ ) ⁇ ⁇ (5-2)
  • Z ⁇ S ′ ( ⁇ ) ⁇ z ( ⁇ ) ⁇ ⁇ (5-3)
  • is the wavelength
  • the wavelength interval is the wavelength resolution of the CCD linear sensor 23f
  • the wavelength range is the wavelength region of visible light.
  • the chromaticity x, y and the luminance Lv are calculated by using the equations (2-1) to (2-3) in the same manner as the stimulus value direct reading type probe units P1 to Pn-1. .
  • the spectroscopic measurement value S ′ ′′ ( ⁇ ) is corrected by the following equation (7) with respect to the spectroscopic measurement value S ′ ′′ ( ⁇ ) obtained for an arbitrary light source M to be measured:
  • An accurate spectroscopic measurement value S ′ ( ⁇ ) is input to the main body 22.
  • S ′ ( ⁇ ) A ( ⁇ ) ⁇ S ′ ′′ ( ⁇ ) (7)
  • the control unit 29 uses the measured values of the stimulus value direct reading type probe units P1 to Pn ⁇ 1 as the spectroscopic probe Pn.
  • the measured values X1, Y1, and Z1 of the stimulus value direct reading type probe units P1 to Pn-1 are acquired through the interface units 27 and 28, while the spectroscopic measurement is performed.
  • the measured values X, Y, and Z are obtained from the value S ′ ( ⁇ ) by the equations (5-1) to (5-3), and the results are set as the measured values X0, Y0, Z0, and the equation (3-1)
  • the calibration coefficients (AX, AY, AZ) of the probe units P1 to Pn-1 of the stimulus value direct reading type are obtained.
  • the control unit 29 sets (stores) the obtained calibration coefficient (AX, AY, AZ) in the memory 33 by the control unit 26 ′ via the interface units 28 and 27.
  • the difference between the spectral response of the optical sensor unit 23 and the color matching function, which is an error factor in the stimulus value direct reading type probe units P1 to Pn-1, can be hardly generated. Therefore, with the colorimeter 21 having such a configuration, it is possible to perform measurement with a small error by using a plurality of stimulus value direct reading type probe units P1 to Pn-1.
  • such a control unit 29 is functionally a probe determination unit 29a, a measurement probe selection unit 29b, an operation SW detection unit 29c, a measurement (timing) control unit 29d, Data input unit (A / D measurement value reading) 29e, memory control unit (transfer unit, reading) 29f, calculation unit 29g, luminance determination unit 29h, (user) calibration control unit 29i, and display control unit 29j And is configured.
  • the probe discriminating unit 29a determines the type (stimulus value direct reading type (P1 to Pn-1) or spectroscopic type (Pn)) of the probe unit P attached to the connector Q with the control units 26 and 26 'of the probe unit P. Determine from communication data.
  • the measurement probe selection unit 29b selects an appropriate probe unit P from the determination result of the luminance determination unit 29h or the like during probe switching measurement described later.
  • the operation SW detection unit 29c detects the state of each unit of the operation unit 32, such as a measurement button, a mode selection switch, and a display changeover switch.
  • the measurement (timing) control unit 29d controls the measurement (timing) by the determined probe unit P. For example, the measurement is started in response to an ON signal of the measurement button (SW).
  • the data input unit 29e performs control (A / D measurement value reading control) for reading the measurement value sent from the probe unit P on the main body unit 22 side.
  • the memory control unit 29f transfers the read measurement values to the memory 31 and appropriately reads the measurement values and calibration values stored in the memory 31.
  • the calculation unit 29g calculates the difference between the measured value and a predetermined reference value. This difference is used by the user during white balance adjustment.
  • the luminance determination unit 29h compares the luminance of the light source M to be measured with a threshold when performing probe switching measurement as described above.
  • the calibration control unit 29i calculates the calibration coefficients AX, AY, and AZ of the stimulus value direct reading type probe units P1 to Pn-1 using the measurement value of the spectroscopic type probe unit Pn. And stored in the memory 33.
  • the display control unit 29j performs control for displaying the measurement calculation value, the measurement mode, and the state of the apparatus (measurement, standby, etc.) on the display unit 30.
  • FIG. 4 is a flowchart for explaining the measurement operation and the calibration operation by the control unit shown in FIG.
  • step S1 when the power of the main body 22 is turned on, step S1 is executed, and the probe discriminating unit 29a discriminates the type of the probe unit P attached to the connector Q, and the stimulus value direct reading type probe unit P1. If Pn-1 is not attached, step S2 is executed to determine whether or not the spectroscopic probe part Pn is attached. If no probe part P is attached, the step S2 is executed. Returning to S1, it waits, and when only the spectroscopic probe unit Pn is attached in step S2, step S3 is executed, and the measurement mode of only the spectroscopic probe unit Pn is set.
  • step S1 when the stimulus value direct-reading type probe parts P1 to Pn-1 are attached in step S1, it is further determined in step S12 whether or not the spectroscopic type probe part Pn is attached. If not, that is, if only the stimulus value direct reading type probe units P1 to Pn-1 are attached, step S13 is executed, and the measurement mode of only the stimulus value direct reading type probe units P1 to Pn-1 is set. .
  • the operation SW detection unit 29c waits until the operation of the measurement button (SW) of the operation unit 32 is detected in step S4, and when operated, the measurement is performed in step S5.
  • the (timing) control unit 29d causes the determined spectroscopic probe unit Pn to perform measurement, and the measurement result (spectral measurement value S ′ ( ⁇ )) is sent from the data input unit 29e to the memory control unit (transfer unit, reading) 29f.
  • the display control unit 29j causes the display unit 30 to display the information, and in step S8, the data is stored in the memory 31.
  • step S9 when a plurality of spectroscopic probe parts Pn are mounted, it is determined whether or not measurement has been performed for all of them. If unmeasured probe parts P remain, the process proceeds to step S4. When the measurement is returned and repeated, and all the measurements are completed, it is determined in step S10 whether or not the power switch is cut off. When the power is turned off, the measurement operation is finished. Returning to step S1, the measurement operation is continued. Even in the measurement mode with the stimulus value direct reading type probe units P1 to Pn-1, the same processes of steps S14 to S19 as those of steps S4 to S9 are performed, and then step S10 is executed.
  • step S21 if both the stimulus value direct reading type probe units P1 to Pn-1 and the spectroscopic type probe unit Pn are mounted, step S21 is executed. Then, the operation SW detection unit 29c determines whether or not the calibration mode is selected with the mode selection switch of the operation unit 32, and if it is selected, step S22 is executed. In step S22, first, the measurement (timing) control unit 29d causes the stimulus value direct reading type probe units P1 to Pn-1 to perform measurement, fetches the measurement results, and then in step S23, the spectroscopic type probe unit Pn. Make a measurement and capture the measurement results.
  • step S24 the calibration control unit 29i calculates the calibration values of the stimulus value direct reading type probe units P1 to Pn-1 as described above, using the measurement values of the two types of probe units P1 to Pn-1; Pn.
  • step S25 the stimulus values are directly read in the probe units P1 to Pn-1.
  • step S26 when a plurality of stimulus value direct-reading type probe parts P1 to Pn-1 are mounted, it is determined whether or not calibration coefficients AX, AY, AZ have been obtained for all of them, and the uncalibrated probe part If there is any remaining, the process returns to step S22 to repeat the measurement (in this case, the measurement step S23 relating to the spectroscopic probe unit Pn may be passed). S27 is executed.
  • step S27 the operation SW detection unit 29c waits until the measurement button (SW) of the operation unit 32 is operated, and when operated, in step S28, the measurement (timing) control unit 29d first reads the stimulus value directly.
  • the preliminary measurement is performed by any one of the probe units P1 to Pn ⁇ 1 of the mold, and the calculation unit 29g calculates the luminance Lv in step S29 from the measurement result.
  • step S30 the luminance determination unit 29h When the luminance Lv is compared with the threshold value, if it is greater than or equal to the threshold value, the process proceeds to step S3 and the spectroscopic probe unit Pn performs measurement. If it is less than the threshold value, the process proceeds to step S13 and the stimulus value direct reading type probe Measurements are made at parts P1 to Pn-1.
  • FIG. 5 is a graph for explaining the spectral response of the stimulus value direct reading type measuring device and the spectroscopic type measuring device.
  • the horizontal axis in FIG. 5 is luminance, and the vertical axis is error.
  • FIG. 6 is a block diagram for explaining the switching measurement operation of the probe unit.
  • FIG. 7 is a graph showing a luminance change with respect to an input signal level change for explaining the white balance adjustment of the display in the colorimeter having the configuration shown in FIG. 6, and shows a state before the adjustment.
  • FIG. 8 is a diagram showing a display display screen and probe arrangement during the adjustment of the white balance adjustment.
  • FIG. 9 is a graph showing a luminance change with respect to an input signal level change for explaining the white balance adjustment, and shows a state during the adjustment.
  • FIGS. 7, 9, and 10 are graph showing a luminance change with respect to an input signal level change for explaining the white balance adjustment, and shows a state after the adjustment.
  • Each of the horizontal axes in FIGS. 7, 9, and 10 represents an input signal, and each of the vertical axes represents luminance.
  • the photometric device can be classified into a stimulus value direct reading type measuring device and a spectroscopic type measuring device based on the difference in the optical configuration of the optical sensor units 3 and 23. it can.
  • the former has a simple optical system, little energy loss, and high sensitivity as shown by reference numeral ⁇ 1 in FIG. 5, but has a large measurement error and a large measurement value difference between devices.
  • the latter has a small measurement error and a small measurement value difference between devices as shown by reference numeral ⁇ 2 in FIG. 5, but the sensitivity is low because the optical system is complicated.
  • the stimulus value direct reading type measurement device has high optical sensitivity, so that it is possible to secure a small repetition error that does not cause a problem in practice. There is a case.
  • the spectroscopic probe unit Pn and the stimulus value direct reading type probe unit P ⁇ b> 1 are arranged close to each other (with respect to a region having the same luminance and chromaticity on the measured light source M).
  • the colorimeter 21 may be configured so that both probes P1 and Pn are installed.
  • a predetermined luminance threshold value Lc is set as shown in FIG. 5, and this luminance threshold value Lc is stored in the memory 31 of the main body unit 22. Measurement is performed by the probe unit Pn, and when it is less than the threshold value Lc, measurement is performed by the stimulus value direct reading type probe unit P1.
  • the colorimeter 21 having the configuration shown in FIG. 6 has the performance of the stimulus value direct reading type and the spectroscopic type.
  • the measurement that minimizes the error in the entire luminance range can be realized with one apparatus.
  • the luminance threshold value Lc is set to the luminance value at the intersection of the error characteristic ⁇ 1 in the stimulus value direct reading type probe unit P1 and the error characteristic ⁇ 2 in the spectral type probe unit Pn.
  • White balance adjustment means that when the same signal is input for Red, Green, and Blue, the relationship between the input signal and the amount of light emission is adjusted on the display side so that the chromaticity is constant from high luminance to low luminance.
  • the adjustment parameters include an offset adjustment parameter for offset adjustment that uniformly adds the light emission amount to the input signal, and a drive adjustment parameter for drive adjustment that increases or decreases the ratio (slope) of the light emission amount to the input signal.
  • the measured values X1, Y1, and Z1 of the probe unit P1 of the stimulus value direct reading type are multiplied by the calibration coefficients AX, AY, and AZ, and the equations (4-1) to (4) -3), the measured values X2, Y2, Z2 are calculated.
  • a relatively small input signal L1 is given to the screen on the side of the stimulus value direct reading type probe unit P1, and from the output of the stimulus value direct reading type probe unit P1, as shown in FIG.
  • the offset adjustment parameter value is set so that the luminances of Red, Green, and Blue are equal to each other by the input signal L1, and the offset adjustment is performed.
  • a relatively large input signal L2 is given to the screen on the spectroscopic probe unit Pn side, and the red, green, and blue luminances are equal to each other even with this input signal L2.
  • Drive adjustment parameters are set and drive adjustments are made. As a result, as shown in FIG.
  • the chromaticity can be adjusted to be constant. Therefore, for such adjustment, as described above, measurement with little error is required from the low luminance region to the high luminance region. In this way, white balance adjustment is executed with the best accuracy.
  • Crosstalk refers to a phenomenon in which, when only a certain area of the display emits light, the non-light emitting area emits light due to the influence.
  • the amount of crosstalk is defined, for example, by the ratio of the light emitting area to the non-light emitting area.
  • the display pattern in the case of measuring crosstalk is generally a light emitting area at the center and a non-light emitting area at the other of the display areas.
  • Crosstalk is likely to occur in the left-right direction and the up-down direction of the light-emitting area due to the display electrodes and the like.
  • the spectroscopic probe part Pn is arranged at the center, and the stimulus value direct reading type probe parts P1 to P4 are arranged at the other four points.
  • a high-intensity white pattern is displayed on the entire screen, measurements are performed with all the probe portions P1 to P4, Pn, and the measured values are stored.
  • the calibration coefficients AX for the stimulus value direct reading type probe units P1 to P4 according to the above formulas (3-1) to (3-3), AY and AZ are calculated and stored.
  • the measured values X1, Y1, and Z1 of the probe units P1 to P4 of the stimulus value direct reading type are multiplied by the calibration coefficients AX, AY, and AZ, and follow the equations (4-1) to (4-3).
  • the measured values are X2, Y2, and Z2.
  • FIG. 11 only the central part of the screen is displayed in white, and the ratio between the measured value of the central part by the spectroscopic probe part Pn and the measured values of the other four points by the stimulus value direct reading type probe parts P1 to P4 is The calculated result is used as a crosstalk value.
  • the high luminance region is measured by the spectroscopic probe unit Pn, and the low luminance region is measured by the stimulus value direct reading type probe units P1 to P4. Is measured. Further, since the probe parts P1 to P4 and Pn need only be installed once, the movement of the probe part that occurs when the probe part has only one probe part is eliminated. It becomes possible to measure at high speed and simply.
  • the colorimeter 21 of the first embodiment has a plurality of probe parts P1 to Pn, and is configured to include the main body part 22 common to each of the probe parts P1 to Pn, and measures multiple points simultaneously.
  • the main body 22 automatically calibrates using the highly accurate measurement result of the spectroscopic probe unit Pn for the calibration of a number of stimulus value direct-reading type probe units P1 to Pn-1.
  • the colorimeter 21 of the first embodiment can be calibrated very easily without using an external device such as a personal computer and without requiring user work such as transfer of measurement data.
  • a predetermined luminance threshold value Lc is set in the main body unit 22, and when the main body unit 22 is equal to or higher than the luminance threshold value Lc, measurement is performed with the high-precision spectral probe unit Pn, and the luminance threshold value is determined. If it is less than Lc, the optical system is simple, the energy loss is small, and high-sensitivity stimulation value direct-reading type probe units P1 to Pn-1 can be used properly.
  • each of the probe units P1 to Pn-1; Pn includes the optical sensor units 3 and 23 and an amplifier 4 that amplifies the output from the optical sensor units 3 and 23. 24, analog / digital converters 25 ′ and 25 for analog / digital conversion of the outputs from the amplifiers 4 and 24, and outputs from the analog / digital converters 25 ′ and 25 to a predetermined signal format.
  • An interface unit 27 interposed between the control units 26 ′ and 26 and the main body unit 22 is provided.
  • any type of probe parts P1 to Pn-1; Pn can be arbitrarily attached to and detached from the connector Q of the main body part 22. Therefore, as described above, as described above, many (P1 to Pn-1) are the stimulus value direct reading type and a part (Pn) thereof is the spectral type, all the stimulus value direct reading type, Arbitrary combinations are possible in which all are spectroscopic types, most are spectroscopic types, and some are direct stimulus value reading types. Therefore, when calibration is completed, all are set to the stimulus value direct reading type, all are set to the spectral value type when the luminance is high, and all are set to the stimulus value direct reading type when the luminance is low. Measurements can be made.
  • FIG. 12 is a block diagram showing an electrical configuration of the colorimeter 51 according to the second embodiment of the present invention.
  • FIG. 13 is a graph for explaining a method of configuring a sensor having a desired spectral response by combining a plurality of sensors having different spectral responses in the second embodiment.
  • FIG. 14 is a graph for explaining a method of configuring a sensor having a desired spectral response by combining a plurality of sensors having different spectral responses in the second embodiment.
  • the colorimeter 51 is similar to the colorimeter 21 described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted.
  • a plurality of probe portions P are mounted on one main body portion 22, whereas it should be noted that in the colorimeter 51, a plurality of probe portions P1 and P2 are provided. ,..., Pn are individually connected to the corresponding main body portions S1, S2,..., Sn to form one unit, and the plurality of units are connected to each other, One is a master machine and the rest is a slave machine to perform calibration and measurement.
  • the master unit is preferably a main body Sn to which a spectroscopic probe Pn is connected.
  • the main body Sn sends the measurement results to the remaining main bodies S1, S2,. To deliver.
  • the main body portions S can be added as necessary, and the number of probe portions P can be expanded.
  • the optical sensor unit 23 of the spectroscopic probe unit Pn has a so-called spectrocolorimeter configuration in which the CCD linear sensor 23f is used for the diffraction grating 23d as shown in FIG. Structurally, it has a configuration similar to the optical sensor unit 3 of the stimulus value direct reading type probe units P1 to Pn-1 shown in FIG. 19, and has a photometric function having four or more types of spectral response, that is, four or more.
  • the filter unit and the corresponding sensor unit are included, and the output of each sensor, such as adding the partial outputs of the sensors, is not output as it is, but the one that needs to be calculated and output is included.
  • the spectral responses indicated by the reference symbols ⁇ 1 to ⁇ 3 are multiplied by 0.3, 1.0, and 1.7, respectively, the spectral responses are represented by the reference symbols ⁇ 1 ′ to ⁇ 3 ′ in FIG. As shown by reference numeral ⁇ 4 ′, it is equal to the color matching function y ( ⁇ ) indicated by ⁇ 0.
  • a sensor having a desired spectral response can be configured by multiplying a plurality of sensor outputs by an arbitrary coefficient and extracting a signal sum.
  • (Embodiment 3) 15 and 16 are block diagrams showing the electrical configuration of the colorimeters 21a and 51a according to the third embodiment of the present invention. These colorimeters 21a and 51a are similar to the above-described colorimeters 21 and 51, respectively, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in these colorimeters 21a and 51a, timing signals lines L1a and L2a to Lna connected in common to the probe parts are provided in the cables L1 to Ln, respectively, and the main body part 22a. Measurement start and end timing signals are transmitted from the interface sections 28a and 52a of S1a to Sna to the interface sections 27a of the probe sections P1a to Pna.
  • FIG. 17 is a flowchart for explaining the calibration operation of the colorimeter according to the fourth embodiment of the present invention.
  • the configuration of the colorimeter 21 described above can be used, and the operation of the control unit 29 of the main body unit 22 is different from that shown in FIG.
  • FIG. 17 shows a case where calibration is performed between arbitrary probe units, and includes a case where calibration is performed between the probe units P1 to Pn-1 of the stimulus value direct reading type.
  • the spectral probe unit Pn is not calibrated based on the measurement results of the stimulus value direct reading type probe units P1 to Pn-1.
  • step S51 it is determined whether or not a plurality of probe parts P are attached in step S51. If they are not attached, a normal measurement mode is executed, and a plurality of probe parts P are attached.
  • step S52 it is determined whether or not the inter-probe calibration mode is selected. If not, the normal measurement mode is executed. If it is selected, the calibration operation after step S53 is performed. Executed.
  • the normal measurement mode is the process after step S1 in FIG. 4, and the type of the probe part P mounted at S1, S2, S12 is determined, and the process proceeds to the measurement process after S3 or S13. , S12, after both probe portions P1 to Pn-1; Pn are detected, the process proceeds directly to the measurement in step S27 without moving to the calibration mode in steps S22 to S26.
  • step S53 measurement is performed by the probe unit P on the reference (standard) side, and measurement values (spectral radiance S ′ ( ⁇ ) and measurement values X, Y, and Z) are acquired from the control units 26 and 26 ′. Is done.
  • step S54 measurement is performed by the probe unit on the calibration side, and analog / digital conversion values (measurement values X1, Y1, Z1) are obtained as they are from the control unit 26 '.
  • step S55 the measured values X ′, Y ′, Z ′ obtained by inversely transforming the measured values X, Y, Z from the equations (2-1) to (2-3) and the analog /
  • the calibration coefficients (AX, AY, AZ) are obtained from the digital conversion values (measured values X1, Y1, Z1).
  • the calibration coefficients (AX, AY, AZ) are set in the memory 33 in step S56, and then the normal measurement mode is entered.
  • the output of the spectroscopic probe unit and the stimulus value direct reading type probe unit may be digitally converted by an analog / digital device installed on the main body side.
  • a photometric colorimetric device is a photometric colorimetric device comprising a plurality of probe units and a main body unit common to the plurality of probe units, wherein some of the plurality of probe units are , A spectral first probe unit including a spectral first optical sensor unit, and the remainder is a stimulus value direct reading type second probe unit including a stimulus value direct reading type second optical sensor unit,
  • Each of the first and second probe units includes an interface unit interposed between the main unit and a control unit that performs a measurement operation in response to a measurement instruction from the main unit. Includes a main body control unit that sends the measurement instruction to each of the plurality of probe units via the interface unit.
  • a photometric colorimetric apparatus is a photometric colorimetric apparatus comprising a plurality of probe units and a plurality of main body units individually corresponding to the plurality of probe units.
  • a part of the plurality of probe units is a spectroscopic first probe unit including a spectroscopic first optical sensor unit, and the remainder includes a stimulus value direct reading type second optical sensor unit.
  • a stimulus value direct-reading type second probe unit wherein each of the first and second probe units receives an interface unit interposed between the corresponding main unit unit and a measurement instruction from the corresponding main unit unit.
  • a control unit that performs a measurement operation in response, and each of the plurality of main body units sends the measurement instruction to the main body interface unit and the corresponding probe unit via the interface unit. Be prepared That.
  • the photometric colorimetric device having such a configuration is realized as, for example, a chromaticity meter, a spectrocolorimeter, or the like, and includes a plurality of probe units, each probe unit including a common main body unit, or a plurality of probe units.
  • This is a photometric colorimetric device that is configured to include a probe unit and a main body unit that individually corresponds to and cooperates with each other, and can measure multiple points simultaneously.
  • the plurality of probe units are mainly configured as a spectral type while being mainly configured as a stimulus value direct reading type.
  • the stimulus value direct reading type probe unit includes RGB color filters and a light receiving sensor
  • the spectroscopic type probe unit includes a spectrocolorimeter such as a diffraction grating or a CCD line sensor.
  • a photometric function having four or more types of spectral responsivity, that is, it has four or more color filters and sensors, and cannot output the output of each sensor as it is, Including those that need to be processed and output.
  • the spectroscopic probe part is included in a part of the plurality of probe parts, so that the main body part uses the highly accurate measurement result of the spectroscopic type for the calibration of the stimulus value direct reading type probe part. Can be calibrated easily. Further, the main body unit sets a predetermined luminance threshold value. When the threshold value is equal to or higher than the threshold value, measurement is performed with the high-precision spectroscopic probe unit. It can be used properly, such as measuring with a highly sensitive stimulus value direct-reading type probe section with little loss.
  • each of the probe units has a signal converter for analog / digital conversion of an output of the optical sensor unit, and an output from the signal converter is determined in advance.
  • a control unit that converts the signal into a signal format and outputs the signal to the main unit, and performs a measurement operation in response to a measurement instruction from the main unit; and an interface unit interposed between the control unit and the main unit. It is configured with.
  • any type of probe unit can be arbitrarily connected to the connector of the main unit by defining the signal format.
  • the basic configuration is that most of them are stimulus value direct reading type and some are spectroscopic type, all are stimulus value direct reading type and spectroscopic type, and many are spectroscopic type and some are spectroscopic type. Arbitrary combinations such as direct reading of stimulus values are possible.
  • the photometric colorimetric apparatus having such a configuration is assumed to be all of the stimulus value direct-reading type when the calibration is completed, or all of the spectral value type when the luminance is high, and all of the stimulus value direct-reading type when the luminance is low.
  • various measurements can be performed.
  • each control unit in each of the first and second probe units sends an identification signal indicating the type of the optical sensor unit to the corresponding main body unit.
  • the main body control unit detects the type of the optical sensor unit from the identification signal received via the interface unit, and controls the calibration operation or the measurement operation according to the detected type.
  • the main body control unit of the main body unit transmits the identification signal indicating the type of the optical sensor unit to the main body unit in the stimulus value direct reading type and the spectroscopic type. Is automatically recognized, and the measurement operation can be controlled according to the connected probe unit.
  • the main body control unit detects a spectral probe unit from the identification signal, and uses the measured value to directly read the stimulation value. This makes it possible to select a calibration mode for executing the calibration of the probe unit.
  • the main body control unit detects a plurality of stimulus value direct reading type probe units, any one of the stimulus value direct reading type probe units is selected. One measurement value is used to select a calibration mode for performing the remaining calibration.
  • the main body control unit detects a spectral probe unit from the identification signal and performs measurement using a stimulus value direct reading type probe unit.
  • the mode for switching the measurement by the spectroscopic probe unit according to the photometric colorimetric information of the light to be measured can be selected.
  • the interface unit and the main body interface unit in each of the first and second probe units transmit signals output from the optical sensor unit. Line and a synchronization signal line.
  • the interface unit in each of the first and second probe units and the corresponding main body interface unit output the output signal of the optical sensor unit.
  • the transmission signal line and the synchronization signal line are connected.
  • each probe unit can be completely synchronized to perform measurement by obtaining synchronization by hardware using a dedicated synchronization signal line.
  • a measurement button (SW) for starting measurement is provided in the first and second probe units, and the main body control unit operates the measurement button. Waiting for measurement until is detected.
  • the main body control unit measures the probe unit for which the measurement button is operated or all the probe units. By sending an instruction, a calibration operation or a measurement operation is performed. As a result, the operator can instruct the start of measurement at the position of the probe unit being operated.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 本発明にかかる測色計21は、複数のプローブ部Pと、複数のプローブ部Pの測定動作を制御するとともに複数のプローブ部Pが脱着可能に構成された本体部22とを備え、これら複数のプローブ部Pは、分光型のプローブ部Pnおよび刺激値直読型のプローブ部P1~Pn-1を含む。したがって、このような構成の測色計21は、分光型のプローブ部Pnの測定結果に基づいて刺激値直読型のプローブ部P1~Pn-1を容易に校正することができ、本体部22の制御によって、測定対象物に応じて、刺激値直読型のプローブ部P1~Pn-1と分光型のプローブ部Pnとを選択的にまたは同時に測定の実行を行うことが可能である。

Description

測光測色装置
 本発明は、測光測色装置に関し、特に色度計や分光測色計で、複数のプローブ部を有し、多点を同時に測定することができる測光測色装置に関する。
 従来、測定プローブを装置本体に接続して使用する測光測色装置では、測定前に、接続した測定プローブで基準測定光が測定され、この測定値から校正データが算出されて装置本体に記録され、測定時にこの校正データを使って色彩値が算出されている(例えば特許文献1(D1)参照)。
 一般に、刺激値直読型のプローブ部は、フィルタ部とセンサ部とを備えて構成される3個の光学センサを持ち、これら各々の分光応答度は、フィルタ部の分光透過率およびセンサ部の分光応答度に基づいて決定される。この分光応答度は、いわゆるCIE1931で規定された等色関数と完全に同じである場合には、前記刺激値直読型のプローブ部を用いて求めた色度および輝度は、絶対値誤差を含まない。ところが、通常、刺激値直読式の色彩計の分光応答度を前記等色関数に完全に一致させることできず、それらの差が絶対値誤差の原因となる。
 そのため、この絶対値誤差を低減するために、より高精度な分光型測定器を用いることによって刺激値直読型の測定器を校正する手法が用いられている(例えば特許文献2(D2)参照)。この手法によって、例えば工場出荷時や定期的な点検時に、分光型測定器等の絶対値誤差が比較的小さい測定器を用いることによって測光測色装置の校正が行われてきた。
 一方、分光型の測定器は、回折格子等の分散素子と、アレイ状に配設された複数の光電変換素子とを備えるポリクロメータを持ち、このような分光型の測定器は、刺激値直読型の測光測色装置に比べて、より高精度な測定が可能である反面、相対的に受光感度が低い場合がある。このため、このような分光型の測定器は、例えば低輝度の表示装置を測定する場合には、不利になることがあった。
 上述のような従来技術では、校正の際に、測色計に、パーソナルコンピュータおよび分光型の測定器を接続し、個々に測定を行わせてデータを転送し、そして、校正係数の演算や設定を行う必要があり、作業が非常に煩雑であった。
 また、測定対象光の輝度に応じて分光型の測定器と刺激値直読型の測定器とを使い分ける場合や、これら2種類の測定器を用いて同時に評価したい場合等では、2台の測定器が必要であり、測定器の接続、設定および測定作業も煩雑となる。
特開平3-44511号公報 特開平9-49765号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、複数のプローブ部を有する測光測色装置において、刺激値直読型のプローブ部の校正を容易に行うことができ、さらには、測定対象物に応じて、刺激値直読型のプローブ部と分光型のプローブ部とを選択的にまたは同時に測定の実行を可能とする測光測色装置を提供することである。
 本発明にかかる測光測色装置は、複数のプローブ部と、前記複数のプローブ部の測定動作を制御するとともに前記複数のプローブ部が脱着可能に構成された1または複数の本体部とを備え、前記複数のプローブ部は、分光型のプローブ部および刺激値直読型のプローブ部を含む。したがって、このような構成の測光測色装置は、分光型のプローブ部の測定結果に基づいて刺激値直読型のプローブ部を容易に校正することができ、本体部の制御によって、測定対象物に応じて、刺激値直読型のプローブ部と分光型のプローブ部とを選択的にまたは同時に測定の実行を行うことが可能である。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
本発明の実施の第1形態に係る測色計の電気的構成を示すブロック図である。 図1に示す測色計の分光型プローブ部における光学センサ部の構成を模式的に示す図である。 図1に示す測色計において、測定動作および校正動作を制御する制御部の機能ブロック図である。 図3に示す制御部による測定動作および校正動作を説明するためのフローチャートである。 刺激値直読型の測定器と分光型の測定器との分光応答度を説明するためのグラフである。 プローブ部の切換え測定動作を説明するためのブロック図である。 図6に示す構成の測色計において、ディスプレイのホワイトバランス調整を説明するための入力信号レベル変化に対する輝度変化を示すグラフであり、調整前の状態を示すものである。 前記ホワイトバランス調整の調整中におけるディスプレイ表示画面およびプローブ配置を示す図である。 前記ホワイトバランス調整を説明するための入力信号レベル変化に対する輝度変化を示すグラフであり、調整中の状態を示すものである。 前記ホワイトバランス調整を説明するための入力信号レベル変化に対する輝度変化を示すグラフであり、調整後の状態を示すものである。 ディスプレイのクロストーク量を測定する場合における表示画面およびプローブ配置を示す図である。 本発明の実施の第2形態に係る測色計の電気的構成を示すブロック図である。 第2形態において、相互に異なる分光応答度のセンサを複数組合わせて所望とする分光応答度を有するセンサを構成する方法を説明するためのグラフである。 第2形態において、相互に異なる分光応答度のセンサを複数組合わせて所望とする分光応答度を有するセンサを構成する方法を説明するためのグラフである。 本発明の実施の第3形態に係る測色計の電気的構成を示すブロック図である。 本発明の実施の第3形態に係る測色計の電気的構成を示すブロック図である。 本発明の実施の第4形態に係る測色計の動作を説明するためのフローチャートである。 多点測定可能な測色計の電気的構成を示すブロック図である。 刺激値直読型のプローブ部における光学センサ部の構成を模式的に示す図である。 刺激値直読型の測定器の分光応答度を示すグラフである。 図18で示す測色計における刺激値直読型のプローブ部の校正方法を説明するためのブロック図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 まず、測色計の校正について、概説する。図18は、多点測定可能な測色計の電気的構成を示すブロック図である。図19は、刺激値直読型のプローブ部における光学センサ部の構成を模式的に示す図である。図20は、刺激値直読型の測定器の分光応答度を示すグラフである。図21は、図18で示す測色計における刺激値直読型のプローブ部の校正方法を説明するためのブロック図である。
 図18に示す測色計1は、複数の刺激値直読型(フィルタ型)のプローブ部p1,p2,・・・,pnを有し、それらがケーブルl1,l2,・・・,lnを介して、これら複数のプローブpに対し共通の本体部2に接続されて構成されている。そして、ディスプレイ等の被測定光源mに対して、各プローブ部pが被測定光源mにおける複数の測定部位m1,m2,・・・,mnにそれぞれ正対するように振り向けられ、これら各プローブ部pによって輝度値および測色値が同時に測定される。
 前記刺激値直読型のプローブ部pは、光学センサ部3と、信号増幅部4と、インタフェイス部5とを備えている。この光学センサ部3は、図19で示すように、対物レンズ3bと、フィルタ部3cと、センサ部3dとを備えて構成されている。前記被測定光源mから発光された光3aは、対物レンズ3bを通じてフィルタ部3cからセンサ部3dに集光される。フィルタ部3cには、3つの光学フィルタ3cx,3cy,3czが周方向に順に配置され、そして、センサ部3dにも、3つのセンサ3dx,3dy,3dzが周方向に順に配置されており、これらセンサ部3dにおけるセンサ3dx,3dy,3dzのそれぞれとフィルタ部3cにおける光学フィルタ3cx,3cy,3czのそれぞれとの組合わせによって、光学センサ部3は、前記CIE1931で規定された等色関数x(λ),y(λ),z(λ)に近似した分光応答度(図20の破線を参照)をもつように設計されている。各センサ3dx,3dy,3dzの出力は、信号増幅部4で増幅された後、インタフェイス部5を通じて本体部2へ出力される。本体部2は、この光学センサ部3から入力される信号をインタフェイス部6で受信し、アナログ/デジタル変換部(A/D部)7によってデジタル化される。
 ここで得られる各センサ3dx,3dy,3dzの出力に対応する各デジタル値X,Y,Zは、被測定光源mの分光放射輝度をS(λ)とし、センサ3dx,3dy,3dzの各分光応答度をx’(λ),y’(λ),z’(λ)とする場合に、式(1-1)ないし式(1-3)によって表される。
X=∫S(λ)・x’(λ)dλ   ・・・(1-1)
Y=∫S(λ)・y’(λ)dλ   ・・・(1-2)
Z=∫S(λ)・z’(λ)dλ   ・・・(1-3)
ここで、λは、波長であり、その波長範囲は、可視光の波長領域である。そして、得られたデジタル値X,Y,Zを用いて、制御部8は、式(2-1)ないし式(2-3)による演算を行うことによって色度x,yおよび輝度Lvを算出することができる。
x=X/(X+Y+Z)   ・・・(2-1)
y=Y/(X+Y+Z)   ・・・(2-2)
Lv=Y   ・・・(2-3)
 上述の測定および演算は、操作部9からの操作に応答して複数のプローブ部pについて順次に行われ、その算出結果は、メモリ10に格納され、前記操作部9からの操作によって、制御部9は、選択的に或いは纏めて、表示部11に表示する。
 ここで、一般に、刺激値直読型のプローブ部pの各々の分光応答度は、前記フィルタ部3cの分光透過率と、センサ部3dの分光応答度との合成によって決定される。この分光応答度が、前記CIE1931で規定された等色関数と完全に同じであれば、刺激値直読型のプローブ部pを用いて求めた色度および輝度には、絶対値誤差が生じない。しかしながら、図20に示すように、刺激値直読式の色彩計1の分光応答度(実線)が等色関数(破線)に完全に一致するように設計することは、難しく、そのため、それらの差が、絶対値誤差の原因となる。
 このため、この誤差を低減するために、より高精度な分光型の測定器を用いることによって刺激値直読型の測定器を校正する手法が用いられる。この手法により、工場出荷時や定期的な点検時に、分光型の測定器等のように絶対値誤差の比較的小さい測定器を用いる校正が行われる。以下に、図21に示す刺激値直読型のプローブ部p1~pnと本体部2とを備える測定器1に対し、分光型の測定器12を利用することによって校正する場合の、データ処理の流れについて説明する。分光型の測定器12は、校正を行うパーソナルコンピュータ(PC)13に直結され、測定器1の本体部2は、前記パーソナルコンピュータ13に、そのインタフェイス部14を介して接続される。同一の前記被測定光源mは、分光型の測定器12と各刺激値直読型のプローブ部pとによってそれぞれ測定され、各測定値を、それぞれ(X0,Y0,Z0),(X1,Y1,Z1)とし、パーソナルコンピュータ13は、これら各測定値(X0,Y0,Z0),(X1,Y1,Z1)を取り込む。
 そして、パーソナルコンピュータ13は、誤差の大きい測定値(X1,Y1,Z1)を、誤差の小さい測定値(X0,Y0,Z0)に合わせるために、校正係数AX,AY,AZを、式(3-1)ないし式(3-3)の演算によって算出し、本体部2のメモリ10に格納する。
AX=X0/X1   ・・・(3-1)
AY=Y0/Y1   ・・・(3-2)
AZ=Z0/Z1   ・・・(3-3)
 これ以後、刺激値直読型のプローブ部pにおける測定値は、校正前の値(X1,Y1,Z1)に、以下の式(4-1)ないし式(4-3)で示すように、それぞれ校正係数(AX,AY,AZ)を乗じた校正値(X2,Y2,Z2)で例えば表示部11等に出力される。
X2=X1×AX   ・・・(4-1)
Y2=Y1×AY   ・・・(4-2)
Z2=Z1×AZ   ・・・(4-3)
 このような刺激値直読型のプローブ部pを備える測色計1の校正手法を踏まえて、以下、実施形態について説明する。
 (実施の形態1)
 図1は、本発明の実施の第1形態に係る測色計の電気的構成を示すブロック図である。図2は、図1に示す測色計の分光型プローブ部における光学センサ部の構成を模式的に示す図である。図3は、図1に示す測色計において、測定動作および校正動作を制御する制御部の機能ブロック図である。
 図1において、測色計21は、複数のプローブ部P(P1,P2,・・・,Pn)と、これら複数のプローブ部Pに対して共通な本体部22とを備えている。そして、注目すべきは、この測色計21では、これら複数のプローブ部Pの一部(図1に示す例ではプローブ部Pn)が分光型のプローブであり、残余のプローブ部P(図1に示す例ではプローブ部P1~Pn-1)が刺激値直読型(フィルタ型)のプローブであることである。これらプローブ部Pは、ケーブルL1,L2,・・・,Lnから脱着可能なコネクタQ1,Q2,・・・,Qnを介して、前記本体部22のインタフェイス部28に接続されている。そして、この測色計21では、例えばディスプレイ等の被測定光源Mに対して、各プローブ部Pが被測定光源Mの複数の測定部位M1,M2,・・・,Mn-1にそれぞれ正対するように振り向けられ、輝度値および測色値が同時に測定される。
 前記刺激値直読型のプローブ部P1~Pn-1の光学センサ部3は、例えば、図19に示すように、対物レンズ3bと、フィルタ部3cと、センサ部3dとを備え、上述したように構成される。一方、分光型のプローブ部Pnは、図2に示すように、対物レンズ23bと、照明レンズ23cと、回折格子23dと、集光レンズ23eと、CCDリニアセンサ23fとを備えて構成されている。前記被測定光源Mから発光された光23aは、対物レンズ23bを通じて集光され、さらに照明レンズ23cを通じて平行光とされて回折格子23dへ照射される。回折格子23dで反射された反射光は、集光レンズ23eを介してCCDリニアセンサ23f上に集光される。ここで、回折格子23dでの反射光の反射角は、波長に依存して異なり、このため、CCDリニアセンサ23f上の結像位置は、波長毎に異なることになる。したがって、前記CCDリニアセンサ23fの画素出力は、それぞれ波長分解された光強度、すなわち分光エネルギーに比例することになる。例えば、回折格子23dで分光された可視波長範囲380~780nm(幅で400nm)の光を受光するように、CCDリニアセンサ23f上に41個の画素を配置する場合には、このCCDリニアセンサ23fによって10nmピッチの分光データが得られる。
 前記CCDリニアセンサ23fの各画素出力は、信号増幅部24でそれぞれ増幅される。ここで、注目すべきは、この増幅後の各画素出力が、アナログ/デジタル変換部(A/D部)25でアナログ信号からデジタル信号に変換され、制御部26で、このデジタル信号の各画素出力に基づいて、被測定光源Mの分光放射輝度S’(λ)が算出された後、予め定められる信号形式に変換され、インタフェイス部27から前記本体部22へ出力されることである。測定結果を表す前記分光放射輝度S’(λ)の信号には、前記光学センサ部23の種別(分光型)を表す信号が付加される。あるいは、この光学センサ部23の種別(分光型)を表す信号が、電源投入の際やコネクタQへの接続の際に1度だけ送信されるように、測色計21は、構成されてもよい。制御部26は、本体部22からの測定指示に応答して測定動作を行う。メモリ33は、例えばメーカ等で測定され、前記分光放射輝度S’(λ)を算出する際の校正係数等を格納している。
 また、これに対応して、刺激値直読型のプローブ部P1~Pn-1でも、前記光学センサ部3におけるセンサ部3dの各センサ3dx,3dy,3dzからの分光出力信号は、信号増幅部4でそれぞれ増幅された後に、前記式(1-1)ないし式(1-3)によるデジタル値X,Y,Zとなるようにアナログ/デジタル変換部25’でデジタル信号に変換されて制御部26’に入力される。制御部26’では、これらデジタル値X,Y,Zから前記式(2-1)ないし式(2-3)に従って色度x,yおよび輝度Lvが算出され、前記予め定められる信号形式に変換され、インタフェイス部27から前記本体部22へ出力される。測定結果を表す前記色度x,yおよび輝度Lvの信号には、前記光学センサ部3の種別(刺激値直読型)を表す信号が付加される。あるいは、この光学センサ部3の種別(刺激値直読型)を表す信号が電源投入の際やコネクタQへの接続の際に1度だけ送信されるように、測色計21は、構成されてもよい。
 そして、本体部22は、各プローブ部Pのインタフェイス部27と通信を行うインタフェイス部28と、測定および校正動作を制御する制御部29と、測定結果を表示する表示部30と、測定結果等を記憶するメモリ31と、入力操作が行われる操作部32とを備えて構成される。ここで、分光型のプローブ部Pnの制御部26で求められた分光放射輝度S’(λ)は、測定値としてそのまま用いられるとともに、校正モードでは、前記刺激値直読型のプローブ部P1~Pn-1の制御部26’が色度x,yおよび輝度Lvを算出する際に使用する前記校正係数AX,AY,AZを求めるために使用される。
 この校正係数AX,AY,AZの演算は、以下のようにして行われる。まず、等色関数をx(λ),y(λ),z(λ)とする場合に、制御部29は、式(5-1)ないし式(5-3)の演算を行うことによって、前記刺激値直読型のプローブ部P1~Pn-1と同様に、デジタル値の測定値X,Y,Zを算出することができる。
X=ΣS’(λ)・x(λ)・Δλ   ・・・(5-1)
Y=ΣS’(λ)・y(λ)・Δλ   ・・・(5-2)
Z=ΣS’(λ)・z(λ)・Δλ   ・・・(5-3)
ここで、λは、波長であり、波長間隔は、CCDリニアセンサ23fの波長分解能であり、そして、波長範囲は、可視光の波長領域である。
 続いて、前記刺激値直読型のプローブ部P1~Pn-1と同様に、式(2-1)ないし式(2-3)を用いることによって、色度x,yおよび輝度Lvが算出される。
 一方、出荷調整時などで、分光放射分布が既知(S(λ))の光源が測定され、その時の上記分光型のプローブ部Pnの分光測定値がS’’(λ)であった場合に、校正係数A(λ)は、以下の式(6)で求められ、前述のようにメモリ33に、該分光型のプローブ部Pnの識別情報と共に格納されている。
A(λ)=S(λ)/S’’(λ)   ・・・(6)
 したがって、任意の被測定光源Mに対して得られた分光測定値S’’’(λ)に対して、分光測定値S’’’(λ)は、以下の式(7)によって補正され、正確な分光測定値S’(λ)が本体部22に入力されていることになる。
S’(λ)=A(λ)×S’’’(λ)   ・・・(7)
 こうして得られる分光型のプローブ部Pnによる正確な分光測定値S’(λ)に対して、制御部29は、刺激値直読型のプローブ部P1~Pn-1の測定値を分光型のプローブPnの測定値で校正する校正モードとなると、刺激値直読型プローブ部P1~Pn-1でのそのものの測定値X1,Y1,Z1をインタフェイス部27,28を介して取得する一方、前記分光測定値S’(λ)から式(5-1)ないし式(5-3)によって測定値X,Y,Zを求め、その結果を前記測定値X0,Y0,Z0として、式(3-1)ないし(3-3)を用いることによって、刺激値直読型のプローブ部P1~Pn-1の前記校正係数(AX,AY,AZ)を得る。制御部29は、この得られた校正係数(AX,AY,AZ)を、インタフェイス部28,27を介して、制御部26’によってメモリ33に設定(格納)する。
 これによって、刺激値直読型のプローブ部P1~Pn-1での誤差要因であった光学センサ部23の分光応答度と等色関数との差は、ほとんど発生しないようにすることができる。したがって、このような構成の測色計21では、複数の刺激値直読型のプローブ部P1~Pn-1で誤差の小さい測定が可能となる。
 このような制御部29は、例えば、図3に示すように、機能的に、プローブ判別部29aと、測定プローブ選択部29bと、操作SW検知部29cと、測定(タイミング)制御部29dと、データ入力部(A/D測定値読み込み)29eと、メモリ制御部(転送部、読み出し)29fと、演算部29gと、輝度判定部29hと、(ユーザ)校正制御部29iと、表示制御部29jとを備えて構成される。
 プローブ判別部29aは、コネクタQに装着されたプローブ部Pの種類(刺激値直読型(P1~Pn-1)または分光型(Pn))を、プローブ部Pの制御部26,26’との交信データから判別する。測定プローブ選択部29bは、後述するプローブ切換え測定時に、輝度判定部29h等の判定結果から、適正なプローブ部Pを選択する。操作SW検知部29cは、測定ボタン、モード選択スイッチ、表示切替スイッチ等の、操作部32の各部の状態を検知する。測定(タイミング)制御部29dは、判別したプローブ部Pによる測定(タイミング)を制御する。例えば、測定開始は、前記測定ボタン(SW)のON信号に応答して行われる。データ入力部29eは、プローブ部Pから送出される測定値を本体部22側で読み込む制御(A/D測定値読み込み制御)を行う。メモリ制御部29fは、読み込んだ測定値をメモリ31に転送するとともに、メモリ31に記憶した測定値や校正値を適宜に読み出す。
 演算部29gは、測定値の予め定められる基準値との差を算出する。この差は、ホワイトバランス調整時にユーザが使用する。輝度判定部29hは、前述のようにプローブ切換え測定を行う際に、被測定光源Mの輝度を閾値と比較する。校正制御部29iは、前記校正モードが実行されると、分光型のプローブ部Pnの測定値を用いて、刺激値直読型のプローブ部P1~Pn-1の校正係数AX,AY,AZを算出し、メモリ33に保存させる。前記表示制御部29jは、測定演算値、測定モード、装置の状態(測定中、待機中など)を、表示部30に表示する制御を行う。
 図4は、図3に示す制御部による測定動作および校正動作を説明するためのフローチャートである。図4において、本体部22の電源が投入されると、ステップS1が実行され、プローブ判別部29aは、コネクタQに装着されたプローブ部Pの種類を判別し、刺激値直読型のプローブ部P1~Pn-1が装着されていない場合にはステップS2が実行され、分光型のプローブ部Pnが装着されているか否かが判断され、いずれのプローブ部Pも装着されていない場合には前記ステップS1に戻って待機し、ステップS2で分光型のプローブ部Pnのみが装着されている場合はステップS3が実行され、分光型のプローブ部Pnのみの測定モードが設定される。一方、前記ステップS1で刺激値直読型のプローブ部P1~Pn-1が装着されている場合も、さらにステップS12で分光型のプローブ部Pnが装着されているか否かが判断され、装着されていない場合、すなわち刺激値直読型プローブ部P1~Pn-1のみが装着されている場合はステップS13が実行され、該刺激値直読型のプローブ部P1~Pn-1のみの測定モードが設定される。
 分光型のプローブ部Pnでの測定モードでは、ステップS4で操作SW検知部29cによって操作部32の測定ボタン(SW)の操作が検出されるまで待機され、操作されると、ステップS5で、測定(タイミング)制御部29dは、判別した分光型プローブ部Pnに測定を行わせ、測定結果(分光測定値S’(λ))がデータ入力部29eからメモリ制御部(転送部、読み出し)29fを介して入力され、ステップS7で、表示制御部29jが表示部30に表示させるとともに、ステップS8でメモリ31に格納される。ステップS9では、分光型のプローブ部Pnが複数装着されている場合に、その総てについて測定が行われたか否かが判断され、未測定のプローブ部Pが残っている場合は前記ステップS4に戻って測定を繰返し、総ての測定を終了した場合にはステップS10で、電源スイッチが遮断されたか否かが判断され、電源遮断の場合には測定動作が終了され、電源遮断でない場合には前記ステップS1に戻って測定動作を継続する。刺激値直読型のプローブ部P1~Pn-1での測定モードでも、前記ステップS4~S9と同様のステップS14~S19の処理が行われ、続いて、ステップS10が実行される。
 これに対して、前記ステップS1からステップS12に至る処理において、刺激値直読型のプローブ部P1~Pn-1と分光型のプローブ部Pnとの両方が装着されている場合は、ステップS21が実行され、操作SW検知部29cは、操作部32のモード選択スイッチで校正モードが選択されているか否かを判断し、選択されている場合にはステップS22が実行される。ステップS22では、先ず測定(タイミング)制御部29dは、刺激値直読型のプローブ部P1~Pn-1に測定を行わせ、その測定結果を取込み、次にステップS23で分光型のプローブ部Pnに測定を行わせ、その測定結果を取込む。ステップS24では、校正制御部29iは、2種類のプローブ部P1~Pn-1;Pnの測定値を用いて、前述のように、刺激値直読型プローブ部P1~Pn-1の校正値を算出し、ステップS25で刺激値直読型のプローブ部P1~Pn-1に保存させる。ステップS26では、刺激値直読型プローブ部P1~Pn-1が複数装着されている場合に、その総てについて校正係数AX,AY,AZが得られたか否かが判断され、未校正のプローブ部が残っている場合には前記ステップS22に戻って測定を繰返し(この場合、分光型のプローブ部Pnに関する測定のステップS23はパスされてよい。)、総ての校正を終了した場合にはステップS27が実行される。
 ステップS27では、操作SW検知部29cで、操作部32の測定ボタン(SW)が操作されるまで待機し、操作されると、ステップS28で、測定(タイミング)制御部29dは、先ず刺激値直読型のプローブ部P1~Pn-1の何れかで予備測定を行わせ、その測定結果から、ステップS29で、演算部29gが輝度Lvを演算し、ステップS30では、前記輝度判定部29hにおいて、その輝度Lvが前記閾値と比較され、閾値以上である場合は前記ステップS3に移って分光型のプローブ部Pnで測定を行い、閾値未満である場合は前記ステップS13に移って刺激値直読型のプローブ部P1~Pn-1で測定を行う。
 図5は、刺激値直読型の測定器と分光型の測定器との分光応答度を説明するためのグラフである。図5の横軸は、輝度であり、その縦軸は、誤差である。図6は、プローブ部の切換え測定動作を説明するためのブロック図である。図7は、図6に示す構成の測色計において、ディスプレイのホワイトバランス調整を説明するための入力信号レベル変化に対する輝度変化を示すグラフであり、調整前の状態を示すものである。図8は、前記ホワイトバランス調整の調整中におけるディスプレイ表示画面およびプローブ配置を示す図である。図9は、前記ホワイトバランス調整を説明するための入力信号レベル変化に対する輝度変化を示すグラフであり、調整中の状態を示すものである。図10は、前記ホワイトバランス調整を説明するための入力信号レベル変化に対する輝度変化を示すグラフであり、調整後の状態を示すものである。図7、図9および図10の各横軸は、入力信号であり、それらの各縦軸は、輝度である。
 ここで、測光装置は、図19と図2とで示すように、光学センサ部3,23の光学構成の違いから、刺激値直読型の測定器と分光型の測定器とに分類することができる。一般に、前者は、光学系が簡素で、エネルギーロスが少なく、図5において参照符号α1で示すように、高感度であるものの、測定誤差が大きく、かつ機器間の測定値差も大きい。これに対して、後者は、図5において参照符号α2で示すように、測定誤差が小さく、かつ、機器間の測定値差も小さいが、光学系が複雑なために感度が低い。また、高い輝度の光源を測定する場合には、光学感度の低い分光型の測定器においても充分な繰り返し性が確保されるが、光源の輝度が低くなるにつれて、繰り返し誤差が問題となる。しかしながら、光学感度の低い分光型の測定器では繰り返し誤差が大きい輝度範囲においても、刺激値直読型の測定器では、光学感度が高いため、実用上、問題とならない程度に小さい繰り返し誤差を確保できる場合がある。
 このため、例えば、図6で示すように、分光型のプローブ部Pnと刺激値直読型のプローブ部P1とを近接配置(被測定光源M上で輝度、色度が同一となる領域に対して両プローブP1、Pnを設置)するように、測色計21が構成されてもよい。このような測色計21では、図5で示すように所定の輝度閾値Lcが設定され、この輝度閾値Lcが本体部22のメモリ31に格納され、その閾値Lc以上である場合は分光型のプローブ部Pnで測定が行われ、閾値Lc未満である場合は刺激値直読型のプローブ部P1で測定が行われる。このような分光型のプローブ部Pnと刺激値直読型のプローブ部P1との使い分けを行うことによって、図6に示す構成の測色計21は、刺激値直読型と分光型との性能の長短に鑑みて、全輝度範囲で誤差を最小にする測定を1台の装置で実現することができる。前記輝度閾値Lcは、例えば、図5に示すように、刺激値直読型のプローブ部P1における誤差特性α1と分光型のプローブ部Pnにおける誤差特性α2との交点における輝度値に設定される。
 以下に、図6で示すように、分光型プローブ部Pnと刺激値直読型プローブ部P1とを併用する測定例として、ディスプレイのホワイトバランス調整について説明する。ホワイトバランス調整とは、Red,Green,Blueで同じ信号を入力した場合、高輝度から低輝度まで色度が一定になるように、ディスプレイ側で入力信号と発光量との関係を調整することを言う。調整パラメータとしては、入力信号に対して発光量を一律上乗せするオフセット調整のオフセット調整パラメータと、入力信号に対する発光量の割合(傾き)を増減させるドライブ調整のドライブ調整パラメータとがある。
 たとえば、調整前は、前記Red,Green,Blueの入力信号と発光量との関係が、図7に示すように異なっているとする。このようなディスプレイに対して、前記オフセット調整とドライブ調整とを併用した調整過程は、以下のようになる。作業開始前等で最初のディスプレイの調整を行う前に、先ず、画面全体に高輝度の白色パターンが表示され、近接配置した両プローブ部P1,Pnで測定がそれぞれ行われ、各測定値が保存される。両測定値を用いて、前記式(3-1)ないし式(3-3)に従って刺激値直読型のプローブ部P1に対する校正係数AX,AY,AZが算出され、保存される。これ以後、作業終了まで、刺激値直読型のプローブ部P1の測定値X1,Y1,Z1には、この校正係数AX,AY,AZが乗じられるものとし、式(4-1)ないし式(4-3)に従って測定値X2,Y2,Z2が算出される。
 次に、図8で示すように、刺激値直読型のプローブ部P1側における画面に比較的小さい入力信号L1が与えられ、該刺激値直読型のプローブ部P1の出力から、図9で示すように、この入力信号L1でRed,Green,Blueの各輝度が互いに等しくなるようにオフセット調整パラメータ値が設定され、オフセット調整が為される。続いて、前記図8で示すように、分光型のプローブ部Pn側における画面に比較的大きい入力信号L2が与えられ、この入力信号L2でもRed,Green,Blueの各輝度が互いに等しくなるようにドライブ調整パラメータが設定され、ドライブ調整が為される。この結果、図10で示すように、高輝度から低輝度までの全範囲で、入力信号が等しければ、色度が一定となるように調整することができる。したがって、このような調整のためには、前述のように低輝度領域から高輝度領域まで誤差の少ない測定が必要となる。こうして、最良な精度でホワイトバランス調整が実行される。
 続いて、ディスプレイのクロストーク量を測定する場合について説明する。クロストークとは、ディスプレイの或る領域のみを発光させた場合に、その影響を受けて非発光領域が発光してしまう現象を言う。クロストーク量は、例えば発光領域と非発光領域との比で定義される。クロストークを測定する場合の表示パターンは、一般に図11に示すように、表示領域のうち、中央が発光領域、それ以外が非発光領域となるものである。クロストークは、ディスプレイの電極などの関係で、発光領域の左右方向および上下方向に発生し易い。
 このため、図11に示すように中央に分光型のプローブ部Pnが配置され、それ以外の4点に刺激値直読型のプローブ部P1~P4が配置される。次に、画面全体に高輝度の白色パターンを表示して、総てのプローブ部P1~P4,Pnで測定が行われ、測定値が保存される。プローブ部Pnの測定値に、プローブ部P1~P4の測定値を用いて、前記式(3-1)ないし式(3-3)に従って刺激値直読型のプローブ部P1~P4に対する校正係数AX,AY,AZがそれぞれ算出され、保存される。これ以後、刺激値直読型のプローブ部P1~P4の測定値X1,Y1,Z1は、この校正係数AX,AY,AZが乗じられ、前記式(4-1)ないし式(4-3)に従う測定値X2,Y2,Z2となる。その後、図11のように画面中央部のみ白色表示し、分光型のプローブ部Pnによる中央部の測定値と、刺激値直読型のプローブ部P1~P4による他4点の測定値との比が算出され、この算出結果がクロストークの値とされる。
 このように構成することによって、高輝度領域を分光型のプローブ部Pnで測定するとともに、低輝度領域を刺激値直読型のプローブ部P1~P4で測定することによって、高精度にディスプレイのクロストークが測定される。また、プローブ部P1~P4,Pnを一度設置すればよいので、プローブ部が1つしかない測色計である場合に生じる該プローブ部の移動が無くなり、このような構成の測色計21は、高速かつ簡便に測定することが可能となる。
 以上のように、第1実施形態の測色計21は、複数のプローブ部P1~Pnを有し、各プローブ部P1~Pnに共通の本体部22を備えて構成され、多点を同時に測定可能な測色計であって、前記複数のプローブ部P1~Pnの内、多く(P1~Pn-1)が刺激値直読型で構成される一方で、一部(Pn)が分光型で構成される。このため、その本体部22は、高精度なその分光型のプローブ部Pnでの測定結果を多数の刺激値直読型のプローブ部P1~Pn-1の校正に用いて自動的に校正を行うことができ、第1実施形態の測色計21は、パーソナルコンピュータ等の外部装置を用いることなく、また測定データの転送等のユーザ作業を必要とすることなく、校正を極めて容易に行うことができる。また、本体部22には、所定の輝度閾値Lcが設定され、本体部22は、その輝度閾値Lc以上である場合には、前記高精度な分光型のプローブ部Pnで測定を行い、輝度閾値Lc未満である場合は、光学系が簡素で、エネルギーロスが少なく、高感度な刺激値直読型のプローブ部P1~Pn-1で測定を行う使い分けを行うことができる。
 また、第1実施形態の測色計21では、前記各プローブ部P1~Pn-1;Pnは、光学センサ部3,23と、前記光学センサ部3,23からの出力を増幅するアンプ4,24と、前記アンプ4,24からの出力をアナログ/デジタル変換するアナログ/デジタル変換部25’,25と、前記アナログ/デジタル変換部25’,25からの出力を予め定められる信号形式に変換して前記本体部22へ出力するとともに、前記本体部22からの測定指示に応答して測定動作を行う制御部26’,26と、校正係数AX,AY,AZ;Aを記憶するメモリ33と、前記制御部26’,26と本体部22との間に介在されるインタフェイス部27とを備えて構成される。このため、前記刺激値直読型と分光型とで、測定方法が異なっても、信号形式を規定し、センサ部3,23の種別を表す信号を電源投入時などで適宜に本体部22へ送信しておくことで、本体部22のコネクタQへは、何れの型式のプローブ部P1~Pn-1;Pnも任意に脱着することができる。したがって、基本構成としては、前記のように多く(P1~Pn-1)を刺激値直読型とするとともにその一部(Pn)を分光型としたり、総てを刺激値直読型としたり、また総てを分光型としたり、多くを分光型とするとともにその一部を刺激値直読型としたりするような任意の組合わせも可能になる。したがって、校正が終わると総てを刺激値直読型としたり、輝度が高い場合には総てを分光型としたり、輝度が低い場合には総てを刺激値直読型としたりするように、多様な測定を行うことができる。
 (実施の形態2)
 図12は、本発明の実施の第2形態に係る測色計51の電気的構成を示すブロック図である。図13は、第2形態において、相互に異なる分光応答度のセンサを複数組合わせて所望とする分光応答度を有するセンサを構成する方法を説明するためのグラフである。図14は、第2形態において、相互に異なる分光応答度のセンサを複数組合わせて所望とする分光応答度を有するセンサを構成する方法を説明するためのグラフである。図12において、この測色計51は、前述の測色計21に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。前述の測色計21では、1台の本体部22に複数台のプローブ部Pが装着されているのに対して、注目すべきは、この測色計51では、複数のプローブ部P1,P2,・・・,Pnが、個別に対応する本体部S1,S2,・・・,Snにそれぞれ接続されて1つのユニットを構成し、その複数台のユニットが相互に接続され、さらにその内の1台がマスター機となり、残余がスレーブ機となって、校正および測定を行うことである。前記マスター機には分光型プローブ部Pnが接続される本体部Snが好ましく、この本体部Snは、校正モードにおいて、その測定結果を残余の本体部S1,S2,・・・,Sn-1に配信する。このように構成した場合、本体部S間のネットワーク構成が可能であれば、該本体部Sを必要に応じて増設し、プローブ部Pの数を拡張することができる。
 上述の説明では、分光型のプローブ部Pnの光学センサ部23は、図2で示されるように、回折格子23dにCCDリニアセンサ23fを用いる、いわゆる分光測色計の構成となっているが、構造的には前記図19で示す刺激値直読型のプローブ部P1~Pn-1の光学センサ部3に類似した構成で、4種類以上の分光応答度を有する測光機能を有する、すなわち4つ以上のフィルタ部および対応するセンサ部を備え、センサの一部出力を加算するなどの各センサの出力をそのまま出力せずに、演算を行って出力する必要のあるものを含むものとする。
 例えば、3つの分光応答度を有するセンサを用い、1つの等色関数、例えばy(λ)に等しい分光応答度を有する測定を実現する例を、図13および図14を用いて説明する。測定器が、それぞれ、図13において参照符号β1~β3で示す分光応答度を有する3つのセンサを有しているとする。また、等色関数y(λ)が参照符号β0で示す分光応答度に等しいとする。ここで、3つのセンサ出力の単純和(すなわち、各センサの増幅率が1)を信号として取り出すと、前記参照符号β1~β3で示す分光応答度の和である参照符号β4で示す分光応答度となる。この場合、参照符号β0で示す等色関数y(λ)とは一致しない。
 そこで、前記参照符号β1~β3で示す3つの分光応答度に、それぞれ、0.3,1.0,1.7を乗じると、その分光応答度は、図14において参照符号β1’~β3’で示すようにそれぞれ変化し、和をとると、参照符号β4’で示すように、β0で示す等色関数y(λ)に等しくなる。こうして、複数のセンサ出力に任意の係数を掛け、信号和を取り出すことで、所望とする分光応答度を有するセンサを構成することができる。一般に、このような複数のセンサの出力を合算で作成した分光応答度は、既定の等色関数に完全に一致させることは難しいが、刺激値直読型の測定器の分光応答度と比較すると、より誤差の小さい分光応答度を形成させることが可能である。
 (実施の形態3)
 図15および図16は、本発明の実施の第3形態に係る測色計21a,51aの電気的構成を示すブロック図である。これらの測色計21a,51aは、前述の測色計21,51にそれぞれ類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、これらの測色計21a,51aでは、各ケーブルL1~Ln内には、各プローブ部に共通に接続されるタイミング信号ラインL1a,L2a~Lnaが設けられており、本体部22a;S1a~Snaのインタフェイス部28a,52aから各プローブ部P1a~Pnaのインタフェイス部27aには、測定開始および終了のタイミング信号が送信される。
 したがって、制御部29からソフトウェアで測定開始および終了のタイミングを制御する場合、各プローブ部P1a~Pnaを完全に同期させて測定を行わせることは困難であるのに対して、この専用のタイミング信号ラインL1a,L2a~Lnaを用いてハードウェアで同期を得ることで、各プローブ部P1a~Pnaを完全に同期させて測定を行わせることができる。
 (実施の形態4)
 図17は、本発明の実施の第4形態に係る測色計の校正動作を説明するためのフローチャートである。本実施の形態には、前述の測色計21の構成を用いることができ、本体部22の制御部29の動作が前記図4と異なる。この図17は、任意のプローブ部間で校正を行うものであり、刺激値直読型のプローブ部P1~Pn-1同士で校正を行う場合も含む。ただし、刺激値直読型のプローブ部P1~Pn-1の測定結果で、分光型プローブ部Pnの校正は行われない。
 図17において、ステップS51で複数のプローブ部Pが装着されているか否かが判断され、装着されていない場合には通常の測定モードが実行され、複数のプローブ部Pが装着されている場合には、さらにステップS52でプローブ間校正モードが選択されているか否かが判断され、選択されていない場合には通常の測定モードが実行され、選択されている場合にはステップS53以降の校正動作が実行される。前記通常の測定モードは、図4のステップS1以降の処理で、S1,S2,S12で装着されているプローブ部Pの種類が判定され、S3以降またはS13以降の測定処理に移るが、ステップS1,S12で両方のプローブ部P1~Pn-1;Pnが検出された後は、ステップS22~S26の校正モードに移らず、直接ステップS27の測定に移る。
 ステップS53では、参照(基準)側となるプローブ部Pで測定が行われ、制御部26,26’から、測定値(分光放射輝度S’(λ)および測定値X,Y,Z)が取得される。ステップS54では、校正側となるプローブ部で測定が行われ、制御部26’から、アナログ/デジタル変換値(測定値X1,Y1,Z1)が、そのまま取得される。続いてステップS55では、前記測定値X,Y,Zから前記式(2-1)ないし式(2-3)で逆変換して求めた測定値X’,Y’,Z’と、前記アナログ/デジタル変換値(測定値X1,Y1,Z1)とから、前記校正係数(AX,AY,AZ)が求められる。その校正係数(AX,AY,AZ)は、ステップS56でメモリ33に設定された後、通常の測定モードに移る。
 こうして、任意のプローブ部間で校正を行うことができる。
 なお、本件発明に関して、分光型のプローブ部および刺激値直読型のプローブ部の出力を、本体部側に設置したアナログ/デジタル器でデジタル変換するようにしてもよい。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる測光測色装置は、複数のプローブ部と、前記複数のプローブ部に対して共通な本体部とを備える測光測色装置であって、前記複数のプローブ部のうちの一部は、分光型の第1光学センサ部を備える分光型の第1プローブ部であるとともに、その残余は、刺激値直読型の第2光学センサ部を備える刺激値直読型の第2プローブ部であり、前記第1および第2プローブ部のそれぞれは、前記本体部との間に介在するインタフェイス部と、前記本体部からの測定指示に応答して測定動作を行う制御部とを備え、前記本体部は、前記複数のプローブ部のそれぞれに、前記インタフェイス部を介して、前記測定指示を送る本体制御部を備える。そして、他の一態様にかかる測光測色装置は、複数のプローブ部と、前記複数のプローブ部に個別にそれぞれ対応し、相互に連携する複数の本体部とを備える測光測色装置であって、前記複数のプローブ部のうちの一部は、分光型の第1光学センサ部を備える分光型の第1プローブ部であるとともに、その残余は、刺激値直読型の第2光学センサ部を備える刺激値直読型の第2プローブ部であり、前記第1および第2プローブ部のそれぞれは、対応する前記本体部との間に介在するインタフェイス部と、対応する前記本体部からの測定指示に応答して測定動作を行う制御部とを備え、前記複数の本体部のそれぞれは、本体インタフェイス部と、対応する前記プローブ部に、前記インタフェイス部を介して、前記測定指示を送る本体制御部を備える。
 このような構成の測光測色装置は、例えば色度計や分光測色計などとして実現され、複数のプローブ部を有し、各プローブ部に共通の本体部を備えて構成され、または複数のプローブ部と、それに個別に対応し、相互に連携する本体部とを備えて構成され、多点を同時に測定可能な測光測色装置である。そして、前記複数のプローブ部が、主に刺激値直読型で構成される中で、一部に分光型で構成される。なお、光学系以外に、前記刺激値直読型のプローブ部は、RGBの各色フィルタおよび受光センサを備えるものとし、分光型のプローブ部は、回折格子やCCDラインセンサにように分光測色計の構成以外に、4種類以上の分光応答度を有する測光機能を有する、すなわち4つ以上の色フィルタおよびセンサを備え、センサの一部出力を加算するなどの各センサの出力をそのまま出力できず、演算を行って出力する必要のあるものを含むものとする。
 このように複数のプローブ部の一部に分光型のプローブ部が含まれることで、本体部は、高精度なその分光型での測定結果を、刺激値直読型のプローブ部の校正に用いることができ、校正を容易に行うことができる。また、本体部は、所定の輝度閾値を設定し、その閾値以上である場合は、前記高精度な分光型のプローブ部で測定を行い、閾値未満である場合は、光学系が簡素で、エネルギーロスが少なく、高感度な刺激値直読型のプローブ部で測定を行うというような使い分けを行うことができる。
 また、他の一態様では、上述の測光測色装置において、前記各プローブ部は、前記光学センサ部の出力をアナログ/デジタル変換する信号変換器と、前記信号変換器からの出力を予め定められる信号形式に変換して前記本体部へ出力するとともに、前記本体部からの測定指示に応答して測定動作を行う制御部と、前記制御部と本体部との間に介在されるインタフェイス部とを備えて構成される。
 この構成によれば、前記刺激値直読型と分光型とで、測定方法が異なっても、信号形式を規定しておくことで、本体部のコネクタへは、何れの型式のプローブ部も任意に脱着することができ、基本構成としては、前記のように多くを刺激値直読型とし一部を分光型としたり、総て刺激値直読型や分光型としたり、多くを分光型とし一部を刺激値直読型としたりするような任意の組合わせも可能になる。
 したがって、このような構成の測光測色装置は、校正が終わると総て刺激値直読型としたり、輝度が高い場合には総て分光型、低い場合には総て刺激値直読型とするように、多様な測定を行うことができる。
 また、他の一態様では、上述の測光測色装置において、前記第1および第2プローブ部のそれぞれにおける各制御部は、前記光学センサ部の種別を表す識別信号を、対応する前記本体部へ出力し、前記本体制御部は、前記インタフェイス部を介して受信された前記識別信号から光学センサ部の種別を検出し、検出された種別に応じて校正動作または測定動作を制御する。
 この構成によれば、前記刺激値直読型と分光型とで、光学センサ部の種別を表す識別信号を本体部へ送信することで、該本体部の本体制御部は、何れの型式のプローブ部であるかを自動的に認識し、接続されたプローブ部に応じて測定動作を制御することができる。
 また、他の一態様では、上述の測光測色装置において、好ましくは、前記本体制御部は、前記識別信号から分光型のプローブ部を検出した場合に、その測定値を用いて刺激値直読型のプローブ部の校正を実行する校正モードを選択可能にする。また、他の一態様では、上述の測光測色装置において、好ましくは、前記本体制御部は、複数の刺激値直読型のプローブ部を検出した場合に、該刺激値直読型のプローブ部のいずれか1つの測定値を用いて、残余の校正を実行する校正モードを選択可能にする。また、他の一態様では、上述の測光測色装置において、好ましくは、前記本体制御部は、前記識別信号から分光型のプローブ部を検出した場合に、刺激値直読型のプローブ部による測定と、該分光型のプローブ部による測定とを、測定対象光の測光測色情報に応じて切換えるモードを選択可能にする。
 また、他の一態様では、上述の測光測色装置において、前記第1および第2プローブ部のそれぞれにおけるインタフェイス部と前記本体インタフェイス部とは、前記光学センサ部の出力信号を送信する信号線と同期信号線とを介して接続されている。また、他の一態様では、上述の測光測色装置において、前記第1および第2プローブ部のそれぞれにおけるインタフェイス部と、対応する前記本体インタフェイス部とは、前記光学センサ部の出力信号を送信する信号線と同期信号線とを介して接続されている。
 これらの構成によれば、専用の同期信号線を用いてハードウェアで同期を得ることによって、各プローブ部を完全に同期させて測定を行わせることができる。
 また、他の一態様では、上述の測光測色装置において、測定を開始するための測定ボタン(SW)を前記第1および前記第2プローブ部に設けて、本体制御部は前記測定ボタンの操作が検出されるまで測定を待機させている。
 この構成によれば、前記第1プローブ部または前記第2プローブ部の測定ボタン(SW)が操作されると、本体制御部は測定ボタンが操作されたプローブ部または全部のプローブ部に対して測定指示を送ることにより、校正動作または測定動作が実行される。これにより、操作者は操作中のプローブ部の位置で測定開始の指示ができる。
 この出願は、2008年8月22日に出願された日本国特許出願特願2008-214093を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、複数のプローブを装着可能な測光測色装置を提供することができる。

Claims (8)

  1.  複数のプローブ部と、前記複数のプローブ部に対して共通な本体部とを備える測光測色装置であって、
     前記複数のプローブ部のうちの一部は、分光型の第1光学センサ部を備える分光型の第1プローブ部であるとともに、その残余は、刺激値直読型の第2光学センサ部を備える刺激値直読型の第2プローブ部であり、
     前記第1および第2プローブ部のそれぞれは、前記本体部との間に介在するインタフェイス部と、前記本体部からの測定指示に応答して測定動作を行う制御部とを備え、
     前記本体部は、前記複数のプローブ部のそれぞれに、前記インタフェイス部を介して、前記測定指示を送る本体制御部を備えること
     を特徴とする測光測色装置。
  2.  複数のプローブ部と、前記複数のプローブ部に個別にそれぞれ対応し、相互に連携する複数の本体部とを備える測光測色装置であって、
     前記複数のプローブ部のうちの一部は、分光型の第1光学センサ部を備える分光型の第1プローブ部であるとともに、その残余は、刺激値直読型の第2光学センサ部を備える刺激値直読型の第2プローブ部であり、
     前記第1および第2プローブ部のそれぞれは、対応する前記本体部との間に介在するインタフェイス部と、対応する前記本体部からの測定指示に応答して測定動作を行う制御部とを備え、
     前記複数の本体部のそれぞれは、本体インタフェイス部と、対応する前記プローブ部に、前記インタフェイス部を介して、前記測定指示を送る本体制御部を備えること
     を特徴とする測光測色装置。
  3.  前記第1および第2プローブ部のそれぞれにおける各制御部は、前記光学センサ部の種別を表す識別信号を、対応する前記本体部へ出力し、
     前記本体制御部は、前記インタフェイス部を介して受信された前記識別信号から光学センサ部の種別を検出し、検出された種別に応じて校正動作または測定動作を制御すること
     を特徴とする請求項1記載の測光測色装置。
  4.  前記本体制御部は、前記識別信号から分光型のプローブ部を検出した場合に、その測定値を用いて刺激値直読型のプローブ部の校正を実行する校正モードを選択可能にすること
     を特徴とする請求項3記載の測光測色装置。
  5.  前記本体制御部は、複数の刺激値直読型のプローブ部を検出した場合に、該刺激値直読型のプローブ部のいずれか1つの測定値を用いて、残余の校正を実行する校正モードを選択可能にすること
     を特徴とする請求項3記載の測光測色装置。
  6.  前記本体制御部は、前記識別信号から分光型のプローブ部を検出した場合に、刺激値直読型のプローブ部による測定と、該分光型のプローブ部による測定とを、測定対象光の測光測色情報に応じて切換えるモードを選択可能にすること
     を特徴とする請求項3記載の測光測色装置。
  7.  前記第1および第2プローブ部のそれぞれにおけるインタフェイス部と前記本体インタフェイス部とは、前記光学センサ部の出力信号を送信する信号線と同期信号線とを介して接続されていること
     を特徴とする請求項1記載の測光測色装置。
  8.  前記第1および第2プローブ部のそれぞれにおけるインタフェイス部と、対応する前記本体インタフェイス部とは、前記光学センサ部の出力信号を送信する信号線と同期信号線とを介して接続されていること
     を特徴とする請求項2記載の測光測色装置。
PCT/JP2009/064100 2008-08-22 2009-08-10 測光測色装置 WO2010021258A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980131971.7A CN102124310B (zh) 2008-08-22 2009-08-10 测光测色装置
JP2010525659A JP5375826B2 (ja) 2008-08-22 2009-08-10 測光測色装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-214093 2008-08-22
JP2008214093 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021258A1 true WO2010021258A1 (ja) 2010-02-25

Family

ID=41707136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064100 WO2010021258A1 (ja) 2008-08-22 2009-08-10 測光測色装置

Country Status (4)

Country Link
JP (1) JP5375826B2 (ja)
CN (1) CN102124310B (ja)
TW (1) TWI411769B (ja)
WO (1) WO2010021258A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093737A (zh) * 2011-11-08 2013-05-08 天津三星电子有限公司 一种用于调整显示设备颜色白平衡的装置及方法
JP2017146098A (ja) * 2016-02-15 2017-08-24 コニカミノルタ株式会社 測光または測色のための装置
WO2017145994A1 (ja) * 2016-02-24 2017-08-31 コニカミノルタ株式会社 二次元測色装置、二次元測色システム及び二次元測色方法
WO2018110266A1 (ja) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 制御装置および色測定システム
JP2019061390A (ja) * 2017-09-26 2019-04-18 カシオ計算機株式会社 電子機器、測定モード設定方法、およびプログラム
WO2022220196A1 (ja) * 2021-04-12 2022-10-20 コニカミノルタ株式会社 補正装置、測定器、補正方法及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512658A (zh) * 2012-06-29 2014-01-15 深圳市祈飞科技有限公司 一种颜色识别系统及方法
TWI454679B (zh) * 2012-08-08 2014-10-01 Chroma Ate Inc Optical detection system and optical property detection method
WO2018110333A1 (ja) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 色測定システム
CN108333801B (zh) * 2018-01-15 2021-09-10 武汉精测电子集团股份有限公司 液晶模组色度值采集系统及方法
CN108240862A (zh) * 2018-01-15 2018-07-03 武汉精测电子集团股份有限公司 高精度自校三刺激值色度计及色度值采集方法
TWI800002B (zh) * 2021-09-22 2023-04-21 易學科技股份有限公司 數位化色度尺規系統之設計方法及其數位化色度尺規系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201472A (ja) * 1993-01-06 1994-07-19 Minolta Camera Co Ltd 二次元測色計
DE9408442U1 (de) * 1994-05-21 1994-07-21 Fuchs, Annette, Dr., 63165 Mühlheim Kombiniertes Farbmeßgerät
JP2000502804A (ja) * 1996-01-02 2000-03-07 エルジェイ・ラボラトリーズ・リミテッド・ライアビリティ・カンパニー 物体の光学特性を測定するための装置および方法
JP2001158083A (ja) * 1999-10-22 2001-06-12 Man Roland Druckmas Ag 印刷製品の品質管理のための測定装置
JP2007147507A (ja) * 2005-11-29 2007-06-14 Kurabo Ind Ltd 分光測定方法及び分光測定装置
JP2008039783A (ja) * 2006-08-03 2008-02-21 Heidelberger Druckmas Ag 異なる動作をする2つの測定装置を備えている、色に関する測定を行う装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758644A (en) * 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
JPH0949765A (ja) * 1995-08-08 1997-02-18 Yokogawa Electric Corp 色彩測定器
CN1959355A (zh) * 2005-11-03 2007-05-09 北京师范大学 半导体光源发光色度、强度及白平衡的检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201472A (ja) * 1993-01-06 1994-07-19 Minolta Camera Co Ltd 二次元測色計
DE9408442U1 (de) * 1994-05-21 1994-07-21 Fuchs, Annette, Dr., 63165 Mühlheim Kombiniertes Farbmeßgerät
JP2000502804A (ja) * 1996-01-02 2000-03-07 エルジェイ・ラボラトリーズ・リミテッド・ライアビリティ・カンパニー 物体の光学特性を測定するための装置および方法
JP2001158083A (ja) * 1999-10-22 2001-06-12 Man Roland Druckmas Ag 印刷製品の品質管理のための測定装置
JP2007147507A (ja) * 2005-11-29 2007-06-14 Kurabo Ind Ltd 分光測定方法及び分光測定装置
JP2008039783A (ja) * 2006-08-03 2008-02-21 Heidelberger Druckmas Ag 異なる動作をする2つの測定装置を備えている、色に関する測定を行う装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093737A (zh) * 2011-11-08 2013-05-08 天津三星电子有限公司 一种用于调整显示设备颜色白平衡的装置及方法
JP2017146098A (ja) * 2016-02-15 2017-08-24 コニカミノルタ株式会社 測光または測色のための装置
WO2017145994A1 (ja) * 2016-02-24 2017-08-31 コニカミノルタ株式会社 二次元測色装置、二次元測色システム及び二次元測色方法
JPWO2017145994A1 (ja) * 2016-02-24 2018-12-20 コニカミノルタ株式会社 二次元測色装置、二次元測色システム及び二次元測色方法
EP3415883A4 (en) * 2016-02-24 2019-04-03 Konica Minolta, Inc. TWO-DIMENSIONAL COLORIMETRIC DEVICE, TWO-DIMENSIONAL COLORIMETRIC SYSTEM AND TWO-DIMENSIONAL COLORIMETRIC PROCESS
WO2018110266A1 (ja) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 制御装置および色測定システム
JP2019061390A (ja) * 2017-09-26 2019-04-18 カシオ計算機株式会社 電子機器、測定モード設定方法、およびプログラム
WO2022220196A1 (ja) * 2021-04-12 2022-10-20 コニカミノルタ株式会社 補正装置、測定器、補正方法及びプログラム

Also Published As

Publication number Publication date
TW201020529A (en) 2010-06-01
JPWO2010021258A1 (ja) 2012-01-26
JP5375826B2 (ja) 2013-12-25
CN102124310A (zh) 2011-07-13
CN102124310B (zh) 2013-09-04
TWI411769B (zh) 2013-10-11

Similar Documents

Publication Publication Date Title
JP5375826B2 (ja) 測光測色装置
EP3054273B1 (en) Colorimetry system for display testing
US5432609A (en) Two-dimensional colorimeter
TWI495857B (zh) 藉由以分光儀協助之特定設計圖案閉迴路校準之高準確成像色度計
US9076363B2 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
JP5812178B2 (ja) 光学特性測定装置
JP2007093477A (ja) 色測定装置の校正方法および校正装置、色測定方法、色測定装置
TWI384159B (zh) 校準光源的方法
JP2015178995A (ja) 色調校正装置、撮像装置及び色調検査装置
TW202129303A (zh) 偵測器靈敏度之光譜重建
JP5396211B2 (ja) 色評価方法及び色評価システム
JP6555276B2 (ja) 刺激値直読型の測色測光計
JP6631001B2 (ja) 刺激値直読型の測色計
KR102022836B1 (ko) 광 측정 장치, 시스템 및 방법
JP2022006624A (ja) 校正装置、校正方法、校正プログラム、分光カメラ、及び情報処理装置
JP2002323376A (ja) 色情報計測方法と表示色評価方法及び表示色調整方法並びにこれらを利用した装置それにプロジェクタの製造方法
WO2016203902A1 (ja) 光学特性測定装置及び光学特性測定装置の設定方法
JP2000121438A (ja) カラー画像測定装置
JP2016099162A (ja) 刺激値直読型の測色計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131971.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525659

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808194

Country of ref document: EP

Kind code of ref document: A1