WO2012157405A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2012157405A1
WO2012157405A1 PCT/JP2012/060839 JP2012060839W WO2012157405A1 WO 2012157405 A1 WO2012157405 A1 WO 2012157405A1 JP 2012060839 W JP2012060839 W JP 2012060839W WO 2012157405 A1 WO2012157405 A1 WO 2012157405A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
region
electrode layer
photoelectric conversion
conductive region
Prior art date
Application number
PCT/JP2012/060839
Other languages
English (en)
French (fr)
Inventor
俊和 大野
茂郎 矢田
雅央 神田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013515056A priority Critical patent/JPWO2012157405A1/ja
Publication of WO2012157405A1 publication Critical patent/WO2012157405A1/ja
Priority to US13/773,285 priority patent/US20130160848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device.
  • a photoelectric conversion device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.
  • FIG. 19 is a schematic cross-sectional view of the basic configuration of the photoelectric conversion device 100.
  • the photoelectric conversion device 100 is formed by laminating a surface electrode layer 12, a photoelectric conversion unit 14, and a back electrode layer 16 on a substrate 10 such as glass.
  • the surface electrode layer 12 is made of a transparent conductive film (TCO).
  • the back electrode layer 16 often has a laminated structure of a transparent conductive film and a metal film, but there is also a structure in which a metal film is not laminated by disposing a reflective sealing member on the transparent conductive film.
  • the transparent conductive film to be the front electrode layer 12 and the back electrode layer 16 is generally formed using MOCVD or sputtering.
  • the surface electrode layer 12 in order from the substrate 10 side, a first transparent electrode layer having surface irregularities obtained by doping impurities into zinc oxide, and zinc oxide doped with impurities at a higher concentration than the first transparent electrode layer are formed.
  • the structure provided with the low resistance 2nd transparent electrode layer containing is disclosed.
  • the second transparent electrode layer is preferably formed at a deposition rate that is half or less than the deposition rate of the first transparent electrode layer (see Patent Document 1).
  • the surface electrode layer 12 is formed on the underlayer, and the surface electrode layer 12 has boron atoms of 2 ⁇ 10 19 atoms / cm 3 or more as the maximum value of the atomic concentration measured by SIMS. (B) and zinc oxide containing hydrogen (H) of 2 ⁇ 10 20 atoms / cm 3 or more, and the boron atom concentration / hydrogen atom concentration ratio varies so as to have a minimum value at a predetermined position in the thickness direction. It is disclosed that it is preferable to make it (see Patent Document 2).
  • the surface electrode layer 12 has a hydrogen (H) concentration at a predetermined position from the interface farther from the base layer than a hydrogen (H) concentration at a predetermined position from the base layer side interface, and boron at a predetermined position from the base layer side interface.
  • H hydrogen
  • H hydrogen
  • B boron
  • the characteristics of the surface electrode layer greatly affect the photoelectric conversion efficiency in the photoelectric conversion device, and in particular, the contact resistance with the photoelectric conversion unit is small, the electric conductivity is high, the light absorption rate is low, and the light scattering. There is a need for a highly effective surface electrode layer.
  • One aspect of the present invention includes a substrate, a surface electrode layer formed on the substrate, and a photoelectric conversion unit formed on the surface electrode layer, and the surface electrode layer is a transparent conductive film containing a dopant.
  • a first transparent conductor region that is configured and has a first dopant concentration and has a film thickness that is at least half of the total film thickness of the surface electrode layer; and a photoelectric conversion unit side of the first transparent conductor region; And a second transparent conductor region including a transition region in which the dopant concentration continuously increases from one transparent conductor region.
  • the present invention proposes a transparent electrode layer having a low contact resistance, a high electrical conductivity, a low light absorption rate, and a high light scattering effect, and makes it possible to improve the performance of a photoelectric conversion device provided with the transparent electrode layer.
  • FIG. 1 It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 1st Embodiment. It is a figure which shows the structure of the surface electrode layer in 1st Embodiment. It is a figure which shows the relationship between the flow volume of doping gas in 1st Embodiment, and the resistivity of a transparent conductive film. It is a figure which shows the flow volume of doping gas and the transmittance
  • the photoelectric conversion device 200 has an amorphous silicon photoelectric conversion unit having a substrate 20 as a light incident side and a wide band gap from the light incident side as a surface electrode layer 22 and a top cell ( a-Si unit) 202, intermediate layer 24, microcrystalline silicon photoelectric conversion unit ( ⁇ c-Si unit) 204 having a narrower band gap than a-Si unit 202 as a bottom cell, back electrode layer 26, filler 28 and backsheet 30. It has a laminated structure.
  • a tandem photoelectric conversion device in which an a-Si unit 202 and a ⁇ c-Si unit 204 are stacked will be described as an example of a photoelectric conversion unit that is a power generation layer.
  • the scope of application of the present invention is limited to this. It is not limited, A single type photoelectric conversion apparatus and a multilayer photoelectric conversion apparatus may be sufficient.
  • a material having transparency in at least the visible light wavelength region such as a glass substrate and a plastic substrate, can be applied.
  • a surface electrode layer 22 is formed on the substrate 20.
  • the surface electrode layer 22 is composed of a single-layer transparent conductive film.
  • the transparent conductive film was doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use a transparent conductive oxide (TCO) alone (single layer).
  • zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance.
  • the surface electrode layer 22 includes a structure in which a light scattering region 22a and a contact region 22b are stacked in this order from the substrate 20 side.
  • the light scattering region 22 a is a region provided to scatter incident light to provide a light confinement effect for the photoelectric conversion device 200 and to increase the light effect rate as the entire surface electrode layer 22.
  • the contact region 22b is located on the photoelectric conversion unit side of the light scattering region 22a, makes good electrical contact with the a-Si unit 202 that is the photoelectric conversion unit, and has high electrical conductivity as the entire surface electrode layer 22. It is an area provided for obtaining
  • the light scattering region 22a and the contact region 22b can be formed by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the light scattering region 22a and the contact region 22b are made of zinc oxide (ZnO)
  • DEZ: (C 2 H 5 ) 2 Zn diethyl zinc
  • LP-MOCVD vapor deposition
  • Dimethyl zinc may be used as the zinc source gas.
  • Diborane (B 2 H 6 ) can be used as the doping gas. Under the conditions of a substrate temperature of 150 ° C.
  • the total film thickness of the surface electrode layer 22 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the light scattering region 22a is formed so that the dopant concentration in the film is lower than that of the contact region 22b. That is, the light scattering region 22a is formed in a state where the doping gas is reduced as compared with the contact region 22b.
  • the light scattering region 22a and the contact region 22b can be formed under the film formation conditions shown in Table 1. It is preferable to continuously form the light scattering region 22a and the contact region 22b as a single-layer transparent conductive film. In particular, the flow rate of the doping gas is switched in the vicinity of the boundary between the light scattering region 22a and the contact region 22b so that the crystal size of the light scattering region 22a serving as a base during film formation is inherited and the particle size of the contact region 22b is increased.
  • the contact region 22b is configured to include a transition region X in which the dopant concentration continuously increases in the film thickness direction from the light scattering region 22a side.
  • the transition region X will be described later.
  • the surface electrode layer 22 is patterned into a strip shape.
  • the surface electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • an a-Si unit 202 is formed by sequentially laminating a p-type layer, an i-type layer, and an n-type silicon thin film.
  • the a-Si unit 202 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) Plasma chemical vapor deposition in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a diluent gas such as phosphine (PH 3 ) and a diluent gas such as hydrogen (H 2 ) is formed into a plasma. It can be formed by the method (CVD method).
  • an RF plasma CVD method of 13.56 MHz is preferably applied.
  • the RF plasma CVD method can be a parallel plate type. It is good also as a structure which provided the gas shower hole for supplying the mixed gas of a raw material in the side which does not distribute
  • Input power density of the plasma is preferably set to 5 mW / cm 2 or more 300 mW / cm 2 or less.
  • the p-type layer has a single layer or a laminated structure such as an amorphous silicon layer, a microcrystalline silicon thin film, or a microcrystalline silicon carbide thin film having a thickness of 5 nm to 50 nm to which a p-type dopant (boron or the like) is added.
  • the film quality of the p-type layer can be changed by adjusting the mixing ratio of the silicon-containing gas, the p-type dopant-containing gas and the dilution gas, the pressure, and the high frequency power for plasma generation.
  • the i-type layer is an amorphous silicon film with a film thickness of 50 nm to 500 nm that is not added with a dopant formed on the p-type layer.
  • the film quality of the i-type layer can be changed by adjusting the mixing ratio of the silicon-containing gas and the dilution gas, the pressure, and the high frequency power for plasma generation.
  • the i-type layer becomes a power generation layer of the a-Si unit 202.
  • the n-type layer is an n-type microcrystalline silicon layer (n-type ⁇ c-Si: H) having a thickness of 10 nm to 100 nm to which an n-type dopant (phosphorus or the like) formed on the i-type layer is added.
  • the film quality of the n-type layer can be changed by adjusting the mixing ratio of the silicon-containing gas, the carbon-containing gas, the n-type dopant-containing gas and the dilution gas, the pressure, and the high-frequency power for plasma generation.
  • the a-Si unit 202 can be deposited under the deposition conditions shown in Table 2.
  • the intermediate layer 24 is formed on the a-Si unit 202.
  • the intermediate layer 24 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiOx). In particular, it is preferable to use zinc oxide (ZnO) or silicon oxide (SiOx) doped with magnesium (Mg).
  • TCO transparent conductive oxide
  • ZnO zinc oxide
  • SiOx silicon oxide
  • Mg magnesium
  • the intermediate layer 24 can be formed by, for example, sputtering.
  • the film thickness of the intermediate layer 24 is preferably in the range of 10 nm to 200 nm. The intermediate layer 24 may not be provided.
  • the ⁇ c-Si unit 204 is formed by sequentially stacking a p-type layer, an i-type layer, and an n-type layer.
  • the ⁇ c-Si unit 204 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) formed by a plasma CVD method in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a diluted gas such as phosphine (PH 3 ) and hydrogen (H 2 ) is formed into a plasma. can do.
  • silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), dibor
  • the plasma CVD method it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-Si unit 202.
  • the RF plasma CVD method can be a parallel plate type. It is good also as a structure which provided the gas shower hole for supplying the mixed gas of a raw material in the side which does not distribute
  • Input power density of the plasma is preferably set to 5 mW / cm 2 or more 300 mW / cm 2 or less.
  • the p-type layer is a microcrystalline silicon layer ( ⁇ c-Si: H) to which a p-type dopant (boron or the like) having a thickness of 5 nm to 50 nm is added.
  • a p-type dopant boron or the like
  • the film quality of the p-type layer can be changed by adjusting the mixing ratio of the silicon-containing gas, the p-type dopant-containing gas and the dilution gas, the pressure, and the high frequency power for plasma generation.
  • the i-type layer is a microcrystalline silicon layer ( ⁇ c-Si: H) formed on the p-type layer to which a dopant having a thickness of 0.5 ⁇ m to 5 ⁇ m is not added.
  • the film quality of the i-type layer can be changed by adjusting the mixing ratio of the silicon-containing gas and the dilution gas, the pressure, and the high frequency power for plasma generation.
  • the n-type layer is formed by laminating a microcrystalline silicon layer (n-type ⁇ c-Si: H) to which an n-type dopant (phosphorus or the like) having a thickness of 5 nm to 50 nm is added.
  • the film quality of the n-type layer can be changed by adjusting the mixing ratio of the silicon-containing gas, the n-type dopant-containing gas and the dilution gas, the pressure, and the high frequency power for plasma generation.
  • the ⁇ c-Si unit 204 can be deposited under the deposition conditions shown in Table 3.
  • the a-Si unit 202, the intermediate layer 24, and the ⁇ c-Si unit 204 are patterned into strips.
  • a slit is formed by irradiating YAG laser at a position 50 ⁇ m lateral from the patterning position of the surface electrode layer 22, and the a-Si unit 202 and the ⁇ c-Si unit 204 are patterned into strips.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a back electrode layer 26 is formed on the ⁇ c-Si unit 204.
  • the back electrode layer 26 preferably has a laminated structure of a transparent conductive oxide (TCO) and a reflective metal.
  • TCO transparent conductive oxide
  • TCO transparent conductive oxide
  • a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), and indium tin oxide (ITO) is used.
  • a reflective metal metals, such as silver (Ag) and aluminum (Al), are used.
  • the transparent conductive oxide (TCO) and the reflective metal can be formed by sputtering, for example.
  • the back electrode layer 26 is preferably about 1 ⁇ m in total.
  • the back electrode layer 26 is preferably provided with irregularities for enhancing the light confinement effect.
  • the back electrode layer 26 is patterned into a strip shape.
  • a slit is formed by irradiating YAG laser at a position 50 ⁇ m lateral from the patterning positions of the a-Si unit 202 and the ⁇ c-Si unit 204, and the back electrode layer 26 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the back electrode layer 26 is covered with the back sheet 30 by the filler 28.
  • the filler 28 and the back sheet 30 can be made of a resin material such as EVA or polyimide. This can prevent moisture from entering the power generation layer of the photoelectric conversion device 200.
  • 3 to 5 show the relationship between the amount of dopant gas introduced in a single film of zinc oxide (ZnO) doped with boron (B) formed on a glass substrate, resistivity, light transmittance, and haze ratio.
  • ZnO zinc oxide
  • B boron
  • the film forming conditions were the same as in Table 1 except for the amount of dopant gas introduced.
  • the haze rate was used as an evaluation index of the unevenness of the transparent electrode film.
  • the haze ratio is expressed by (diffuse transmittance / total light transmittance) ⁇ 100 [%] (JIS K7136).
  • As a simple evaluation method of the haze ratio measurement with a haze meter using a D65 light source or a C light source is generally used.
  • the resistivity of the film decreases as the amount of dopant gas introduced increases.
  • the light transmittance decreases as the amount of dopant gas introduced increases, and the degree of decrease increases particularly in the wavelength region of 500 nm or more.
  • the haze ratio slightly decreases as the amount of dopant gas introduced increases.
  • the surface electrode layer 22 is formed as a light scattering region in order to obtain a high electrical resistivity, a low contact resistance with the photoelectric conversion unit, a low light absorption rate, and a high light scattering effect as the entire surface electrode layer 22.
  • a single-layer transparent conductive film including 22a and contact region 22b is formed.
  • the film thickness of the light scattering region 22a is preferably half or more of the total film thickness of the light scattering region 22a and the contact region 22b. Thereby, light absorption in the contact region 22b can be suppressed, the amount of light transmitted through the surface electrode layer 22 and introduced into the photoelectric conversion unit can be increased, and the photoelectric conversion efficiency of the photoelectric conversion device 200 can be improved. it can.
  • the haze ratio of the transparent conductive film increases as the dopant concentration is lowered. This is presumably because the growth of crystal grains during film formation is promoted to increase the grain size. That is, in the initial stage of film formation of the surface electrode layer 22 on the substrate 20, the light scattering region 22a having a dopant concentration in the film lower than that of the contact region 22b is formed, and the film is formed under the film formation conditions of the contact region 22b. Compared to the case, the particle size of the transparent conductive film can be increased. By providing the light scattering region 22a thus formed, the light incident on the photoelectric conversion device 200 is scattered and introduced into the photoelectric conversion unit, so that the light confinement effect is enhanced, and the photoelectric conversion device 200. The photoelectric conversion efficiency of can be improved.
  • the contact region 22b is formed so as to increase the grain size by taking over the crystallinity of the light scattering region 22a which is the base when the contact region 22b is formed on the light scattering region 22a.
  • the change in the dopant concentration at the boundary between the light scattering region 22a and the contact region 22b is made abrupt as in a conventional transparent conductive film in which films having different dopant concentrations are stacked, the light scattering region is formed when the contact region 22b is formed.
  • the crystallinity of 22a becomes difficult to be inherited, and the grain size of the crystal grains in the contact region 22b is reduced. Therefore, as in this embodiment, it is preferable to provide a transition region X in which the dopant concentration gradually changes in the film thickness direction in the vicinity of the boundary between the light scattering region 22a and the contact region 22b.
  • the transition region X is continuously formed in the vicinity of the boundary between the light scattering region 22a and the contact region 22b so that the dopant concentration in the contact region 22b gradually increases in the film thickness direction by switching the flow rate of the doping gas. Is done. However, the doping gas may be switched stepwise and controlled so that the doping gas concentration gradually increases. Specifically, as shown in FIG. 6, the thickness of the transition region X is preferably set to 1/20 or more of the total thickness of the light scattering region 22a and the contact region 22b. Further, if the transition region X becomes too thick, the light transmissivity is lowered. Therefore, the thickness of the transition region X is 1/10 or less of the total thickness of the light scattering region 22a and the contact region 22b.
  • the contact region 22b may include a stable region Y that is more stable than the dopant concentration than the transition region X as shown in FIG. 6, or the entire region transitions as shown in FIG. It may be region X.
  • the dopant concentration in the light scattering region 22a is stable with less change than the dopant concentration in the transition region X of the contact region 22b. That is, the gradient of the dopant concentration in the light scattering region 22a is smaller than the gradient of the transition region X, and has an inflection point of the dopant concentration at the boundary. Further, the dopant concentration in the stable region Y of the contact region 22b is stable with less change than the dopant concentration in the transition region X of the contact region 22b. That is, the slope of the dopant concentration in the light scattering region 22a is smaller than the transition slope of the transition region X, and has an inflection point of the dopant concentration at the boundary.
  • the dopant concentration in the surface electrode layer 22 can be measured by secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectroscopy).
  • SIMS Secondary Ion Mass Spectroscopy
  • the light scattering region 22a and the contact region 22b are formed on the glass substrate, the total film thickness is 2.0 ⁇ m, and the ratio of the respective film thicknesses is 1: 1 and In the case of 1: 3, the haze ratio and the total transmittance were measured. Further, the light scattering region 22a was not formed, and only the contact region 22b was formed with a thickness of 2.0 ⁇ m as a comparative example.
  • the haze ratio was almost constant at any film thickness ratio, and there was no difference from the comparative example.
  • the total transmittance increased as the film thickness of the light scattering region 22a was increased.
  • Table 4 shows the characteristics of the photoelectric conversion device 200 formed under the film forming conditions of the above embodiment.
  • the surface electrode layer 22 is formed under the film formation conditions shown in Table 1, and the ratio of the film thickness of the light scattering region 22a to the contact region 22b is 1: 1, 2: 1 and 3: 1.
  • Comparative Example 1 and Comparative Example 2 only the contact region 22b and only the light scattering region 22a are used, respectively.
  • the total thickness of the surface electrode layer 22 was 2 ⁇ m, and the transition region X was in the range of 1/20 to 1/10 of the total thickness.
  • values normalized by setting the measured value of Comparative Example 2 to 1 are shown.
  • the open circuit voltage was high in any of Examples 1 to 3, and the short circuit current was low in Example 1, but was unchanged in Examples 2 and 3, and the fill factor (FF) was the same as in Example 1.
  • the efficiency was high, and the efficiency was high in any of Examples 1 to 3.
  • the reason why the efficiency is most improved in Example 2 is that when the light scattering region 22a is thinned, the short-circuit current is reduced as the light scattering effect is reduced and the light absorption is increased, and when the contact region 22b is thinned, the surface electrode layer 22 is thinned. It is presumed that the fill factor decreases with increasing resistance and contact resistance with the photoelectric conversion unit.
  • the photovoltaic device 206 includes an amorphous silicon photoelectric substrate having a substrate 20 as a light incident side and a wide band gap as a surface electrode layer 40 and a top cell from the light incident side.
  • the sheet 30 has a stacked structure.
  • a surface electrode layer 40 is formed on the substrate 20.
  • the surface electrode layer 40 is composed of a single-layer transparent conductive film.
  • the transparent conductive film can be formed by the same material and film forming method as those for the surface electrode layer 22.
  • the surface electrode layer 40 includes a configuration in which the first transparent conductive region 40a, the second transparent conductive region 40b, and the third transparent conductive region 40c are stacked in this order from the substrate 20 side. .
  • the first transparent conductive region 40 a is provided in order to increase the overall conductivity in the surface electrode layer 40.
  • the second transparent conductive region 40b is provided to enlarge the crystal grains in the surface electrode layer 40 and improve the light scattering effect by increasing the unevenness of the texture structure.
  • the third transparent conductive region 40c is provided to reduce electrical contact resistance with a layer (a-Si unit 202) formed on the surface electrode layer 40.
  • FIG. 11 shows changes in the dopant concentration in the film thickness direction in the surface electrode layer 40.
  • the n-type dopant concentration in the film of the second transparent conductive region 40b is preferably 1 ⁇ 2 or less of the n-type dopant concentration of the first transparent conductive region 40a.
  • the second transparent conductive region 40b may be a region where no n-type dopant is introduced.
  • the n-type dopant concentration of the third transparent conductive region 40c is twice or more that of the first transparent conductive region 40a.
  • the dopant concentration of the first transparent conductive region 40a is preferably 1 ⁇ 10 20 / cm 3 or more and 5 ⁇ 10 20 / cm 3 or less.
  • the n-type dopant concentration in the film of the second transparent conductive region 40b 1 ⁇ 2 or less of the n-type dopant concentration of the first transparent conductive region 40a By making the n-type dopant concentration in the film of the second transparent conductive region 40b 1 ⁇ 2 or less of the n-type dopant concentration of the first transparent conductive region 40a, the growth of crystal grains in the second transparent conductive region 40b is promoted. In addition, the light scattering effect due to the increase in the unevenness of the texture structure can be improved. Further, the n-type dopant concentration of the third transparent conductive region 40c is set to be twice or more that of the first transparent conductive region 40a, whereby the surface electrode layer 40 and a layer formed on the surface electrode layer 40 (a-Si unit). 202) can be improved.
  • first transition region 40d in which the dopant concentration is continuously or intermittently reduced at the interface between the first transparent conductive region 40a and the second transparent conductive region 40b.
  • second transition region 40e in which the dopant concentration is increased continuously or intermittently at the interface between the second transparent conductive region 40b and the third transparent conductive region 40c. It is considered that the first transition region 40d can improve the adhesion between the first transparent conductive region 40a and the second transparent conductive region 40b serving as a base and reduce the contact resistance at the interface.
  • the second transition region 40e inherits the crystallinity and the like of the second transparent conductive region 40b serving as a base to the third transparent conductive region 40c, and improves the light scattering characteristics of the texture structure of the third transparent conductive region 40c. It is considered possible.
  • the first transparent conductive region 40a After forming the first transparent conductive region 40a while introducing a doping gas so that the dopant concentration is 1 ⁇ 10 20 / cm 3 or more and 5 ⁇ 10 20 / cm 3 , 1 / of the first transparent conductive region 40a is formed.
  • the second transparent conductive region 40b is formed by reducing the doping gas so that the dopant concentration is 2 or less.
  • the third transparent conductive region 40c is formed by increasing the doping gas so that the dopant concentration is twice or more the dopant concentration of the first transparent conductive region 40a.
  • the first transition region 40d and the second transition region 40e can be formed by continuously or intermittently changing the amount of doping gas introduced during film formation.
  • the dopant concentration in the surface electrode layer 40 can be measured by secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectroscopy).
  • SIMS Secondary Ion Mass Spectroscopy
  • the total film thickness of the surface electrode layer 40 is about 1.7 ⁇ m.
  • the film thickness of the first transition region 40d and the second transition region 40e is preferably 5% or more and 10% or less of the entire film thickness of the surface electrode layer 40. If the film thickness of the first transition region 40d and the second transition region 40e is thin, it is difficult to obtain the effect of improving adhesion and the inheritance effect of crystallinity. If the film thickness is large, the translucency decreases due to the increase of the film thickness. Connected.
  • the film thickness of the first transparent conductive region 40a is 800 nm
  • the film thickness of the second transparent conductive region 40b is 600 nm
  • the film thickness of the third transparent conductive region 40c is 100 nm.
  • those film thickness shall be 100 nm.
  • Table 5 Examples of film formation conditions for the surface electrode layer 40 are summarized in Table 5.
  • Table 5 the dopant concentration ratio normalized by setting the dopant concentration of the second transparent conductive region 40b to 1 is shown.
  • the surface electrode layer 40 is patterned into a strip shape.
  • the surface electrode layer 40 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • a p-type layer, an i-type layer, and an n-type silicon thin film are sequentially laminated to form an a-Si unit 202.
  • the intermediate layer 24 is formed on the a-Si unit 202.
  • the ⁇ c-Si unit 204 is formed on the intermediate layer 24 by sequentially stacking a p-type layer, an i-type layer, and an n-type layer. Since these forming methods are the same as those in the first embodiment, description thereof is omitted.
  • the a-Si unit 202, the intermediate layer 24, and the ⁇ c-Si unit 204 are patterned into strips.
  • a slit is formed by irradiating YAG laser at a position 50 ⁇ m lateral from the patterning position of the surface electrode layer 40, and the a-Si unit 202 and the ⁇ c-Si unit 204 are patterned into strips.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • the back electrode layer 26 is formed on the ⁇ c-Si unit 204. Since the method for forming the back electrode layer 26 is the same as that in the first embodiment, the description thereof is omitted. Further, the back electrode layer 26 is covered with the back sheet 30 by the filler 28.
  • the filler 28 and the back sheet 30 can be made of a resin material such as EVA or polyimide. This can prevent moisture from entering the power generation layer of the photovoltaic device 206.
  • Example 4 and Comparative Examples 3 and 4 in which the surface electrode layer 40 is formed as a single film on the substrate 20 under the film formation conditions shown in Table 6, the surface electrode layer 40 is the first.
  • the effect of forming a transparent conductive layer including the transparent conductive region 40a, the second transparent conductive region 40b, and the third transparent conductive region 40c will be described.
  • the dopant concentration ratio of the first transparent conductive region 40a, the second transparent conductive region 40b, and the third transparent conductive region 40c was 1: 0: 2.4.
  • the film formation order and film thickness ratio in each region are as shown in Table 7.
  • the first transition region 40d and the second transition region 40e are 5% or more and 10% or less of the total film thickness of the surface electrode layer 40, respectively, and the film thicknesses thereof are the first transparent conductive region 40a and the second transparent conductive layer. It is shown as being included in the region 40b and the third transparent conductive region 40c.
  • Table 8 shows the measurement results of sheet resistance, resistivity, and haze ratio for Example 4 and Comparative Examples 3 and 4.
  • the haze rate was used as an evaluation index of the unevenness of the transparent electrode film.
  • the haze ratio is expressed by (diffuse transmittance / total light transmittance) ⁇ 100 [%] (JIS K7136).
  • As a simple evaluation method of the haze ratio measurement with a haze meter using a D65 light source or a C light source is generally used.
  • Example 4 Compared with Comparative Example 3, the sheet resistance and resistivity were higher in Example 4.
  • the second transparent conductive region 40b having a lower dopant concentration than that of the first transparent conductive region 40a is included, whereas in the comparative example 3, the second transparent conductive region 40b having a low dopant concentration is not included. Because.
  • Example 4 On the other hand, the haze ratio was higher in Example 4 than in Comparative Example 3. The lower the dopant concentration, the higher the haze ratio of the transparent conductive film. This is presumably because the growth of crystal grains during film formation is promoted and the grain size increases. That is, in Example 4, by sandwiching the second transparent conductive region 40b, the crystal grains in the surface electrode layer 40 become larger than in Comparative Example 3, and the influence of the texture structure on the surface of the surface electrode layer 40 due to the influence thereof Seems to have grown.
  • Example 4 the crystal grains grow large by the second transparent conductive region 40b having a low dopant concentration at the initial stage of film formation of the surface electrode layer 40, but crystals are formed by the first transparent conductive region 40a formed thereafter. This is presumably because the growth of grains is eased.
  • Example 4 it is presumed that the crystal grains are further expanded by the second transparent conductive region 40b after a certain degree of crystal growth proceeds by the first transparent conductive region 40a.
  • the first transparent conductive region 40a is provided by providing the first transition region 40d in which the dopant concentration gradually changes in the film thickness direction.
  • the second transparent conductive region 40b are improved in adhesion.
  • the film thickness of the first transition region 40d is 5% or more and 10% of the entire film thickness of the surface electrode layer 40. The following is preferable.
  • the crystal grains of the second transparent conductive region 40b which is the base when the third transparent conductive region 40c is formed on the second transparent conductive region 40b, are inherited. It is thought to grow. That is, when the change in the dopant concentration at the boundary between the second transparent conductive region 40b and the third transparent conductive region 40c is abrupt when the films having different dopant concentrations are stacked, the third transparent conductive region 40c is formed at the time of deposition. The crystallinity of the second transparent conductive region 40b is hardly inherited, and the crystal grain size of the third transparent conductive region 40c is reduced.
  • the second transition region 40e in which the dopant concentration gradually changes in the film thickness direction in the vicinity of the boundary between the second transparent conductive region 40b and the third transparent conductive region 40c.
  • corrugation of the texture structure of the 3rd transparent conductive area 40c becomes large, and it is thought that a light-scattering characteristic is improved.
  • the thickness of the second transition region 40e becomes too thick, the light transmissivity is lowered. Therefore, the thickness of the second transition region 40e is 5% or more and 10% of the entire thickness of the surface electrode layer 40. The following is preferable.
  • Example 4 the haze ratio is increased, and the light incident on the photovoltaic device 206 is scattered and introduced into the photoelectric conversion unit, so that the light confinement effect is enhanced and the photovoltaic device 206 has a photoelectric effect. Conversion efficiency can be improved.
  • FIG. 12 shows the transmittance for the wavelengths of Example 4 and Comparative Examples 3 and 4. As shown in FIG. 12, Example 4 showed a higher transmittance in the wavelength region longer than 650 nm as compared with Comparative Example 3. Moreover, Example 4 showed the comparable transmittance
  • FIG. 12 shows the transmittance for the wavelengths of Example 4 and Comparative Examples 3 and 4. As shown in FIG. 12, Example 4 showed a higher transmittance in the wavelength region longer than 650 nm as compared with Comparative Example 3. Moreover, Example 4 showed the comparable transmittance
  • Example 4 In a transparent conductive film, the transmittance of long wavelength light decreases as the dopant concentration increases. Therefore, in Comparative Example 3, since the second transparent conductive region 40b having a low dopant concentration is not included, it is presumed that the transmittance is lower than that in Example 4 and Comparative Example 4. On the other hand, in Example 4 and Comparative Example 4, since the film thicknesses of the first transparent conductive region 40a and the second transparent conductive region 40b are equal and only the film formation order is different, the transmittance is substantially equal. Inferred.
  • the photovoltaic device 208 has a substrate 20 as a light incident side, an amorphous silicon photoelectric semiconductor having a wide band gap as a surface electrode layer 42 and a top cell from the light incident side.
  • the sheet 30 has a stacked structure.
  • a surface electrode layer 42 is formed on the substrate 20.
  • the surface electrode layer 42 is composed of a single-layer transparent conductive film.
  • the transparent conductive film can be formed by the same material and film forming method as those for the surface electrode layers 22 and 40.
  • the surface electrode layer 42 includes a configuration in which a first transparent conductive region 42a, a second transparent conductive region 42b, and a third transparent conductive region 42c are stacked in this order from the substrate 20 side. .
  • the first transparent conductive region 42 a is provided in order to increase the overall conductivity in the surface electrode layer 42.
  • the second transparent conductive region 42b is provided to enlarge the crystal grains in the surface electrode layer 42 and improve the light scattering effect by increasing the unevenness of the texture structure.
  • the third transparent conductive region 42c is provided in order to reduce electrical contact resistance with a layer (a-Si unit 202) formed on the surface electrode layer 42.
  • FIG. 15 shows changes in the dopant concentration in the film thickness direction in the surface electrode layer 42.
  • the n-type dopant concentration in the film of the second transparent conductive region 42b is preferably 1 ⁇ 2 or less of the n-type dopant concentration of the first transparent conductive region 42a.
  • the second transparent conductive region 42b may be a non-doped region where no n-type dopant is introduced.
  • the non-doped region means a region having a doping concentration measured by secondary ion mass spectrometry (SIMS) and less than 1 ⁇ 10 19 / cm 3 .
  • SIMS secondary ion mass spectrometry
  • the n-type dopant concentration of the third transparent conductive region 42c is twice or more that of the first transparent conductive region 42a.
  • the dopant concentration of the first transparent conductive region 42a is preferably 1 ⁇ 10 20 / cm 3 or less.
  • the n-type dopant concentration in the film of the second transparent conductive region 42b 1 ⁇ 2 or less of the n-type dopant concentration of the first transparent conductive region 42a By making the n-type dopant concentration in the film of the second transparent conductive region 42b 1 ⁇ 2 or less of the n-type dopant concentration of the first transparent conductive region 42a, the growth of crystal grains in the second transparent conductive region 42b is promoted. In addition, the light scattering effect due to the increase in the unevenness of the texture structure can be improved.
  • the n-type dopant concentration of the third transparent conductive region 42c is set to be twice or more that of the first transparent conductive region 42a, whereby the surface electrode layer 42 and a layer formed on the surface electrode layer 42 (a-Si unit). 202) can be improved. If the electrical contact resistance with the layer (a-Si unit 202) formed on the surface electrode layer 42 can be sufficiently reduced, the third transparent conductive region 42c is not necessarily provided.
  • first transition region 42d in which the dopant concentration is continuously or intermittently reduced at the interface between the first transparent conductive region 42a and the second transparent conductive region 42b.
  • second transition region 42e in which the dopant concentration is increased continuously or intermittently at the interface between the second transparent conductive region 42b and the third transparent conductive region 42c. It is considered that the first transition region 42d can improve the adhesion between the first transparent conductive region 42a and the second transparent conductive region 42b serving as a base and reduce the contact resistance at the interface.
  • the second transition region 42e allows the third transparent conductive region 42c to inherit the crystallinity and the like of the second transparent conductive region 42b serving as a base, and enhances the light scattering characteristics of the texture structure of the third transparent conductive region 42c. It is considered possible.
  • the dopant concentration is 1 ⁇ 2 or less of the first transparent conductive region 42a.
  • the second transparent conductive region 42b is formed by reducing the doping gas.
  • the third transparent conductive region 42c is formed by increasing the doping gas so that the dopant concentration of the first transparent conductive region 42a is twice or more.
  • the first transition region 42d and the second transition region 42e can be formed by continuously or intermittently changing the amount of doping gas introduced during film formation.
  • the third transparent conductive region 42c is not provided, it is not necessary to provide the second transition region 42e.
  • the dopant concentration in the surface electrode layer 42 can be measured by secondary ion mass spectrometry (SIMS): Secondary Ion Mass Spectroscopy. At this time, in order to avoid the influence of the unevenness of the crystal grains of the film, it is preferable to perform the measurement from the substrate 20 side.
  • SIMS secondary ion mass spectrometry
  • FIG. 16 shows the change in the haze ratio of the film with respect to the film thickness when the surface electrode layer 42 is formed as a single film on the substrate 10.
  • the actual measurement of the haze ratio of the film with respect to the film thickness is indicated by a symbol ( ⁇ ), and the approximate curve thereof is indicated by a solid line.
  • the haze ratio does not increase until the film thickness reaches about 500 nm, and when it exceeds 500 nm, the haze ratio gradually increases.
  • the increase rate of the haze ratio is closer to the line A, and as the dopant concentration of the surface electrode layer 42 is higher, the increase rate of the haze ratio is closer to the line B. That is, as the dopant concentration of the surface electrode layer 42 is lower, the rate of increase in the haze rate after exceeding 500 nm increases.
  • the second transparent conductive region 42b after forming the first transparent conductive region 42a until the film thickness becomes 500 nm or more.
  • the conductivity of the entire surface electrode layer 42 can be increased.
  • the rate of increase of the haze ratio with respect to the film thickness can be increased. For example, as shown in FIG.
  • the film formation of the first transparent conductive region 42a is performed up to a point C at which the film thickness is 500 nm or more, and then the film formation is switched to the film formation of the second transparent conductive region 42b to increase the haze rate.
  • the surface electrode is obtained by laminating the second transparent conductive region 42b while ensuring the conductivity of the entire surface electrode layer 42 in the first transparent conductive region 42a up to 500 nm where the haze ratio does not change regardless of the dopant concentration.
  • a high haze ratio can be obtained with a thin film thickness as a whole of the layer 42.
  • the thickness of the first transparent conductive region 42a is preferably 2000 nm or less. If the film thickness of the first transparent conductive region 42a is unnecessarily increased, the amount of light absorbed in the first transparent conductive region 42a increases, leading to a reduction in efficiency in the photovoltaic device 100.
  • the film thickness of the first transition region 42d and the second transition region 42e is preferably 5% to 10% of the total film thickness of the surface electrode layer 42. If the film thickness of the first transition region 42d and the second transition region 42e is thin, it is difficult to obtain the effect of improving adhesion and the inheritance effect of crystallinity. If the film thickness is large, the translucency decreases due to the increase of the film thickness. Connected.
  • the film thickness of the first transparent conductive region 42a is 1300 nm
  • the film thickness of the second transparent conductive region 42b is 350 nm
  • the film thickness of the third transparent conductive region 42c is 30 nm.
  • the film thickness thereof is preferably 200 nm.
  • the haze ratio exceeded 44 as shown as Sample 2 in FIG.
  • the second transparent conductive region 42b is first formed with a film thickness of 350 nm
  • the first transparent conductive region 42a is formed with a film thickness of 1300 nm
  • the film thickness of the third transparent conductive region 42c is 30 nm.
  • the haze ratio remained at about 39 as shown as Sample 1 in FIG.
  • the surface electrode layer 42 is patterned into a strip shape.
  • the surface electrode layer 42 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • an a-Si unit 202 is formed by sequentially laminating a p-type layer, an i-type layer, and an n-type silicon thin film. Further, the intermediate layer 24 is formed on the a-Si unit 202. Further, the ⁇ c-Si unit 204 is formed on the intermediate layer 24 by sequentially stacking a p-type layer, an i-type layer, and an n-type layer. Since these forming methods are the same as those in the first embodiment, description thereof is omitted.
  • the a-Si unit 202, the intermediate layer 24, and the ⁇ c-Si unit 204 are patterned into strips.
  • a slit is formed by irradiating YAG laser at a position 50 ⁇ m lateral from the patterning position of the surface electrode layer 42, and the a-Si unit 202 and the ⁇ c-Si unit 204 are patterned into strips.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • the back electrode layer 26 is formed on the ⁇ c-Si unit 204. Since the method for forming the back electrode layer 26 is the same as in the first and second embodiments, the description thereof is omitted. Further, the back electrode layer 26 is covered with the back sheet 30 by the filler 28.
  • the filler 28 and the back sheet 30 can be made of a resin material such as EVA or polyimide. This can prevent moisture from entering the power generation layer of the photovoltaic device 208.
  • a transparent electrode film having a low contact resistance, a high electrical conductivity, a low light absorption rate, and a high light scattering effect is realized and applied to the surface electrode layer.
  • the performance of the photoelectric conversion device can be improved.
  • One aspect of the present invention includes a substrate, a transparent conductive layer formed on the substrate, and a photoelectric conversion unit formed on the transparent conductive layer, and the transparent conductive layer is formed on the substrate.
  • a first transparent conductive region formed and having a first boron concentration, and a second boron concentration that is located closer to the photoelectric conversion unit than the first transparent conductive region and has a second boron concentration that is 1 ⁇ 2 or less of the first boron concentration.
  • Another embodiment includes a substrate, a transparent conductive layer formed on the substrate, and a photoelectric conversion unit formed on the transparent conductive layer, and the transparent conductive layer is formed on the substrate.
  • a first transparent conductive region having a first boron concentration and a second boron concentration having a second boron concentration of 1 ⁇ 2 or less of the first boron concentration at a position 500 nm or more away from the substrate toward the photoelectric conversion unit.
  • a photoelectric conversion device including a transparent conductive region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 基板20と、基板20上に形成された表面電極層22と、表面電極層22上に形成された光電変換ユニットであるa-Siユニット202及びμ-Siユニット204と、を備え、表面電極層22は、ドーパントを含む透明導電膜で構成され、第1のドーパント濃度であり、表面電極層22の全膜厚の半分以上の膜厚を有する光散乱領域22aと、光散乱領域22aの光電変換ユニット側に位置し、光散乱領域22aからドーパント濃度が連続して増加する遷移領域Xを含むコンタクト領域22bと、を有する光電変換装置とする。

Description

光電変換装置
 本発明は、光電変換装置に関する。
 太陽光を利用した発電システムとして、アモルファスや微結晶等の半導体薄膜を積層した光電変換装置が用いられている。
 図19に、光電変換装置100の基本構成の断面模式図を示す。光電変換装置100は、ガラス等の基板10上に表面電極層12、光電変換ユニット14及び裏面電極層16を積層して形成される。基板10を透明基板として基板10側から光を入射させる場合、表面電極層12は透明導電膜(TCO)で構成される。また、裏面電極層16は、透明導電膜と金属膜との積層構造とされることが多いが、透明導電膜上に反射性の封止部材を配置することによって金属膜を積層しない構造もみられる。表面電極層12及び裏面電極層16となる透明導電膜は、一般的に、MOCVD法やスパッタリング法を用いて形成される。
 ここで、表面電極層12として、基板10側から順に、酸化亜鉛に不純物をドープした表面凹凸を有する第1透明電極層と、第1透明電極層よりも高濃度で不純物をドープした酸化亜鉛を含む低抵抗第2透明電極層とを備える構成が開示されている。このとき、第2透明電極層を第1透明電極層の堆積速度よりも半分以下の堆積速度で形成することが好ましいとされている(特許文献1参照)。
 ここで、表面電極層12を下地層の上に形成した光起電力装置であって、表面電極層12が各々SIMSで測定した原子濃度の最大値として2×1019個/cm以上のボロン(B)、及び2×1020個/cm以上の水素(H)を含む酸化亜鉛からなり、ボロン原子濃度/水素原子濃度の比が厚さ方向の所定位置において極小値を有するように変動させることが好ましいことが開示されている(特許文献2参照)。
 また、表面電極層12は下地層側界面から所定位置の水素(H)濃度より下地層から遠い側の界面から所定位置の水素(H)濃度が低く、かつ下地層側界面から所定位置のボロン(B)濃度より下地層から遠い側の界面から所定位置のボロン(B)濃度を低くすることが好ましいことが開示されている(特許文献3参照)。
特開2008-277387号公報 特開2007-288043号公報 特開2009-111183号公報
 しかしながら、表面電極層の特性は光電変換装置における光電変換効率に大きく影響を及ぼすものであり、特に光電変換ユニットとのコンタクト抵抗が小さく、電気伝導率が高く、光の吸収率が低く、光散乱効果が高い表面電極層とすることが必要とされている。
 本発明の1つの態様は、基板と、基板上に形成された表面電極層と、表面電極層上に形成された光電変換ユニットと、を備え、表面電極層は、ドーパントを含む透明導電膜で構成され、第1のドーパント濃度であり、表面電極層の全膜厚の半分以上の膜厚を有する第1透明導電体領域と、第1透明導電体領域の光電変換ユニット側に位置し、第1透明導電体領域からドーパント濃度が連続して増加する遷移領域を含む第2透明導電体領域と、を有する、光電変換装置である。
 本発明は、低コンタクト抵抗、高電気伝導率、低光吸収率、高光散乱効果を有する透明電極層を提案し、これを備えた光電変換装置の性能の向上を可能とする。
第1の実施の形態における光電変換装置の構造を示す断面図である。 第1の実施の形態における表面電極層の構造を示す図である。 第1の実施の形態におけるドーピングガスの流量と透明導電膜の抵抗率との関係を示す図である。 第1の実施の形態におけるドーピングガスの流量と透明導電膜の透過率を示す図である。 第1の実施の形態におけるドーピングガスの流量と透明導電膜のヘイズ率との関係を示す図である。 第1の実施の形態における表面電極層の構造及びドーパント濃度を示す図である。 第1の実施の形態における表面電極層の構造及びドーパント濃度を示す図である。 第1の実施の形態における光散乱領域及び導電領域の透過率を示す図である。 第2の実施の形態における光起電力装置の構造を示す断面図である。 第2の実施の形態における表面電極層の構造を示す図である。 第2の実施の形態における表面電極層の構造及びドーパント濃度を示す図である。 第2の実施の形態における表面電極層の透過率を示す図である。 第3の実施の形態における光起電力装置の構造を示す断面図である。 第3の実施の形態における表面電極層の構造を示す図である。 第3の実施の形態における表面電極層の構造及びドーパント濃度を示す図である。 第3の実施の形態における表面電極層の膜厚とヘイズ率の増加との関係を示すグラフである。 第3の実施の形態における第1透明導電領域と第2透明導電領域との組み合わせによるヘイズ率の変化を示すグラフである。 第3の実施の形態における表面電極層のヘイズ率の向上効果を示す図である。 従来の光起電力装置の構造を示す断面図である。
<第1の実施の形態>
 本実施の形態における光電変換装置200は、図1に示すように、基板20を光入射側として、光入射側から、表面電極層22、トップセルとして広いバンドギャップを有するアモルファスシリコン光電変換ユニット(a-Siユニット)202、中間層24、ボトムセルとしてa-Siユニット202よりバンドギャップの狭い微結晶シリコン光電変換ユニット(μc-Siユニット)204、裏面電極層26、充填材28及びバックシート30を積層した構造を有している。
 本実施の形態では、発電層である光電変換ユニットとして、a-Siユニット202及びμc-Siユニット204を積層したタンデム型光電変換装置を例に説明を行うが、本発明の適用範囲はこれに限定されるものではなく、シングル型光電変換装置やさらに多層の光電変換装置であってもよい。
 基板20は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用することができる。
 基板20上に表面電極層22が形成される。表面電極層22は、単層の透明導電膜で構成される。透明導電膜は、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)を単体(単一層)で用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。
 本実施の形態では、図2に示すように、表面電極層22は、基板20側から順に光散乱領域22a及びコンタクト領域22bを積層した構成を含む。光散乱領域22aは、入射される光を散乱させて光電変換装置200に対して光閉じ込め効果を奏すると共に、表面電極層22全体として光の効果率を高めるために設けられる領域である。コンタクト領域22bは、光散乱領域22aの光電変換ユニット側に位置し、光電変換ユニットであるa-Siユニット202との電気的な接触を良好にすると共に、表面電極層22全体として高い電気伝導率を得るために設けられる領域である。
 光散乱領域22a及びコンタクト領域22bは、化学気相成長法(CVD)で形成することができる。例えば、光散乱領域22a及びコンタクト領域22bを酸化亜鉛(ZnO)とする場合、ジエチル亜鉛(DEZ:(CZn)、水及びドーピングガスを混合した原料ガスを用いた低圧有機金属気相成長法(LP-MOCVD)で形成することができる。亜鉛の原料ガスは、ジメチル亜鉛を用いてもよい。ドーピングガスとしてはジボラン(B)を用いることができる。基板温度は150℃以上、圧力は0.1mbar以上10mbar以下の条件下において、DEZ及び水を加熱蒸発、バブリング、噴霧等により気化させてから供給しつつ、ドーピングガスを導入する。表面電極層22の全膜厚は、1μm以上5μm以下とすることが好適である。
 光散乱領域22aは、コンタクト領域22bよりも膜中のドーパント濃度が低くなるように形成される。すなわち、光散乱領域22aは、コンタクト領域22bよりもドーピングガスを減らした状態で成膜される。例えば、光散乱領域22a及びコンタクト領域22bは、表1に示す成膜条件で成膜することができる。光散乱領域22aとコンタクト領域22bとを単層の透明導電膜として連続成膜することが好適である。特に、成膜時に下地となる光散乱領域22aの結晶性を引き継いでコンタクト領域22bの粒経が大きくなるように、光散乱領域22aとコンタクト領域22bとの境界近傍において、ドーピングガスの流量を切り替えることによって連続的な成膜条件として、コンタクト領域22b内のドーパント濃度が膜厚方向に緩やかに増加するように成膜することが好適である。具体的には、コンタクト領域22bは、光散乱領域22a側から、ドーパント濃度が膜厚方向に向けて連続的に増加する遷移領域Xを含むように構成される。遷移領域Xについては後述する。
Figure JPOXMLDOC01-appb-T000001
 光電変換装置200を複数のセルを直列に接続した構成とする場合、表面電極層22を短冊状にパターニングする。例えば、波長1064nm、エネルギー密度13J/cm、パルス周波数3kHzのYAGレーザを用いて表面電極層22を短冊状にパターニングすることができる。
 表面電極層22上に、p型層、i型層、n型層のシリコン系薄膜を順に積層してa-Siユニット202を形成する。a-Siユニット202は、シラン(SiH)、ジシラン(Si)、ジクロルシラン(SiHCl)等のシリコン含有ガス、メタン(CH)等の炭素含有ガス、ジボラン(B)等のp型ドーパント含有ガス、フォスフィン(PH)等のn型ドーパント含有ガス及び水素(H)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。
 プラズマCVD法は、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。RFプラズマCVD法は平行平板型とすることができる。平行平板型の電極のうち基板20を配しない側には原料の混合ガスを供給するためのガスシャワー孔を設けた構成としてもよい。プラズマの投入電力密度は、5mW/cm以上300mW/cm以下とすることが好ましい。
 p型層は、p型ドーパント(ボロン等)を添加した膜厚5nm以上50nm以下のアモルファスシリコン層、微結晶シリコン薄膜、微結晶炭化シリコン薄膜等の単層又は積層構造とする。p型層の膜質は、シリコン含有ガス、p型ドーパント含有ガス及び希釈ガスの混合比、圧力及びプラズマ発生用高周波パワーを調整することによって変化させることができる。i型層は、p型層上に形成されたドーパントが添加されていない膜厚50nm以上500nm以下のアモルファスシリコン膜とする。i型層の膜質は、シリコン含有ガス及び希釈ガスの混合比、圧力及びプラズマ発生用高周波パワーを調整することによって変化させることができる。i型層は、a-Siユニット202の発電層となる。n型層は、i型層上に形成されたn型ドーパント(リン等)を添加した膜厚10nm以上100nm以下のn型微結晶シリコン層(n型μc-Si:H)とする。n型層の膜質は、シリコン含有ガス、炭素含有ガス、n型ドーパント含有ガス及び希釈ガスの混合比、圧力及びプラズマ発生用高周波パワーを調整することによって変化させることができる。これに限定されるものではないが、例えば、表2に示す成膜条件でa-Siユニット202を成膜することができる。
Figure JPOXMLDOC01-appb-T000002
 a-Siユニット202上に、中間層24を形成する。中間層24は、酸化亜鉛(ZnO)、酸化シリコン(SiOx)等の透明導電性酸化物(TCO)を用いることが好適である。特に、マグネシウム(Mg)がドープされた酸化亜鉛(ZnO)や酸化シリコン(SiOx)を用いることが好適である。中間層24は、例えば、スパッタリング等により形成することができる。中間層24の膜厚は10nm以上200nm以下の範囲とすることが好適である。なお、中間層24は、設けなくてもよい。
 中間層24上に、p型層、i型層、n型層を順に積層したμc-Siユニット204を形成する。μc-Siユニット204は、シラン(SiH)、ジシラン(Si)、ジクロルシラン(SiHCl)等のシリコン含有ガス、メタン(CH)等の炭素含有ガス、ジボラン(B)等のp型ドーパント含有ガス、フォスフィン(PH)等のn型ドーパント含有ガス及び水素(H)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマCVD法により形成することができる。
 プラズマCVD法は、a-Siユニット202と同様に、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。RFプラズマCVD法は平行平板型とすることができる。平行平板型の電極のうち基板20を配しない側には原料の混合ガスを供給するためのガスシャワー孔を設けた構成としてもよい。プラズマの投入電力密度は、5mW/cm以上300mW/cm以下とすることが好ましい。
 p型層は、膜厚5nm以上50nm以下のp型ドーパント(ボロン等)が添加された微結晶シリコン層(μc-Si:H)とする。p型層の膜質は、シリコン含有ガス、p型ドーパント含有ガス及び希釈ガスの混合比、圧力及びプラズマ発生用高周波パワーを調整することによって変化させることができる。
 i型層は、p型層上に形成された膜厚0.5μm以上5μm以下のドーパントが添加されていない微結晶シリコン層(μc-Si:H)である。i型層の膜質は、シリコン含有ガス及び希釈ガスの混合比、圧力及びプラズマ発生用高周波パワーを調整することによって変化させることができる。
 n型層は、膜厚5nm以上50nm以下のn型ドーパント(リン等)が添加された微結晶シリコン層(n型μc-Si:H)を積層して構成される。n型層の膜質は、シリコン含有ガス、n型ドーパント含有ガス及び希釈ガスの混合比、圧力及びプラズマ発生用高周波パワーを調整することによって変化させることができる。これに限定されるものではないが、例えば、表3に示す成膜条件でμc-Siユニット204を成膜することができる。
Figure JPOXMLDOC01-appb-T000003
 複数のセルを直列接続する場合、a-Siユニット202、中間層24及びμc-Siユニット204を短冊状にパターニングする。表面電極層22のパターニング位置から50μm横の位置にYAGレーザを照射してスリットを形成し、a-Siユニット202及びμc-Siユニット204を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm、パルス周波数3kHzのものを用いることが好適である。
 μc-Siユニット204上に、裏面電極層26を形成する。裏面電極層26は、透明導電性酸化物(TCO)と反射性金属との積層構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)が用いられる。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が用いられる。透明導電性酸化物(TCO)及び反射性金属は、例えば、スパッタリング等により形成することができる。裏面電極層26は、合わせて1μm程度の膜厚とすることが好適である。また、裏面電極層26には、光閉じ込め効果を高めるための凹凸を設けることが好適である。
 光電変換装置200を複数のセルを直列に接続した構成とする場合、裏面電極層26を短冊状にパターニングする。a-Siユニット202及びμc-Siユニット204のパターニング位置から50μm横の位置にYAGレーザを照射してスリットを形成し、裏面電極層26を短冊状にパターニングする。YAGレーザは、エネルギー密度0.7J/cm、パルス周波数4kHzのものを用いることが好適である。
 さらに、充填材28によって裏面電極層26の表面をバックシート30で被う。充填材28及びバックシート30は、EVA、ポリイミド等の樹脂材料とすることができる。これによって、光電変換装置200の発電層への水分の浸入等を防ぐことができる。
 次に、表面電極層22を光散乱領域22a及びコンタクト領域22bを含む単層の透明導電膜とする効果について説明する。
 図3~図5は、ガラス基板上に形成したボロン(B)をドープした酸化亜鉛(ZnO)の単膜のドーパントガスの導入量と抵抗率、光透過率及びヘイズ率との関係を示す。ただし、ドーパントガスの導入量以外は表1と同じ成膜条件とした。
 なお、透明電極膜の凹凸の評価指標としてヘイズ率を用いた。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。ヘイズ率の簡易評価方法としては、D65光源もしくはC光源を用いたヘイズメータによる測定が一般的に用いられる。
 図3から、ドーパントガスの導入量が増加するほど膜の抵抗率は低下する。一方、図4から、ドーパントガスの導入量が増加するほど光透過率は低下し、特に、500nm以上の波長領域にて低下の程度が大きくなる。また、図5から、ドーパントガスの導入量が増加するほどヘイズ率は僅かに低下する。
 図3~図5に示すように、透明導電膜はドーパント濃度が高いほど膜の抵抗率は低下するが、光透過率及び光散乱効果が低下する。そこで、本実施の形態では、表面電極層22全体として、高電気抵抗率、光電変換ユニットとの低コンタクト抵抗、低光吸収率及び高光散乱効果を得るために、表面電極層22を光散乱領域22a及びコンタクト領域22bを含む単層の透明導電膜としている。
 ここで、光散乱領域22aの膜厚は、図6に示すように、光散乱領域22aとコンタクト領域22bとの合計の膜厚の半分以上とすることが好ましい。これにより、コンタクト領域22bにおける光の吸収を抑制して表面電極層22を透過して光電変換ユニットへ導入される光量を増加させることができ、光電変換装置200の光電変換効率を向上させることができる。
 また、ドーパント濃度が低いほど透明導電膜のヘイズ率は高くなるが、これは成膜時における結晶粒の成長が促進されて粒経が大きくなるためと推察される。すなわち、基板20上への表面電極層22の成膜初期においてコンタクト領域22bよりも膜中のドーパント濃度が低い光散乱領域22aを成膜することによって、コンタクト領域22bの成膜条件で成膜する場合に比べて透明導電膜の粒経を大きくすることができる。このように成膜された光散乱領域22aを設けることによって、光電変換装置200へ入射する光が散乱されて光電変換ユニットへ導入されることになり、光閉じ込め効果が高められ、光電変換装置200の光電変換効率を向上させることができる。
 ここで、コンタクト領域22bは、光散乱領域22a上にコンタクト領域22bを形成する際に下地となる光散乱領域22aの結晶性を引き継いで粒経が大きくなるように形成する。互いにドーパント濃度が異なる膜を積層する従来の透明導電膜のように、光散乱領域22aとコンタクト領域22bとの境界のドーパント濃度の変化を急峻にすると、コンタクト領域22bの成膜時において光散乱領域22aの結晶性が引き継がれ難くなり、コンタクト領域22bの結晶粒の粒経が小さくなる。そこで、本実施の形態のように、光散乱領域22aとコンタクト領域22bとの境界近傍においてドーパント濃度が膜厚方向に向けて緩やかに変移する遷移領域Xを設けることが好適である。
 遷移領域Xは、光散乱領域22aとコンタクト領域22bとの境界近傍において、ドーピングガスの流量を切り替えることによって、コンタクト領域22b内のドーパント濃度が膜厚方向に緩やかに増加するように連続的に形成される。ただし、ドーピングガスの切り替えを段階的に行い、徐々にドーピングガスの濃度が増加するように制御してもよい。具体的には、図6に示すように、遷移領域Xの膜厚は、光散乱領域22aとコンタクト領域22bとの合計の膜厚の1/20以上とすることが好ましい。また、遷移領域Xの膜厚が厚くなり過ぎると光の透光性が低下するので、遷移領域Xの膜厚は、光散乱領域22aとコンタクト領域22bとの合計の膜厚の1/10以下とすることが好ましい。ただし、コンタクト領域22bは、上記条件を満たす限りにおいて、図6に示すように遷移領域Xよりドーパント濃度より安定している安定領域Yを含んでもよいし、図7に示すように全領域が遷移領域Xであってもよい。
 このとき、光散乱領域22aにおけるドーパント濃度は、コンタクト領域22bの遷移領域Xにおけるドーパント濃度より変移が少なく安定している。すなわち、光散乱領域22aにおけるドーパント濃度の傾きは、遷移領域Xの傾きよりも小さく、その境界においてドーパント濃度の変曲点を有する。また、コンタクト領域22bの安定領域Yにおけるドーパント濃度は、コンタクト領域22bの遷移領域Xにおけるドーパント濃度より変移が少なく安定している。すなわち、光散乱領域22aにおけるドーパント濃度の傾きは、遷移領域Xの変移の傾きよりも小さく、その境界においてドーパント濃度の変曲点を有する。
 なお、表面電極層22内のドーパント濃度は二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)で測定することができる。このとき、膜の結晶粒の凹凸の影響を避けるため、イオンミリング等を用いて基板20側から測定を行うことが好適である。
 次に、表1に示した成膜条件において、ガラス基板上に光散乱領域22a及びコンタクト領域22bを形成し、その全膜厚を2.0μmとし、それぞれの膜厚の比を1:1及び1:3とした場合についてヘイズ率と全透過率の測定を行った。また、光散乱領域22aは形成せず、コンタクト領域22bのみを2.0μmの膜厚で形成して比較例とした。
 測定の結果、いずれの膜厚比においてもヘイズ率はほぼ一定であり、比較例とも差がなかった。全透過率は、図8に示すように、光散乱領域22aの膜厚を増加させるにつれて大きくなった。
 表4は、上記実施の形態の成膜条件で形成した光電変換装置200の特性を示す。ここで、実施例1~実施例3は、表1に示した成膜条件において表面電極層22を形成し、光散乱領域22aとコンタクト領域22bの膜厚の比をそれぞれ1:1、2:1及び3:1とした。比較例1及び比較例2は、それぞれコンタクト領域22bのみ及び光散乱領域22aのみとした。また、表面電極層22の全膜厚はすべて2μmとし、遷移領域Xは全膜厚の1/20以上1/10以下の範囲とした。なお、表4では、比較例2の測定値を1として規格化した値を示す。
Figure JPOXMLDOC01-appb-T000004
 比較例2に対して、開放電圧は実施例1~3のいずれでも高くなり、短絡電流は実施例1では低くなったが実施例2及び3では変わらず、曲線因子(FF)は実施例1~3のいずれでも高くなり、効率は実施例1~3のいずれでも高くなった。実施例2において最も効率が良くなった理由は、光散乱領域22aを薄くすると光散乱効果の低下及び光吸収の増加に伴って短絡電流が低下し、コンタクト領域22bを薄くすると表面電極層22の抵抗及び光電変換ユニットとのコンタクト抵抗の増加に伴って曲線因子が低下するためと推察される。
<第2の実施の形態>
 第2の実施の形態における光起電力装置206は、図9に示すように、基板20を光入射側として、光入射側から、表面電極層40、トップセルとして広いバンドギャップを有するアモルファスシリコン光電変換ユニット(a-Siユニット)202、中間層24、ボトムセルとしてa-Siユニット202よりバンドギャップの狭い微結晶シリコン光電変換ユニット(μc-Siユニット)204、裏面電極層26、充填材28及びバックシート30を積層した構造を有している。
 基板20上に表面電極層40が形成される。表面電極層40は、単層の透明導電膜で構成される。透明導電膜は、上記表面電極層22と同様の材質、製膜方法で形成することができる。
 本実施の形態では、図10に示すように、表面電極層40は、基板20側から順に第1透明導電領域40a、第2透明導電領域40b及び第3透明導電領域40cを積層した構成を含む。第1透明導電領域40aは、表面電極層40において全体的な導電性を高めるために設けられる。第2透明導電領域40bは、表面電極層40において結晶粒を拡大させ、テクスチャ構造の凹凸を増大による光散乱効果を向上させるために設けられる。第3透明導電領域40cは、表面電極層40上に形成される層(a-Siユニット202)との電気的な接触抵抗を低減させるために設けられる。
 図11は、表面電極層40における膜厚方向のドーパント濃度の変化を示す。第2透明導電領域40bの膜中のn型ドーパント濃度は、第1透明導電領域40aのn型ドーパント濃度の1/2以下とすることが好適である。なお、第2透明導電領域40bは、n型ドーパントを導入しない領域としてもよい。また、第3透明導電領域40cのn型ドーパント濃度は、第1透明導電領域40aの2倍以上とすることが好適である。第1透明導電領域40aのドーパント濃度は、1×1020/cm以上5×1020/cm以下とすることが好適である。
 第2透明導電領域40bの膜中のn型ドーパント濃度を第1透明導電領域40aのn型ドーパント濃度の1/2以下とすることによって、第2透明導電領域40bの結晶粒の成長が促進され、テクスチャ構造の凹凸の増大による光散乱効果を向上させることができる。また、第3透明導電領域40cのn型ドーパント濃度は、第1透明導電領域40aの2倍以上とすることによって、表面電極層40と表面電極層40上に形成される層(a-Siユニット202)との電気的なコンタクト性を向上させることができる。
 また、第1透明導電領域40aと第2透明導電領域40bとの界面には、ドーパント濃度を連続的又は断続的に低減させた第1遷移領域40dを設けることが好適である。また、第2透明導電領域40bと第3透明導電領域40cとの界面には、ドーパント濃度を連続的又は断続的に増加させた第2遷移領域40eを設けることが好適である。第1遷移領域40dは、下地となる第1透明導電領域40aと第2透明導電領域40bとの密着性を向上させ、界面における接触抵抗を低減させることを可能とすると考えられる。また、第2遷移領域40eは、下地となる第2透明導電領域40bの結晶性等を第3透明導電領域40cに引き継がせ、第3透明導電領域40cのテクスチャ構造の光散乱特性を高めることを可能とすると考えられる。
 例えば、ドーパント濃度が1×1020/cm以上5×1020/cmとなるようにドーピングガスを導入しつつ第1透明導電領域40aを成膜後、第1透明導電領域40aの1/2以下のドーパント濃度となるようにドーピングガスを減らして第2透明導電領域40bを成膜する。さらに、第2透明導電領域40bを成膜後、第1透明導電領域40aのドーパント濃度の2倍以上となるようにドーピングガスを増やして第3透明導電領域40cを成膜する。第1遷移領域40d及び第2遷移領域40eは、成膜中にドーピングガスの導入量を連続的又は断続的に変化させて形成することができる。
 なお、表面電極層40内のドーパント濃度は二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)で測定することができる。このとき、膜の結晶粒の凹凸の影響を避けるため、イオンミリング等を用いて基板20側から測定を行うことが好適である。
 表面電極層40の全体の膜厚は、1.7μm程度とする。第1遷移領域40d及び第2遷移領域40eの膜厚は、表面電極層40の全体の膜厚の5%以上10%以下とすることが好適である。第1遷移領域40d及び第2遷移領域40eの膜厚が薄いと、密着性の向上効果、結晶性の継承効果が得られにくく、膜厚が厚いと、膜厚増加による透光性の低下に繋がる。また、第2透明導電領域40bの膜厚は、表面電極層40の全体の膜厚の10%以上70%以下が好適である。第2透明導電領域40bの膜厚が薄いと、結晶粒成長(=光散乱)の効果が得られにくく、膜厚が厚いと、膜の抵抗増加で透明導電膜としての特性の低下に繋がる。
 例えば、第1透明導電領域40aの膜厚は800nm、第2透明導電領域40bの膜厚は600nm、第3透明導電領域40cの膜厚は100nmとすることが好適である。第1遷移領域40d及び第2遷移領域40eを設ける場合には、それらの膜厚は100nmとすることが好適である。
 表面電極層40の成膜条件の例を表5に纏めて示す。表5では、第2透明導電領域40bのドーパント濃度を1として規格化したドーパント濃度比を示している。
Figure JPOXMLDOC01-appb-T000005
 光起電力装置206を複数のセルを直列に接続した構成とする場合、表面電極層40を短冊状にパターニングする。例えば、波長1064nm、エネルギー密度13J/cm、パルス周波数3kHzのYAGレーザを用いて表面電極層40を短冊状にパターニングすることができる。
 表面電極層40上に、p型層、i型層、n型層のシリコン系薄膜を順に積層してa-Siユニット202を形成する。また、a-Siユニット202上に、中間層24を形成する。また、中間層24上に、p型層、i型層、n型層を順に積層したμc-Siユニット204を形成する。これらの形成方法は第1の実施の形態と同様であるので説明を省略する。
 複数のセルを直列接続する場合、a-Siユニット202、中間層24及びμc-Siユニット204を短冊状にパターニングする。表面電極層40のパターンニング位置から50μm横の位置にYAGレーザを照射してスリットを形成し、a-Siユニット202及びμc-Siユニット204を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm、パルス周波数3kHzのものを用いることが好適である。
 μc-Siユニット204上に、裏面電極層26を形成する。裏面電極層26の形成方法は第1の実施の形態と同様であるので説明を省略する。さらに、充填材28によって裏面電極層26の表面をバックシート30で被う。充填材28及びバックシート30は、EVA、ポリイミド等の樹脂材料とすることができる。これによって、光起電力装置206の発電層への水分の浸入等を防ぐことができる。
 次に、以下では、表6に示す成膜条件で基板20上に単膜として表面電極層40を成膜した実施例4、比較例3及び4を参照して、表面電極層40を第1透明導電領域40a、第2透明導電領域40b及び第3透明導電領域40cを含む透明導電層とする効果について説明する。なお、実施例4、比較例3及び4では、第1透明導電領域40a、第2透明導電領域40b及び第3透明導電領域40cのドーパント濃度比は、1:0:2.4とした。また、各領域の成膜順及び膜厚比は表7の通りとした。第1遷移領域40d及び第2遷移領域40eは、それぞれ表面電極層40の全体の膜厚の5%以上10%以下としたが、それらの膜厚は第1透明導電領域40a、第2透明導電領域40b及び第3透明導電領域40cに含まれるものとして示している。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表8は、実施例4及び比較例3,4についてシート抵抗、抵抗率及びヘイズ率の測定結果を示す。
Figure JPOXMLDOC01-appb-T000008
 なお、透明電極膜の凹凸の評価指標としてヘイズ率を用いた。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。ヘイズ率の簡易評価方法としては、D65光源もしくはC光源を用いたヘイズメータによる測定が一般的に用いられる。
 比較例3に比べて、実施例4ではシート抵抗及び抵抗率は高くなった。これは、実施例4では、第1透明導電領域40aより低ドーパント濃度の第2透明導電領域40bを含むのに対して、比較例3では、低ドーパント濃度の第2透明導電領域40bを含まないからである。
 一方、ヘイズ率は、比較例3に比べて実施例4では高くなった。ドーパント濃度が低いほど透明導電膜のヘイズ率は高くなるが、これは成膜時における結晶粒の成長が促進されて粒径が大きくなるためと推察される。すなわち、実施例4では、第2透明導電領域40bを挟み込むことによって、比較例3に比べて表面電極層40中の結晶粒が大きくなり、その影響により表面電極層40の表面のテクスチャ構造の凹凸が大きくなったものと考えられる。
 また、比較例4と実施例4では、第1透明導電領域40a及び第2透明導電領域40bの膜厚は等しく、その成膜順が異なるだけであるので、シート抵抗及び抵抗率は略等しくなった。
 一方、ヘイズ率は、比較例4に比べて実施例4では高くなった。これは、比較例4では、表面電極層40の成膜初期には低ドーパント濃度の第2透明導電領域40bによって結晶粒が大きく成長するが、その後成膜される第1透明導電領域40aによって結晶粒の成長が緩和されてしまうためと推察される。これに対して、実施例4では、第1透明導電領域40aによってある程度の結晶成長が進んだ後に第2透明導電領域40bによってさらに結晶粒が拡大されると推察される。
 ここで、第1透明導電領域40aと第2透明導電領域40bとの境界近傍においてドーパント濃度が膜厚方向に向けて緩やかに変移する第1遷移領域40dを設けることにより、第1透明導電領域40aと第2透明導電領域40bとの密着性が高くなる。ただし、第1遷移領域40dの膜厚が厚くなり過ぎると光の透光性が低下するので、第1遷移領域40dの膜厚は、表面電極層40の全体の膜厚の5%以上10%以下とすることが好ましい。
 また、第2遷移領域40eを設けることによって、第2透明導電領域40b上に第3透明導電領域40cを形成する際に下地となる第2透明導電領域40bの結晶性を引き継いで結晶粒がより大きくなると考えられる。すなわち、ドーパント濃度が異なる膜を積層する際に第2透明導電領域40bと第3透明導電領域40cとの境界のドーパント濃度の変化を急峻にすると、第3透明導電領域40cの成膜時において第2透明導電領域40bの結晶性が引き継がれ難くなり、第3透明導電領域40cの結晶粒の粒径が小さくなる。そこで、第2透明導電領域40bと第3透明導電領域40cとの境界近傍においてドーパント濃度が膜厚方向に向けて緩やかに変移する第2遷移領域40eを設けることが好適である。これにより、第3透明導電領域40cのテクスチャ構造の凹凸が大きくなり、光散乱特性が高められると考えられる。ただし、第2遷移領域40eの膜厚が厚くなり過ぎると光の透光性が低下するので、第2遷移領域40eの膜厚は、表面電極層40の全体の膜厚の5%以上10%以下とすることが好ましい。
 このように実施例4ではヘイズ率が高まり、光起電力装置206へ入射する光が散乱されて光電変換ユニットへ導入されることになり、光閉じ込め効果が高められ、光起電力装置206の光電変換効率を向上させることができる。
 図12は、実施例4及び比較例3、4の波長に対する透過率を示す。図12に示すように、比較例3に対して実施例4は650nm以上より長波長領域において高い透過率を示した。また、比較例4に対して実施例4は同程度の透過率を示した。
 透明導電膜ではドーパント濃度が高くなるにつれて長波長光の透過率は低下する。したがって、比較例3では、低ドーパント濃度の第2透明導電領域40bを含まないので、実施例4及び比較例4に対して透過率は低下したものと推察される。一方、実施例4と比較例4では、第1透明導電領域40a及び第2透明導電領域40bの膜厚は等しく、その成膜順が異なるだけであるので、透過率は略等しくなったものと推察される。
<第3の実施の形態>
 第3の実施の形態における光起電力装置208は、図13に示すように、基板20を光入射側として、光入射側から、表面電極層42、トップセルとして広いバンドギャップを有するアモルファスシリコン光電変換ユニット(a-Siユニット)202、中間層24、ボトムセルとしてa-Siユニット202よりバンドギャップの狭い微結晶シリコン光電変換ユニット(μc-Siユニット)204、裏面電極層26、充填材28及びバックシート30を積層した構造を有している。
 基板20上に表面電極層42が形成される。表面電極層42は、単層の透明導電膜で構成される。透明導電膜は、上記表面電極層22,40と同様の材質、製膜方法で形成することができる。
 本実施の形態では、図14に示すように、表面電極層42は、基板20側から順に第1透明導電領域42a、第2透明導電領域42b及び第3透明導電領域42cを積層した構成を含む。第1透明導電領域42aは、表面電極層42において全体的な導電性を高めるために設けられる。第2透明導電領域42bは、表面電極層42において結晶粒を拡大させ、テクスチャ構造の凹凸を増大による光散乱効果を向上させるために設けられる。第3透明導電領域42cは、表面電極層42上に形成される層(a-Siユニット202)との電気的な接触抵抗を低減させるために設けられる。
 図15は、表面電極層42における膜厚方向のドーパント濃度の変化を示す。第2透明導電領域42bの膜中のn型ドーパント濃度は、第1透明導電領域42aのn型ドーパント濃度の1/2以下とすることが好適である。なお、第2透明導電領域42bは、n型ドーパントを導入しないノンドープ領域としてもよい。ここで、ノンドープ領域とは、ドープ濃度が二次イオン質量分析法(SIMS)で測定し、1×1019/cm未満の領域を意味する。
 また、第3透明導電領域42cのn型ドーパント濃度は、第1透明導電領域42aの2倍以上とすることが好適である。第1透明導電領域42aのドーパント濃度は、1×1020/cm以下とすることが好適である。
 第2透明導電領域42bの膜中のn型ドーパント濃度を第1透明導電領域42aのn型ドーパント濃度の1/2以下とすることによって、第2透明導電領域42bの結晶粒の成長が促進され、テクスチャ構造の凹凸の増大による光散乱効果を向上させることができる。
 また、第3透明導電領域42cのn型ドーパント濃度は、第1透明導電領域42aの2倍以上とすることによって、表面電極層42と表面電極層42上に形成される層(a-Siユニット202)との電気的なコンタクト性を向上させることができる。なお、表面電極層42上に形成される層(a-Siユニット202)との電気的な接触抵抗を十分に低減できる場合には、第3透明導電領域42cは必ずしも設けなくてもよい。
 また、第1透明導電領域42aと第2透明導電領域42bとの界面には、ドーパント濃度を連続的又は断続的に低減させた第1遷移領域42dを設けることが好適である。また、第2透明導電領域42bと第3透明導電領域42cとの界面には、ドーパント濃度を連続的又は断続的に増加させた第2遷移領域42eを設けることが好適である。第1遷移領域42dは、下地となる第1透明導電領域42aと第2透明導電領域42bとの密着性を向上させ、界面における接触抵抗を低減させることを可能とすると考えられる。また、第2遷移領域42eは、下地となる第2透明導電領域42bの結晶性等を第3透明導電領域42cに引き継がせ、第3透明導電領域42cのテクスチャ構造の光散乱特性を高めることを可能とすると考えられる。
 例えば、ドーパント濃度が1×1020/cm以下となるようにドーピングガスを導入しつつ第1透明導電領域42aを成膜後、第1透明導電領域42aの1/2以下のドーパント濃度となるようにドーピングガスを減らして第2透明導電領域42bを成膜する。さらに、第2透明導電領域42bを成膜後、第1透明導電領域42aのドーパント濃度の2倍以上となるようにドーピングガスを増やして第3透明導電領域42cを成膜する。第1遷移領域42d及び第2遷移領域42eは、成膜中にドーピングガスの導入量を連続的又は断続的に変化させて形成することができる。
 なお、第3透明導電領域42cを設けない場合には、第2遷移領域42eは設ける必要はない。
 表面電極層42内のドーパント濃度は二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)で測定することができる。このとき、膜の結晶粒の凹凸の影響を避けるために、基板20側から測定を行うことが好適である。
 図16は、基板10上に単膜として表面電極層42を形成したときの膜厚に対する膜のヘイズ率の変化を示す。図16には、膜厚に対する膜のヘイズ率の実測をシンボル(◆)で示し、その近似曲線を実線で示した。図16に示されるように、表面電極層42のドーパント濃度に依らず、膜厚が500nm程度となるまでヘイズ率は増加せず、500nmを越えると徐々にヘイズ率が増加する。また、表面電極層42のドーパント濃度が低い程、ヘイズ率の増加率はラインAに近づき、表面電極層42のドーパント濃度が高い程、ヘイズ率の増加率はラインBに近づく傾向を示す。すなわち、表面電極層42のドーパント濃度が低い程、500nmを越えてからのヘイズ率の増加速度は大きくなる。
 そこで、膜厚が500nm以上となるまで第1透明導電領域42aを成膜した後、第2透明導電領域42bを形成することが好適である。第2透明導電領域42bよりドーパント濃度が高い第1透明導電領域42aを少なくとも500nmまで成膜することにより、表面電極層42全体としての導電性を高めることができる。一方、膜厚が500nm以上となった後に第1透明導電領域42aに対してドーパント濃度が低い第2透明導電領域42bを形成することで、膜厚に対するヘイズ率の増加率を高めることができる。例えば、図17に示すように、膜厚が500nm以上となる点Cまで第1透明導電領域42aの成膜を行い、その後、第2透明導電領域42bの成膜に切り替えてヘイズ率の増加速度の向上を図る。これにより、ドーパント濃度に依らずヘイズ率が変化しない500nmまでの第1透明導電領域42aにおいて表面電極層42全体としての導電性を確保しつつ、第2透明導電領域42bを積層することにより表面電極層42全体として薄い膜厚にて高いヘイズ率を得ることができる。
 なお、第1透明導電領域42aの膜厚は2000nm以下とすることが好適である。第1透明導電領域42aの膜厚を不必要に大きくすると、第1透明導電領域42aにおける光の吸収量が増加し、光起電力装置100での効率の低下を招く。また、第2透明導電領域42bの膜厚は、表面電極層42の全体の膜厚の5%以上70%以下が好適である。第2透明導電領域42bの膜厚が薄いと、結晶粒成長(=光散乱)の効果が得られにくく、膜厚が厚いと、膜の抵抗増加で透明導電膜としての特性の低下に繋がる。また、表面電極層42の全体の膜厚は2.1μm程度とすることが好適である。
 第1遷移領域42d及び第2遷移領域42eの膜厚は、表面電極層42の全体の膜厚の5%以上10%以下とすることが好適である。第1遷移領域42d及び第2遷移領域42eの膜厚が薄いと、密着性の向上効果、結晶性の継承効果が得られにくく、膜厚が厚いと、膜厚増加による透光性の低下に繋がる。
 例えば、表6に示す成膜条件において、第1透明導電領域42aの膜厚は1300nm、第2透明導電領域42bの膜厚は350nm、第3透明導電領域42cの膜厚は30nmとすることが好適である。第1遷移領域42d及び第2遷移領域42eを設ける場合には、それらの膜厚は200nmとすることが好適である。この場合、図18の試料2として示すように、ヘイズ率は44を越えた。一方、先に第2透明導電領域42bを350nmの膜厚で成膜し、その後、第1透明導電領域42aを1300nmの膜厚で成膜し、第3透明導電領域42cの膜厚を30nmとした場合、図18の試料1として示すように、ヘイズ率は39程度に留まった。
 光起電力装置208を複数のセルを直列に接続した構成とする場合、表面電極層42を短冊状にパターニングする。例えば、波長1064nm、エネルギー密度13J/cm、パルス周波数3kHzのYAGレーザを用いて表面電極層42を短冊状にパターニングすることができる。
 表面電極層42上に、p型層、i型層、n型層のシリコン系薄膜を順に積層してa-Siユニット202を形成する。また、a-Siユニット202上に、中間層24を形成する。また、中間層24上に、p型層、i型層、n型層を順に積層したμc-Siユニット204を形成する。これらの形成方法は第1の実施の形態と同様であるので説明を省略する。
 複数のセルを直列接続する場合、a-Siユニット202、中間層24及びμc-Siユニット204を短冊状にパターニングする。表面電極層42のパターンニング位置から50μm横の位置にYAGレーザを照射してスリットを形成し、a-Siユニット202及びμc-Siユニット204を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm、パルス周波数3kHzのものを用いることが好適である。
 μc-Siユニット204上に、裏面電極層26を形成する。裏面電極層26の形成方法は第1及び第2の実施の形態と同様であるので説明を省略する。さらに、充填材28によって裏面電極層26の表面をバックシート30で被う。充填材28及びバックシート30は、EVA、ポリイミド等の樹脂材料とすることができる。これによって、光起電力装置208の発電層への水分の浸入等を防ぐことができる。
 以上のように、上記の各実施の形態によれば、低コンタクト抵抗、高電気伝導率、低光吸収率、高光散乱効果を有する透明電極膜を実現し、これを表面電極層に適用することによって光電変換装置の性能を向上させることができる。
(附記)
 本願発明の1つの態様は、基板と、前記基板上に形成された透明導電層と、前記透明導電層上に形成された光電変換ユニットと、を備え、前記透明導電層は、前記基板上に形成され、第1ボロン濃度を有する第1透明導電領域と、前記第1透明導電領域より前記光電変換ユニット側に位置し、前記第1ボロン濃度の1/2以下の第2ボロン濃度を有する第2透明導電領域と、前記第2透明導電領域より前記光電変換ユニット側に位置し、前記第1ボロン濃度以上である第3ボロン濃度を有する第3透明導電領域と、を含む、光電変換装置である。
 また、別の態様は、基板と、前記基板上に形成された透明導電層と、前記透明導電層上に形成された光電変換ユニットと、を備え、前記透明導電層は、前記基板上に形成され、第1ボロン濃度を有する第1透明導電領域と、前記基板から前記光電変換ユニット側に500nm以上離れた位置に、前記第1ボロン濃度の1/2以下の第2ボロン濃度を有する第2透明導電領域と、を含む、光電変換装置である。
 10 基板、12 表面電極層、14 光電変換ユニット、16 裏面電極層、20 基板、22 表面電極層、22a 光散乱領域、22b コンタクト領域、24 中間層、26 裏面電極層、28 充填材、30 バックシート、40 表面電極層、40a 第1透明導電領域、40b 第2透明導電領域、40c 第3透明導電領域、40d 第1遷移領域、40e 第2遷移領域、42 表面電極層、42a 第1透明導電領域、42b 第2透明導電領域、42c 第3透明導電領域、42d 第1遷移領域、42e 第2遷移領域、100,200,206,208 光電変換装置。

Claims (12)

  1.  基板と、
     前記基板上に形成された表面電極層と、
     前記表面電極層上に形成された光電変換ユニットと、
    を備え、
     前記表面電極層は、
     ドーパントを含む透明導電膜で構成され、
     第1のドーパント濃度であり、前記表面電極層の全膜厚の半分以上の膜厚を有する第1透明導電体領域と、
     前記第1透明導電体領域の前記光電変換ユニット側に位置し、前記第1透明導電体領域からドーパント濃度が連続して増加する遷移領域を含む第2透明導電体領域と、
    を有することを特徴とする光電変換装置。
  2.  請求項1に記載の光電変換装置であって、
     前記第2透明導電体領域は、前記第1のドーパント濃度よりも高い第2のドーパント濃度であり、前記遷移領域よりドーパント濃度の変移が小さい安定領域を含むことを特徴とする光電変換装置。
  3.  請求項1又は2に記載の光電変換装置であって、
     前記遷移領域の膜厚は、前記表面電極層の全膜厚の1/20以上1/10以下であることを特徴とする光電変換装置。
  4.  請求項1~3のいずれか1項に記載の光電変換装置であって、
     前記第1透明導電体領域は、前記基板と接し、
     前記第2透明導電体領域は、前記光電変換ユニットと接していることを特徴とする光電変換装置。
  5.  基板と、
     前記基板上に形成された透明導電層と、
     前記透明導電層上に形成された光電変換ユニットと、
    を備え、
     前記透明導電層は、
     前記基板上に形成され、第1ボロン濃度を有する第1透明導電領域と、
     前記第1透明導電領域より前記光電変換ユニット側に位置し、前記第1ボロン濃度の1/2以下の第2ボロン濃度を有する第2透明導電領域と、
     前記第2透明導電領域より前記光電変換ユニット側に位置し、前記第1ボロン濃度以上である第3ボロン濃度を有する第3透明導電領域と、
    を含むことを特徴とする光起電力装置。
  6.  基板と、
     前記基板上に形成された透明導電層と、
     前記透明導電層上に形成された光電変換ユニットと、
    を備え、
     前記透明導電層は、
     前記基板上に形成され、第1ボロン濃度を有する第1透明導電領域と、
     前記基板から前記光電変換ユニット側に500nm以上離れた位置に、前記第1ボロン濃度の1/2以下の第2ボロン濃度を有する第2透明導電領域と、
    を含むことを特徴とする光起電力装置。
  7.  請求項6に記載の光起電力装置であって、
     前記第2透明導電領域は、ドーパントを含まないノンドープ層であることを特徴とする光起電力装置。
  8.  請求項6又は7に記載の光起電力装置であって、
     前記第2透明導電領域より前記光電変換ユニット側に位置し、前記第1ボロン濃度以上である第3ボロン濃度を有する第3透明導電領域を含むことを特徴とする光起電力装置。
  9.  請求項5~8のいずれか1項に記載の光起電力装置であって、
     前記第2透明導電領域の膜厚は、前記透明導電層の全膜厚の10%以上70%以下であることを特徴とする光起電力装置。
  10.  請求項5~9のいずれか1項に記載の光起電力装置であって、
     前記第1透明導電領域と前記第2透明導電領域との間に、前記第1ボロン濃度から前記第2ボロン濃度に遷移する前記透明導電層の全膜厚の5%以上10%以下の膜厚を有する第1遷移領域を有することを特徴とする光起電力装置。
  11.  請求項5又は8に記載の光起電力装置であって、
     前記第3ボロン濃度は、前記第1ボロン濃度の2倍以上であることを特徴とする光起電力装置。
  12.  請求項5及び8~11のいずれか1項に記載の光起電力装置であって、
     前記第1透明導電領域は、前記基板と接し、
     前記第3透明導電領域は、前記光電変換ユニットと接していることを特徴とする光起電力装置。
PCT/JP2012/060839 2011-05-13 2012-04-23 光電変換装置 WO2012157405A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013515056A JPWO2012157405A1 (ja) 2011-05-13 2012-04-23 光電変換装置
US13/773,285 US20130160848A1 (en) 2011-05-13 2013-02-21 Photoelectric conversion device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-107762 2011-05-13
JP2011107762 2011-05-13
JP2011239076 2011-10-31
JP2011-239076 2011-10-31
JP2011-259772 2011-11-29
JP2011259772 2011-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/773,285 Continuation US20130160848A1 (en) 2011-05-13 2013-02-21 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
WO2012157405A1 true WO2012157405A1 (ja) 2012-11-22

Family

ID=47176741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060839 WO2012157405A1 (ja) 2011-05-13 2012-04-23 光電変換装置

Country Status (3)

Country Link
US (1) US20130160848A1 (ja)
JP (1) JPWO2012157405A1 (ja)
WO (1) WO2012157405A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130108027A (ko) * 2012-03-23 2013-10-02 주식회사 엘지화학 유기전자소자용 기판의 제조방법
WO2013190387A2 (en) * 2012-06-18 2013-12-27 Tel Solar Ag Nanocrystalline zinc oxide for photovoltaic modules and hydrogen treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252500A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2009267222A (ja) * 2008-04-28 2009-11-12 Kaneka Corp 薄膜光電変換装置用透明導電膜付き基板の製造方法
WO2010016468A1 (ja) * 2008-08-05 2010-02-11 旭硝子株式会社 透明導電膜基板およびこの基板を用いた太陽電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252500A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2009267222A (ja) * 2008-04-28 2009-11-12 Kaneka Corp 薄膜光電変換装置用透明導電膜付き基板の製造方法
WO2010016468A1 (ja) * 2008-08-05 2010-02-11 旭硝子株式会社 透明導電膜基板およびこの基板を用いた太陽電池

Also Published As

Publication number Publication date
US20130160848A1 (en) 2013-06-27
JPWO2012157405A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
US8907204B2 (en) Thin film photoelectric conversion device and method for manufacturing the same
JP4940290B2 (ja) 光電変換装置及びその製造方法
JP4902779B2 (ja) 光電変換装置及びその製造方法
JP2010283161A (ja) 太陽電池及びその製造方法
JP4945686B2 (ja) 光電変換装置
WO2005109526A1 (ja) 薄膜光電変換装置
JP4902767B2 (ja) 光電変換装置
WO2012157405A1 (ja) 光電変換装置
JP2008283075A (ja) 光電変換装置の製造方法
JP2011192896A (ja) 薄膜太陽電池およびその製造方法
JP2011014619A (ja) 太陽電池及びその製造方法
JP2011014618A (ja) 太陽電池及びその製造方法
WO2011105166A1 (ja) 光電変換モジュール及びその製造方法
JP5373045B2 (ja) 光電変換装置
WO2012081656A1 (ja) 光電変換装置及びその製造方法
JP2010283162A (ja) 太陽電池及びその製造方法
TWI466306B (zh) 具有高透光率之可撓式太陽能電池結構及其製備方法
JP2011216586A (ja) 積層型光電変換装置および積層型光電変換装置の製造方法
WO2012157428A1 (ja) 光電変換装置
WO2013080803A1 (ja) 光起電力装置
JP2011077220A (ja) 太陽電池
WO2013065538A1 (ja) 光電変換装置
JP2011035297A (ja) 積層型光起電力素子および積層型光起電力素子の製造方法
JP2010283159A (ja) 太陽電池及びその製造方法
WO2013065522A1 (ja) 光起電力装置及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515056

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785408

Country of ref document: EP

Kind code of ref document: A1