WO2010018760A1 - 有機圧電材料、有機圧電体膜の製造方法、超音波振動子及び超音波探触子 - Google Patents

有機圧電材料、有機圧電体膜の製造方法、超音波振動子及び超音波探触子 Download PDF

Info

Publication number
WO2010018760A1
WO2010018760A1 PCT/JP2009/063734 JP2009063734W WO2010018760A1 WO 2010018760 A1 WO2010018760 A1 WO 2010018760A1 JP 2009063734 W JP2009063734 W JP 2009063734W WO 2010018760 A1 WO2010018760 A1 WO 2010018760A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic piezoelectric
piezoelectric material
group
ultrasonic
film
Prior art date
Application number
PCT/JP2009/063734
Other languages
English (en)
French (fr)
Inventor
福坂 潔
理枝 藤澤
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2010018760A1 publication Critical patent/WO2010018760A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3814Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to an organic piezoelectric material containing a resin composition having a nitrogen-containing heterocycle as a partial structure.
  • acoustic devices such as microphones and diaphragms for speakers, various thermal sensors, pressure sensors, infrared detectors and other measuring devices, ultrasonic probe, mutations such as genes and proteins are highly sensitive
  • the present invention relates to an organic piezoelectric material having piezoelectricity or pyroelectricity that can be used to convert heat or mechanical stimulus into electrical energy, such as a vibration sensor to detect.
  • the pyroelectric material a so-called inorganic material in which a single crystal such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 , a thin film such as ZnO or AlN, or a sintered body such as Pb (Zr, Ti) O 3 is subjected to polarization treatment.
  • Piezoelectric materials are widely used. However, these inorganic piezoelectric materials have characteristics such as high elastic stiffness, high mechanical loss coefficient, high density and high dielectric constant.
  • organic piezoelectric materials such as polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) and polycyanovinylidene (hereinafter abbreviated as “PVDCN”) have also been developed (see, for example, Patent Document 1).
  • PVDF polyvinylidene fluoride
  • PVDCN polycyanovinylidene
  • This organic piezoelectric material is excellent in processability such as thin film and large area, can be made in any shape and form, and has features such as low elastic modulus and low dielectric constant. When considering use, it has a feature that enables highly sensitive detection.
  • organic piezoelectric materials have low heat resistance and lose their pyroelectric properties at high temperatures, and the physical properties such as elastic stiffness are greatly reduced.
  • the present invention has been made in view of the above problems and situations, and the solution to the problem is excellent in piezoelectric characteristics, and has piezoelectricity and pyroelectricity that can be used to convert heat and mechanical stimulation into electrical energy.
  • An organic piezoelectric material and an organic piezoelectric film manufacturing method using the organic piezoelectric material are provided. Moreover, it is providing the ultrasonic transducer
  • An organic piezoelectric material which is a resin composition having a nitrogen-containing heterocycle as a partial structure.
  • An ultrasonic probe comprising an ultrasonic transmission transducer and an ultrasonic reception transducer, wherein the ultrasonic transducer using the organic piezoelectric material according to any one of 1 to 3 is ultrasonicated.
  • An ultrasonic probe comprising a receiving transducer.
  • the above-described means of the present invention can provide an organic piezoelectric material for forming an organic piezoelectric film having excellent piezoelectricity, and a method for producing an organic piezoelectric film using the organic piezoelectric material. Moreover, an ultrasonic transducer and an ultrasonic probe using an organic piezoelectric film formed using the organic piezoelectric material can be provided.
  • the nitrogen-containing heterocycle according to the present invention has a large electronegativity of the nitrogen atom, and the nitrogen-containing heterocycle itself has a dipole moment. Therefore, by introducing the nitrogen-containing heterocycle as a partial structure, A resin composition having significantly improved heat resistance and piezoelectric properties as a material can be provided.
  • the organic piezoelectric material of the present invention refers to an organic material having a function of converting applied force into voltage or converting voltage into force. Using the organic piezoelectric material of the present invention, pyroelectric It is possible to provide an organic piezoelectric film that is excellent in performance.
  • the organic piezoelectric material of the present invention is a resin composition having a nitrogen-containing heterocycle as a partial structure.
  • nitrogen-containing heterocyclic ring examples include pyridine ring, quinoline ring, phthalazine ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, 1,2,3.
  • a pyridine ring Preferred are a pyridine ring, a quinoline ring, an isoquinoline ring, a phthalazine ring, a 1,3,5-triazine ring, a pyrimidine ring, a pyrazine ring and a pyridazine ring, and particularly preferred are a phthalazine ring, a 1,3,5-triazine ring, A pyrimidine ring, a pyrazine ring, and a pyridazine ring, and most preferably a 1,3,5-triazine ring, a pyrimidine ring, and a pyridazine ring.
  • nitrogen-containing heterocycles may have a substituent, and examples of the substituent include a halogen atom (for example, fluorine atom, chlorine atom, bromine atom), an alkyl group (for example, methyl group, ethyl group, propyl group). Group, isopropyl group, t-butyl group, etc.), aryl group (for example, phenyl group, naphthyl group, etc.), cyano group, hydroxyl group and the like.
  • halogen atom for example, fluorine atom, chlorine atom, bromine atom
  • an alkyl group for example, methyl group, ethyl group, propyl group.
  • alkyl group for example, methyl group, ethyl group, propyl group
  • aryl group for example, phenyl group, naphthyl group, etc.
  • cyano group hydroxyl group and the like.
  • the nitrogen-containing heterocyclic structure may be introduced into either the main chain or the side chain of the resin composition, but is preferably introduced into the main chain.
  • the resin composition in which the nitrogen-containing heterocyclic structure is introduced into the main chain is a resin composition in which the nitrogen-containing heterocyclic ring constitutes a part of the chain in the chain having the maximum number of carbon atoms of the chain compound. That is.
  • the resin composition having a nitrogen-containing heterocycle as a partial structure may be synthesized by any means, and includes a compound represented by the following general formula (1) and a compound represented by the following general formula (2): The method of reacting is preferred.
  • a 11 represents an alkylene group, an arylene group, an aralkylene group or a heterocyclic group, and L 11 and L 12 each independently represent a divalent linking group.
  • n and m each represents an integer of 0 to 10.
  • B 11 and B 12 each represent an amino group or a hydroxyl group, and R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group.
  • p and q represent 0 or 1, p is 0 when B 11 is a hydroxyl group, and q represents 0 when B 12 is a hydroxyl group.
  • a 21 represents an alkylene group, an arylene group, an aralkylene group or a heterocyclic group, and L 21 and L 22 each independently represent a divalent linking group.
  • r and t each represents an integer of 0 to 10.
  • D 21 and D 22 represent an isocyanate group, an isothiocyanate group, —COCl or —CO 2 H.
  • At least one of A 11 and A 21 represents a nitrogen-containing heterocyclic ring.
  • a 11 represents an alkylene group, an arylene group, an aralkylene group or a heterocyclic group.
  • alkylene group include a methylene group, an ethylene group, an n-propylene group, and an n-butylene group.
  • arylene group include a phenylene group, a naphthylene group, and a biphenylene group.
  • heterocyclic group include a thiophene ring and a furan ring in addition to the nitrogen-containing heterocycle described above.
  • L 11 and L 12 each independently represent a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, an ether group, an ester group, an alkoxycarbonyl group, a urea group, a thiourea group, and an amide group.
  • examples of the alkylene group include a methylene group, an ethylene group, an n-propylene group, and an n-butylene group.
  • the arylene group include a phenylene group, a naphthylene group, and a biphenylene group.
  • n and m each represents an integer of 0 to 10.
  • B 11 and B 12 represent an amino group or a hydroxyl group.
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a t-butyl group.
  • the aryl group include a phenyl group and a naphthyl group.
  • a hydrogen atom or an alkyl group is preferable.
  • p and q represent 0 or 1
  • p represents 0 when B 11 is a hydroxyl group
  • q represents 0 when B 12 is a hydroxyl group.
  • Examples of the compound represented by the general formula (1) include 2,7-diamino-9H-fluorene, 3,6-diaminoacridine, acriflavine, acridine yellow, and 2,2-bis (4-aminophenyl) hexafluoro.
  • a 21 represents an alkylene group, an arylene group, an aralkylene group or a heterocyclic group.
  • alkylene group include a methylene group, an ethylene group, an n-propylene group, and an n-butylene group.
  • arylene group include a phenylene group, a naphthylene group, and a biphenylene group.
  • heterocyclic group include a thiophene ring and a furan ring in addition to the nitrogen-containing heterocycle described above.
  • L 21 and L 22 each independently represent a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, an ether group, an ester group, an alkoxycarbonyl group, a urea group, a thiourea group, and an amide group.
  • examples of the alkylene group include a methylene group, an ethylene group, an n-propylene group, and an n-butylene group.
  • the arylene group include a phenylene group, a naphthylene group, and a biphenylene group.
  • R and t represent an integer of 0 to 10.
  • D 21 and D 22 each represent an isocyanate group, an isothiocyanate group, —COCl or —CO 2 H, preferably an isocyanate group, an isothiocyanate group or —COCl, and more preferably an isocyanate group or an isothiocyanate. Naruto group.
  • Examples of the compound represented by the general formula (2) include 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 1,3- Cyclopentane diisocyanate, 9H-fluorene-2,7-diisocyanate, 9H-fluoren-9-one-2,7-diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, tolylene-2 , 4-diisocyanate, tolylene-2,6-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 2,2-bis (4-isocyanatophenyl) hexafluoropropane, 1,5-diiso Anatonaphthalene, orthophthalic
  • polyisocyanate or polyisothiocyanate may be synthesized by reacting phosgene, triphosgene or thiophosgene with the polyamine listed in the general formula (1), and SOCl 2 , POCl 3 or the like is reacted with polycarboxylic acid.
  • the terminal may be —COCl.
  • the resin composition having a nitrogen-containing heterocycle as a partial structure is preferably a method in which the compound represented by the general formula (1) is reacted with the compound represented by the general formula (2).
  • the amount of the general formula (2) used relative to the general formula (1) is preferably 0.8 to 1.2 times mol, more preferably 0.9 to 1.1 times mol, and particularly preferably 1. 0 times mole.
  • the reaction temperature is not limited, but is preferably 0 to 100 ° C, more preferably 10 to 80 ° C. More preferably, it is 20 to 70 ° C.
  • the reaction temperature for polymerization is not particularly limited, but is preferably ⁇ 40 to 60 ° C., more preferably ⁇ 20 to 30 ° C., and particularly preferably ⁇ 10 to 10 ° C. Further, the reaction may be continued at a constant temperature, or the reaction may be completed by raising the temperature.
  • a highly polar solvent such as DMF (N, N-dimethylformamide), DMAc (N, N-dimethylacetamide), DMSO (dimethylsulfoxide), NMP (N-methylpyrrolidone),
  • aliphatic hydrocarbons such as cyclohexane, pentane and hexane, aromatic hydrocarbons such as benzene, toluene and chlorobenzene, THF (tetrahydrofuran), diethyl ether, ethylene glycol diethyl
  • a solvent such as ethers such as ether, ketones such as acetone, methyl ethyl ketone, 4-methyl-2-pentanone, esters such as methyl propionate,
  • a base such as pyridine, triethylamine or tetraethylenediamine is used as a catalyst.
  • the compound represented by the general formula (1) may be used in excess of the catalyst instead of the catalyst.
  • the amount of the catalyst used is preferably equimolar to 2.0-fold mol, more preferably 1.1-fold mol to 1.5-fold mol based on the generated hydrogen chloride.
  • the terminal group of the compound represented by the general formula (1) has a hydroxyl group, N, N, N ′, N′-tetramethyl-1,3-butanediamine, Tertiary alkylamines such as triethylamine and tributylamine; condensed ring amines such as 1,4-diazabicyclo [2.2.2] octane and 1,8-diazabicyclo [5.4.0] unde-7-ene; Known urethane bond forming catalysts such as alkyl tins such as DBTL, tetrabutyltin, and tributyltin acetate can be used.
  • the amount of catalyst used is preferably 0.1 to 30 mol% based on the monomer substrate in consideration of efficient reaction and reaction operation.
  • the method for reprecipitation of the resin composition is not particularly limited, but it is preferable that the resin composition is dissolved in a good solvent and then dropped into a poor solvent to be deposited.
  • the “good solvent” may be any solvent as long as it dissolves the resin composition, but is preferably a polar solvent, specifically, DMF (N, N-dimethylformamide), Highly polar aprotic solvents such as DMAc (N, N-dimethylacetamide), DMSO (dimethylsulfoxide), NMP (N-methylpyrrolidone), 1,1,1,3,3,3-hexafluoro-2-propanol Can be mentioned.
  • DMF N, N-dimethylformamide
  • Highly polar aprotic solvents such as DMAc (N, N-dimethylacetamide), DMSO (dimethylsulfoxide), NMP (N-methylpyrrolidone), 1,1,1,3,3,3-hexafluoro-2-propanol Can be mentioned.
  • the “poor solvent” may be any solvent as long as it does not dissolve the resin composition, but is an aliphatic hydrocarbon such as cyclohexane, pentane or hexane, or an aromatic carbon such as benzene, toluene or chlorobenzene.
  • examples include hydrogens, ethers such as diethyl ether and ethylene glycol diethyl ether, esters such as methyl propionate, ethyl acetate and butyl acetate, and alcohols such as methanol, ethanol and propanol.
  • Organic piezoelectric material of the present invention is formed by forming a film using a resin composition containing a resin having a nitrogen-containing heterocycle as a partial structure, or by subjecting the film of the resin composition to further polarization treatment. Thus, an organic piezoelectric film can be formed.
  • the organic piezoelectric film when stress is applied to the piezoelectric film, a charge of opposite sign appears on both end faces of the piezoelectric film, that is, a phenomenon called electric polarization occurs. It has the property (piezoelectric performance) of generating a strain corresponding to it by applying (adding an electric field).
  • a large piezoelectric effect is generated by polarization due to orientation freezing of the dipole moment of the polymer main chain or side chain.
  • the organic piezoelectric film is formed by forming a film on a substrate by performing a vapor deposition polymerization method using the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • a method of forming a film by coating or pressing is preferable. Examples of the coating method include spin coating, solvent casting, melt casting, roll coating, flow coating, printing, dip coating, bar coating, and hot pressing.
  • the coating method include spin coating, solvent casting, melt casting, roll coating, flow coating, printing, dip coating, bar coating, and hot pressing.
  • the cooling of the film after film formation may be performed at room temperature or rapid cooling, but is preferably rapid cooling. Any method may be used for the rapid cooling method, and cooling may be performed by immersing a molded film in ice water or liquid nitrogen.
  • vapor deposition polymerization method usually, two kinds of monomers are evaporated from two evaporation sources under a pressure of about 1.33 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 2 Pa, and a polymerization reaction is performed on the surface to be deposited. In this method, a polymer thin film is formed on the deposition surface.
  • the vapor deposition polymerization method it is necessary to cause the monomers that have reached the vapor deposition surface under the above pressure to react within a certain residence time determined by the vapor pressure specific to each monomer. Since this residence time is generally very short, it is desirable that each monomer has extremely high reactivity.
  • a vapor deposition substrate is set on the inner upper part of the chamber of the vapor deposition apparatus body with the vapor deposition surface facing downward.
  • heating means such as a resistance heater is attached to the bottom of each container so that the vapor deposition source accommodated in each of the two containers can be heated.
  • JP-A-7-258370, JP-A-5-311399, and JP-A-2006-49418 can be referred to.
  • a method of performing a polarization treatment described later on the formed film is preferable.
  • the temperature at which the polarization treatment is performed is preferably ⁇ 50 to 250 ° C., more preferably ⁇ 50 to 200 ° C. A method of changing the temperature in the above temperature range is also preferable.
  • polarization treatment As a polarization treatment method in the polarization treatment according to the present invention, various conventionally known methods such as corona discharge or a method of directly applying a voltage by providing an electrode on a film can be applied.
  • the corona discharge treatment can be performed using a commercially available high-voltage power source and an electrode device.
  • the voltage of the high-voltage power supply is -1 to -20 kV
  • the current is 1 to 80 mA
  • the distance between the electrodes is 1 to 10 cm.
  • the applied voltage is preferably 0.5 to 2.0 MV / m.
  • the electrodes needle-like electrodes, linear electrodes (wire electrodes), and mesh electrodes conventionally used are preferable, but the invention is not limited thereto.
  • heating is performed during corona discharge, it is necessary to install a heater via an insulator under the electrode in contact with the substrate manufactured according to the present invention.
  • the corona discharge treatment when the corona discharge treatment is performed as the polarization treatment in the state where the solvent of the raw material solution remains, the volatile component of the solvent is removed in order to avoid danger such as flammable explosion. It is necessary for safety to carry out with sufficient ventilation.
  • the selection of the substrate differs depending on the use and usage of the organic piezoelectric film according to the present invention.
  • It may be a plastic plate or film such as polyimide, polyamide, polyimide amide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate resin, cycloolefin polymer.
  • the surface may be covered with aluminum, gold, copper, magnesium, silicon or the like.
  • a single crystal plate or film of aluminum, gold, copper, magnesium, silicon simple substance, or rare earth halide may be used.
  • a multilayer piezoelectric element As a method of using a multilayer for stacking piezoelectric elements, there is a method in which the organic piezoelectric film of the present invention is superposed on a ceramic piezoelectric element via an electrode.
  • PZT is used as the ceramic piezoelectric element, but in recent years, one containing no lead has been recommended. PZT is preferably within the range of the formula Pb (Zr 1-n Ti n ) O 3 (0.47 ⁇ n ⁇ 1).
  • lithium niobate LiNbO 3
  • potassium niobium tantalate K (Ta, Nb) O 3
  • barium titanate BaTiO 3
  • lithium tantalate LiTaO 3
  • strontium titanate SrTiO 3
  • the composition of various ceramic materials can be appropriately selected in terms of use performance.
  • the ultrasonic transducer according to the present invention is characterized by using an organic piezoelectric film formed using the organic piezoelectric material of the present invention.
  • the ultrasonic transducer is preferably an ultrasonic receiving transducer used in an ultrasonic medical diagnostic imaging device probe including an ultrasonic transmitting transducer and an ultrasonic transmitting transducer. .
  • an ultrasonic transducer has a layer (or film) made of a film-like piezoelectric material (also referred to as “piezoelectric film”, “piezoelectric film”, or “piezoelectric layer”) and a pair of electrodes.
  • An ultrasonic probe is configured by arranging a plurality of transducers, for example, one-dimensionally.
  • a predetermined number of transducers in the major axis direction in which a plurality of transducers are arranged is set as the aperture, and the plurality of transducers belonging to the aperture are driven to converge the ultrasonic beam on the measurement site in the subject. And has a function of receiving reflected echoes of ultrasonic waves emitted from the subject by a plurality of transducers belonging to the aperture and converting them into electrical signals.
  • An ultrasonic receiving transducer is a transducer used in a probe for an ultrasonic medical image diagnostic apparatus, and is formed using the organic piezoelectric material of the present invention as a piezoelectric material constituting the transducer.
  • An organic piezoelectric film is used.
  • the organic piezoelectric material or organic piezoelectric film used for the ultrasonic receiving vibrator preferably has a relative dielectric constant of 10 to 50 at the thickness resonance frequency.
  • the relative dielectric constant can be adjusted by adjusting the number, composition, polymerization degree, etc. of the substituents contained in the compound constituting the organic piezoelectric material, and the above-described polarization treatment.
  • the ultrasonic transmission vibrator according to the present invention is preferably made of a piezoelectric material having an appropriate relative dielectric constant in relation to the reception vibrator. Moreover, it is preferable to use a piezoelectric material excellent in heat resistance and voltage resistance.
  • ultrasonic transmission vibrator constituting material
  • various known organic piezoelectric materials and inorganic piezoelectric materials can be used.
  • organic piezoelectric material a polymer material similar to the above-described organic piezoelectric material for constituting an ultrasonic receiving vibrator can be used.
  • Examples of the inorganic piezoelectric material include quartz, lithium niobate (LiNbO 3 ), potassium niobate tantalate [K (Ta, Nb) O 3 ], barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3 ), or titanium.
  • Lead zirconate (PZT), strontium titanate (SrTiO 3 ), barium strontium titanate (BST), or the like can be used.
  • PZT is preferably Pb (Zr 1-n Ti n ) O 3 (0.47 ⁇ n ⁇ 1).
  • the piezoelectric (body) vibrator according to the present invention is manufactured by forming electrodes on both surfaces or one surface of a piezoelectric film (layer) and polarizing the piezoelectric film.
  • the electrode is formed using an electrode material mainly composed of gold (Au), platinum (Pt), silver (Ag), palladium (Pd), copper (Cu), nickel (Ni), tin (Sn), or the like. .
  • a base metal such as titanium (Ti) or chromium (Cr) is formed to a thickness of 0.02 to 1.0 ⁇ m by sputtering, and then the metal mainly composed of the metal element and their A metal material made of an alloy and, if necessary, a part of an insulating material are formed to a thickness of 1 to 10 ⁇ m by sputtering or other suitable methods.
  • these electrodes can be formed by screen printing, dipping, or thermal spraying using a conductive paste in which a fine metal powder and low-melting glass are mixed.
  • a piezoelectric element can be obtained by supplying a predetermined voltage between the electrodes formed on both surfaces of the piezoelectric film and polarizing the piezoelectric film.
  • the ultrasonic probe of the present invention is a probe for an ultrasonic diagnostic imaging apparatus including an ultrasonic transmission transducer and an ultrasonic reception transducer, and the reception transducer according to the present invention.
  • the ultrasonic receiving vibrator is used.
  • both the transmission and reception of ultrasonic waves may be performed by a single transducer, but more preferably, the transducer is configured separately for transmission and reception in the probe.
  • the piezoelectric material constituting the transmitting vibrator may be a conventionally known ceramic inorganic piezoelectric material or an organic piezoelectric material.
  • the ultrasonic receiving transducer of the present invention can be disposed on or in parallel with the transmitting transducer.
  • the structure for laminating the ultrasonic receiving transducer according to the present invention on the ultrasonic transmitting transducer is good.
  • the ultrasonic receiving transducer of the present invention You may laminate
  • the film thickness of the receiving vibrator and the other polymer material be matched to a preferable receiving frequency band in terms of probe design.
  • the film thickness is preferably 40 to 150 ⁇ m.
  • the probe may be provided with a backing layer, an acoustic matching layer, an acoustic lens, and the like.
  • a probe in which vibrators having a large number of piezoelectric materials are two-dimensionally arranged can be used. A plurality of two-dimensionally arranged probes can be sequentially scanned to form a scanner.
  • the ultrasonic probe according to the present invention can be used for various types of ultrasonic diagnostic apparatuses.
  • it can be suitably used in an ultrasonic medical image diagnostic apparatus as shown in FIG.
  • FIG. 1 is a conceptual diagram showing a configuration of a main part of an ultrasonic medical image diagnostic apparatus according to an embodiment of the present invention.
  • This ultrasonic medical diagnostic imaging apparatus transmits an ultrasonic wave to a subject such as a patient, and an ultrasonic probe in which piezoelectric vibrators that receive ultrasonic waves reflected by the subject as echo signals are arranged. (Probe).
  • an electric signal is supplied to the ultrasonic probe to generate an ultrasonic wave, and a transmission / reception circuit that receives an echo signal received by each piezoelectric vibrator of the ultrasonic probe, and transmission / reception of the transmission / reception circuit
  • an image data conversion circuit for converting the echo signal received by the transmission / reception circuit into ultrasonic image data of the subject is provided. Further, a display control circuit that controls and displays the monitor with the ultrasonic image data converted by the image data conversion circuit, and a control circuit that controls the entire ultrasonic medical image diagnostic apparatus are provided.
  • the transmission / reception control circuit, the image data conversion circuit, and the display control circuit are connected to the control circuit, and the control circuit controls the operations of these units. Then, an electrical signal is applied to each piezoelectric vibrator of the ultrasonic probe to transmit an ultrasonic wave to the subject, and the reflected wave caused by acoustic impedance mismatch inside the subject is detected by the ultrasonic probe. Receive at.
  • the transmission / reception circuit corresponds to “means for generating an electric signal”
  • the image data conversion circuit corresponds to “image processing means”.
  • the image quality is superior to that of the prior art by taking advantage of the characteristics of the ultrasonic receiving vibrator excellent in piezoelectric characteristics and heat resistance according to the present invention and suitable for high frequency and wide band. And an ultrasonic image with improved reproduction stability can be obtained.
  • Example 1 (Preparation of resin composition) Under a nitrogen atmosphere, 3.0 g of 6-chloro-2,4-diaminopyrimidine was dissolved in 60 ml of DMSO, and then cooled with ice water. While cooling with ice water, 3.7 g of 1,7-heptamethylene diisocyanate dissolved in 30 ml of DMSO was added dropwise. After completion of the addition, the mixture was stirred at room temperature for 4 hours. The reaction solution was further stirred at 60 ° C. for 3 hours, allowed to cool to room temperature, and then added dropwise to 630 ml of methanol. The precipitate was collected by filtration, washed with methanol, and then dried under reduced pressure at 60 ° C. to obtain a resin composition 1.
  • the weight average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the resin composition 1 were calculated by gel permeation chromatography (GPC) in the following manner.
  • the measurement conditions are as follows.
  • the obtained resin composition 1 was applied and dried on a 25 ⁇ m polyimide film that had been pre-deposited on the surface with a methanol solution of polyvinyl alcohol having a polymerization degree of 1% of 500% so that the dry film pressure was 0.1 ⁇ m.
  • the applied substrate was applied and dried so that the dry film pressure was 7 ⁇ m.
  • 100MV is used by using a high voltage power supply HARB-20R60 (manufactured by Matsusada Precision Co., Ltd.).
  • HARB-20R60 manufactured by Matsusada Precision Co., Ltd.
  • the temperature is increased to 100 ° C. at a rate of 5 ° C./min.
  • the voltage is applied and then gradually cooled to room temperature, subjected to poling treatment, and organic A piezoelectric film 1 was produced.
  • the organic piezoelectric film includes an electrode, it can be used as an ultrasonic vibrator.
  • Resin compositions 2 to 8 were also synthesized using the monomers shown in Table 1 in the same manner as in resin composition 1. The weight average molecular weight and molecular weight distribution were determined by measuring GPC in the same manner as described above.
  • organic piezoelectric films 2 to 8 were produced in the same manner as the organic piezoelectric film 1.
  • the obtained comparative resin composition 1 was insoluble in the eluent of GPC, the weight average molecular weight and molecular weight distribution could not be measured.
  • the comparative resin composition 1 thus obtained was applied and dried on a 25 ⁇ m polyimide film that had been vapor-deposited on the surface in advance with a 1% methanol solution of polyvinyl alcohol having a polymerization degree of 500 so that the dry film pressure would be 0.1 ⁇ m.
  • the applied substrate was applied and dried so that the dry film pressure was 7 ⁇ m.
  • 100MV is used by using a high voltage power supply HARB-20R60 (manufactured by Matsusada Precision Co., Ltd.).
  • HARB-20R60 manufactured by Matsusada Precision Co., Ltd.
  • the temperature rises to 100 ° C. at a rate of 5 ° C./min.
  • the voltage is applied and gradually cooled to room temperature, and then subjected to poling treatment.
  • An organic piezoelectric film 1 was produced.
  • Comparative resin compositions 2 and 3 were prepared in the same manner as in comparative resin composition 1 except that the monomers listed in Table 1 were used instead of 1,7-diaminoheptane in comparative resin composition 1. Moreover, the weight average molecular weight and molecular weight distribution were obtained by measuring GPC in the same manner as described above.
  • Example 2 (Preparation and evaluation of ultrasonic probe) ⁇ Manufacture of piezoelectric material constituting the transducer for transmission> Component raw materials CaCO 3 , La 2 O 3 , Bi 2 O 3 and TiO 2 , and subcomponent raw materials MnO are prepared, and for the component raw materials, the final composition of the components is (Ca 0. 97 La 0.0 3 . ) Bi 4 . Weighed to be 01 Ti 4 O 15 . Next, pure water was added, mixed in a ball mill containing zirconia media in pure water for 8 hours, and sufficiently dried to obtain a mixed powder. The obtained mixed powder was temporarily molded and calcined in air at 800 ° C. for 2 hours to prepare a calcined product. Next, pure water was added to the obtained calcined material, finely pulverized in a ball mill containing zirconia media in pure water, and dried to prepare a piezoelectric ceramic raw material powder.
  • piezoelectric ceramic raw material powder having a particle diameter of 100 nm was obtained by changing the pulverization time and pulverization conditions. 6% by mass of pure water as a binder is added to each piezoelectric ceramic raw material powder having a different particle diameter, press-molded to form a plate-shaped temporary molded body having a thickness of 100 ⁇ m, and this plate-shaped temporary molded body is vacuum-packed and then 235 MPa. It shape
  • a laminated vibrator was produced in which the organic piezoelectric film 1 produced in Example 1 and a polyester film having a thickness of 50 ⁇ m were bonded together with an epoxy adhesive. Thereafter, polarization treatment was performed in the same manner as described above.
  • a laminated resonator for reception was laminated on the above-described piezoelectric material for transmission, a backing layer and an acoustic matching layer were installed, and an ultrasonic probe was prototyped.
  • a laminated resonator for reception using only a polyvinylidene fluoride copolymer film (organic piezoelectric film) was laminated on the above laminated resonator. Then, an ultrasonic probe similar to the above ultrasonic probe was produced.
  • the reception sensitivity is originating the fundamental frequency f 1 of 5 MHz, to determine the received relative sensitivity of 20MHz as 15 MHz, 4 harmonics as received second harmonic wave f 2 as 10 MHz, 3 harmonic.
  • a sound intensity measurement system Model 805 (1 to 50 MHz) of Sonora Medical System, Inc. (Sonora Medical System, Inc: 2021 Miller Drive Longmont, Colorado (0501 USA)) was used.
  • the dielectric breakdown strength was measured by multiplying the load power P by 5 times and performing a test for 10 hours, and then returning the load power to the standard to evaluate the relative reception sensitivity.
  • the sensitivity was evaluated as good when the decrease in sensitivity was within 1% before the load test, more than 1% and less than 10%, and 10% or more as bad.
  • the ultrasonic probe equipped with the laminated resonator for reception according to the present invention has a relative reception sensitivity of about 1.3 times that of the comparative example, and has a good dielectric breakdown strength. I confirmed that there was. That is, it was confirmed that the ultrasonic wave receiving transducer of the present invention can be suitably used for a probe used in the ultrasonic medical image diagnostic apparatus as shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 本発明は、圧電特性に優れ、熱や機械刺激を電気エネルギーに変換するために用いることができる圧電性や焦電性を持つ有機圧電材料及び該有機圧電材料を用いた有機圧電体膜の製造方法、及び当該有機圧電材料を用いて形成された有機圧電体膜を用いた超音波振動子及び超音波探触子を提供することであり、該有機圧電材料は、含窒素複素環を部分構造として有する樹脂組成物であることを特徴とする。

Description

有機圧電材料、有機圧電体膜の製造方法、超音波振動子及び超音波探触子
 本発明は、含窒素複素環を部分構造として有する樹脂組成物を含有する有機圧電材料に関する。詳しくは、例えば、マイクロホン、スピーカー用の振動板等の音響機器、各種熱センサー、圧力センサー、赤外性検出器等の測定機器、超音波探蝕子、遺伝子やタンパク等の変異を高感度に検出する振動センサー等、熱や機械刺激を電気エネルギーに変換するために用いることができる圧電性や焦電性を持つ有機圧電材料に関する。
 圧焦電体としては、水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、Pb(Zr、Ti)O系などの焼結体を分極処理した、いわゆる無機圧電材料が広く利用されている。しかしながら、これら無機材質の圧電材料は弾性スティフネスが高く、機械的損失係数が高い、密度が高く誘電率も高いなどの特徴を持っている。
 一方でポリフッ化ビニリデン(以下「PVDF」と略す。)、ポリシアノビニリデン(以下「PVDCN」と略す。)等の有機圧電材料も開発されている(例えば、特許文献1参照)。この有機圧電材料は薄膜化、大面積化等の加工性に優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、センサーとしての使用を考えたときに、高感度な検出を可能とする特徴を持っている。一方で、有機圧電材料は耐熱性が低く、高い温度ではその圧焦電特性を失うほか、弾性スティフネスなどの物性も大きく減じるため使用できる温度域に限界があった。
 このような限界に対して、温度特性に優れるポリウレタン樹脂、ポリウレタンウレア樹脂、ポリウレア樹脂等の検討が為されてきたが、圧電特性が十分でなく、更なる改良が求められていた(例えば、特許文献2~4参照)。
 一方、ポリウレア樹脂の圧電特性を向上させる手段として、オリゴチオフェン構造を導入したポリウレア樹脂が提案されているが、圧電特性が十分に満足できるものではなく、更なる改善が求められている。
特開平6-216422号公報 特開平2-284485号公報 特開平5-311399号公報 特開2002-265553号公報
 本発明は、上記問題、状況に鑑みてなされたものであり、その解決課題は圧電特性に優れ、熱や機械刺激を電気エネルギーに変換するために用いることができる圧電性や焦電性を持つ有機圧電材料及び該有機圧電材料を用いた有機圧電体膜の製造方法を提供することにある。また、当該有機圧電材料を用いて形成された有機圧電体膜を用いた超音波振動子及び超音波探触子を提供することである。
 本発明に係る上記課題は、下記の手段により解決される。
 1.含窒素複素環を部分構造として有する樹脂組成物であることを特徴とする有機圧電材料。
 2.前記樹脂組成物において、主鎖に含窒素複素環構造が導入されていることを特徴とする前記1に記載の有機圧電材料。
 3.前記含窒素複素環が窒素原子を2つ以上含有することを特徴とする前記1または2に記載の有機圧電材料。
 4.前記1~3のいずれか1項に記載の有機圧電材料を用いた有機圧電体膜の製造方法であって、前記樹脂組成物を基板上に塗布することを特徴とする有機圧電体膜の製造方法。
 5.前記1~3のいずれか1項に記載の有機圧電材料を用いたことを特徴とする超音波振動子。
 6.超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、前記1~3のいずれか1項に記載の有機圧電材料を用いた超音波振動子を超音波受信用振動子として具備したことを特徴とする超音波探触子。
 本発明の上記手段により、優れた圧電性を有する有機圧電体膜を形成するための有機圧電材料と該有機圧電材料を用いた有機圧電体膜の製造方法を提供することができる。また、当該有機圧電材料を用いて形成された有機圧電体膜を用いた超音波振動子及び超音波探触子を提供することができる。
 即ち、本発明に係る含窒素複素環は窒素原子の電気陰性度が大きく、含窒素複素環自体が双極子モーメントを有しているため、含窒素複素環を部分構造として導入することにより、圧電材料としての耐熱性及び圧電特性を著しく向上させた樹脂組成物を提供することができる。
 なお、本発明の有機圧電材料とは、加えられた力を電圧に変換する、あるいは電圧を力に変換する機能を有する有機材料のことを言い、本発明の有機圧電材料を用いて、焦電性においても優れている有機圧電体膜を提供することができる。
超音波医用画像診断装置の主要部の構成を示す概念図である。
 本発明の有機圧電材料は、含窒素複素環を部分構造として有する樹脂組成物であることを特徴とする。
 含窒素複素環として、例えば、ピリジン環、キノリン環、フタラジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、ベンゾピラゾール環、1,3,5-トリアジン環、セレナゾール環、ピロール環、オキサジアゾール環、チアジアゾール環、ピリミジン環、ピラジン環、ピリダジン環、及びイソキノリン環等が挙げられる。好ましくは、ピリジン環、キノリン環、イソキノリン環、フタラジン環、1,3,5-トリアジン環、ピリミジン環、ピラジン環、ピリダジン環であり、特に好ましくはフタラジン環、1,3,5-トリアジン環、ピリミジン環、ピラジン環、ピリダジン環であり、最も好ましくは1,3,5-トリアジン環、ピリミジン環、ピリダジン環である。
 これらの含窒素複素環は置換基を有していてもよく、置換基としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基等)、アリール基(例えば、フェニル基、ナフチル基等)、シアノ基、水酸基等を挙げることができる。
 含窒素複素環構造は、樹脂組成物の主鎖または側鎖のいずれに導入されていてもよいが、好ましくは主鎖に導入されている場合である。主鎖に含窒素複素環構造が導入されている樹脂組成物とは、鎖状化合物の炭素数が最大となる鎖中に含窒素複素環が鎖中の一部を構成している樹脂組成物のことである。
 含窒素複素環を部分構造として有する樹脂組成物は、如何なる手段を用いて合成されてもよいが、下記一般式(1)で表される化合物と下記一般式(2)で表される化合物とを反応させる方法が好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、A11はアルキレン基、アリーレン基、アラルキレン基または複素環基を表し、L11及びL12は各々独立に2価の連結基を表す。n及びmは0~10の整数を表す。B11及びB12はアミノ基または水酸基を表し、R11及びR12は各々独立に水素原子、アルキル基またはアリール基を表す。p及びqは0または1を表し、B11が水酸基の場合、pは0であり、B12が水酸基の場合、qは0を表す。
 一般式(2)中、A21はアルキレン基、アリーレン基、アラルキレン基または複素環基を表し、L21及びL22は各々独立に2価の連結基を表す。r及びtは0~10の整数を表す。D21及びD22はイソシアナート基、イソチオシアナート基、-COClまたは-COHを表す。
 前記一般式(1)及び(2)において、A11及びA21の少なくとも一方は含窒素複素環を表す。
 前記一般式(1)において、A11はアルキレン基、アリーレン基、アラルキレン基または複素環基を表し、アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等が挙げられる。アリーレン基としては、例えば、フェニレン基、ナフチレン基、ビフェニレン基等を挙げることができる。複素環基としては、前述の含窒素複素環の他に、チオフェン環、フラン環等を挙げることができる。
 L11及びL12は各々独立に2価の連結基を表すが、2価の連結基としては、アルキレン基、アリーレン基、エーテル基、エステル基、アルコキシカルボニル基、ウレア基、チオウレア基、アミド基、カルバモイル基、ウレタン基を表し、アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等が挙げられる。アリーレン基としては、例えば、フェニレン基、ナフチレン基、ビフェニレン基等を挙げることができる。
 n及びmは0~10の整数を表す。B11及びB12はアミノ基または水酸基を表す。
 R11及びR12は各々独立に水素原子、アルキル基またはアリール基を表す。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基等が挙げられ、アリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。好ましくは水素原子またはアルキル基である。
 p及びqは0または1を表し、B11が水酸基の場合、pは0を表し、B12が水酸基の場合、qは0を表す。
 一般式(1)で表される化合物として、例えば、2,7-ジアミノ-9H-フルオレン、3,6-ジアミノアクリジン、アクリフラビン、アクリジンイエロー、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4′-ジアミノベンゾフェノン、ビス(4-アミノフェニル)スルホン、4,4′-ジアミノジフェニルエーテル、ビス(4-アミノフェニル)スルフィド、1,1-ビス(4-アミノフェニル)シクロヘキサン、4,4′-ジアミノジフェニルメタン、3,3′-ジアミノジフェニルメタン、3,3′-ジアミノベンゾフェノン、4,4′-ジアミノ-3,3′-ジメチルジフェニルメタン、4-(フェニルジアゼニル)ベンゼン-1,3-ジアミン、1,5-ジアミノナフタレン、1,3-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、1,8-ジアミノナフタレン、1,3-ジアミノプロパン、1,3-ジアミノペンタン、2,2-ジメチル-1,3-プロパンジアミン、1,5-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン、1,7-ジアミノヘプタン、N,N-ビス(3-アミノプロピル)メチルアミン、1,3-ジアミノ-2-プロパノール、ジエチレングリコールビス(3-アミノプロピル)エーテル、m-キシリレンジアミン、テトラエチレンペンタミン、1,3-ビス(アミノメチル)シクロヘキサン、ベンゾグアナミン、2,4-ジアミノ-1,3,5-トリアジン、2,4-ジアミノ-6-メチル-1,3,5-トリアジン、6-クロロ-2,4-ジアミノピリミジン、2-クロロ-4,6-ジアミノ-1,3,5-トリアジン、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリエチレングリコール、ポリテトラメチレングリコール、1,4-シクロヘキサンジメタノール、ペンタエリスリトール、3-メチル-1,5-ペンタンジオール、ポリ(エチレンアジペート)、ポリ(ジエチレンアジペート)、ポリ(プロピレンアジペート)、ポリ(テトラメチレンアジペート)、ポリ(ヘキサメチレンアジペート)、ポリ(ネオペンチレンアジペート)、アミノエタノール、3-アミノ-1-プロパノール、2-(2-アミノエトキシ)エタノール、2-アミノ-1,3-プロパンジオール、2-アミノ-2-メチル-1,3-プロパンジオール、1,3-ジアミノ-2-プロパノール等が挙げられる。
 以下に、一般式(1)で表される化合物の具体例を挙げるが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 前記一般式(2)において、A21はアルキレン基、アリーレン基、アラルキレン基または複素環基を表し、アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等が挙げられる。アリーレン基としては、例えば、フェニレン基、ナフチレン基、ビフェニレン基等を挙げることができる。複素環基としては、前述の含窒素複素環の他に、チオフェン環、フラン環等を挙げることができる。
 L21及びL22は各々独立に2価の連結基を表すが、2価の連結基としては、アルキレン基、アリーレン基、エーテル基、エステル基、アルコキシカルボニル基、ウレア基、チオウレア基、アミド基、カルバモイル基、ウレタン基を表し、アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等が挙げられる。アリーレン基としては、例えば、フェニレン基、ナフチレン基、ビフェニレン基等を挙げることができる。
 r及びtは0~10の整数を表す。
 D21及びD22はイソシアナート基、イソチオシアナート基、-COClまたは-COHを表し、好ましくはイソシアナート基、イソチオシアナート基または-COClであり、更に好ましくはイソシアナート基またはイソチオシアナート基である。
 一般式(2)で表される化合物として、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジイソシアン酸イソホロン、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,3-シクロペンタンジイソシアネート、9H-フルオレン-2,7-ジイソシアネート、9H-フルオレン-9-オン-2,7-ジイソシアネート、4,4′-ジフェニルメタンジイソシアナート、1,3-フェニレンジイソシアナート、トリレン-2,4-ジイソシアナート、トリレン-2,6-ジイソシアナート、1,3-ビス(イソシアナトメチル)シクロヘキサン、2,2-ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン、1,5-ジイソシアナトナフタレン、オルソフタル酸、2,6-ナフタレンジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、1,4-シクロヘキサンジカルボン酸、トリメリット酸、ピロメリット酸等の芳香族カルボン酸、ブタンテトラカルボン酸等を挙げることができる。
 また、前記一般式(1)で挙げたポリアミンにホスゲン、トリホスゲンまたはチオホスゲンを反応させて、ポリイソシアネートまたはポリイソチオシアネートを合成してもよく、ポリカルボン酸にSOCl、POCl等を反応させて、末端を-COClとしてもよい。
 以下に、一般式(2)で表される化合物の具体例を挙げるが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 (含窒素複素環を部分構造として有する樹脂組成物の製造方法)
 含窒素複素環を部分構造として有する樹脂組成物は、前記一般式(1)で表される化合物と前記一般式(2)で表される化合物とを反応させる方法が好ましい。
 前記一般式(1)で表される化合物と前記一般式(2)で表される化合物とを反応させる際の添加順に制限はなく、前記一般式(1)で表される化合物に対して前記一般式(2)で表される化合物を添加してもよく、添加順が逆の場合でもよい。また、前記一般式(1)で表される化合物と一般式(2)で表される化合物とを各々溶媒に溶解した後、溶媒中へ同時に添加を行ってもよい。
 前記一般式(1)に対する前記一般式(2)の使用量は、0.8~1.2倍モルが好ましく、更に好ましくは0.9~1.1倍モルであり、特に好ましくは1.0倍モルである。
 反応温度に制限はないが、0~100℃が好ましく、更に好ましくは10~80℃である。更に好ましくは20~70℃である。
 重合させる際の反応温度は特に制限はないが、-40~60℃が好ましく、更に好ましくは-20~30℃であり、特に好ましくは-10~10℃である。また、一定の温度で反応を継続してもよく、昇温させて反応を完結させてもよい。
 反応に用いる溶媒は、目的の樹脂組成物が高極性であることと、重合を効率的に進行させるため高極性溶媒を用いる必要がある。例えば、DMF(N,N-ジメチルホルムアミド)、DMAc(N,N-ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、NMP(N-メチルピロリドン)等の高極性非プロトン溶媒を選択することが好ましいが、反応基質及び目的物が良好に溶解しさえすればシクロヘキサン、ペンタン、ヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素類、THF(テトラヒドロフラン)、ジエチルエーテル、エチレングリコールジエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、4-メチル-2-ペンタノン等のケトン類、プロピオン酸メチル、酢酸エチル、酢酸ブチル等のエステル類などの溶媒であってもよく、これらを混合して用いてもよい。
 前記一般式(1)で表される化合物と前記一般式(2)で表される化合物との反応において、系中に塩化水素が発生する場合、ピリジン、トリエチルアミン、テトラエチレンジアミン等の塩基を触媒として用いてもよく、触媒の代わりに前記一般式(1)で表される化合物を過剰に用いてもよい。
 触媒の使用量は、発生する塩化水素に対して当モル~2.0倍モルが好ましく、更に好ましくは1.1倍モル~1.5倍モルである。
 前記一般式(1)で表される化合物の末端基が水酸基を有する場合、ウレタン結合生成を効率よく進行させるため、N,N,N′,N′-テトラメチル-1,3-ブタンジアミン、トリエチルアミン、トリブチルアミンなどの三級アルキルアミン類、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデ-7-エンなどの縮環アミン類、DBTL、テトラブチルスズ、トリブチルスズ酢酸エステルなどのアルキルスズ類等、公知のウレタン結合生成触媒を用いることができる。
 触媒の使用量は、効率のよい反応及び反応操作を考慮して、モノマー基質に対して0.1~30mol%用いるのが好ましい。
 重合を行った樹脂組成物は再沈で精製を行うことが好ましい。
 樹脂組成物の再沈の方法は特に限定されないが、樹脂組成物を良溶媒に溶解した後、貧溶媒に滴下して析出させる方法が好ましい。
 ここで言う「良溶媒」とは、樹脂組成物が溶解する溶媒であれば、如何なる溶媒でも構わないが、好ましくは極性溶媒であり、具体的には、DMF(N,N-ジメチルホルムアミド)、DMAc(N,N-ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、NMP(N-メチルピロリドン)、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等の高極性非プロトン溶媒を挙げることができる。
 また、「貧溶媒」とは、樹脂組成物が溶解しない溶媒であれば、如何なる溶媒でも構わないが、シクロヘキサン、ペンタン、ヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素類、ジエチルエーテル、エチレングリコールジエチルエーテル等のエーテル類、プロピオン酸メチル、酢酸エチル、酢酸ブチル等のエステル類、メタノール、エタノール、プロパノール等のアルコール類を挙げることができる。
 (有機圧電材料)
 本発明の有機圧電材料は、含窒素複素環を部分構造として有する樹脂を含有する樹脂組成物を用いて膜を形成することにより、或いは、樹脂組成物の膜に対して更に分極処理を施すことにより、有機圧電体膜を形成することができる。
 有機圧電体膜は、当該圧電体膜に応力が加わるとそれに対応して当該圧電体膜の両端面に反対符号の電荷が現れる、即ち電気分極という現象を生じ、逆に当該圧電材料を伝場に入れる(電界を加える)ことで、それに対応した歪みを生じるという性質(圧電性能)を有する。特に本発明の有機圧電材料よりなる有機圧電体膜にあっては、高分子の主鎖や側鎖の双極子モーメントの配向凍結による分極により大きな圧電効果が生じる。
 一方、当該圧電体膜にエネルギー(熱)が加わると、それに対応して当該圧電体膜内部の自発分極の大きさが変化する。このとき、当該圧電体膜表面に自発分極を中和するように存在する表面電荷は、上記自発分極ほどにすばやくエネルギー変化に対応できないことから、短時間の間ではあるが、圧電体膜表面には自発分極の変化分だけ電荷が存在することになる。このエネルギー変化に伴う電気の発生を焦電性と言うが、特に本発明の有機圧電材料よりなる有機圧電体膜にあっては、高分子の主鎖や側鎖の双極子モーメントの配向凍結による分極により大きな焦電性能が生じる。
 (有機圧電体膜の形成方法)
 有機圧電体膜の形成は、前記一般式(1)で表される化合物と前記一般式(2)で表される化合物とを用いて蒸着重合法を行うことにより、基板上に膜を形成してもよいが、塗布またはプレスによって膜を形成する方法が好ましい。塗布方法として、例えば、スピンコート法、ソルベントキャスト法、メルトキャスト法、ロールコート法、フローコート法、プリント法、ディップコート法、バーコート法、ホットプレス法等が挙げられる。また、ソルベントキャスト法により成膜した後、乾燥後、ホットプレスで成型する等、前記の膜形成法を組み合わせてもよい。
 成膜後の膜の冷却は膜を常温で冷却してもよく、急冷してもよいが、好ましくは急冷である。急冷の方法は如何なる手段を用いてもよく、氷水や液体窒素中に成型した膜を浸すことによって冷却してもよい。
 蒸着重合法は、通常、1.33×10-3~1.33×10-2Pa程度の圧力下で二つの蒸発源からそれぞれ二種類のモノマーを蒸発させて被蒸着面上で重合反応を起こさせ、被蒸着面上に重合体薄膜を形成する方法である。蒸着重合法では、上記圧力下で被蒸着面上に到達したモノマー同士をそれぞれのモノマーに固有の蒸気圧によって定まる一定の滞留時間内に反応させる必要がある。この滞留時間は一般的に非常に短いため、それぞれのモノマーは反応性が極めて高いことが望まれる。
 蒸着重合法によって2種類のモノマーを重付加してポリウレア樹脂組成物を形成する際には、蒸着装置本体のチャンバー内側上部に、被蒸着面を下側に向けて被蒸着基板がセットされる。チャンバー内側下部にはタングステンボードなどの容器が2つあり、それぞれの容器の底部には抵抗加熱器などの加熱手段が付設され、2つの容器にそれぞれ収容された蒸着源を加熱できるようになっている。
 蒸着重合法の具体的方法、条件については、特開平7-258370号公報、特開平5-311399号公報、及び特開2006-49418号公報に開示されている方法等が参考となる。
 また、本発明においては、形成された膜に後述する分極処理を行う方法が好ましい。分極処理を行う場合の温度は、-50~250℃であることが好ましく、より好ましくは-50~200℃である。前述の温度範囲で温度変化させる方法も好ましい。
 (分極処理)
 本発明に係る分極処理における分極処理方法としては、コロナ放電や膜に電極を設けて電圧を直接印加する方法等、従来公知の種々の方法が適用され得る。例えば、コロナ放電処理法による場合には、コロナ放電処理は市販の高電圧電源と電極からなる装置を使用して処理することができる。
 放電条件は、機器や処理環境により異なるので適宜条件を選択することが好ましいが、高電圧電源の電圧としては-1~-20kV、電流としては1~80mA、電極間距離としては、1~10cmが好ましく、印加電圧は、0.5~2.0MV/mであることが好ましい。
 電極としては、従来から用いられている針状電極、線状電極(ワイヤー電極)、網状電極が好ましいが、本発明ではこれらに限定されるものではない。また、コロナ放電中に加熱を行うので、本発明により作製した基板が接触している電極の下部に絶縁体を介して、ヒーターを設置する必要がある。
 なお、本発明において、前記原料溶液の溶媒が残留している状態で分極処理としてコロナ放電処理をする場合には、引火爆発などの危険性を避けるために溶媒の揮発成分が除去されるように、十分換気しながら行うことが安全上必要である。
 (基板)
 基板としては、本発明に係る有機圧電体膜の用途、使用方法等により基板の選択は異なる。ポリイミド、ポリアミド、ポリイミドアミド、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート樹脂、シクロオレフィンポリマーのようなプラスチック板またはフィルムでもよいし、これらの素材の表面をアルミニウム、金、銅、マグネシウム、珪素等で覆ったものでもよい。また、アルミニウム、金、銅、マグネシウム、珪素単体、希土類のハロゲン化物の単結晶の板またはフィルムでも構わない。
 更に複層圧電素子の上に形成してもよい。圧電素子を積相する複層の使用方法においては、セラミック圧電素子の上に本発明の有機圧電体膜を電極を介して、重畳層する方法がある。セラミック圧電素子としてはPZTが使用されているが、近年は鉛を含まないものが推奨されている。PZTは、Pb(Zr1-nTi)O(0.47≦n≦1)の式の範囲以内であることが好ましく、脱鉛としては、天然または人工の水晶、ニオブ酸リチウム(LiNbO)、ニオブサンタンタル酸カリウム[K(Ta,Nb)O]、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)、またはチタン酸ストロンチウム(SrTiO)等である。各種セラミック材料は、その使用性能において組成を適宜選択することができる。
 (超音波振動子)
 本発明に係る超音波振動子は、本発明の有機圧電材料を用いて形成した有機圧電体膜を用いたことを特徴とする。当該超音波振動子は、超音波送信用振動子と超音波送信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)に用いられる超音波受信用振動子とすることが好ましい。
 なお、一般に超音波振動子は膜状の圧電材料からなる層(または膜)(「圧電膜」、「圧電体膜」、または「圧電体層」とも言う。)を挟んで一対の電極を配設して構成され、複数の振動子を、例えば、1次元配列して超音波探触子が構成される。
 そして、複数の振動子が配列された長軸方向の所定数の振動子を口径として設定し、その口径に属する複数の振動子を駆動して被検体内の計測部位に超音波ビームを収束させて照射すると共に、その口径に属する複数の振動子により被検体から発する超音波の反射エコー等を受信して電気信号に変換する機能を有している。
 以下、本発明に係る超音波受信用振動子と超音波送信用振動子それぞれについて詳細に説明する。
 〈超音波受信用振動子〉
 本発明に係る超音波受信用振動子は、超音波医用画像診断装置用探触子に用いられる振動子であって、それを構成する圧電材料として、本発明の有機圧電材料を用いて形成した有機圧電体膜を用いたことを特徴とする。
 なお、超音波受信用振動子に用いる有機圧電材料ないし有機圧電体膜は、厚み共振周波数における比誘電率が10~50であることが好ましい。比誘電率の調整は、当該有機圧電材料を構成する化合物が有する置換基の数量、組成、重合度等の調整、及び上記の分極処理によって行うことができる。
 〈超音波送信用振動子〉
 本発明に係る超音波送信用振動子は、上記受信用振動子との関係で適切な比誘電率を有する圧電体材料により構成されることが好ましい。また、耐熱性、耐電圧性に優れた圧電材料を用いることが好ましい。
 超音波送信用振動子構成用材料としては、公知の種々の有機圧電材料及び無機圧電材料を用いることができる。
 有機圧電材料としては、上記超音波受信用振動子構成用有機圧電材料と同様の高分子材料を用いることできる。
 無機圧電材料としては、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム[K(Ta,Nb)O]、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)、またはチタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、チタン酸バリウムストロンチウム(BST)等を用いることができる。なお、PZTはPb(Zr1-nTi)O(0.47≦n≦1)が好ましい。
 〈電極〉
 本発明に係る圧電(体)振動子は、圧電体膜(層)の両面上または片面上に電極を形成し、その圧電体膜を分極処理することによって作製されるものである。当該電極は、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、スズ(Sn)などを主体とした電極材料を用いて形成する。
 電極の形成に際しては、まずチタン(Ti)やクロム(Cr)などの下地金属をスパッタ法により0.02~1.0μmの厚さに形成した後、上記金属元素を主体とする金属及びそれらの合金からなる金属材料、更には必要に応じ一部絶縁材料をスパッタ法、その他の適当な方法で1~10μmの厚さに形成する。これらの電極形成は、スパッタ法以外でも微粉末の金属粉末と低融点ガラスを混合した導電ペーストをスクリーン印刷やディッピング法、溶射法で形成することもできる。
 更に圧電体膜の両面に形成した電極間に所定の電圧を供給し、圧電体膜を分極することで圧電素子が得られる。
 (超音波探触子)
 本発明の超音波探触子は、超音波送信用振動子と超音波受信用振動子を具備する超音波画像診断装置用探触子(プローブ)であり、受信用振動子として、本発明に係る上記超音波受信用振動子を用いることを特徴とする。
 本発明においては、超音波の送受信の両方をひとつの振動子で担ってもよいが、より好ましくは、送信用と受信用で振動子は分けて探触子内に構成される。
 送信用振動子を構成する圧電材料としては、従来公知のセラミックス無機圧電材料でも、有機圧電材料でもよい。
 本発明の超音波探触子においては、送信用振動子の上もしくは並列に本発明超音波受信用振動子を配置することができる。
 より好ましい実施形態としては、超音波送信用振動子の上に本発明に係る超音波受信用振動子を積層する構造が良く、その際には、本発明の超音波受信用振動子は他の高分子材料(支持体として上記の比誘電率が比較的低い高分子(樹脂)フィルム、例えば、ポリエステルフィルム)の上に添合した形で送信用振動子の上に積層してもよい。その際の受信用振動子と他の高分子材料と合わせた膜厚は、探触子の設計上好ましい受信周波数帯域に合わせることが好ましい。実用的な超音波医用画像診断装置及び生体情報収集に現実的な周波数帯から鑑みると、その膜厚は、40~150μmであることが好ましい。
 なお、当該探触子にはバッキング層、音響整合層、音響レンズなどを設けてもよい。また、多数の圧電材料を有する振動子を2次元に並べた探触子とすることもできる。複数の2次元配列した探触子を順次走査して、画像化するスキャナーとして構成させることもできる。
 (超音波医用画像診断装置)
 本発明に係る上記超音波探触子は、種々の態様の超音波診断装置に用いることができる。例えば、図1に示すような超音波医用画像診断装置において好適に使用することができる。
 図1は、本発明の実施形態の超音波医用画像診断装置の主要部の構成を示す概念図である。この超音波医用画像診断装置は、患者などの被検体に対して超音波を送信し、被検体で反射した超音波をエコー信号として受信する圧電体振動子が配列されている超音波探触子(プローブ)を備えている。また、当該超音波探触子に電気信号を供給して超音波を発生させるとともに、当該超音波探触子の各圧電体振動子が受信したエコー信号を受信する送受信回路と、送受信回路の送受信制御を行う送受信制御回路とを備えている。
 更に、送受信回路が受信したエコー信号を被検体の超音波画像データに変換する画像データ変換回路を備えている。また、当該画像データ変換回路によって変換された超音波画像データでモニタを制御して表示する表示制御回路と、超音波医用画像診断装置全体の制御を行う制御回路とを備えている。
 制御回路には、送受信制御回路、画像データ変換回路、表示制御回路が接続されており、制御回路はこれら各部の動作を制御している。そして、超音波探触子の各圧電体振動子に電気信号を印加して被検体に対して超音波を送信し、被検体内部で音響インピーダンスの不整合によって生じる反射波を超音波探触子で受信する。
 なお、上記送受信回路が「電気信号を発生する手段」に相当し、画像データ変換回路が「画像処理手段」に相当する。
 上記のような超音波診断装置によれば、本発明に係る圧電特性及び耐熱性に優れ、且つ高周波、広帯域に適した超音波受信用振動子の特徴を生かして、従来技術と比較して画質とその再現安定性が向上した超音波像を得ることができる。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。
 実施例1
 (樹脂組成物の作製)
 窒素雰囲気下、6-クロロ-2,4-ジアミノピリミジン3.0gをDMSO、60mlに溶解した後、氷水で冷却を行った。氷水冷却下、DMSO、30mlに溶解した1,7-ヘプタメチレンジイソシアナート3.7gを滴下し、滴下終了後、室温で4時間攪拌を行った。反応液を60℃で更に3時間攪拌した後、室温まで放冷後、メタノール630mlに滴下した。析出物をろ取し、メタノールで洗浄した後、60℃で減圧乾燥を行うことにより樹脂組成物1を得た。
 樹脂組成物1の重量平均分子量(Mn)及び分子量分布(Mw/Mn)は下記の要領で、ゲルパーミエーションクロマトグラフィー(GPC)により算出した。測定条件は以下の通りである。
 溶媒   :30mMLiBr in N-メチルピロリドン
 装置   :HLC-8220GPC(東ソー(株)製)
 カラム  :TSKgel SuperAWM-H×2本(東ソー(株)製)
 カラム温度:40℃
 試料濃度 :1.0g/L
 注入量  :40μl
 流量   :0.5ml/min
 校正曲線 :標準ポリスチレン:PS-1(Polymer Laboratories社製)Mw=580~2,560,000までの9サンプルによる校正曲線を使用した。
 (有機圧電体膜の作製)
 この得られた樹脂組成物1を、予め表面にアルミ蒸着済みの25μmのポリイミドフィルムに、1%の重合度500のポリビニルアルコールのメタノール溶液を乾燥膜圧が0.1μmになるように塗布乾燥を行った基盤上に、乾燥膜圧が7μmになるように塗布乾燥を行った。
 次に、このようにして樹脂組成物の膜が形成された基板の表面にアルミ電極を蒸着で取り付けた後で、高圧電源装置HARB-20R60(松定プレシジョン(株)製)を用いて、100MV/mの電場を印加した状態で、100℃まで5℃/minの割合で上昇し、100℃で15分間保持した後で電圧は印加したままで室温まで徐冷し、ポーリング処理を施し、有機圧電体膜1を作製した。なお、当該有機圧電体膜は電極を具備しているので超音波振動子として使用可能のものである。
 樹脂組成物2~8についても、表1に記載のモノマーを用いて、樹脂組成物1と同様の操作で合成を行った。重量平均分子量及び分子量分布は、GPCの測定を上記と同様に行い、求めた。
 これらの樹脂組成物2~8を用い、有機圧電体膜1と同様の方法で有機圧電体膜2~8を作製した。
 比較例
 (樹脂組成物の作製)
 窒素雰囲気下、1,7-ジアミノヘプタン3.0gをDMSO、60mlに溶解した後、氷水で冷却を行った。氷水冷却下、DMSO、30mlに溶解した1,7-ヘプタメチレンジイソシアナート4.2gを滴下し、滴下終了後、室温で4時間攪拌を行った。反応液を60℃で更に3時間攪拌した後、室温まで放冷後、析出物をろ取した。析出物をメタノールで洗浄した後、60℃で減圧乾燥を行うことにより比較樹脂組成物1を得た。
 得られた比較樹脂組成物1はGPCの溶離液に不溶のため、重量平均分子量及び分子量分布を測定することは出来なかった。
 (有機圧電体膜の作製)
 得られた比較樹脂組成物1を、予め表面にアルミ蒸着済みの25μmのポリイミドフィルムに、1%の重合度500のポリビニルアルコールのメタノール溶液を乾燥膜圧が0.1μmになるように塗布乾燥を行った基盤上に、乾燥膜圧が7μmになるように塗布乾燥を行った。
 次に、このようにして樹脂組成物の膜が形成された基板の表面にアルミ電極を蒸着で取り付けた後で、高圧電源装置HARB-20R60(松定プレシジョン(株)製)を用いて、100MV/mの電場を印加した状態で、100℃まで5℃/minの割合で上昇し、100℃で15分間保持した後で電圧は印加したままで室温まで徐冷し、ポーリング処理を施し、比較有機圧電体膜1を作製した。
 比較樹脂組成物1の1,7-ジアミノヘプタンの代わりに表1に記載のモノマーを用いた以外は、比較樹脂組成物1と同様の操作を行い、比較樹脂組成物2、3を作製した。また、重量平均分子量及び分子量分布は、GPCの測定を上記と同様に行い、求めた。
 これらの比較樹脂組成物2、3を用い、比較有機圧電体膜1と同様の方法で比較有機圧電体膜2、3を作製した。
 (評価)
 得られた上記各種有機圧電体膜を超音波振動子として、共振法にて圧電性の評価を室温と、100℃まで加熱した状態で行った。なお、圧電特性は、PVDF膜の室温で測定した時の値を100%とした相対値として表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表1に示した結果から明らかなように、本発明の樹脂組成物より形成された有機圧電体膜の圧電特性は、比較例に比べ優れていることが分かる。
 実施例2
 (超音波探触子の作製と評価)
 〈送信用振動子を構成する圧電材料の作製〉
 成分原料であるCaCO、La、BiとTiO、及び副成分原料であるMnOを準備し、成分原料については、成分の最終組成が(Ca97La03)Bi01Ti15となるように秤量した。次に、純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて8時間混合し、十分に乾燥を行い、混合粉体を得た。得られた混合粉体を仮成形し、空気中800℃で2時間仮焼を行い、仮焼物を作製した。次に、得られた仮焼物に純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて微粉砕を行い、乾燥することにより圧電セラミックス原料粉末を作製した。
 微粉砕においては、微粉砕を行う時間及び粉砕条件を変えることにより、それぞれ粒子径100nmの圧電セラミックス原料粉末を得た。それぞれ粒子径の異なる各圧電セラミックス原料粉末にバインダーとして純水を6質量%添加し、プレス成形して、厚み100μmの板状仮成形体とし、この板状仮成形体を真空パックした後、235MPaの圧力でプレスにより成形した。次に上記の成形体を焼成した。最終焼結体の厚さは20μmの焼結体を得た。なお、焼成温度はそれぞれ1100℃であった。1.5×Ec(MV/m)以上の電界を1分間印加して分極処理を施した。
 〈受信用積層振動子の作製〉
 前記実施例1において作製した有機圧電体膜1と厚さ50μmのポリエステルフィルムを、エポキシ系接着剤にて貼り合わせた積層振動子を作製した。その後、上記と同様に分極処理をした。
 次に、常法に従って、上記の送信用圧電材料の上に受信用積層振動子を積層し、且つバッキング層と音響整合層とを設置し、超音波探触子を試作した。
 なお、比較例として、上記受信用積層振動子の代わりに、ポリフッ化ビニリデン共重合体のフィルム(有機圧電体膜)のみを用いた受信用積層振動子を上記受信用積層振動子に積層した以外、上記超音波探触子と同様の超音波探触子を作製した。
 次いで、上記2種の超音波探触子について、受信感度と絶縁破壊強度の測定をして評価した。
 なお、受信感度については、5MHzの基本周波数fを発信させ、受信2次高調波fとして10MHz、3次高調波として15MHz、4次高調波として20MHzの受信相対感度を求めた。受信相対感度は、ソノーラメディカルシステム社(Sonora Medical System,Inc:2021Miller Drive Longmont,Colorado(0501 USA))の音響強度測定システムModel805(1~50MHz)を使用した。
 絶縁破壊強度の測定は負荷電力Pを5倍にして10時間試験した後、負荷電力を基準に戻して、相対受信感度を評価した。感度の低下が負荷試験前の1%以内のときを良、1%を超え10%未満を可、10%以上を不良として評価した。
 上記評価において、本発明に係る受信用積層振動子を具備した超音波探触子は、比較例に対して約1.3倍の相対受信感度を有しており、且つ絶縁破壊強度は良好であることを確認した。即ち、本発明の超音波受信用振動子は、図1に示したような超音波医用画像診断装置に用いる探触子にも好適に使用できることが確認された。
 P1 受信用圧電材料(膜)
 P2 支持体
 P3 送信用圧電材料(膜)
 P4 バッキング層
 P5 電極
 P6 音響レンズ

Claims (6)

  1. 含窒素複素環を部分構造として有する樹脂組成物であることを特徴とする有機圧電材料。
  2. 前記樹脂組成物において、主鎖に含窒素複素環構造が導入されていることを特徴とする請求項1に記載の有機圧電材料。
  3. 前記含窒素複素環が窒素原子を2つ以上含有することを特徴とする請求項1または2に記載の有機圧電材料。
  4. 請求項1~3のいずれか1項に記載の有機圧電材料を用いた有機圧電体膜の製造方法であって、前記樹脂組成物を基板上に塗布することを特徴とする有機圧電体膜の製造方法。
  5. 請求項1~3のいずれか1項に記載の有機圧電材料を用いたことを特徴とする超音波振動子。
  6. 超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、請求項1~3のいずれか1項に記載の有機圧電材料を用いた超音波振動子を超音波受信用振動子として具備したことを特徴とする超音波探触子。
PCT/JP2009/063734 2008-08-12 2009-08-03 有機圧電材料、有機圧電体膜の製造方法、超音波振動子及び超音波探触子 WO2010018760A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008207745 2008-08-12
JP2008-207745 2008-08-12

Publications (1)

Publication Number Publication Date
WO2010018760A1 true WO2010018760A1 (ja) 2010-02-18

Family

ID=41668905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063734 WO2010018760A1 (ja) 2008-08-12 2009-08-03 有機圧電材料、有機圧電体膜の製造方法、超音波振動子及び超音波探触子

Country Status (1)

Country Link
WO (1) WO2010018760A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196673A (zh) * 2016-05-30 2019-01-11 日东电工株式会社 压电薄膜
EP3968915A4 (en) * 2019-05-17 2023-01-11 Johnson & Johnson Surgical Vision, Inc. SURGICAL HANDPIECE TO PROVIDE TRANSVERSE AND LONGITUDINAL MOVEMENT TO A SURGICAL TIP

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133346A (en) * 1976-04-30 1977-11-08 Matsushita Electric Ind Co Ltd Compositions for films having high dielectric constant
JPS5435398A (en) * 1977-08-24 1979-03-15 Matsushita Electric Ind Co Ltd Piezo-electric electroacoustic transducer element
JPS6464382A (en) * 1987-09-04 1989-03-10 Canon Kk Surface acoustic wave convolver
JPH04120064A (ja) * 1990-09-10 1992-04-21 Mitsubishi Petrochem Co Ltd ピリダジン化合物及びそれを用いたlb膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133346A (en) * 1976-04-30 1977-11-08 Matsushita Electric Ind Co Ltd Compositions for films having high dielectric constant
JPS5435398A (en) * 1977-08-24 1979-03-15 Matsushita Electric Ind Co Ltd Piezo-electric electroacoustic transducer element
JPS6464382A (en) * 1987-09-04 1989-03-10 Canon Kk Surface acoustic wave convolver
JPH04120064A (ja) * 1990-09-10 1992-04-21 Mitsubishi Petrochem Co Ltd ピリダジン化合物及びそれを用いたlb膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196673A (zh) * 2016-05-30 2019-01-11 日东电工株式会社 压电薄膜
EP3968915A4 (en) * 2019-05-17 2023-01-11 Johnson & Johnson Surgical Vision, Inc. SURGICAL HANDPIECE TO PROVIDE TRANSVERSE AND LONGITUDINAL MOVEMENT TO A SURGICAL TIP

Similar Documents

Publication Publication Date Title
JP5545208B2 (ja) 有機圧電材料、それを用いた超音波振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP5637133B2 (ja) 有機圧電材料、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP5559687B2 (ja) 有機圧電材料フィルムの製造方法および超音波振動子の製造方法
JP5633509B2 (ja) 有機圧電材料、超音波探触子及び超音波画像検出装置
JP5407871B2 (ja) 有機圧電材料、その製造方法、それを用いた超音波振動子及び超音波探触子
JPWO2010018694A1 (ja) 有機圧電材料膜、有機圧電材料膜の製造方法、超音波振動子の製造方法、及び超音波医用画像診断装置
JP5315925B2 (ja) 有機圧電材料、有機圧電体膜の製造方法、それらを用いた超音波振動子及び超音波探触子
JP5115348B2 (ja) 有機圧電材料、有機圧電体膜の製造方法、超音波振動子、及び超音波探触子
WO2010018760A1 (ja) 有機圧電材料、有機圧電体膜の製造方法、超音波振動子及び超音波探触子
JP5633369B2 (ja) 有機圧電材料、それを用いた超音波振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP2010095606A (ja) 有機高分子膜、有機圧電膜、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP5338681B2 (ja) 有機圧電材料、その製造方法、それを用いた超音波振動子及び超音波探触子
JP5098790B2 (ja) 有機圧電膜、それを用いた超音波振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP2010219484A (ja) 有機圧電材料、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP5493856B2 (ja) 有機圧電体膜、その形成方法、それを用いた超音波振動子、超音波探触子、及び超音波医用画像診断装置
JP2010018726A (ja) 有機圧電材料、有機圧電膜、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP2009224954A (ja) 有機圧電材料、それを用いた超音波振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP2009155372A (ja) 有機高分子材料、有機複合材料、有機圧電材料、有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置
JP2010116457A (ja) 有機圧電材料、有機圧電体膜の製造方法、有機圧電体膜それを用いた超音波振動子及び超音波探触子
JP5652203B2 (ja) 有機圧電材料および超音波探触子
JP2009177048A (ja) 有機圧電材料、有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置
JP2010219483A (ja) 有機圧電材料、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP5459216B2 (ja) 有機圧電材料、超音波振動子および超音波探触子
WO2009136513A1 (ja) 有機圧電膜、それを用いた超音波振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP2010138339A (ja) チオウレア基含有高分子化合物、ウレア基またはチオウレア基を含有する化合物を含む有機圧電材料及び超音波探触子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09806653

Country of ref document: EP

Kind code of ref document: A1