WO2010016468A1 - 透明導電膜基板およびこの基板を用いた太陽電池 - Google Patents

透明導電膜基板およびこの基板を用いた太陽電池 Download PDF

Info

Publication number
WO2010016468A1
WO2010016468A1 PCT/JP2009/063765 JP2009063765W WO2010016468A1 WO 2010016468 A1 WO2010016468 A1 WO 2010016468A1 JP 2009063765 W JP2009063765 W JP 2009063765W WO 2010016468 A1 WO2010016468 A1 WO 2010016468A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
conductive film
layer
transparent conductive
film substrate
Prior art date
Application number
PCT/JP2009/063765
Other languages
English (en)
French (fr)
Inventor
誠二 東
尾山 卓司
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010523852A priority Critical patent/JPWO2010016468A1/ja
Priority to CN200980130556XA priority patent/CN102113124A/zh
Priority to AU2009278420A priority patent/AU2009278420A1/en
Priority to EP09804951A priority patent/EP2312642A4/en
Publication of WO2010016468A1 publication Critical patent/WO2010016468A1/ja
Priority to US13/020,072 priority patent/US20110132442A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03687Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline AIVBIV alloys, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24529Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface and conforming component on an opposite nonplanar surface

Definitions

  • the present invention relates to a transparent conductive film substrate effective for a photoelectric conversion device such as a thin film solar cell, and a solar cell using this substrate.
  • Transparent conductive thin films are used in various fields such as solar cell substrates, display substrates, and touch panel substrates.
  • photoelectric conversion devices such as thin film solar cells are required to have high transparency, light confinement, electrical conductivity, chemical durability, etc.
  • Membranes are widely used.
  • a tin oxide film as a transparent conductive film for solar cells, it is known from Patent Document 1 that it is effective to increase the crystallinity of tin oxide and increase the surface haze ratio in order to increase the light confinement property. ing.
  • Patent Document 2 it is effective to form a layer in which large crystal grains and small crystal grains are combined in order to effectively confine a long wavelength light to a short wavelength light. .
  • the tin oxide has a feature of having a steep crystal edge, and when the crystal grain size is increased, sharply sharp irregularities are formed between crystal grains.
  • defects are formed in the power generation layer by the concave portion as described in Patent Document 3, and electric field concentration is further formed in the convex portion.
  • electric field concentration is further formed in the convex portion.
  • a portion where current leakage is likely to occur is formed, and as a result, photoelectric conversion deteriorates.
  • it is effective to use a substrate having a large haze ratio, but the substrate having a large haze ratio tends to have larger tin oxide crystal grains. Therefore, there is a problem that photoelectric conversion is difficult to increase.
  • the above-mentioned patent document 2 describes the effectiveness of light confinement for substrates having a haze ratio of up to 75% by way of examples.
  • Patent Document 3 proposes a process of rounding the surface crystal of the transparent conductive film substrate by chemical etching or plasma treatment.
  • Patent Document 4 describes a method of rounding a crystal on the surface of a transparent conductive film by polishing.
  • chemical etching requires a process of immersing the substrate in a strong acid or strong alkali chemical solution and then rinsing with water, which complicates the manufacturing process and increases costs.
  • the chemical treatment may cause defects in the conductive film, resulting in an increase in electrical resistance of the conductive film.
  • the sputtering process requires a vacuum process, the manufacturing cost is increased.
  • the polishing process requires two steps of polishing and cleaning, leading to an increase in cost.
  • either method is a process for removing a conductive film once produced, it is not an effective process for use in applications where crystal grains are enlarged, haze ratio is increased, and light confinement is increased.
  • the present invention is less likely to cause current leakage due to electric field concentration when applied to a photoelectric conversion device such as a solar cell, and does not cause deterioration in photoelectric conversion performance.
  • An object of the present invention is to provide a transparent conductive film substrate having a high transmittance and a solar cell using the substrate.
  • the present invention is a transparent conductive film substrate for a photoelectric conversion device in which a first oxide structure layer, a second oxide layer, and a conductive oxide layer are formed in that order on a glass substrate,
  • the first oxide structure layer is provided with a plurality of protrusions protruding from the surface of the glass substrate, and the height of the protrusions from the surface of the glass substrate is not less than 200 nm and not more than 2000 nm.
  • a transparent conductive film substrate wherein A 2 / A 1 is 1.1 or more, where A 2 is an average angle of the recesses of the second oxide layer.
  • the A 2 / A 1 is preferably 1.2 or more. Furthermore, it is preferable that the haze rate measured with the C light source is 50% or more. More preferably, the haze ratio measured with a C light source is 85% or more.
  • the first oxide structure layer is preferably made of tin oxide.
  • the second oxide layer is preferably formed of an oxide layer having a refractive index of 1.58 to 1.9.
  • the second oxide layer is preferably composed of a mixed oxide of silicon and tin or a mixed oxide of silicon and titanium.
  • the second oxide layer is composed of a mixed oxide of silicon and tin, and the molar ratio of tin to silicon in the mixed oxide is 0.25: 0.75 to 0.7: 0.3. It is preferable.
  • the molar ratio of tin and silicon in the mixed oxide is preferably 0.4: 0.6 to 0.6: 0.4.
  • the conductive oxide layer is preferably composed of tin oxide containing fluorine.
  • the present invention also provides a solar cell produced using the transparent conductive film substrate.
  • a 2 / A 1 is 1.1 or more. For this reason, even if it has the uneven
  • the second oxide layer is compared with the same thickness as that of the prior art, the light transmittance of the transparent conductive film substrate is also high. For this reason, when a solar cell is produced using the transparent conductive film substrate of this invention, the performance of photoelectric conversion can be improved compared with the past.
  • FIG. It is a schematic diagram explaining an example of the cross section of the transparent conductive film substrate of this invention. It is a figure explaining the angle of the recessed part of the 2nd oxide layer in the transparent conductive film substrate of this invention. It is a figure explaining the depth of the concave in the transparent conductive film substrate of this invention. The angle of the ratio (A 2 / A 1) and the relationship of the photoelectric conversion efficiency of the solar cell used in the present invention.
  • FIG. It is an electron micrograph of the section of the transparent conductive film substrate of the present invention. It is an electron micrograph of the cross section of the transparent conductive film substrate of a prior art. It is an electron micrograph of the surface of the transparent conductive film substrate of this invention.
  • the transparent conductive film substrate of the present invention will be described from its outline.
  • a first oxide structure layer is formed on a glass substrate, and a film-like second oxide layer is formed thereon. Further, a conductive oxide layer is formed thereon.
  • the first oxide structure layer has a shape discretely arranged on the substrate.
  • the height of the island-shaped structure of the first oxide structure layer is 200 nm or more and 2000 nm or less. This is because if the wavelength is less than 200 nm, effective light confinement at a long wavelength cannot be obtained, and if it exceeds 2000 nm, light absorption by the island-shaped structure increases.
  • the first oxide structure layer can be produced by a CVD (Chemical Vapor Deposition) method, a nanoimprint method, a photolitho process, etc., but the CVD method is used because it is easy to produce and has a large area. Is preferred.
  • the base with a conductive oxide described in Patent Document 2 is provided with an oxide structure in which a first oxide composed of crystals having a large grain size is dispersed on a glass substrate.
  • a continuous layer made of a second oxide that functions as a conductive film is formed thereon, and, if necessary, a layer made of an oxide having a composition different from that of the first oxide and the second oxide, This is a structure provided between the first oxide and the second oxide.
  • the present invention is different from the substrate described in Patent Document 2 in that A 2 / A 1 is defined as described later.
  • the oxide of the first oxide structure layer for example, tin oxide, titanium oxide, zinc oxide, aluminum oxide, silica or the like can be used. Of these, tin oxide, silica, or aluminum oxide is preferably used.
  • this first oxide structure layer it is preferable from the viewpoint of light confinement to enlarge the island-shaped structure of the oxide and increase the density of the island-shaped structure. A steep uneven shape is formed between them. By forming a second oxide layer on the first oxide structure layer having this steep uneven shape, it becomes a gentle uneven shape, maintaining the high light confinement performance, and the performance of photoelectric conversion devices such as solar cells. Can be prevented.
  • the steep uneven shape of the first oxide structure layer is made a gentle uneven shape by the second oxide layer
  • the steep uneven shape and the gentle uneven shape are obtained by cutting the produced transparent conductive film substrate.
  • the cross-sectional shape can be observed and measured with an electron microscope.
  • the relationship between the island-shaped structure and the uneven shape is that the island-shaped structure itself becomes a convex portion in a portion where there is only one island-shaped structure that is not adjacent to the island-shaped structure.
  • the height of the projection and the height of the projection are the same, and there is no depression in one part of the island-like structure.
  • the height of the convex portion is the height from the concave portion to the convex portion, and does not necessarily match the height of the island-shaped structure.
  • FIG. 1 is a diagram schematically showing an example of a cut surface of such a transparent conductive film substrate (hereinafter referred to as a transparent conductive film substrate).
  • a transparent conductive film substrate hereinafter referred to as a transparent conductive film substrate.
  • the transparent conductive film substrate 10 shown in FIG. 1 includes a first oxide structure layer 12, a second oxide layer 14, and a conductive oxide layer 16 formed on a glass substrate 18 in that order.
  • the first oxide structure layer 12 is a layer having the above-described island-shaped structure, and a plurality of protrusions are provided discretely, and a recess (hereinafter simply referred to as a first oxide structure layer) is provided between adjacent protrusions. 12 recesses).
  • a first oxide structure layer When viewed in a cross section, one convex portion has a shape constituted by a plurality of substantially straight lines, and a plurality of convex portions are adjacent to form a steep concavo-convex structure.
  • the average height 22 of the first oxide structure layer 12 is defined as follows.
  • the angle 24 of the recessed part of the 1st oxide structure layer 12 is defined as follows.
  • the cross section of the transparent conductive film is observed, it is the angle of the concave portion constituted by a substantially straight line, and the average value is an average value in 10 points of measurement.
  • the concave depth 20 of the first oxide structure layer 12 is defined as follows.
  • the bottom portion P a of the concave portion constituted by a substantially straight line is an intersection point with another substantially straight line at the end opposite to the substantially straight line constituting the concave portion.
  • P b, P c (hereinafter, the edge P b, referred to as edge P c) between the knot with a straight line m, draw a vertical line to the surface of the glass substrate 18 from the bottom P a of the recess, between the vertical line and the edge when the intersection P x of the straight line m of, for from P a height of P x and (the height of the arrow portion in Fig. 3).
  • the second oxide layer 14 has the following functions with respect to the shape of the first oxide structure layer 12. That is, the average value of the angle 24 for the recesses of the first oxide structure layer 12 in which the depth 20 of the recesses of the first oxide structure layer 12 is 20% or more of the average height 22 of the first oxide structure layer 12.
  • the a 1 the average value of the concave portion of the angle 26 of the second oxide layer 14 formed on a region of the recess (details will be described later) when the a 2, a 2 / a 1 of 1.1 or more
  • the recess angle 26 of the second oxide layer 14 is defined as follows. As shown in FIG.
  • the minimum position of the first oxide structure layer 12 is P a
  • the left and right edge positions of the recess are P b and P c , respectively.
  • the line segment P a P d is the center line of the recess.
  • the distances from the center line are L 1 and L 2 .
  • L is the distance that is not large.
  • the points where a straight line parallel to the center line passing through a position 1/5 distance from the center line intersects with a surface line (ridge line) of the second oxide layer 14 are represented by Pe , P f To do.
  • the angle at which the line segment P e P d and the line segment P d P f intersect is determined as the angle 26 of the recess of the second oxide layer 14.
  • a 2 / A 1 is 1.1 or more
  • the second oxide layer 14 having a gentle shape constituted by a curve is formed on the steep uneven shape of the first oxide structure layer 12.
  • Such a second oxide layer 14 preferably has a thickness of 20 nm to 200 nm, and more preferably 50 nm to 100 nm.
  • the second oxide layer 14 can be formed by a CVD method, a sputtering method, a sol-gel method, or the like, but is preferably formed by a CVD method because of easy control of the film thickness and good coverage.
  • the second oxide layer 14 is preferably a material having an intermediate refractive index between the refractive index of the glass substrate 18 and the refractive index of the conductive oxide layer 16. This is because by using a material having an intermediate refractive index, the transmittance does not decrease even when the thickness of the second oxide layer 14 is about 20 nm to 200 nm.
  • the d-line refractive index of the second oxide layer 14 is preferably 1.58 to 1.9, and more preferably 1.6 to 1.8.
  • the photoelectric conversion improvement effect using the transparent conductive film substrate of the present invention is excellent when the haze ratio measured with a C light source is 50% or more in a state where the film is laminated up to the conductive oxide layer 16, and 85% or more. If it is, it will become more remarkable and it will appear further more significantly in the transparent conductive film substrate whose haze rate is 90% or more.
  • the material for forming the second oxide layer 14 is not particularly limited as long as it is a material that has good coverage on the first oxide structure layer 12, and a material having a refractive index of 1.58 to 1.9.
  • a mixed oxide of aluminum (Al) and tin (Sn), a mixed oxide of silicon (Si) and tin (Sn), a mixed oxide of silicon and titanium (Ti), or the like can be used.
  • the second oxide layer 14 is a mixed oxide of silicon and tin and a mixed oxide of silicon and titanium, the second oxide layer 14 is easily formed into an amorphous film, and the first oxide structure layer 12 is easily formed. This is particularly preferable in terms of good coverage.
  • the conductive oxide layer 16 When a mixed oxide of silicon and tin is used for the second oxide layer 14 and the conductive oxide layer 16 or the first oxide structure layer 12 contains the same tin component as tin oxide, the conductive oxide layer 16 This is more preferable because it tends to make it difficult to cause defects that deteriorate the conductivity during film formation by crystal growth.
  • the material of the second oxide layer 14 is more preferably an amorphous film.
  • the molar ratio of tin to silicon is 0.25: 0.75 to 0 when the composition ratio of the metal elements of the oxide to be formed is expressed in molar ratio. .7: 0.3 is preferable. This is because when the molar ratio of tin is smaller than 0.2, the d-line refractive index is smaller than 1.58. This is because when the d-line refractive index is smaller than 1.58, reflection caused by the refractive index difference between the conductive oxide layer 16 and the second oxide layer 14 increases, and the light transmittance decreases.
  • the second oxide layer 14 does not become a good amorphous mixed oxide layer, and the effect of making the uneven shape gentle is lost. More preferably, the molar ratio of tin to silicon is 0.4: 0.6 to 0.6: 0.4.
  • the second oxide layer 14 can be formed by a CVD method, a sputtering method, a sol-gel method, or the like, but it is preferable that the second oxide layer 14 is formed by a CVD method in view of the manufacturing cost and the ease of reducing the resistance of the surface conductive layer. .
  • an inorganic or organic silane compound such as monosilane, monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, or tetraethoxysilane can be used as the silicon raw material.
  • chlorosilanes such as tetrachlorosilane, trichlorosilane, dichlorosilane, etc. react too fast like monosilane, and the reaction proceeds in the gas phase of the chamber, and no powdery reactant is generated. It is preferable because of its low explosiveness and easy handling.
  • tin oxide zinc oxide, tin-doped indium oxide (ITO), or the like is used, but tin oxide is preferable in terms of chemical durability and manufacturing cost. It is more preferable to use tin oxide that has been doped with fluorine to increase conductivity.
  • the conductive oxide layer 16 can be formed by a CVD method, a sputtering method, a sol-gel method, or the like. However, considering the manufacturing cost and the ease of reducing the resistance of the surface conductive layer, the conductive oxide layer 16 is formed by the CVD method. Is preferred.
  • an alkali barrier layer is provided between the glass substrate and the transparent conductive film in order to prevent the alkali component in the glass from diffusing to the transparent conductive film side. May be.
  • a silica (SiO 2 ) layer is suitable.
  • the transparent conductive film substrate provided by the present invention is effective as a substrate for a thin film solar cell, and in particular, is effectively used as a substrate for a tandem silicon solar cell in which amorphous silicon and microcrystalline silicon are formed on one substrate. be able to.
  • Example 1 Formation of First Oxide Structure Layer A 1.1 mm thick soda lime glass substrate was used as the glass substrate 18 (10 cm square), and a silica film was produced on the glass substrate 18 as an alkali barrier layer.
  • the silica film was prepared by heating a soda lime glass substrate to 500 ° C. in a belt conveyor furnace, and on this glass substrate, nitrogen gas containing 5 mol% of silane gas was supplied at a rate of 4 liters / minute, and oxygen gas was added at 20%.
  • the first oxide structure layer 12 was formed on this glass substrate with a silica film.
  • the first oxide structure layer 12 was formed by a two-stage method in which a nucleus serving as a base point of a convex portion was first produced, and then the convex portion was produced by changing manufacturing conditions.
  • the first oxide structure layer 12 is formed by heating a glass substrate with a silica film to 540 ° C. in a belt conveyor furnace similar to the above, and using nitrogen gas as a carrier gas to form the first oxide structure layer 12.
  • nitrogen gas as a carrier gas.
  • As source gases tin tetrachloride, water and hydrogen chloride were used.
  • a core having a mass film thickness of 5 nm was formed on the silica film by setting the concentration of tin tetrachloride with respect to the total gas amount of the carrier gas and the raw material gas to 0.1 volume%. Thereafter, the concentration of tin tetrachloride in the total gas amount was 0.9% by volume, and the first oxide structure layer 12 having discrete convex portions with an average height of the convex portions of 620 nm was formed. At this time, when the first oxide structure layer 12 was measured using an AFM (atomic force microscope), convex portions made of tin oxide were discretely formed at an average density of 0.4 pieces / ⁇ m 2 .
  • the mass film thickness is the film thickness when the volume is calculated from the mass of the convex portion made of tin oxide and it is assumed that the film is evenly attached to the film formation area. Further, the average height of the convex portions was obtained by measuring the cross section after producing the transparent conductive film with an electron microscope (SEM).
  • (B) Formation of Second Oxide Layer and Conductive Oxide Layer The glass substrate on which the first oxide structure layer 12 is formed is divided into five equal parts, and one piece is heated to 550 ° C. in a batch type electric furnace. Nitrogen gas is used as a carrier gas, tin tetrachloride is used as a source gas for forming a tin oxide, silane tetrachloride is used as a source gas for forming silica, and a second oxide layer 14 is formed on the first oxide structure layer 12. Formed.
  • the thickness was 125 nm as measured with a palpable film thickness meter. That is, the thickness of the second oxide layer 14 was 125 nm.
  • the d-line refractive index of the mixed oxide film was measured with an ellipsometer and found to be 1.75.
  • the glass substrate on which the first oxide structure layer 12 and the second oxide layer 14 are formed is again heated to 540 ° C. in a belt conveyor furnace, and tin tetrachloride, water, and hydrogen fluoride are simultaneously sprayed, and atmospheric pressure CVD is used.
  • a fluorine-doped tin oxide film (conductive oxide layer 16) was formed, and a transparent conductive film substrate 10 was obtained.
  • permeability and haze rate of the produced transparent conductive film substrate 10 were measured with the haze meter, they were 89.5% and 94.8%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer.
  • the average value A 1 was calculated, it was 103.1 degrees.
  • Example 2 Except for using one half of the glass substrate on which the first oxide structure layer 12 produced in Example 1 was formed, changing the film formation time of the second oxide layer 14 and changing the thickness to 50 nm, in the same manner as in Example 1, the formation of the conductive oxide layer 16 was performed to produce the transparent conductive film substrate 10.
  • the C light source transmittance and haze rate of the transparent conductive film substrate 10 were 89.5% and 87.5%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer. measuring the angle of a recess was 110.2 degrees was calculated the average value a 1.
  • Example 3 (Example 3) Implementation was carried out except that one-fifth of the glass substrate on which the first oxide structure layer 12 produced in Example 1 was formed was used and the thickness of the second oxide layer 14 was changed to 200 nm. Similarly to Example 1, the conductive oxide layer 16 was formed until the transparent conductive film substrate 10 was produced. The C light source transmittance and haze rate of the transparent conductive film substrate 10 were 88.6% and 96.0%, respectively. Moreover, the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer.
  • solar cells were produced by the same method as in Example 1, and the photoelectric conversion performance was evaluated by the above method. The results are shown in Table 2.
  • Example 1 The glass substrate on which the first oxide structure layer 12 produced in Example 1 is divided into five equal parts, and the second oxide layer is described in Patent Document 2 (Japanese Patent Laid-Open No. 2005-347490). A silica film having a thickness of 15 nm was produced by the same method as that described above. Thereafter, a conductive film corresponding to the conductive oxide layer 16 was formed on the substrate in the same manner as in Example 1.
  • the C light source transmittance and haze ratio of the produced transparent conductive film substrate are 89.1% and 86.2%, respectively, and the upper limit of 90% or less, which is the range of the effective haze ratio described in Patent Document 2. Confirmed that it is close to.
  • the d-line refractive index measured in the same manner as in Example 1 was 1.45.
  • a solar battery cell was produced in the same manner as in Example 1, the photoelectric conversion rate was measured by the above method, and other examples and comparative examples were evaluated based on the measured photoelectric conversion efficiency. It was.
  • Example 2 it was 100 (nm) when the film thickness was measured with the stylus type film thickness measuring device similarly to Example 1.
  • the d-line refractive index measured in the same manner as in Example 1 was 1.98.
  • the C light source transmittance and haze rate of the produced transparent conductive film substrate were 79.2% and 95.5%, respectively.
  • the produced transparent conductive film substrate is cut, the cut surface is observed with an SEM, and the angle of the concave portion where the depth of the concave portion of the first oxide structure layer is 20% or more of the average height of the first oxide structure layer. When the average value A 1 was calculated, it was 110.6 degrees.
  • the angle of the concave portion of the second oxide layer 14 at the top of the area of the measured recess measured, the calculated average value A 2, was 100.1 degrees. In this case, A 2 / A 1 0.9.
  • solar cells were produced by the same method as in Example 1, and the photoelectric conversion performance was evaluated by the above method. The results are shown in Table 2.
  • Tables 1 and 2 summarize the compositions, physical properties, solar cell performance evaluation results, and the like of the second oxide layers obtained in Examples 1 to 3 and Comparative Examples 1 and 2.
  • x of SnSiOx represents 1.95 to 2.45.
  • the C light source transmittance of the transparent conductive film substrate of Comparative Example 2 is 10% or more smaller than those of Examples 1 to 3 and Comparative Example 1. This is probably because the refractive index of the second oxide layer is large and the reflection is increased, so that the light incident on the solar cell portion is reduced. Furthermore, as a result of the increase in the tin concentration of the second oxide layer, it was observed that the second oxide layer grew as crystal grains, and as a result, A 2 / A 1 became 0.9, and the second oxide layer had steep irregularities. A shape was formed. As a result, the photoelectric conversion efficiency was less than half that of Comparative Example 1.
  • Example 1 the photoelectric conversion efficiency is increased 1.52 times as compared with Comparative Example 1, and the C light source transmittance is increased by 0.4%, so that the effect of the second oxide layer 14 can be confirmed.
  • Example 2 the photoelectric conversion efficiency is increased by 1.64 times compared to Comparative Example 1, and the C light source transmittance is increased by 0.4%, so that the effect of the second oxide layer 14 can be confirmed.
  • Example 3 the photoelectric conversion efficiency increased 1.61 times compared to Comparative Example 1, but the C light source transmittance decreased by 0.5%. The decrease in the transmittance is considered to be due to the increase in light absorption due to the thickening of the second oxide layer 14.
  • Example 4 The first oxide structure layer comprising tin oxide particles having a height of 750 nm and an average density of 0.7 particles / ⁇ m 2 by adjusting the ratio of the raw material gases tin tetrachloride, water and hydrogen chloride by the same means as in Example 1.
  • a glass substrate on which 12 was formed was prepared and cut into two. Using this halved piece, using dichlorosilane and tin tetrachloride as the raw material for forming the second oxide layer 14, the raw material was sprayed while moving the heated glass at a speed of 3 m / min. A 70 nm second dioxide layer 14 was formed.
  • Table 3 The composition and physical properties of the second oxide layer are shown in Table 3.
  • the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced.
  • the C light source transmittance and haze rate of the transparent conductive film substrate 10 were 87.9% and 90.7%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer. measuring the angle of a recess was 109.5 degrees was calculated the average value a 1. Further, the angle of the concave portion of the second oxide layer 14 at the top of the area of the measured recess measured, the calculated average value A 2, was 140.2 degrees.
  • a 2 / A 1 1.28.
  • solar cells were produced in the same manner as in Example 1.
  • an a-Si: H (hydrogen-doped a-Si) layer was formed as an i layer with a thickness of 400 nm, and the photoelectric conversion performance was evaluated by the above method.
  • the photoelectric conversion efficiency of this example was compared with that of Comparative Example 3 using the same substrate up to the first oxide structure layer 12 and the i layer thickness being 400 nm. The results are shown in Table 3.
  • Example 3 Using one half of the glass substrate on which the first oxide structure layer 12 formed in Example 4 is formed, the second oxide layer is described in Patent Document 2 (Japanese Patent Laid-Open No. 2005-347490). A silica film having a thickness of 15 nm was produced by the same method as that described above. Thereafter, a conductive film corresponding to the conductive oxide layer 16 was formed on the substrate in the same manner as in Example 1.
  • the C light source transmittance and haze ratio of the produced transparent conductive film substrate are 88.0% and 88.5%, respectively, and the upper limit of 90% or less which is the range of the effective haze ratio described in Patent Document 2. Confirmed that it is close to.
  • the d-line refractive index measured in the same manner as in Example 1 was 1.45.
  • an a-Si: H (hydrogen-doped a-Si) (hydrogen-doped a-Si) layer having a thickness of 400 nm was produced as an i-layer.
  • the photoelectric conversion performance was evaluated by the above method.
  • the photoelectric conversion performance of this comparative example was 1.61 times that of Comparative Example 1, and the photoelectric conversion efficiency increased due to the effect of thickening the i layer.
  • Example 5 The first oxide structure layer comprising tin oxide particles having a height of 700 nm and an average density of 0.7 particles / ⁇ m 2 by adjusting the ratio of the raw material gases tin tetrachloride, water and hydrogen chloride by the same means as in Example 1.
  • a glass substrate on which 12 was formed was produced and cut into four pieces. Using one of these four equal parts, trichlorosilane and tin tetrachloride are used as the raw material for forming the second oxide layer 14, and the raw material is sprayed while moving the heated glass at a speed of 3 m / min.
  • the second dioxide layer 14 was formed.
  • Table 3 The composition and physical properties of the second oxide layer are shown in Table 3.
  • the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced.
  • the C light source transmittance and haze rate of the transparent conductive film substrate 10 were 79.3% and 89.8%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer.
  • measuring the angle of a recess was 101.2 degrees was calculated the average value a 1.
  • the angle of the concave portion of the second oxide layer 14 at the top of the area of the measured recess measured, the calculated average value A 2 was 138.1 degrees.
  • a 2 / A 1 1.36.
  • an a-Si: H (hydrogen-doped a-Si) (hydrogen-doped a-Si) layer having a thickness of 400 nm was produced as an i-layer.
  • the photoelectric conversion performance was evaluated by the above method.
  • the photoelectric conversion efficiency of this example was compared with that of Comparative Example 4 using the same substrate up to the first oxide structure layer 12 and the i layer thickness being 400 nm. The results are shown in Table 4.
  • Example 6 Using one quarter of the glass substrate on which the first oxide structure layer 12 formed in Example 5 was formed, heating was performed using trichlorosilane and tin tetrachloride as raw materials for forming the second oxide layer 14. The raw material was sprayed while moving the glass at a speed of 3 m / min to form a 30 nm thick second dioxide layer 14. The composition and physical properties of the second oxide layer are shown in Table 3. In this example, compared with Example 5, the supply amount of trichlorosilane was 1.3 times and the supply amount of tin tetrachloride was 1.0 times. Thereafter, in the same manner as in Example 1, the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced.
  • an a-Si: H (hydrogen-doped a-Si) (hydrogen-doped a-Si) layer having a thickness of 400 nm was formed as an i-layer.
  • the photoelectric conversion performance was evaluated by the above method.
  • the photoelectric conversion efficiency of this example was compared with that of Comparative Example 4 using the same substrate up to the first oxide structure layer 12 and the i layer thickness being 400 nm. The results are shown in Table 4.
  • Example 7 Using one quarter of the glass substrate on which the first oxide structure layer 12 formed in Example 5 was formed, tetraethoxysilane and titanium tetraisopropoxysite were used as raw materials for forming the second oxide layer 14. The raw material was sprayed while moving the heated glass at a speed of 1 m / min to form a 60 nm thick second dioxide layer 14. The composition and physical properties of the second oxide layer are shown in Table 3. Thereafter, in the same manner as in Example 1, the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced. The C light source transmittance and haze rate of the transparent conductive film substrate 10 were 81.0% and 91.2%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer.
  • measuring the angle of a recess was 105.4 degrees was calculated the average value a 1.
  • Example 4 Using this substrate, in the same manner as in Example 4, a solar cell in which an a-Si: H (hydrogen-doped a-Si) layer having a thickness of 400 nm was prepared as an i layer, and photoelectric conversion was performed by the above method. Performance was evaluated. The photoelectric conversion efficiency of this example was compared with that of Comparative Example 4 using the same substrate up to the first oxide structure layer 12 and the i layer thickness being 400 nm. The results are shown in Table 4.
  • a-Si: H (hydrogen-doped a-Si) layer having a thickness of 400 nm was prepared as an i layer, and photoelectric conversion was performed by the above method. Performance was evaluated. The photoelectric conversion efficiency of this example was compared with that of Comparative Example 4 using the same substrate up to the first oxide structure layer 12 and the i layer thickness being 400 nm. The results are shown in Table 4.
  • Example 4 Using one quarter of the glass substrate on which the first oxide structure layer 12 formed in Example 5 is formed, the second oxide layer is described in Patent Document 2 (Japanese Patent Laid-Open No. 2005-347490). A silica film having a thickness of 15 nm was produced by the same method as that described above. The composition and physical properties of the second oxide layer are shown in Table 3. Thereafter, a conductive film corresponding to the conductive oxide layer 16 was formed on the substrate in the same manner as in Example 1. The C light source transmittance and haze ratio of the produced transparent conductive film substrate are 79.0% and 85.0%, respectively, and the upper limit of 90% or less which is the range of the effective haze ratio described in Patent Document 2.
  • the d-line refractive index measured in the same manner as in Example 1 was 1.45.
  • Example 4 Using this substrate, in the same manner as in Example 4, a solar cell in which an a-Si: H (hydrogen-doped a-Si) layer having a thickness of 400 nm was produced as an i layer was produced and subjected to photoelectric conversion by the above method. Performance was evaluated. The photoelectric conversion efficiency of the produced cell was 1.49 times that of Comparative Example 1. In Examples 5 to 7 and Comparative Examples 3 and 4, since the thickness of the i layer used was thicker than those in Examples 1 to 4 and Comparative Examples 1 and 2, it is considered that the i layer is mainly generated when the i layer is formed. The effect of defects is reduced and the difference in battery efficiency is reduced. That is, even when a battery with a higher performance is manufactured by changing the configuration of the battery, the photoelectric conversion performance can be improved by preparing a transparent electrode film having A 2 / A 1 of 1.1 or more as in the present invention. It is possible to raise.
  • a transparent electrode film having A 2 / A 1 of 1.1 or more as in
  • Example 8 The first oxide structure layer comprising tin oxide particles having a height of 700 nm and an average density of 0.6 particles / ⁇ m 2 by adjusting the ratio of the raw material gases tin tetrachloride, water and hydrogen chloride by the same means as in Example 1.
  • a glass substrate on which 12 was formed was prepared and cut into two. Using this halved piece, using trichlorosilane and tin tetrachloride as the raw material for forming the second oxide layer 14, the raw material was sprayed while moving the heated glass at a speed of 3 m / min. A 70 nm second dioxide layer 14 was formed.
  • Table 3 The composition and physical properties of the second oxide layer are shown in Table 3.
  • the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced.
  • the C light source transmittance and haze rate of the transparent conductive film substrate 10 were 77.6% and 93.1%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer.
  • measuring the angle of a concave portion was 79.0 ° was calculated the average value a 1.
  • the angle of the concave portion of the second oxide layer 14 at the top of the area of the measured recess measured, the calculated average value A 2 was 127.0 degrees.
  • a 2 / A 1 1.61.
  • a part of the transparent conductive film substrate 10 is cut out, and a pin-type amorphous silicon-microcrystalline silicon tandem solar cell is formed thereon. Formed.
  • an amorphous silicon film As an amorphous silicon film, an a-SiC: B (boron doped) layer (20 nm) as a p layer, an a-Si: H (a-Sia-SiC doped with hydrogen) layer (150 nm), an n layer as an i layer
  • a microcrystalline-Si: P (microcrystalline Si doped with phosphorus) layer (40 nm) was formed in this order by plasma CVD.
  • a microcrystalline-Si: H: P (hydrogen, phosphorus-doped microcrystalline Si) layer (40 nm) was formed as an n layer in this order by the plasma CVD method (1.5 ⁇ m).
  • an Al electrode was formed by a sputtering method to produce a solar battery cell.
  • the size of the solar cell portion is 5 mm square.
  • the photoelectric conversion efficiency of the produced tandem solar cell was improved by 15% or more compared to the efficiency of the amorphous solar cells of Examples 1 to 7. Furthermore, since the effect of the second oxide layer cannot be simply compared with that of the amorphous solar cell, the battery efficiency was compared with Comparative Example 5 in which only the second oxide layer was changed to produce a tandem solar cell. As a result, it was confirmed that the photoelectric conversion efficiency was improved by 4%. Further, the produced tandem solar cell was cut with an ion beam and the cross section was observed with an electron microscope. As a result, one void that was considered to be a silicon defect was found in the cut surface having a length of 40 microns. Similar observations were made on the tandem solar cell fabricated in Comparative Example 5. As a result, eight voids that were considered to be silicon defects were confirmed in the cut surface having a length of 40 microns. It is considered that the reduction in silicon defects contributes to the improvement in the photoelectric conversion efficiency.
  • Example 5 One half of the glass substrate on which the first oxide structure layer 12 produced in Example 8 was formed was used, and the second oxide layer was described in Patent Document 2 (Japanese Patent Laid-Open No. 2005-347490). A silica film having a thickness of 15 nm was produced by the same method as that described above. The composition and physical properties of the second oxide layer are shown in Table 3. Thereafter, a conductive film corresponding to the conductive oxide layer 16 was formed on the substrate in the same manner as in Example 1. The C light source transmittance and haze ratio of the produced transparent conductive film substrate are 76.3% and 93.1%, respectively, and the upper limit of 90% or less which is the range of the effective haze ratio described in Patent Document 2.
  • the d-line refractive index measured in the same manner as in Example 1 was 1.45.
  • the produced transparent conductive film substrate is cut, the cut surface is observed with an SEM, and the angle of the concave portion where the concave depth of the first oxide structure layer is 20% or more of the average height of the first oxide structure layer. measured, it was 85.0 ° was calculated the average value a 1.
  • a tandem solar cell similar to that in Example 8 was produced using this substrate.
  • Example 9 The first oxide structure layer comprising tin oxide particles having a height of 600 nm and an average density of 0.8 particles / ⁇ m 2 by adjusting the ratio of the raw material gases tin tetrachloride, water and hydrogen chloride by the same means as in Example 1.
  • a glass substrate on which 12 was formed was prepared and cut into two. Using this halved piece, using trichlorosilane and tin tetrachloride as the raw material for forming the second oxide layer 14, the raw material was sprayed while moving the heated glass at a speed of 3 m / min. A 70 nm second dioxide layer 14 was formed.
  • Table 3 The composition and physical properties of the second oxide layer are shown in Table 3.
  • the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced.
  • the C light source transmittance and haze rate of the transparent conductive film substrate 10 were 82.0% and 94.1%, respectively.
  • the produced transparent conductive film substrate 10 is cut, and the cut surface is observed with an SEM, and the depth of the recess of the first oxide structure layer 12 is 20% or more of the average height of the first oxide structure layer.
  • measuring the angle of a concave portion was 84.0 ° was calculated the average value a 1.
  • the angle of the concave portion of the second oxide layer 14 at the top of the area of the measured recess measured, the calculated average value A 2, was 147.0 degrees.
  • Example 2 The d-line refractive index measured in the same manner as in Example 1 was 1.45.
  • a tandem solar cell similar to that in Example 8 was produced using this substrate. The results are shown in Table 4.
  • the first oxide structure layer comprising tin oxide particles having a height of 750 nm and an average density of 0.6 particles / ⁇ m 2 by adjusting the ratio of the raw material gases tin tetrachloride, water and hydrogen chloride by the same means as in Example 1.
  • Two glass substrates on which 12 was formed were produced, and each was cut into two. Three of the four halves are used, and dichlorosilane and tin tetrachloride are used as raw materials for forming the second oxide layer 14, and the raw material is sprayed while moving the heated glass at a speed of 3 m / min.
  • the second dioxide layer 14 having a thickness changed to 40 nm, 50 nm, and 70 nm was formed.
  • the composition of the second oxide layer is shown in Table 3.
  • the formation of the conductive oxide layer 16 was performed, and the transparent conductive film substrate 10 was produced.
  • Table 3 shows the physical properties of the produced substrate. When A 2 / A 1 of these substrates was measured, it was 1.32 to 1.37. Using this substrate, solar cells were produced in the same manner as in Example 4.
  • the photoelectric conversion efficiency of Examples 10 to 12 was compared with Comparative Example 7 using the same substrate up to the first oxide structure layer 12 and having an i layer thickness of 400 nm. The results are shown in Table 4.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-347490 uses one of the four glass substrates on which the first oxide structure layer 12 formed in Examples 10 to 12 is formed as the second oxide layer. A silica film having a thickness of 15 nm was produced in the same manner as described in 1. The composition and physical properties of the second oxide layer are shown in Table 3. Thereafter, a conductive film corresponding to the conductive oxide layer 16 was formed on the substrate in the same manner as in Example 1. The C light source transmittance and haze ratio of the produced transparent conductive film substrate are 88.5% and 88.0%, respectively, and the upper limit of 90% or less, which is the range of the effective haze ratio described in Patent Document 2.
  • Example 2 The d-line refractive index measured in the same manner as in Example 1 was 1.45.
  • the produced transparent conductive film substrate was cut, the cut surface was observed with an SEM, and A 2 / A 1 was calculated to be 1.01.
  • a solar battery cell was produced in which an a-Si: H (hydrogen-doped a-Si) layer having a thickness of 400 nm was produced as an i layer in the same manner as in Examples 10-12.
  • Table 4 shows the evaluation results of the solar battery cells. Tables 3 and 4 collectively show the compositions, physical properties, solar cell performance evaluation results, and the like of the second oxide layers obtained in Examples 4 to 12 and Comparative Examples 3 to 7.
  • x in SnSiOx and TiSiOx represents 2.0 to 2.3.
  • the X-ray diffraction intensity of tin oxide is measured (200 ) And (110) is preferably 1.10 or more in terms of photoelectric conversion efficiency.
  • the reason why the photoelectric conversion efficiency changes when the material of the second oxide layer is an oxide of Si and Sn is not clearly understood, but the following is an example of tin oxide formed on the second oxide layer: Can be considered. After changing the kind and film thickness of the second oxide layer and making other conditions the same, after forming a film of tin oxide as a conductive film on the second oxide layer, a solar cell was formed under the same conditions. The photoelectric conversion efficiency was compared.
  • Examples 10 to 12 and Comparative Example 7 a part of the substrate on which the tin oxide film was formed was cut out, the X-ray diffraction intensity was measured, and the ratio of the intensity of tin oxide crystals (200) and (110) was determined. Compared. The results are shown in Table 5. In Comparative Example 7, the ratio of (200) / (110) was 0.98. The cross-sectional SEM image is shown in FIG. In Examples 10 to 12, the ratio of (200) / (110) was 1.15 to 1.29. FIG. 5 shows a cross-sectional SEM image of the example.
  • Example 10 to 12 can confirm crystallites of tin oxide (conductive oxide layer) radially on the convex portion of the first oxide structure layer via the second oxide layer. It was. That is, since the crystallites are radially extended, the crystallites are oriented at (200), and the ratio of X-ray diffraction intensity is (200) / (110) is 1.15 to 1.29 (200) and the orientation is strong. I understand. In Comparative Example 7, since the tin oxide crystallites on the first oxide structure layer via the second oxide layer are in a random shape, the X-ray diffraction intensity ratio is as small as 0.98, On average, the (200) orientation of tin oxide is poor.
  • the surface of tin oxide having good orientation is made of crystallites having the same orientation and has a relatively uniform shape.
  • the SEM image of the surface in this case is shown in FIG.
  • crystallites are randomly arranged, and as a result, the unevenness of the outermost surface layer is considered to be uneven. It is considered that the conductive oxide layer laminated on the uneven surface has many silicon defects described in Example 8 and Comparative Example 5, and as a result, the photoelectric conversion efficiency is lowered.
  • the transparent conductive film substrate of the present invention and the solar cell using the same have been described in detail.
  • the present invention is not limited to the above-described embodiments and examples, and various improvements can be made without departing from the spirit of the present invention. Of course, you may make changes.
  • the transparent conductive film substrate of the present invention is less susceptible to current leakage due to electric field concentration, is less susceptible to deterioration of photoelectric conversion performance, and further has a high light transmittance as a substrate with improved photoelectric conversion performance compared to conventional solar cells.
  • a battery can be provided and is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 太陽電池などの光電変換デバイスに適応した場合に、電界集中による電流のリークが発生しにくく、光電変換性能の悪化が生じない、更に光の透過率が高い透明導電膜基板およびこの基板を用いた太陽電池を提供する。  ガラス基板上に第一酸化物構造層、第二酸化物層および導電性酸化物層がその順に形成された光電変換デバイス用透明導電膜基板であって、  前記第一酸化物構造層には、前記ガラス基板の面から突出した複数の凸部が設けられ、前記凸部の前記ガラス基板の面からの高さは200nm以上2000nm以下であり、  前記複数の凸部のうち隣接した凸部間の凹の深さが、前記第一酸化物構造層の平均高さの2割以上ある凹部の角度の平均値をA1、該凹部の領域の上に形成された前記第二酸化物層の凹部の角度の平均値をA2とした時に、A2/A1が1.1以上であることを特徴とする透明導電膜基板。

Description

透明導電膜基板およびこの基板を用いた太陽電池
 本発明は、薄膜太陽電池などの光電変換デバイスに有効な透明導電膜基板と、この基板を用いた太陽電池に関する。
 透明導電性の薄膜は太陽電池基板やディスプレイ基板、タッチパネル基板など様々な分野で使用されている。これらの用途の内、薄膜太陽電池などの光電変換デバイスには、高い透明性、光閉じこめ性、電気伝導性、化学的耐久性などが要求されており、これらの要求を満たすものとしては酸化錫膜が広く使用されている。太陽電池用の透明導電膜として酸化錫膜を使用する場合、光閉じこめ性を高めるには酸化錫の結晶性を上げ表面ヘイズ率を増やすことが効果的であることが、特許文献1で知られている。特に、特許文献2に記載されるように、長波長の光から短波長の光までを効果的に閉じこめるためには、大きな結晶粒と小さな結晶粒を組み合わせた層を形成することが有効である。
 しかしながら、上記酸化錫は急峻な結晶エッジを持つ特徴があり、結晶粒径を大きくした場合、結晶粒間に急峻に尖った凹凸が形成される。このような急峻に尖った凹凸がある基板を用いて太陽電池を作製した場合、特許文献3にも記載されているように凹部分で発電層に欠陥が形成され、更に凸部分には電界集中により電流のリークが発生しやすい部分が形成され、結果として光電変換が悪化する。光電変換デバイスとして、高い光閉じこめ性能を実現するためには、ヘイズ率の大きい基板を用いるのが有効であるが、ヘイズ率の大きい基板は酸化錫の結晶粒が大きくなる傾向があり、上記理由により光電変換が上がりにくい問題がある。上記特許文献2にはヘイズ率75%までの基板についての光閉じこめ性の有効性が実施例により記載されている。
 この問題に対して、特許文献3では化学エッチングやプラズマ処理により透明導電膜基板の表面結晶を丸くする加工を提案している。また、特許文献4では透明導電膜表面の結晶を研磨により丸める方法が記載されている。しかしながら、化学エッチングは基板を強酸や強アルカリの薬液に浸し、その後、水によりリンスするプロセスが必要となり、製造プロセスが煩雑になりコストアップにつながる。また、薬液処理により、導電膜に欠陥を生じることがあり、結果として、導電膜の電気抵抗が上昇するといった欠点もある。また、スパッタリング処理は真空プロセスが必要であるため製造コストのアップにつながる。同様に研磨によるプロセスも研磨、洗浄という2工程が必要となりコストアップにつながる。更に、いずれの方法も一度作製した導電膜を削るプロセスであるため、結晶粒を大きくし、ヘイズ率を上昇させ、光閉じこめ性を高くする用途に使用するには、効果的なプロセスではない。
特表平2-503615号公報 特開2005-347490号公報 特開2000-277763号公報 特開2006-5021号公報
 そこで、本発明は、上述の問題点を考慮して、太陽電池などの光電変換デバイスに適応した場合に、電界集中による電流のリークが発生しにくく、光電変換性能の悪化が生じない、更に光の透過率が高い透明導電膜基板およびこの基板を用いた太陽電池を提供することを目的とする。
 そこで、本発明は、ガラス基板上に第一酸化物構造層、第二酸化物層および導電性酸化物層がその順に形成された光電変換デバイス用透明導電膜基板であって、
 前記第一酸化物構造層には、前記ガラス基板の面から突出した複数の凸部が設けられ、前記凸部の前記ガラス基板の面からの高さは200nm以上2000nm以下であり、前記複数の凸部のうち隣接した凸部間の凹の深さが、前記第一酸化物構造層の平均高さの2割以上ある凹部の角度の平均値をA1、該凹部の領域の上に形成された前記第二酸化物層の凹部の角度の平均値をA2とした時に、A2/A1が1.1以上であることを特徴とする透明導電膜基板を提供する。
 ここで、前記A2/A1が1.2以上であることが好ましい。
 さらに、C光源で測定したヘイズ率が50%以上であることが好ましい。C光源で測定したヘイズ率が85%以上であることがより好ましい。
 また、前記第一酸化物構造層は、酸化錫で構成されていることが好ましい。
 また、前記第二酸化物層は、屈折率1.58~1.9の酸化物層で形成されていることが好ましい。
 前記第二酸化物層は、シリコンと錫の混合酸化物またはシリコンとチタンの混合酸化物で構成されていることが好ましい。
 また、前記第二酸化物層は、シリコンと錫の混合酸化物で構成され、該混合酸化物の錫とシリコンのモル比は、0.25:0.75~0.7:0.3であることが好ましい。
 また、前記混合酸化物の錫とシリコンのモル比は、0.4:0.6~0.6:0.4であることが好ましい。
 さらに、前記導電性酸化物層は、フッ素を含有した酸化錫で構成されていることが好ましい。
 また、本発明は、前記透明導電膜基板を用いて作製されたことを特徴とする太陽電池を提供する。
 本発明の透明導電膜基板では、A2/A1を1.1以上とする。このため、高い光閉じこめ性を持つ高ヘイズ率を有する凹凸形状を有していても、第一酸化物構造層の凹凸部分の形状によらず第二酸化物層の形状が緩やかにできる。したがって、透明導電膜を積層後に透明導電膜基板の上に太陽電池層を積層した光電変換デバイスでは、電界集中による電流のリークが発生しにくい。これにより、凹凸に起因する光電変換デバイスの性能の悪化が無い。また、前記第二酸化物層を従来技術と同じ厚さで比較した場合は透明導電膜基板の光透過率も高い。このため、本発明の透明導電膜基板を用いて太陽電池を作製した場合、従来に比べて光電変換の性能を向上させることができる。
本発明の透明導電膜基板の断面の一例を説明する模式図である。 本発明の透明導電膜基板における第二酸化物層の凹部の角度を説明する図である。 本発明の透明導電膜基板における凹の深さを説明する図である。 本発明において用いる角度の比(A2/A1)と太陽電池の光電変換効率の関係を示す図である。 本発明の透明導電膜基板の断面の電子顕微鏡写真である。 従来技術の透明導電膜基板の断面の電子顕微鏡写真である。 本発明の透明導電膜基板の表面の電子顕微鏡写真である。
 本発明の透明導電膜基板について、その概要から説明する。
 太陽電池等の光電変換デバイスに用いる、高い光閉じこめ性を有する基板を作製するには、ガラス基板上に第一酸化物構造層が形成され、その上に膜状の第二酸化物層が形成され、更にその上に導電性の酸化物層が形成される。第一酸化物構造層の形状は基板上に離散的に配置された形状を持つ。第一酸化物構造層の島状の構造物の高さは200nm以上2000nm以下である。200nm未満では長波長の有効な光閉じこめ性が得られず、また、2000nm超では島状の構造物による光吸収が大きくなるためである。さらに、300nm以上1000nm以下であることが好ましい。第一酸化物構造層は、CVD(Chemical Vapor Deposition)法、ナノインプリント法、フォトリソプロセスなどにより作製することが可能であるが、製造コストや大面積の成膜が容易な点などからCVD法を用いるのが好ましい。
 なお、上記特許文献2に記載される導電性酸化物付き基体は、大きい粒径の結晶で構成される第一の酸化物を離散的に分散した酸化物構造をガラス基板の上に設け、その上に、導電性膜として機能する第二の酸化物からなる連続層を形成し、必要に応じて、第一の酸化物と第二の酸化物と組成が異なる酸化物からなる層を、上記第一の酸化物と第二の酸化物との間に設ける構成である。本発明は、上記特許文献2に記載の基体に対して、後述するように、A2/A1を規定している点で異なる。
 この第一酸化物構造層の酸化物として、例えば、酸化錫、酸化チタン、酸化亜鉛、酸化アルミニウム、シリカなどを用いることが可能である。なかでも、酸化錫、シリカ、または酸化アルミニウムが好ましく用いられる。この第一酸化物構造層では、酸化物の島状の構造物を大きくし、島状の構造物の密度を上げることが光閉じこめ性の点から好ましいが、この好ましい条件では島状の構造物間に急峻な凹凸形状が形成される。この急峻な凹凸形状を有する第一酸化物構造層の上に、第二酸化物層を形成することにより緩やかな凹凸形状とし、高い光閉じこめ性を維持しつつ、太陽電池等の光電変換デバイスの性能の悪化を抑えることが可能となる。第一酸化物構造層の急峻な凹凸形状を、第二酸化物層により緩やかな凹凸形状とするとき、この急峻な凹凸形状および緩やかな凹凸形状は、作製した透明導電膜基板を切断して、その断面形状を電子顕微鏡で観測し、測定することができる。なお、ここでは島状の構造物と凹凸形状の関係は、隣接しない島状の構造物が1つのみ存在する部分では、島状の構造物のそのものが凸部になり、島状の構造物の高さと凸部の高さは同じで、また、島状の構造物が1つの部分には凹部分は存在しない。島状の構造物が隣接する場合、その間に凹部が存在する。また、この場合の凸部の高さとは凹部分から凸部分までの高さとなり、島状の構造物の高さとは必ずしも一致しない。
 図1は、このような透明導電膜基板(以下、透明導電膜基板という)の切断面の一例を模式的に示した図である。図1では、高さを強調して示している。
 図1に示す透明導電膜基板10は、第一酸化物構造層12、第二酸化物層14、および導電性酸化物層16が、その順にガラス基板18に形成されて構成されている。
 第一酸化物構造層12は、上述した島形状の構造物を有する層で、複数の凸部が離散的に設けられ、隣接する凸部の間に凹部(以下、単に第一酸化物構造層12の凹部という)をつくっている。断面で見た場合、1つの凸部は複数の略直線で構成された形状を持ち、複数の凸部が隣接して急峻な凹凸構造となっている。
 ここで第一酸化物構造層12の平均高さ22とは以下のように定義される。透明導電膜の断面を観察したとき、島状に離散した凸部10点の高さを計測し、その合計を凸部の個数で割った値である。
 また、第一酸化物構造層12の凹部の角度24とは、以下のように定義される。透明導電膜の断面を観察したとき、略直線で構成される凹部の角度であり、平均値とは、10点の測定における平均値である。
 また、第一酸化物構造層12の凹の深さ20とは以下のように定義される。図3に示すように透明導電膜の断面を観察したとき、略直線で構成される凹部の底部P、凹部を構成する略直線の逆側の端で、別の略直線との交点であるPb、Pc(以下、エッジPb、エッジPcと呼ぶ)間を直線mで結び、凹部の底部Pからガラス基板18の面に対して垂直線を引き、この垂直線とエッジ間の直線mとの交点Pxとしたとき、PからPxの高さ(図3中の矢印部分の高さ)とする。
 第二酸化物層14は、第一酸化物構造層12の形状に対して以下のような機能を有する。すなわち、第一酸化物構造層12の凹部の深さ20が、第一酸化物構造層12の平均高さ22の2割以上ある第一酸化物構造層12の凹部について、角度24の平均値をA1、該凹部の領域の上に形成された第二酸化物層14の凹部の角度26(詳細は後述する)の平均値をA2とした時に、A2/A1を1.1以上とする。
 ここで、第二酸化物層14の凹部の角度26は、以下のように定義される。
 図2に示すように、透明導電膜の断面を観察したとき、第一酸化物構造層12の極小位置をPa、凹部の左右のエッジ位置をそれぞれPb、Pcとし、第二酸化物層14の凹部の極小位置をPdとしたとき、線分Padを凹部の中心線とする。点Pb、点Pcのそれぞれを通り上記中心線と平行な直線を引いたとき、上記中心線との距離をL1、L2とする。距離L1、L2のうち、大きくないほうの距離をLとする。このとき、上記中心線からLの5分の1の距離離れた位置を通る上記中心線に平行な直線が第二酸化物層14の表面の線(稜線)と交わる点をPe、Pfとする。このとき、線分Pedと線分Pdfの交わる角度を第二酸化物層14の凹部の角度26と定める。
 A2/A1が1.1以上の場合、第一酸化物構造層12の急峻な凹凸形状の上に、曲線で構成される緩やかな形状の第二酸化物層14が形成される。この構造の上に更に透明導電性膜を構成した透明導電膜基板を用いて太陽電池を作製すると、電池特性の向上が見られる。A2/A1が1.2以上ある場合、の第二酸化物層14の凹凸形状が更に緩やかになり光電変換の向上がより見られる。このような第二酸化物層14は、膜厚が20nm~200nmであることが好ましく、50nm~100nmがより好ましい。
 第二酸化物層14は、CVD法、スパッタリング法、ゾルゲル法などにより形成することが可能であるが、膜厚の制御のしやすさや被覆性の良さなどからCVD法で作製するのが好ましい。
 第二酸化物層14は、ガラス基板18の屈折率と導電性酸化物層16の屈折率との中間の屈折率を有する材料であることが好ましい。中間の屈折率を有する材料を用いることで、第二酸化物層14の膜厚が20nm~200nm程度となっても、透過率が減少しないためである。第二酸化物層14のd線屈折率は1.58~1.9が好ましく、1.6~1.8がより好ましい。
 本発明の透明導電膜基板を用いた光電変換の改善効果は、導電性酸化物層16まで膜を積層した状態で、C光源で測定したヘイズ率が50%以上ある場合に優れ、85%以上であればより顕著になり、ヘイズ率が90%以上の透明導電膜基板において更に顕著に表れる。
 第二酸化物層14を形成する材料としては、第一酸化物構造層12への被覆性が良好である材料であれば特に制限はなく、特に屈折率が1.58~1.9である材料が好ましく、アルミニウム(Al)と錫(Sn)の混合酸化物、シリコン(Si)と錫(Sn)の混合酸化物、シリコンとチタン(Ti)の混合酸化物などを用いることができる。第二酸化物層14が、シリコンと錫の混合酸化物、およびシリコンとチタンの混合酸化物は、作製が容易であり、第二酸化物層14がアモルファス膜になりやすく、第一酸化物構造層12への被覆性が良好である点で、特に好ましい。第二酸化物層14にシリコンと錫の混合酸化物を用い、かつ、導電性酸化物層16または第一酸化物構造層12が酸化錫と同じ錫成分を含む場合は、導電性酸化物層16の結晶成長による成膜時に、導電性を劣化させる欠陥を生じにくくする傾向がある点で、より好ましい。第二酸化物層14の材料は成膜した膜がアモルファス膜になることがより好ましい。
 第二酸化物層14にシリコンと錫の混合酸化物を用いる場合、形成する酸化物の金属元素の組成比をモル比で表わすと、錫とシリコンのモル比が0.25:0.75~0.7:0.3であることが好ましい。錫のモル比が0.2より小さくなると、d線屈折率が1.58より小さくなるためである。d線屈折率が1.58より小さくなると、導電性酸化物層16と第二酸化物層14の屈折率差により生じる反射が大きくなり、光透過性が減少するためである。また、錫のモル比が0.7より大きくなると、第二酸化物層14は、良好なアモルファス状の混合酸化物の層とならず、凹凸形状を緩やかにする効果が無くなるためである。錫とシリコンのモル比は0.4:0.6~0.6:0.4であることがより好ましい。
 第二酸化物層14はCVD法、スパッタリング法、ゾルゲル法などで作製することが可能であるが、製造コストや表面導電層の低抵抗化の容易さなどを考えるとCVD法で作製するのが好ましい。CVD法で第二酸化物層14を作成する場合、シリコン原料としてはモノシラン、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン、テトラエトキシシランなどの無機または有機のシラン化合物を用いることが出来る。この内、テトラクロロシラン、トリクロロシラン、ジクロロシランなどの塩化シラン類はモノシランのように反応が速すぎてチャンバーの気相中で反応が進み、粉状の反応物が発生することが無く、また、爆発性も低いなど取り扱いが容易であり好ましい。
 導電性酸化物層16としては、酸化錫、酸化亜鉛、錫をドープした酸化インジウム(ITO)などが用いられるが、酸化錫が化学的耐久性や製造コストの点で好ましい。酸化錫には、フッ素をドープして導電性を上げたものを用いることがより好ましい。導電性酸化物層16は、CVD法、スパッタリング法、ゾルゲル法などで作製することが可能であるが、製造コストや表面導電層の低抵抗化の容易さなどを考えるとCVD法で作製するのが好ましい。
 また、本発明に用いるガラス基板がソーダライムガラスからなる場合、ガラス中のアルカリ成分が透明導電性膜側に拡散することを防ぐために、ガラス基板と透明導電性膜の間にアルカリバリア層を設けてもよい。アルカリバリア層としては、シリカ(SiO2)層が好適である。
 本発明により提供される透明導電膜基板は、薄膜太陽電池の基板として有効であり、特にアモルファスシリコンと微結晶シリコンを一つの基板上に作製するタンデム型のシリコン太陽電池用の基板として有効に用いることができる。
 以下に、本発明の透明導電膜基板の効果について、CVD法を用いて作製した透明導電膜基板を例として説明するが、本発明の透明導電膜基板は、以下のものに限定されない。
 (実施例1)
(a)第一酸化物構造層の形成
 1.1mm厚のソーダライムガラス基板をガラス基板18(10cm角)として用い、このガラス基板18に、アルカリバリア層としてシリカ膜を作製した。シリカ膜の作製は、ソーダライムガラス基板を、ベルトコンベア炉において500℃に加熱し、このガラス基板上に、5mol%のシランガスを含有した窒素ガスを4リットル/分の条件で、酸素ガスを20リットル/分の条件で、同時に吹き付けて行った。
 次に、このシリカ膜付きガラス基板に第一酸化物構造層12を形成した。ここでは、第一酸化物構造層12の形成方法として、最初に凸部の基点となる核を作製し、次に製造条件を変えて凸部を製造する2段式の方法で行った。第一酸化物構造層12の形成には、上記と同様のベルトコンベア炉においてシリカ膜付きガラス基板を540℃に加熱し、キャリアガスとして窒素ガスを用い、第一酸化物構造層12を形成する原料ガスとして、四塩化錫、水および塩化水素を用いた。該キャリアガスと該原料ガスとの合計ガス量に対する四塩化錫の濃度を0.1体積%として、5nmの質量膜厚の核をシリカ膜上に形成した。この後、該合計ガス量における四塩化錫の濃度を0.9体積%として、凸部の平均高さが620nmの離散した凸部を有する第一酸化物構造層12を形成した。このとき、AFM(原子間力顕微鏡)を用いて第一酸化物構造層12を測定すると、平均0.4個/μm2の密度で、酸化錫からなる凸部が離散して形成された。なお、ここでは、質量膜厚とは、酸化錫からなる凸部の質量から体積を計算して、成膜面積に均等に膜が付いたと仮定した時の膜厚である。また、凸部の平均高さは電子顕微鏡(SEM)で透明導電膜まで作製した後、断面を測定して求めた。
(b)第二酸化物層、および導電性酸化物層の形成
 第一酸化物構造層12が形成されたガラス基板を5等分し、その一枚をバッチ型の電気炉において550℃に加熱し、キャリアガスとして窒素ガスを用い、錫の酸化物を形成する原料ガスとして四塩化錫、シリカを形成する原料ガスとして四塩化シランを用い、第一酸化物構造層12上に第二酸化物層14を形成した。これらの原料ガスを四塩化錫と四塩化シランの合計が0.1体積%になるように窒素ガスと混合し、水蒸気とともに第一酸化物構造層12が形成されたガラス基板に吹き付け、錫とシリコンの混合酸化物からなる膜(第二酸化物層14)を形成した。この膜の表面組成をESCA(Electron Spectroscopy for Chemical Analysis)で分析したところ、錫とシリコンの元素比は0.5:0.5であった。
 また、シリカ膜のみを形成した物性評価用ガラス基板に、同じ成膜条件で錫とシリコンの混合酸化物膜を形成し、触診式膜厚計で測定したところ125nmであった。すなわち、第二酸化物層14の厚さは125nmであった。また、エリプソメーターで混合酸化物膜のd線屈折率を測定したところ1.75であった。
 第一酸化物構造層12、第二酸化物層14が形成されたガラス基板を再びベルトコンベア炉において540℃に加熱し、四塩化錫、水、フッ化水素を同時に吹き付け、常圧CVD法を用いることで、フッ素ドープ酸化錫膜(導電性酸化物層16)を形成し透明導電膜基板10を得た。
 作製した透明導電膜基板10のC光源透過率とヘイズ率をヘイズメーターで測定したところ、それぞれ、89.5%、94.8%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を10個測定し、平均値A1を計算したところ103.1度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値A2を計算したところ、141.1度であった。この場合、A2/A1=1.36である。
(c)太陽電池の作製
 作製した透明導電膜基板10を用いた太陽電池の光電変換の性能を調べるため、透明導電膜基板10の一部を切り出し、その上にpin型のアモルファスシリコン膜を形成した。p層としてa-SiC:B層(20nm)、i層としてa-Si:H層(350nm)、n層としてa-Si:P層(40nm)を、それぞれSiH4/CH4/H2/B26、SiH4/H2、およびSiH4/H2/PH3を原料として用いて、この順にプラズマCVD法により形成した。この後、GaをドープしたZnOを20nm形成した後、Al電極をスパッタリング法により形成し太陽電池セルを作製した。太陽電池部分の大きさは5mm角である。
(d)太陽電池の特性評価方法
 作製した太陽電池の短絡電流、開放端電圧、および曲線因子を測定し、光電変換効率を求めた。測定はソーラーシュミレータ(オプトリサーチ社製CE-24型ソーラーシュミレータ)を用い、IV測定時におけるソーラーシミュレータの照射光スペクトルをAM(エアマス)(Air Mass)1.5、光強度を100(mW/cm2)とした。また、太陽電池の電極には面積が6.25(mm2)のものを用いた。
 観測された太陽電池の光電変換効率をA2/A1がほぼ1である比較例1(後述)の効率で規格化した光電変換率の相対値を以下の表2に示す。
 (実施例2)
 実施例1で作製した第一酸化物構造層12が形成されたガラス基板の5等分の一枚を用い、第二酸化物層14の成膜時間を変え、厚さを50nmにした以外は、実施例1と同
様に導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、89.5%,87.5%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値A1を計算したところ110.2度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値A2を計算したところ、138.1度であった。この場合、A2/A1=1.25である。
 この基板を用いて実施例1と同様の方法で太陽電池セルを作製し、上記方法で光電変換性能を評価した。結果を表2に示す。
 (実施例3)
 実施例1で作製した第一酸化物構造層12が形成されたガラス基板の5等分の一枚を用い、第二酸化物層14の成膜時間を変え厚さを200nmにした以外は、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、88.6%,96.0%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値A1を計算したところ111.7度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値A2を計算したところ、146.5度であった。この場合、A2/A1=1.31である。
 この基板を用いて実施例1と同様の方法で太陽電池セルを作製し、上記方法で光電変換性能を評価した。結果を表2に示す。
(比較例1)
 実施例1で作製した第一酸化物構造層12が形成されたガラス基板の5等分の一枚を用い、第二酸化物層として、特許文献2(特開2005-347490号公報)に記載されているものと同様な方法で、厚さ15nmのシリカ膜を作製した。その後、この基板上に実施例1と同様の方法で導電性酸化物層16に対応する導電膜を作製した。作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、89.1%,86.2%であり、特許文献2に記載されている有効なヘイズ率の範囲である90%以下の上限に近いことを確認した。実施例1と同様に測定したd線屈折率は1.45であった。作製した透明導電膜基板を切断し、その切断面をSEMで観測し、第一酸化物構造層の凹の深さが第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値A1を計算したところ108.7度であった。また、また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値A2を計算したところ、110.1度であった。この場合、A2/A1=1.01である。この基板を用いて実施例1と同様の方法で太陽電池セルを作製し、上記方法で光電変換率を測定し、測定された光電変換効率を基準として他の実施例、比較例の評価を行った。
(比較例2)
 実施例1で作製した第一酸化物構造層12が形成されたガラス基板の5等分の一枚を用い、実施例1と同じ装置で第二酸化物層を形成した。このときの層の形成温度、用いる原料の四塩化スズ、四塩化シランも、実施例1と同じであるが、原料ガスの混合比率を実施例1と変えて、実施例1と異なる錫:シリコン比を持つ第二酸化物層を作製した。
 実施例1と同様にシリカのみを成膜した物性評価用ガラス基板に、この膜を同時に作製し、ESCAにより表面組成を観測したところ、Sn:Si=0.8:0.2であった。また、実施例1と同様に触針式膜厚測定器により膜厚を測定したところ、100(nm)であった。また、実施例1と同様に測定したd線屈折率は1.98であった。
 作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、79.2%,95.5%であった。また、作製した透明導電膜基板を切断し、その切断面をSEMで観測し、第一酸化物構造層の凹の深さが第一酸化物構造層平均高さの2割以上ある凹部の角度を測定し、平均値A1を計算したところ110.6度であった。また、また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値A2を計算したところ、100.1度であった。この場合、A2/A1=0.9である。
 この基板を用いて実施例1と同様の方法で太陽電池セルを作製し、上記方法で光電変換性能を評価した。結果を表2に示す。
 表1および表2には、実施例1~3および比較例1~2で得られた第二酸化物層の組成、物性、太陽電池セルの性能評価結果等をまとめて示す。
 なお、表1中のSnSiOxのxは、1.95~2.45を表す。
 比較例2の透明導電膜基板のC光源透過率は、実施例1~3、比較例1と比べ10%以上小さい。これは、第二酸化物層の屈折率が大きく、反射が増加したため太陽電池部分に入射する光が減少したためと考えられる。更に、第二酸化物層の錫濃度が上昇した結果、第二酸化物層は結晶粒として成長したことが観測され、その結果A2/A1は0.9となり、第二酸化物層は急峻な凹凸形状を形成した。この結果、光電変換効率は比較例1と比べ半分以下となった。
 A2/A1の値と、測定した太陽電池の光電変換効率を、表2、および図4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1は、比較例1と比べ光電変換効率は1.52倍に上昇しており、また、C光源透過率は0.4%増加しており第二酸化物層14の効果が確認できる。
 実施例2は、比較例1と比べ光電変換効率は1.64倍に上昇しており、また、C光源透過率は0.4%増加しており第二酸化物層14の効果が確認できる。
 実施例3は、比較例1と比べ光電変換効率は1.61倍に上昇しているが、C光源透過率は0.5%減少している。透過率の減少は第二酸化物層14を厚くしたため光吸収が増えたためと考えられる。しかしながら、光透過率の減少よりも急峻な凹凸形状を緩やかにした効果が大きく、結果として光電変換効率が大きく向上しており、第二酸化物層の効果が確認できる。
 なお、図4に示すように、光電変換効率の上昇はA2/A1が1.1以上で有効であることが確認できる。
(実施例4)
 実施例1と同様な手段で原料ガスの四塩化錫、水および塩化水素の比率を調整し、高さ750nm、平均密度0.7個/μmの酸化錫粒子からなる第一酸化物構造層12が形成されたガラス基板を作製し、2枚に切断した。この2等分の一枚を用い、第二酸化物層14の形成原料としてジクロロシランと四塩化錫を用いて、加熱したガラスを毎分3mの速さで動かしながら原料を吹きつけ、厚さが70nmの第二酸化層14を形成した。第二酸化物層の組成、物性などは表3に示す。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、87.9%、90.7%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ109.5度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、140.2度であった。この場合、A/A=1.28である。
 この基板を用いて実施例1と同様の方法で太陽電池セルを作製した。本実施例では、より電池効率を上げるため、i層としてa-Si:H(水素をドープしたa-Si)層を400nmの厚さで作製し、上記方法で光電変換性能を評価した。本実施例の光電変換効率は、第一酸化物構造層12まで同じ基板を用いてi層厚さを400nmとした比較例3と比較した。結果を表3に示す。
(比較例3)
 実施例4で作製した第一酸化物構造層12が形成されたガラス基板の2等分の一枚を用い、第二酸化物層として、特許文献2(特開2005-347490号公報)に記載されているものと同様な方法で、厚さ15nmのシリカ膜を作製した。その後、この基板上に実施例1と同様の方法で導電性酸化物層16に対応する導電膜を作製した。作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、88.0%、88.5%であり、特許文献2に記載されている有効なヘイズ率の範囲である90%以下の上限に近いことを確認した。実施例1と同様に測定したd線屈折率は1.45であった。作製した透明導電膜基板を切断し、その切断面をSEMで観測し、第一酸化物構造層の凹の深さが第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ110.8度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、115.0度であった。この場合、A/A=1.04である。この基板を用いて実施例4と同様に、i層としてa-Si:H(水素をドープしたa-Si)(水素をドープしたa-Si)層を400nmの厚さで作製した太陽電池セルを作製し、上記方法で光電変換性能を評価した。本比較例の光電変換性能は比較例1と比較して1.61倍であり、i層を厚くした効果により光電変換効率が上昇した。
(実施例5)
 実施例1と同様な手段で原料ガスの四塩化錫、水および塩化水素の比率を調整し、高さ700nm、平均密度0.7個/μmの酸化錫粒子からなる第一酸化物構造層12が形成されたガラス基板を作製し、4枚に切断した。この4等分の一枚を用い第二酸化物層14の形成原料としてトリクロロシランと四塩化錫を用いて、加熱したガラスを毎分3mの速さで動かしながら原料を吹きつけ、厚さが80nmの第二酸化層14を形成した。第二酸化物層の組成、物性などは表3に示す。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、79.3%、89.8%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ101.2度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、138.1度であった。この場合、A/A=1.36である。
 この基板を用いて実施例4と同様に、i層としてa-Si:H(水素をドープしたa-Si)(水素をドープしたa-Si)層を400nmの厚さで作製した太陽電池セルを作製し、上記方法で光電変換性能を評価した。本実施例の光電変換効率は、第一酸化物構造層12まで同じ基板を用いてi層厚さを400nmとした比較例4と比較した。結果を表4に示す。
(実施例6)
 実施例5で作製した第一酸化物構造層12が形成されたガラス基板の4等分の一枚を用い、第二酸化物層14の形成原料としてトリクロロシランと四塩化錫を用いて、加熱したガラスを毎分3mの速さで動かしながら原料を吹きつけ、厚さを30nmの第二酸化層14を形成した。第二酸化物層の組成、物性などは表3に示す。本実施例では実施例5と比較してトリクロロシランの供給量を1.3倍、四塩化錫の供給量を1.0倍とした。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、81.5%、81.6%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ103.2度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、143.1度であった。この場合、A/A=1.12である。
 この基板を用いて実施例4と同様に、i層としてa-Si:H(水素をドープしたa-Si)(水素をドープしたa-Si)層を400nmの厚さで作成した太陽電池セルを作成し、上記方法で光電変換性能を評価した。本実施例の光電変換効率は、第一酸化物構造層12まで同じ基板を用いてi層厚さを400nmとした比較例4と比較した。結果を表4に示す。
(実施例7)
 実施例5で作製した第一酸化物構造層12が形成されたガラス基板の4等分の一枚を用い、第二酸化物層14の形成原料としてテトラエトキシシランとチタンテトライソプロポキサイトを用いて、加熱したガラスを毎分1mの速さで動かしながら原料を吹きつけ、厚さを60nmの第二酸化層14を形成した。第二酸化物層の組成、物性などは表3に示す。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、81.0%、91.2%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ105.4度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、118.2度であった。この場合、A/A=1.21である。
 この基板を用いて実施例4と同様に、i層としてa-Si:H(水素をドープしたa-Si)層を400nmの厚さで作成した太陽電池セルを作製し、上記方法で光電変換性能を評価した。本実施例の光電変換効率は、第一酸化物構造層12まで同じ基板を用いてi層厚さを400nmとした比較例4と比較した。結果を表4に示す。
(比較例4)
 実施例5で作製した第一酸化物構造層12が形成されたガラス基板の4等分の一枚を用い、第二酸化物層として、特許文献2(特開2005-347490号公報)に記載されているものと同様な方法で、厚さ15nmのシリカ膜を作製した。第二酸化物層の組成、物性などは表3に示す。その後、この基板上に実施例1と同様の方法で導電性酸化物層16に対応する導電膜を作製した。作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、79.0%、85.0%であり、特許文献2に記載されている有効なヘイズ率の範囲である90%以下の上限に近いことを確認した。実施例1と同様に測定したd線屈折率は1.45であった。作製した透明導電膜基板を切断し、その切断面をSEMで観測し、第一酸化物構造層の凹の深さが第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ104.8度であった。また、また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、108.4度であった。この場合、A/A=1.03である。この基板を用いて実施例4と同様に、i層としてa-Si:H(水素をドープしたa-Si)層を400nmの厚さで作製した太陽電池セルを作製し、上記方法で光電変換性能を評価した。作成されたセルの光電変換効率は比較例1と比較して1.49倍であった。
 実施例5~7、および比較例3、4では、使用したi層の厚さを実施例1~4、および比較例1~2と比較して厚くしたため、主としてi層成膜時に発生すると考えられる欠陥の影響が小さくなり電池効率の差が低くなっている。すなわち、電池の構成を変えて、より高性能な電池を作製する場合においても、本発明のようにA/Aが1.1以上ある透明電電膜を作製することにより、光電変換性能を上げることが可能である。
(実施例8)
 実施例1と同様な手段で原料ガスの四塩化錫、水および塩化水素の比率を調整し、高さ700nm、平均密度0.6個/μmの酸化錫粒子からなる第一酸化物構造層12が形成されたガラス基板を作製し、2枚に切断した。この2等分の一枚を用い、第二酸化物層14の形成原料としてトリクロロシランと四塩化錫を用いて、加熱したガラスを毎分3mの速さで動かしながら原料を吹きつけ、厚さを70nmの第二酸化層14を形成した。第二酸化物層の組成、物性などは表3に示す。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、77.6%、93.1%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ79.0度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、127.0度であった。この場合、A/A=1.61である。
 作製した透明導電膜基板10を用いた太陽電池の光電変換の性能を調べるため、透明導電膜基板10の一部を切り出し、その上にpin型のアモルファスシリコン-微結晶シリコンのタンデム型太陽電池を形成した。アモルファスシリコン膜としてはp層としてa-SiC:B(ホウ素をドープした)層(20nm)、i層としてa-Si:H(水素をドープしたa-Sia-SiC)層(150nm)、n層として微結晶-Si:P(リンをドープした微結晶Si)層(40nm)を、この順にプラズマCVD法により形成した。この後、微結晶シリコン膜として微結晶Si:H:B(水素、ホウ素ドープの微結晶Si)層(30nm)、i層として微結晶-Si:H(水素をドープした微結晶-Si)層(1.5μm)、n層として微結晶-Si:H:P(水素、リンをドープの微結晶Si)層(40nm)をこの順にプラズマCVD法により形成した。この後、GaをドープしたZnOを20nm形成した後、Al電極をスパッタリング法により形成し、太陽電池セルを作製した。太陽電池部分の大きさは5mm角である。
 作製したタンデム型の太陽電池の光電変換効率は、実施例1~7のアモルファス型太陽電池の効率と比較して15%以上向上していた。さらに、第二酸化物層の効果をアモルファス型太陽電池のものとは単純に比較できないため、第二酸化物層のみを変えてタンデム型太陽電池を作製した比較例5と電池効率を比較した。その結果、光電変換効率は4%向上していることが確認できた。
 また、作製したタンデム型太陽電池をイオンビームにより切断し、断面を電子顕微鏡で観測したところ、長さ40ミクロンの切断面の中にシリコンの欠陥と思われる空隙が1カ所確認された。同様の観測を比較例5で作製したタンデム型太陽電池に対して行ったところ、長さ40ミクロンの切断面の中にシリコンの欠陥と思われる空隙が8カ所確認された。先の光電変換効率の向上は、このようなシリコン欠陥の減少が寄与していると考えられる。
(比較例5)
 実施例8で作製した第一酸化物構造層12が形成されたガラス基板の2等分の一枚を用い、第二酸化物層として、特許文献2(特開2005-347490号公報)に記載されているものと同様な方法で、厚さ15nmのシリカ膜を作製した。第二酸化物層の組成、物性などは表3に示す。その後、この基板上に実施例1と同様の方法で導電性酸化物層16に対応する導電膜を作製した。作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、76.3%、93.1%であり、特許文献2に記載されている有効なヘイズ率の範囲である90%以下の上限に近いことを確認した。実施例1と同様に測定したd線屈折率は1.45であった。作製した透明導電膜基板を切断し、その切断面をSEMで観測し、第一酸化物構造層の凹の深さが第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ85.0度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、89.1度であった。この場合、A/A=1.05である。この基板を用いて実施例8と同様のタンデム型太陽電池を作製した。
(実施例9)
 実施例1と同様な手段で原料ガスの四塩化錫、水および塩化水素の比率を調整し、高さ600nm、平均密度0.8個/μmの酸化錫粒子からなる第一酸化物構造層12が形成されたガラス基板を作製し、2枚に切断した。この2等分の一枚を用い、第二酸化物層14の形成原料としてトリクロロシランと四塩化錫を用いて、加熱したガラスを毎分3mの速さで動かしながら原料を吹きつけ、厚さを70nmの第二酸化層14を形成した。第二酸化物層の組成、物性などは表3に示す。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。この透明導電膜基板10のC光源透過率とヘイズ率はそれぞれ、82.0%、94.1%であった。また、作製した透明導電膜基板10を切断し、その切断面をSEMで観測し、第一酸化物構造層12の凹の深さが、第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ84.0度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、147.0度であった。この場合、A/A=1.74である。
 作製した透明導電膜基板10を用いた太陽電池の光電変換の性能を調べるため、透明導電膜基板10の一部を切り出し、実施例8と同様のタンデム型太陽電池を作製した。
第二酸化物層のみを変えてタンデム型太陽電池を作製した比較例6と電池効率を比較したところ、本実施例の光電変換効率は3%向上していることが確認できた。結果を表4に示す。
(比較例6)
 実施例9で作製した第一酸化物構造層12が形成されたガラス基板の2等分の一枚を用い、第二酸化物層として、特許文献2(特開2005-347490号公報)に記載されているものと同様な方法で、厚さ15nmのシリカ膜を作製した。第二酸化物層の組成、物性などは表3に示す。その後、この基板上に実施例1と同様の方法で導電性酸化物層16に対応する導電膜を作製した。作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、81.0%、92.8%であり、特許文献2に記載されている有効なヘイズ率の範囲である90%以下の上限に近いことを確認した。実施例1と同様に測定したd線屈折率は1.45であった。作製した透明導電膜基板を切断し、その切断面をSEMで観測し、第一酸化物構造層の凹の深さが第一酸化物構造層の平均高さの2割以上ある凹部の角度を測定し、平均値Aを計算したところ91.2度であった。また、測定した凹部の領域の上部にある第二酸化物層14の凹部の角度を測定し、平均値Aを計算したところ、94.8度であった。この場合、A/A=1.04である。この基板を用いて実施例8と同様のタンデム型太陽電池を作製した。結果を表4に示す。
(実施例10~12)
 実施例1と同様な手段で原料ガスの四塩化錫、水および塩化水素の比率を調整し、高さ750nm、平均密度0.6個/μmの酸化錫粒子からなる第一酸化物構造層12が形成されたガラス基板を2枚作製し、それぞれを2枚に切断した。それぞれ2等分した4枚のうち3枚を用い、第二酸化物層14の形成原料としてジクロロシランと四塩化錫を用いて、加熱したガラスを毎分3mの速さで動かしながら原料を吹きつけ、厚さを40nm、50nm,70nmと変化させた第二酸化層14を形成した。第二酸化物層の組成などは表3に示す。その後、実施例1と同様に、導電性酸化物層16の成膜まで行って透明導電膜基板10を作製した。作製した基板の物性を表3に示す。これらの基板のA/Aを測定したところ1.32~1.37であった。
 この基板を用いて実施例4と同様の方法で太陽電池セルを作製した。実施例10~12の光電変換効率を第一酸化物構造層12まで同じ基板を用いて、i層厚さを400nmとした比較例7と比較した。結果を表4に示す。
(比較例7)
 実施例10~12で作製した第一酸化物構造層12が形成されたガラス基板の4枚のうちの1枚を用い、第二酸化物層として、特許文献2(特開2005-347490号公報)に記載されているものと同様な方法で、厚さ15nmのシリカ膜を作製した。第二酸化物層の組成、物性などは表3に示す。その後、この基板上に実施例1と同様の方法で導電性酸化物層16に対応する導電膜を作製した。作製した透明導電膜基板のC光源透過率とヘイズ率はそれぞれ、88.5%、88.0%であり、特許文献2に記載されている有効なヘイズ率の範囲である90%以下の上限に近いことを確認した。実施例1と同様に測定したd線屈折率は1.45であった。作製した透明導電膜基板を切断し、その切断面をSEMで観測し、A/Aを計算したところ1.01であった。この基板を用いて実施例10~12と同様に、i層としてa-Si:H(水素をドープしたa-Si)層を400nmの厚さで作製した太陽電池セルを作製した。太陽電池セルの評価結果を表4に示す。
 表3および表4には、実施例4~12および比較例3~7で得られた第二酸化物層の組成、物性、太陽電池セルの性能評価結果等をまとめて示す。
 なお、表3中のSnSiOx、およびTiSiOxのxは、2.0~2.3を表す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 また、第二酸化物層の材料をSiとSnの酸化物とし、その上に酸化錫からなる導電膜(導電性酸化物層)を作製した場合、酸化錫のX線回折強度を測定し(200)と(110)の強度の比が1.10以上であることが、光電変換効率の観点で好ましい。
 第二酸化物層の材料をSiとSnの酸化物とした場合、光電変換効率が変わる理由は、はっきり分かっていないが、第二酸化物層上に成膜した酸化錫を例にとると下記のように考えられる。
 第二酸化物層の種類と膜厚を変え、その他の条件は同一にして、第二酸化物層の上に酸化錫を導電膜として成膜した後に、同じ条件で太陽電池を形成して、太陽電池の光電変換効率を比較した。また、実施例10~12ならびに比較例7について酸化錫まで成膜した基板の一部を切り出し、そのX線回折強度を測定し、酸化錫結晶の(200)と(110)の強度の比を比較した。結果を表5に示す。
 比較例7では、(200)/(110)の比は0.98であった。その断面SEM像を図6に示す。実施例10~12では、(200)/(110)の比は1.15~1.29であった。図5に実施例 の断面SEM像を示す。光電変換効率(実施例10~12)が良いものは、第一酸化物構造層の凸部上に第二酸化物層を介して放射状に酸化錫(導電性酸化物層)の結晶子が確認できた。すなわち、放射状に結晶子が伸びているために(200)で配向し、X線回折強度の比では(200)/(110)が1.15~1.29という(200)で配向が強いことが分かる。比較例7では第二酸化物層を介して第一酸化物構造層の上にある酸化錫の結晶子はランダムな形になっているために、X線回折強度の比は0.98と小さく、平均すると酸化錫の(200)配向は悪くなる。配向が良い酸化錫の表面は、配向が同じ結晶子でできており、比較的均一な形状になっている。この場合の表面のSEM像を図7に示す。これに対してX線回折強度の比が0.98である、配向が悪い酸化錫表面では、結晶子がランダムに配置され、その結果、最表面層の凹凸が不均一となると考えられる。不均一な凹凸の上に積層した導電性酸化物層は、実施例8および比較例5において記載したシリコン欠陥が多く発生して、その結果、光電変換効率が低下すると考えられる。
Figure JPOXMLDOC01-appb-T000005
 以上、本発明の透明導電膜基板およびこれを用いた太陽電池について詳細に説明したが、本発明は上記実施形態、実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 本発明の透明導電膜基板は、電界集中による電流のリークが発生しにくく、光電変換性能の悪化が起こりにくく、更に光の透過率が高い基板として、従来に比べて光電変換性能の向上した太陽電池を提供でき、産業上有用である。
 なお、2008年8月5日に出願された日本特許出願2008-201858号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
10 透明導電膜基板
12 第一酸化物構造層
14 第二酸化物層
16 導電性酸化物層
18 ガラス基板
20 凹の深さ
22 平均高さ
24,26 凹部の角度

Claims (11)

  1.  ガラス基板上に第一酸化物構造層、第二酸化物層および導電性酸化物層がその順に形成された光電変換デバイス用透明導電膜基板であって、
     前記第一酸化物構造層には、前記ガラス基板の面から突出した複数の凸部が設けられ、前記凸部の前記ガラス基板の面からの高さは200nm以上2000nm以下であり、
     前記複数の凸部のうち隣接した凸部間の凹の深さが、前記第一酸化物構造層の平均高さの2割以上ある凹部の角度の平均値をA1、該凹部の領域の上に形成された前記第二酸化物層の凹部の角度の平均値をA2とした時に、A2/A1が1.1以上であることを特徴とする透明導電膜基板。
  2.  前記A2/A1が1.2以上である請求項1に記載の透明導電膜基板。
  3.  C光源で測定したヘイズ率が50%以上、である請求項1または2に記載の透明導電膜基板。
  4.  C光源で測定したヘイズ率が85%以上である請求項1~3のいずれか1項に記載の透明導電膜基板。
  5.  前記第一酸化物構造層は、酸化錫で構成されている請求項1~4のいずれか1項に記載の透明導電膜基板。
  6.  前記第二酸化物層は、屈折率1.58~1.9の酸化物層で形成されている請求項1~5のいずれか1項に記載の透明導電膜基板。
  7.  前記第二酸化物層は、シリコンと錫の混合酸化物またはシリコンとチタンの混合酸化物で構成されている請求項1~6のいずれか1項に記載の透明導電膜基板。
  8.  前記第二酸化物層は、シリコンと錫の混合酸化物で構成され、該混合酸化物の錫とシリコンのモル比は、0.25:0.75~0.7:0.3である請求項7に記載の透明導電膜基板。
  9.  前記混合酸化物の錫とシリコンのモル比は、0.4:0.6~0.6:0.4である請求項8に記載の透明導電膜基板。
  10.  前記導電性酸化物層は、フッ素を含有した酸化錫で構成されている請求項1~9のいずれか1項に記載の透明導電膜基板。
  11.  請求項1~10のいずれか1項に記載の透明導電膜基板を用いて作製されたことを特徴とする太陽電池。
PCT/JP2009/063765 2008-08-05 2009-08-03 透明導電膜基板およびこの基板を用いた太陽電池 WO2010016468A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010523852A JPWO2010016468A1 (ja) 2008-08-05 2009-08-03 透明導電膜基板およびこの基板を用いた太陽電池
CN200980130556XA CN102113124A (zh) 2008-08-05 2009-08-03 透明导电膜基板及使用该基板的太阳能电池
AU2009278420A AU2009278420A1 (en) 2008-08-05 2009-08-03 Transparent conductive film substrate and solar cell using the substrate
EP09804951A EP2312642A4 (en) 2008-08-05 2009-08-03 TRANSPARENT CONDUCTIVE FILM SUBSTRATE AND SOLAR CELL USING THE SUBSTRATE
US13/020,072 US20110132442A1 (en) 2008-08-05 2011-02-03 Transparent conductive film substrate and solar cell using the substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008201858 2008-08-05
JP2008-201858 2008-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/020,072 Continuation US20110132442A1 (en) 2008-08-05 2011-02-03 Transparent conductive film substrate and solar cell using the substrate

Publications (1)

Publication Number Publication Date
WO2010016468A1 true WO2010016468A1 (ja) 2010-02-11

Family

ID=41663685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063765 WO2010016468A1 (ja) 2008-08-05 2009-08-03 透明導電膜基板およびこの基板を用いた太陽電池

Country Status (8)

Country Link
US (1) US20110132442A1 (ja)
EP (1) EP2312642A4 (ja)
JP (1) JPWO2010016468A1 (ja)
KR (1) KR20110036060A (ja)
CN (1) CN102113124A (ja)
AU (1) AU2009278420A1 (ja)
TW (1) TW201012773A (ja)
WO (1) WO2010016468A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258820A (ja) * 2010-06-10 2011-12-22 Ulvac Japan Ltd 太陽電池用透明導電性基板及びその製造方法
WO2012031102A3 (en) * 2010-09-03 2012-07-26 Corning Incorporated Thin film silicon solar cell in multi-junction configuration on textured glass
WO2012157405A1 (ja) * 2011-05-13 2012-11-22 三洋電機株式会社 光電変換装置
WO2012169602A1 (ja) * 2011-06-08 2012-12-13 旭硝子株式会社 透明導電膜付き基板
US20140000692A1 (en) * 2012-06-28 2014-01-02 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
US8663732B2 (en) 2010-02-26 2014-03-04 Corsam Technologies Llc Light scattering inorganic substrates using monolayers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201688A1 (de) * 2012-02-06 2013-08-08 Robert Bosch Gmbh Solarzelle und Verfahren zu deren Herstellung
US20140251418A1 (en) * 2013-03-07 2014-09-11 Tsmc Solar Ltd. Transparent conductive oxide layer with high-transmittance structures and methods of making the same
MY193579A (en) * 2013-11-19 2022-10-19 Agc Inc Thin film formation method and coated glass
DE102016107877B4 (de) 2016-04-28 2018-08-30 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Lichtdurchlässiger Träger für einen halbleitenden Dünnschichtaufbau sowie Verfahren zur Herstellung und Anwendung des lichtdurchlässigen Trägers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503615A (ja) 1987-05-22 1990-10-25 グラステツク・ソーラー・インコーポレーテツド 太陽電池用基板
JP2000277763A (ja) 1999-03-23 2000-10-06 Sanyo Electric Co Ltd 太陽電池及びその製造方法
WO2003017377A1 (fr) * 2001-08-10 2003-02-27 Nippon Sheet Glass Company, Limited Plaque de verre pourvue d'un film electro-conducteur
WO2003019676A1 (en) * 2001-08-23 2003-03-06 Pacific Solar Pty Limited Glass beads coating process
WO2003036657A1 (fr) * 2001-10-19 2003-05-01 Asahi Glass Company, Limited Substrat a couche d'oxyde conductrice transparente, son procede de production et element de conversion photoelectrique
JP2005347490A (ja) 2004-06-02 2005-12-15 Asahi Glass Co Ltd 透明導電性酸化物膜付き基体およびその製造方法ならびに光電変換素子
JP2006005021A (ja) 2004-06-15 2006-01-05 Nippon Sheet Glass Co Ltd 凹凸薄膜つき基板およびその製造方法
WO2006046397A1 (ja) * 2004-10-28 2006-05-04 Kaneka Corporation 薄膜光電変換装置用基板およびそれを用いた集積型薄膜光電変換装置
JP2008201858A (ja) 2007-02-19 2008-09-04 Nittetsu Mining Co Ltd 樹脂組成物及び該組成物からなる繊維、フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198169A (ja) * 1986-02-25 1987-09-01 Fuji Electric Corp Res & Dev Ltd 太陽電池
JP2000252500A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503615A (ja) 1987-05-22 1990-10-25 グラステツク・ソーラー・インコーポレーテツド 太陽電池用基板
JP2000277763A (ja) 1999-03-23 2000-10-06 Sanyo Electric Co Ltd 太陽電池及びその製造方法
WO2003017377A1 (fr) * 2001-08-10 2003-02-27 Nippon Sheet Glass Company, Limited Plaque de verre pourvue d'un film electro-conducteur
WO2003019676A1 (en) * 2001-08-23 2003-03-06 Pacific Solar Pty Limited Glass beads coating process
WO2003036657A1 (fr) * 2001-10-19 2003-05-01 Asahi Glass Company, Limited Substrat a couche d'oxyde conductrice transparente, son procede de production et element de conversion photoelectrique
JP2005347490A (ja) 2004-06-02 2005-12-15 Asahi Glass Co Ltd 透明導電性酸化物膜付き基体およびその製造方法ならびに光電変換素子
JP2006005021A (ja) 2004-06-15 2006-01-05 Nippon Sheet Glass Co Ltd 凹凸薄膜つき基板およびその製造方法
WO2006046397A1 (ja) * 2004-10-28 2006-05-04 Kaneka Corporation 薄膜光電変換装置用基板およびそれを用いた集積型薄膜光電変換装置
JP2008201858A (ja) 2007-02-19 2008-09-04 Nittetsu Mining Co Ltd 樹脂組成物及び該組成物からなる繊維、フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312642A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663732B2 (en) 2010-02-26 2014-03-04 Corsam Technologies Llc Light scattering inorganic substrates using monolayers
JP2011258820A (ja) * 2010-06-10 2011-12-22 Ulvac Japan Ltd 太陽電池用透明導電性基板及びその製造方法
WO2012031102A3 (en) * 2010-09-03 2012-07-26 Corning Incorporated Thin film silicon solar cell in multi-junction configuration on textured glass
CN103493215A (zh) * 2010-09-03 2014-01-01 康宁股份有限公司 织构化玻璃上的多结构型薄膜硅太阳能电池
WO2012157405A1 (ja) * 2011-05-13 2012-11-22 三洋電機株式会社 光電変換装置
WO2012169602A1 (ja) * 2011-06-08 2012-12-13 旭硝子株式会社 透明導電膜付き基板
US20140000692A1 (en) * 2012-06-28 2014-01-02 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
US9123838B2 (en) * 2012-06-28 2015-09-01 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
US20150325713A1 (en) * 2012-06-28 2015-11-12 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
US9935215B2 (en) * 2012-06-28 2018-04-03 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
US20180108790A1 (en) * 2012-06-28 2018-04-19 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device
US10741706B2 (en) * 2012-06-28 2020-08-11 International Business Machines Corporation Transparent conductive electrode for three dimensional photovoltaic device

Also Published As

Publication number Publication date
US20110132442A1 (en) 2011-06-09
KR20110036060A (ko) 2011-04-06
AU2009278420A1 (en) 2010-02-11
EP2312642A4 (en) 2012-01-11
CN102113124A (zh) 2011-06-29
EP2312642A1 (en) 2011-04-20
JPWO2010016468A1 (ja) 2012-01-26
TW201012773A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
WO2010016468A1 (ja) 透明導電膜基板およびこの基板を用いた太陽電池
JP5068946B2 (ja) 太陽電池用透明導電性基板およびその製造方法
JP5095776B2 (ja) 透明導電膜付き透明基体とその製造方法、およびこの基体を含む光電変換素子
WO2007058118A1 (ja) 太陽電池用透明導電性基板およびその製造方法
WO2002043080A1 (fr) Film électro-conducteur transparent, procédé de fabrication et transducteur photoélectrique comprenant ce film
WO2011013719A1 (ja) 太陽電池用透明導電性基板および太陽電池
WO2011013775A1 (ja) 太陽電池用透明導電性基板および太陽電池
WO2005027229A1 (ja) 透明導電膜付き基体およびその製造方法
JP2013211255A (ja) 透明導電性酸化物膜付き基体
JP2003229584A (ja) 光電変換装置用ガラス基板およびそれを用いた光電変換装置
JP2003221256A (ja) ガラス基板
JP2007234866A (ja) 太陽電池用透明導電性基板およびその製造方法
JP2012114205A (ja) 透明導電膜基板およびその製造方法、ならびにこの基板を用いた太陽電池
JP2012084843A (ja) 透明導電性酸化物膜付き基体、および光電変換素子
JP2012227497A (ja) 薄膜太陽電池およびその製造方法
US9688570B2 (en) Layered transparent conductive oxide thin films
JP2014038807A (ja) 透明導電性酸化物膜付き基体およびその製造方法
WO2012176817A1 (ja) 透明導電性酸化物膜付き基体
JP2013251377A (ja) 太陽電池用透明導電膜付基板
JPWO2012176899A1 (ja) 透明導電性酸化物膜付き基体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130556.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523852

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117001677

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009278420

Country of ref document: AU

Ref document number: 2009804951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 750/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009278420

Country of ref document: AU

Date of ref document: 20090803

Kind code of ref document: A