WO2010016215A1 - 無機質球状化粒子の製造方法 - Google Patents

無機質球状化粒子の製造方法 Download PDF

Info

Publication number
WO2010016215A1
WO2010016215A1 PCT/JP2009/003657 JP2009003657W WO2010016215A1 WO 2010016215 A1 WO2010016215 A1 WO 2010016215A1 JP 2009003657 W JP2009003657 W JP 2009003657W WO 2010016215 A1 WO2010016215 A1 WO 2010016215A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
oxygen
burner
supply passage
particles
Prior art date
Application number
PCT/JP2009/003657
Other languages
English (en)
French (fr)
Inventor
萩原義之
山本康之
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to KR1020117003520A priority Critical patent/KR101536326B1/ko
Priority to US13/057,526 priority patent/US8252212B2/en
Priority to CN200980130259.5A priority patent/CN102112395B/zh
Publication of WO2010016215A1 publication Critical patent/WO2010016215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution

Definitions

  • the present invention relates to a method of producing mineral spheroidized particles, such as silica, with an oxygen burner.
  • Priority is claimed on Japanese Patent Application No. 2008-201302, filed Aug. 4, 2008, the content of which is incorporated herein by reference.
  • the inorganic spheroidized particles are obtained by melting raw material powder obtained by pulverizing silica or the like in a high temperature flame and spheroidizing it by surface tension.
  • high purity spherical silica using silica stone as a raw material is widely used as a filler for epoxy encapsulants of semiconductor devices, and the flowability of the encapsulant is improved by spheroidization, high loading, abrasion resistance It is possible to obtain various merits such as the improvement of the quality.
  • the inorganic spheroidized particles may be simply referred to as spheroidized particles.
  • Patent Documents 1 to 4 With respect to the production of inorganic spheroidized particles, there are methods disclosed in Patent Documents 1 to 4 as prior art. Since a high temperature flame is required for the spheroidizing of the raw material powder, a burner of an oxygen and gas combustion system is usually used. These burners include premix burners and diffusion burners. The pre-mixing type is to mix oxygen and fuel gas in advance and to be ejected to the combustion field, and the diffusion type is to separately jet oxygen and the fuel gas and to be mixed in the combustion area.
  • Patent Document 2 In the method disclosed in Patent Document 2, a premixed burner is used, and in the methods described in Patent Documents 1, 3 and 4, a diffusion burner is used.
  • the diffusion type burner in Patent Document 1 is a concentric double pipe, and a large number of small pipes are provided between the inner pipe and the outer pipe.
  • the burner is installed in a vertical furnace, and the silicon material is allowed to flow naturally or pressurized from the central pipe (inner pipe) of the burner, and the flame formed by the fuel gas from the small pipe and the oxygen gas from the outer pipe
  • the raw material powder is charged to produce fused silica spheres.
  • the raw material powder, oxygen, and LPG are sufficiently mixed in the burner, and the raw material powder is supplied into the flame formed at the tip of the burner.
  • the diffusion type burners described in Patent Documents 3 and 4 have a concentric quadruple tube structure and supply raw material powder to the combustion chamber with oxygen gas or oxygen enriched gas as carrier gas from the center, and fuel gas from the periphery Furthermore, it is formed to supply primary oxygen and secondary oxygen from its outer periphery, and a cooling water passage for cooling the burner is provided at the outermost periphery.
  • Patent Documents 3 and 4 disclose an apparatus for producing inorganic spheroidized particles using such a diffusion type burner.
  • the raw material powder is cut out from the raw material supply machine A and carried with the carrier gas supplied from the carrier gas supply device A ′. It is transported to the burner B.
  • the burner B is supplied with oxygen from the oxygen supply facility C and liquefied petroleum gas (LPG) from the LPG supply facility D.
  • LPG liquefied petroleum gas
  • the exhaust gas containing particles spheroidized in the flame in the vertical furnace E is cooled by the air introduced from the route F to the bottom of the vertical furnace E, and the spheroidized particles in the later stage cyclone G and bag filter H It is collected.
  • the raw material powder is heated and melted in the flame mainly by forced convection heat transfer from the flame, and is spheroidized by surface tension.
  • a combustion chamber is provided, and an improvement is observed in the aggregation state of the manufactured inorganic spheroidized particles as compared with the burner described in Patent Document 1.
  • the diffusion type burner described in Patent Literatures 3 and 4 has a structure in which there is only one raw material supply path. For this reason, in the case of processing a raw material powder having a wide particle size distribution as obtained by ball milling using this burner, fusion of fine particles with each other or between fine particles and coarse particles occurs in a flame. A situation was observed where the particle size distribution of the powder and the particle size distribution of the resulting spheroidized particle product were different. Therefore, in order to obtain a spheroidized particle product of optimum particle size distribution, it is necessary to separate the raw material powder of fine particles and the raw material powder of coarse particles by different burners and separately mix them to obtain a product. there were.
  • the problem in the present invention is to provide a manufacturing method in which the average particle diameter of the raw material powder does not fluctuate in the process of granulation and the spheroidized particles having the desired particle size distribution can be obtained by one burner. It is in.
  • a first aspect of the present invention is a method for producing inorganic spheroidized particles, comprising the step of producing inorganic spheroidized particles using a diffusion type burner,
  • the burner comprises a first raw material supply passage, a fuel supply passage, a raw material dispersion chamber, a first oxygen supply passage, a second raw material supply passage, a second oxygen supply passage, and a combustion chamber.
  • the coarse powder is supplied to the raw material dispersion chamber provided at the tip of the first raw material supply path from the first raw material injection hole of the first raw material supply path disposed at the center of the burner;
  • the fuel gas is supplied parallel to the central axis of the burner from the fuel gas ejection holes of the fuel supply passage provided on the outer periphery of the raw material dispersion chamber to the combustion chamber provided in front of the raw material dispersion chamber;
  • the oxygen-containing gas is supplied to the combustion chamber in a swirling flow through the first oxygen injection hole opened from the first oxygen supply passage to the side surface of the combustion chamber,
  • fine powder is supplied to the combustion chamber in parallel with the central axis of the burner through the second raw material supply hole opened from the second raw material supply passage to the side surface of the combustion chamber on the outlet side of the first oxygen injection hole. It is a manufacturing method of the inorganic spheroidized particle which supplies oxygen content gas through the 2nd oxygen ejection hole opened to the combustion chamber side by the side of an outlet
  • the method further includes the steps of collecting coarse particles using a cyclone and collecting fine particles using a bag filter, and the burner is provided in a bowl-shaped spheroidizing furnace, and the spheroidizing is performed.
  • mineral spheroidized particles having different particle size distributions are simultaneously produced by providing the cyclone and the bag filter in series downstream of the furnace.
  • the method further comprises the step of collecting the inorganic spheroidized particles all at once using a bag filter, and the burner is provided in a bowl-shaped spheroidizing furnace, and the bag filter is disposed downstream of the spheroidizing furnace. It is preferable to provide.
  • a second aspect of the present invention is mineral spheroidized particles obtained by the method for producing inorganic spheroidized particles of the first aspect of the present invention.
  • the diffusion type burner since the diffusion type burner is used, no flashback occurs. Further, since the coarse powder is supplied to the first raw material supply passage and the fine powder is supplied to the second raw material supply passage, particles having a small particle size can be sufficiently melted in the low temperature region of the flame outer peripheral portion, and the temperature of the flame central portion is high. It is possible to sufficiently melt large size particles in the region. Further, since the particles having a small particle diameter have poor dispersibility, they can be jetted from the second raw material supply passage where the dispersion volume becomes large, and can be well dispersed in the flame. On the other hand, since the particles having a large particle diameter have good dispersibility, they can be jetted from the first raw material supply passage where the dispersion volume is reduced, and can be well dispersed in the flame.
  • the production method of the present invention it is possible to make the particles of large particle size and particles of small particle size substantially spherical while maintaining their particle sizes. Therefore, it is possible to produce spheroidized particles having a particle size or a particle size distribution according to the input raw material by one burner.
  • FIG. 1 and 2 show an example of a burner for producing inorganic spheroidized particles used in the present invention (hereinafter sometimes referred to simply as a burner), and FIG. 1 is a cross section cut along the central axis of the burner It is a figure, FIG. 2 is the side view which looked at the burner from the front end side. In FIG. 2, only the raw material powder, the fuel, and the jet holes of oxygen are shown.
  • symbol 1 shows a 1st raw material supply pipe
  • the carrier gas oxygen, oxygen-enriched air having an oxygen concentration of 20 vol% or more, or an oxygen-containing gas having an oxygen concentration of 20 vol% or more such as air is used.
  • the raw material powder an inorganic powder such as silicon oxide, aluminum oxide, glass and the like, which is in the form of non-spherical particles having horns is used.
  • coarse powder refers to powder having a large particle size of about 10 ⁇ m or more in average particle size
  • fine powder refers to powder of small particle size having an average particle size of less than about 10 ⁇ m.
  • a powder dispersion plate 2 is attached to the outlet end of the first raw material supply pipe 1.
  • the powder dispersion plate 2 radially radiates the mixed powder of the raw material powder and the carrier gas in the direction of the burner outlet, and the plurality of first raw material injection holes 3, 3 ⁇ ⁇ ⁇ directed obliquely outward. Are formed at equal intervals on the circumference.
  • a fuel supply pipe 4 is coaxially provided on the outer side of the first raw material supply pipe 1, and a gap between the raw material supply pipe 1 and the fuel supply pipe 4 becomes a fuel supply path 4A, and liquefied petroleum gas is produced.
  • Fuel gas such as (LPG) is supplied.
  • the outlet end of the fuel supply passage 4A is provided with a plurality of fuel gas injection holes 4B, 4B,... So as to eject the fuel parallel to the central axis of the burner.
  • the plurality of fuel gas ejection holes 4B, 4B, ... are formed at equal intervals on the circumference.
  • the first oxygen supply pipe 5 is coaxially provided on the outside of the fuel supply pipe 4, and the space between the fuel supply pipe 4 and the first oxygen supply pipe 5 is oxygen as the first oxygen supply path 5A.
  • An oxygen-enriched air having an oxygen concentration of 20 vol% or more, an oxygen-containing gas having an oxygen concentration of 20 vol% or more, such as air, are supplied.
  • the outlet ends of the first oxygen supply passage 5A are a plurality of first oxygen injection holes 5B, 5B, ..., and the outlets of the first oxygen injection holes 5B, 5B, ... are open toward the central axis of the burner.
  • the oxygen is injected in a direction perpendicular to the central axis of the burner to form a swirl flow in a combustion chamber 8 described later.
  • These plurality of first oxygen injection holes 5B, 5B... are formed at equal intervals on the circumference, and are circumferentially different from the plurality of fuel injection holes 4B, 4B. It is disposed in the middle of the fuel injection holes 4B, 4B.
  • the second raw material supply pipe 6 is coaxially provided on the outside of the first oxygen supply pipe 5, and the space between the first oxygen supply pipe 5 and the second raw material supply pipe 6 is the second raw material supply passage 6A. It has become.
  • a plurality of second raw material injection holes 6B, 6B,... Are formed at the outlet portion of the second raw material supply passage 6A, and the raw material is jetted in parallel to the central axis of the burner.
  • the plurality of second raw material injection holes 6B, 6B, ... are formed on the circumference at equal intervals.
  • a second oxygen supply pipe 7 is coaxially provided on the outer side of the second raw material supply pipe 6, and a gap between the second raw material supply pipe 6 and the second oxygen supply pipe 7 is a second oxygen supply path. It is 7A.
  • the cross-sectional area of the second oxygen supply passage 7A is wider than that of the first oxygen supply passage 5A, so that a large amount of oxygen can be supplied.
  • a plurality of second oxygen injection holes 7B, 7B,... are formed at the outlet end of the second oxygen supply passage 7A, and the second oxygen injection holes 7B, 7B,. .
  • These second oxygen injection holes 7B, 7B,... Are opened in a direction parallel to the burner central axis, and the oxygen-containing gas is ejected in a direction parallel to the burner central axis.
  • the second oxygen supply pipe 7 has a large thickness, and a cooling water passage 71 in which the cooling water circulates is formed in the inside of the second oxygen supply pipe 7 so that the burner itself can be cooled.
  • the tip end portion of the burner is recessed in the shape of an outwardly expanded mortar, and this portion is the combustion chamber 8. That is, the inclined wall portion of the combustion chamber 8 is configured by forming the tip portions of the second oxygen supply pipe 7, the second raw material supply pipe 6, and the first oxygen supply pipe 5 obliquely.
  • the bottom follows the cylindrical raw material dispersion chamber 9.
  • the raw material dispersion chamber 9 is formed such that the outlet end of the raw material supply pipe 1 is thinner than the powder dispersion plate 2 in the direction of the tip of the burner and extends in a cylindrical shape.
  • the second raw material injection hole 6B is opened from the first oxygen injection hole 5B to the tip end side of the burner, and the second oxygen injection hole 7B is opened to the burner front end side than the second raw material injection hole 6B.
  • the tip of the first raw material supply passage 1A is connected to the raw material dispersion chamber 9 through the powder dispersion plate 2 having a large number of small holes.
  • a fuel gas supply passage 4A provided on the outer periphery of the raw material supply passage 1A and a first oxygen supply passage 5A provided on the outer periphery of the fuel gas supply passage 4A are enlarged in diameter at the outlet side connected to the tip of each supply passage. The opening toward the combustion chamber 8 improves the dispersibility of the raw material powder in the burner flame.
  • raw material powders having different particle sizes are supplied to the first raw material supply passage 1A and the second raw material supply passage 6A, particles having a large average particle size can be obtained in the high temperature region of the flame center. In the region where the temperature of the part is low, particles having a small average particle size can be processed while being dispersed efficiently.
  • the particles having a large average particle size are relatively easily dispersed, and are therefore supplied from the first raw material supply passage 1A located at the flame center with a small dispersion area, and the particles having a small average particle size are difficult to disperse.
  • the flame is supplied from the second raw material supply passage 6A having a large area. By so doing, the raw material powder can be efficiently dispersed in the flame. Therefore, in the present invention, particles having a large average particle size and particles having a small average particle size can be optimally processed at one time in one burner.
  • FIG. 3 shows an example of the apparatus for producing inorganic spheroidized particles used in the present invention
  • reference numeral 11 in the figure shows a spheroidizing furnace.
  • the spheroidizing furnace 11 is a cylindrical bowl-shaped furnace, and the burner 12 described above is vertically mounted on the ceiling of the furnace so that its tip end faces inside the furnace.
  • An air inlet 13 is formed in the vicinity of the bottom of the spheroidizing furnace 11, from which cooling air can be introduced into the interior to reduce the temperature of the discharged combustion gas.
  • a combustion gas outlet 14 is formed in the vicinity of the bottom of the spheroidizing furnace 11, and the spheroidized particles generated therefrom are conveyed to the combustion gas and drawn out, and are fed to the inlet of the cyclone 17 via the duct 15 and the damper 16. It is supposed to be sent.
  • the duct 15 is connected to the duct 18 and branched on the upstream side of the damper 16, and the duct 18 is connected to the inlet of the bag filter 19.
  • the duct 18 is provided with an air introduction port 20 in the middle thereof. By appropriately introducing air from the port 20 into the duct 18, the temperature of the combustion gas flowing in the duct 18 can be lowered and adjusted. It is supposed to be. Further, a duct 21 is connected to the outlet of the cyclone 17, and the duct 21 is connected to the inlet of the bag filter 19 via a damper 22.
  • a first raw material supply pipe (not shown) is connected to the first raw material supply passage 1A of the burner 2, and the first raw material supply pipe is connected to a first raw material feeder 23.
  • coarse raw material powder having a particle size of 10 ⁇ m or more in average particle size is stored, carrier gas from the carrier gas supply source 24 is sent, and a predetermined amount of raw material powder is conveyed to this carrier gas. It is fed to the first raw material supply passage 1A of the burner 2 through the first raw material supply pipe.
  • the first raw material feeder 23 is provided with a delivery mechanism for feeding a predetermined amount of raw material powder in accordance with a raw material powder supply amount control signal from a control device (not shown).
  • an oxygen-containing gas having an oxygen concentration of 20 vol% or more, such as oxygen, oxygen-enriched air, air or the like is used.
  • the carrier gas supply source 24 is also provided with a flow control valve that delivers a predetermined amount of carrier gas to the first raw material feeder 23 and the second raw material feeder 25 according to a carrier gas supply amount control signal from a control device (not shown). ing.
  • a second raw material supply pipe (not shown) is connected to the second raw material supply passage 6A of the burner 2, and the second raw material supply pipe is connected to a second raw material feeder 25.
  • the second raw material feeder 25 stores fine raw material powder having a particle size of less than 10 ⁇ m in average particle size, and the carrier gas from the carrier gas supply source 24 is sent, and a predetermined amount of raw material powder is conveyed to the carrier gas. It is fed to the second raw material supply passage 6A of the burner 2 via the second raw material supply pipe.
  • the second raw material feeder 25 is also provided with a delivery mechanism for delivering a predetermined amount of raw material powder in accordance with a raw material powder supply amount control signal from a control device (not shown).
  • a fuel supply pipe (not shown) is connected to the fuel supply passage 4A of the burner 2, and the fuel supply pipe is connected to a fuel gas supply source 26.
  • the fuel gas supply source 26 stores fuel gas such as liquefied petroleum gas (LPG) and liquefied natural gas (LNG) and delivers it, and a predetermined amount of fuel gas is supplied through the fuel gas supply pipe. It is sent to the fuel supply passage 4A of the burner 2.
  • the fuel gas supply source 26 is provided with a delivery mechanism for delivering a predetermined amount of fuel gas in accordance with a fuel gas supply amount control signal from a control device (not shown).
  • a first oxygen supply pipe (not shown) is connected to the first oxygen supply passage 5A of the burner 2, and the first oxygen supply pipe is connected to a first oxygen supply source 27.
  • the first oxygen supply source 27 stores and sends out the oxygen-containing gas, and a predetermined amount of oxygen-containing gas is supplied to the first oxygen supply passage 5A of the burner 2 through the first oxygen supply pipe. It is supposed to be sent.
  • the first oxygen supply source 27 is provided with a delivery mechanism for delivering a predetermined amount of oxygen-containing gas in response to a first oxygen supply control signal from a control device (not shown).
  • a second oxygen supply pipe (not shown) is connected to the second oxygen supply passage 7A of the burner 2, and the second oxygen supply pipe is connected to a second oxygen supply source 28.
  • the second oxygen supply source 28 stores and sends out the oxygen-containing gas, and a predetermined amount of oxygen-containing gas is supplied to the second oxygen supply passage 7A of the burner 2 through the second oxygen supply pipe. It is supposed to be sent.
  • the second oxygen supply source 28 is also provided with a delivery mechanism for delivering a predetermined amount of oxygen-containing gas in response to a second oxygen supply control signal from a control device (not shown).
  • first oxygen supply source 27 and the second oxygen supply source 28 are integrated, and two delivery mechanisms are provided to this, and from each delivery mechanism to the first oxygen supply pipe and the second oxygen supply pipe separately
  • the oxygen-containing gas may be supplied, and predetermined amounts of the oxygen-containing gas may be supplied to the first oxygen supply passage 5A and the second oxygen supply passage 7A of the burner 2, respectively.
  • a coarse powder having an average particle size of 10 ⁇ m or more is fed from the first raw material feeder 23 to the first raw material supply passage 1A of the burner 12 and ejected from the first raw material injection hole 3 toward the combustion chamber 8 via the raw material dispersion chamber 9.
  • the fine powder having an average particle size of less than 10 ⁇ m is fed from the second raw material feeder 25 to the second raw material supply passage 6A of the burner 12 and is jetted from the second raw material jet holes 6B toward the combustion chamber 8.
  • the reason for dividing the supply destination of the raw material powder with the average particle size of 10 ⁇ m is that the raw material powder less than 10 ⁇ m has a characteristic that it is difficult to disperse.
  • a predetermined amount of oxygen-containing gas is sent from the first oxygen supply source 27 and the second oxygen supply source 28 to the first oxygen supply passage 5A and the second oxygen supply passage 7A of the burner 12, respectively.
  • the gas is jetted toward the combustion chamber 8 through the oxygen jet holes 7B.
  • a predetermined amount of fuel gas is sent from the fuel gas supply source 26 to the fuel supply passage 4A of the burner 12 and jetted toward the combustion chamber 8 through the fuel gas jet holes 4B.
  • the two kinds of raw material powders of different particle sizes ejected into the flame are heated and melted in the high-temperature central area and the low-temperature outer area of the flame to form spheroidized particles having different particle sizes.
  • the spheroidized particles are suspended in the gas of the combustion gas generated from the burner 2 and the air introduced from the air introduction port 13 to pass through the combustion gas outlet 14 of the spheroidizing furnace 11 through the duct 15 and the damper 16 and the cyclone 17. Sent to By mixing the combustion gas with air, the temperature of the gas introduced into the cyclone 17 is lowered, and the temperature becomes suitable for particle collection in the cyclone 17.
  • the cyclone 17 among the spheroidized particles suspended in the gas, coarse particles are collected.
  • the gas derived from the cyclone 17 is sent to the bag filter 19 through the duct 21.
  • fine-grained spheroidized particles are collected.
  • the damper 16 of the duct 15 can be closed and the gas can be directed to the duct 18 and sent directly to the bag filter 19 to collect all the spheroidized particles here.
  • an appropriate amount of air can be mixed into the gas from the air introduction port 20.
  • Example 1 Spheroidized particles were manufactured using the inorganic spheroidized particle manufacturing apparatus shown in FIG.
  • a raw material powder 20 kg / h of the silica powder was carried by a carrier gas consisting of oxygen of 7.5 Nm 3 / h in total.
  • LPG 5 Nm 3 / h was supplied as fuel gas.
  • the oxygen-containing gas 20 Nm 3 / h of oxygen in total was divided into two halves to be introduced into the burner 12 to produce spheroidized particles, and the spheroidizing processing ability to obtain a vitrification rate of 98% or more was determined.
  • the ratio of oxygen to be supplied to the first oxygen injection hole 5B (primary oxygen) and the second oxygen injection hole 7B (secondary oxygen) is 0 to 100% of primary oxygen
  • the conditions under which a vitrification rate of 98% or more can be achieved by changing the secondary oxygen in the range of 100 to 0% were examined.
  • the processing results for raw material powders having an average particle size of 30 ⁇ m and an average particle size of 2 ⁇ m are shown in FIGS. 4, 5 and 1. In the case of processing the 30 ⁇ m raw material, the raw material powder was ejected from the first raw material injection hole 3, and in the case of processing the 2 ⁇ m raw material, the raw material powder was ejected from the second raw material injection hole 6B.
  • the 30 ⁇ m raw material powder was collected by the cyclone 17, and the 2 ⁇ m raw material was collected at once by the bag filter 19 without passing through the cyclone 17.
  • the spheroidized particle was manufactured on the said conditions using the thing of the same type as the inorganic spheroidization apparatus of patent document 3 for comparison with a prior art.
  • Raw material powder Silica powder is used, Raw material powder A with an average particle size of 15 ⁇ m, Raw material powder B with an average particle size of 2 ⁇ m, Raw material powder C with an average particle size of 5 ⁇ m mixed with 35 wt. Three kinds of raw material powder were prepared. Using the burner of the prior art described in Patent Document 3, 20 kg / h of raw material powder C was conveyed and supplied with a carrier gas consisting of oxygen of 7.5 Nm 3 / h. LPG 5 Nm 3 / h was supplied as fuel gas. Spheroidized particles were produced by supplying 20 Nm 3 / h of oxygen, and the spheroidizing ability to obtain a vitrification rate of 98% or more was determined.
  • the raw material A7kg / h is conveyed by a carrier gas consisting of oxygen 5.25Nm 3 / h into the first raw material injection holes 3, formed of a material B13kg / h from the oxygen of 2.25 nm 3 / h
  • the carrier gas was carried to the second raw material injection hole 6B.
  • LPG 5Nm 3 / h is supplied to the fuel gas injection holes 4B as fuel gas, and a total amount of 20 Nm 3 / h of oxygen is divided and supplied to the first oxygen injection holes 5B and the second oxygen injection holes 7B to produce spheroidized particles ,
  • the spheroidizing processing ability to obtain a vitrification rate of 98% or more was determined.
  • the ratio of oxygen supplied to the first oxygen injection holes 5B (primary oxygen) and the second oxygen injection holes 7B (secondary oxygen) is 30% of primary oxygen, secondary oxygen
  • the processing capacity of the burner was examined by fixing at a ratio of 70% and adjusting the raw material powder supply amount. The results are shown in Table 2.
  • first raw material supply pipe 1A first raw material supply path 2 powder dispersion plate 3 first raw material injection hole 4 fuel supply pipe 4A fuel supply furnace 4B ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Fuel gas injection holes, 5 ⁇ ⁇ 1 oxygen supply pipe, 5 A ⁇ ⁇ 1 oxygen supply path, 5 B ⁇ ⁇ 1 oxygen injection holes, 6 ⁇ ⁇ 2nd material supply pipe, 6A ⁇ ⁇ 2nd material supply Path, 6B ⁇ ⁇ ⁇ Second raw material injection hole, 7 ⁇ ⁇ Second oxygen supply pipe, 7A ⁇ ⁇ Second oxygen supply path, 7B ⁇ ⁇ Second oxygen injection hole, 8 ⁇ ⁇ ⁇ Combustion chamber, 9 ⁇ ⁇ Raw material dispersion chamber 11, 11: Spheroidizing furnace 12, 12: burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Glanulating (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Gas Burners (AREA)

Abstract

本発明の無機質球状化粒子の製造方法は、拡散型のバーナ(12)を用いて無機質球状化粒子を製造する工程を有し、前記バーナ(12)は、第一原料供給路(1A)、燃料供給路(4A)、原料分散室(9)、第一酸素供給路(5A)、第二原料供給路(6A)、第二酸素供給路(7A)、燃焼室(8)を具備する。

Description

無機質球状化粒子の製造方法
本発明は、シリカなどの無機質球状化粒子を酸素バーナにより製造する方法に関する。
本願は、2008年8月4日に、日本に出願された特願2008-201302号に基づき優先権を主張し、その内容をここに援用する。
無機質球状化粒子は、珪石などを粉砕した原料粉体を高温の火炎中で溶融し、表面張力により球状化させたものである。
例えば、原料として珪石を用いる高純度の球状シリカは、半導体素子のエポキシ封止材用の充填材として広く使用されており、球状化により封止材の流動性の向上、高充填、耐磨耗性向上など様々なメリットを得ることができる。
なお、本明細書においては、無機質球状化粒子を単に球状化粒子と記すことがある。
無機質球状化粒子の製造に関し、従来技術として、特許文献1~4に開示されている方法がある。
原料粉体の球状化には、高温の火炎が必要であることから、通常は、酸素・ガス燃焼方式のバーナが用いられている。
これらのバーナには、予混合型バーナと、拡散型バーナとがある。予混合型とは酸素と燃料ガスとを予め混合させて燃焼場に噴出させるものであり、拡散型とは酸素と燃料ガスとを別々に噴出し、燃焼場で混合させるものである。
特許文献2に開示の方法では、予混合型バーナが用いられており、特許文献1、3、4に記載の方法では、拡散型バーナが使用されている。
特許文献1での拡散型バーナは、同心円状の二重管であって、その内管と外管との間に多数の小管を設けてある。このバーナを竪型炉に設置し、珪素質原料をバーナの中心管(内管)から自然流化または加圧流下させ、小管からの燃料ガスと外管からの酸素ガスとで形成した火炎中に原料粉体を投入し、溶融シリカ球状体を製造するものである。
特許文献2に記載の予混合型バーナは、バーナ内で、原料粉体、酸素、LPGが充分に混合され、バーナ先端に形成される火炎中に原料粉体が供給されるものである。
特許文献3、4に記載の拡散型バーナは、同心の四重管構造であり、中心から酸素ガス又は酸素富化ガスをキャリアガスとして原料粉体を燃焼室に供給し、その外周から燃料ガスを、更にその外周から1次酸素と2次酸素を供給するように形成され、最外周には、バーナを冷却する冷却水通路が設けられている。
また、特許文献3、4には、このような拡散型バーナを用いて無機質球状化粒子を製造する装置が開示されている。
特許文献4に開示されている無機質球状化粒子製造装置においては、図6に示すように、原料粉体が原料供給機Aから切り出され、キャリアガス供給装置A’から供給されるキャリアガスに同伴されてバーナBに搬送される。このバーナBには、酸素供給設備Cからの酸素と、LPG供給設備Dからの液化石油ガス(LPG)とが供給される。
竪型炉E内の火炎中で球状化された粒子を含む排ガスは、経路Fから竪型炉Eの底部に導入された空気により冷却され、後段のサイクロンG、バグフィルターHで球状化粒子が捕集される。
特開昭58-145613号公報 特開昭62-241543号公報 特許第3331491号公報 特許第3312228号公報
ところで、原料粉体は、火炎中で、主に火炎からの強制対流熱伝達により加熱・溶融され、表面張力によって球状化する。
特許文献3、4に記載された構造の拡散型バーナにおいては、燃焼室が設けられ、特許文献1に記載のバーナに比べ、製造した無機質球状化粒子の凝集状態に改善がみられる。
しかし、特許文献3、4に記載された拡散型バーナは、原料供給路が一つしかない構造を有する。
このため、このバーナを用い、ボールミル粉砕によって得られるような粒度分布の広い原料粉体を処理した場合においては、火炎中において微粒子同士、あるいは微粒子と粗粒子の融着が生じるため、投入した原料粉体の粒度分布と得られる球状化粒子製品の粒度分布とが異なる状況が見られた。
そのため、最適な粒度分布の球状化粒子製品を得るためには、微粒子の原料粉体と粗粒子の原料粉体をそれぞれ別のバーナにて球状化した後、別途混合して製品を得る必要があった。
そこで、本発明における課題は、原料粉体の平均粒径が粒状化の過程において変動することが少なく、目的とする粒度分布を有する球状化粒子が一つのバーナによって得られる製造方法を提供することにある。
かかる課題を解決するため、
本発明の第1の態様は、拡散型のバーナを用いて無機質球状化粒子を製造する工程を有する無機質球状化粒子の製造方法であって、
前記バーナは、第一原料供給路、燃料供給路、原料分散室、第一酸素供給路、第二原料供給路、第二酸素供給路、燃焼室から構成され、
バーナの中心に配した第一原料供給路の第一原料噴出孔から、粗粉をキャリアガスを用い、第一原料供給路の先端に設けた原料分散室に供給し、
原料分散室の外周に設けた燃料供給路の燃料ガス噴出孔から、原料分散室の前方に設けた燃焼室へバーナの中心軸と平行に燃料ガスを供給し、
第一酸素供給路から燃焼室の側面に開口した第一酸素噴出孔を通じて、酸素含有ガスを旋回流となるように燃焼室に供給し、
第二原料供給路から第一酸素噴出孔よりも出口側の燃焼室側面に開口した第二原料供給孔を通じて、キャリアガスを用い微粉をバーナの中心軸と平行に燃焼室に供給し、
第二酸素供給路から第二原料噴出孔よりも出口側の燃焼室側面に開口した第二酸素噴出孔を通じて、酸素含有ガスを供給する無機質球状化粒子の製造方法である。
本発明においては、サイクロンを用いて粗粒を捕集する工程と、バグフィルターを用いて微粒を捕集する工程とをさらに有し、竪型の球状化炉に前記バーナを設け、この球状化炉の下流に前記サイクロンと前記バグフィルターとを直列に設けることにより、異なる粒度分布を有する無機質球状化粒子を同時に製造することが好ましい。
また、本発明においては、バグフィルターを用いて無機質球状化粒子を一括捕集する工程をさらに有し、竪型の球状化炉に前記バーナを設け、この球状化炉の下流に前記バグフィルターを設けることが好ましい。
本発明の第2の態様は、本発明の第1の態様の無機質球状化粒子の製造方法によって得られた無機質球状化粒子である。
本発明によれば、拡散型のバーナを用いているので、逆火を生じることがない。また、第一原料供給路に粗粉を、第二原料供給路に微粉を供給するので、火炎外周部の温度が低い領域において粒径の小さな粒子を十分溶融でき、火炎中心部の温度が高い領域において粒径の大きな粒子を十分溶融できる。また、粒径の小さな粒子は分散性がよくないので、これを分散体積が大きくなる第二原料供給路から噴射させ、火炎中で良好に分散できる。
一方、粒径の大きな粒子は分散性がよいので、これを分散体積が小さくなる第一原料供給路から噴射させ、火炎中で良好に分散できる。
このため、本発明の製造方法によれば、大きな粒径の粒子も小さな粒径の粒子も、その粒径をほぼ維持して球状化できる。
したがって、投入した原料に応じた粒径あるいは粒度分布を有する球状化粒子を一つのバーナによって製造することができる。
本発明において使用されるバーナの一例を示す概略断面図である。 本発明において使用されるバーナの一例を示す概略側面図である。 本発明において使用される製造装置の例を示す概略構成図である。 実施例における一次酸素と二次酸素との流量割合とガラス化率との関係を示した図表である。 実施例における一次酸素と二次酸素との流量割合とガラス化率との関係を示した図表である。 従来の無機質球状化粒子の製造装置を示す概略構成図である。
図1および図2は、本発明において使用される無機質球状化粒子製造用バーナ(以下、単にバーナと呼ぶことがある)の一例を示すもので、図1はバーナ中心軸に沿って切断した断面図であり、図2はバーナをその先端側から眺めた側面図である。図2においては、原料粉体、燃料、酸素の噴出孔のみを示している。
これらの図において、符号1は第一原料供給管を示し、その内部は原料粉体とキャリアガスとの混合物が供給される第一原料供給路1Aとなっている。
キャリアガスとしては酸素、酸素濃度20vol%以上の酸素富化空気、空気などの酸素濃度20vol%以上の酸素含有ガスが用いられる。
原料粉体としては、酸化ケイ素、酸化アルミニウム、ガラスなどの無機質粉末であって、その粒子形態が角を有する非球形の粒子であるものが用いられる。
原料粉体のうち、粗粉とは平均粒度がおおよそ10μm以上の粒径の大きな粉体を言い、微粉とは平均粒度がおおよそ10μm未満の粒径の小さな粉体を言うものとする。
この第一原料供給管1の出口端には粉体分散板2が取り付けられている。この粉体分散板2は、原料粉体とキャリアガスとの混合粉体をバーナ出口方向に向けて放射状に噴出させるもので、斜め外方に向けた複数の第1原料噴出孔3、3・・が円周上に等間隔に形成されている。
第一原料供給管1の外側には、燃料供給管4が同軸的に設けられており、原料供給管1と燃料供給管4との間の空隙は燃料供給路4Aとなって、液化石油ガス(LPG)などの燃料ガスが供給されるようになっている。燃料供給路4Aの出口端は複数の燃料ガス噴出孔4B、4B・・となっており、バーナ中心軸に対して平行に燃料を噴出するようになっている。これら複数の燃料ガス噴出孔4B、4B・・は、円周上に等間隔に形成されている。
燃料供給管4の外側には、第一酸素供給管5が同軸的に設けられており、燃料供給管4と第一酸素供給管5との間の空隙は第一酸素供給路5Aとして、酸素、酸素濃度20vol%以上の酸素富化空気、空気などの酸素濃度20vol%以上の酸素含有ガスが供給されるようになっている。
第一酸素供給路5Aの出口端は複数の第一酸素噴出孔5B、5B・・となっており、これら第一酸素噴出孔5B、5B・・の出口はバーナ中心軸に向いて開口しており、バーナ中心軸に対して直角方向に酸素を噴射し、後述する燃焼室8内で旋回流を形成するように構成されている。
これら複数の第一酸素噴出孔5B、5B・・は、円周上に等間隔に形成されており、かつ前記複数の燃料噴出孔4B、4B・・と円周上異なる位置であって2つの燃料噴出孔4B、4Bの中間に配されている。
第一酸素供給管5の外側には第二原料供給管6が同軸的に設けられており、第一酸素供給管5と第二原料供給管6との間の空隙は第二原料供給路6Aとなっている。第二原料供給路6Aの出口部分は、複数の第二原料噴出孔6B、6B・・が形成され、バーナ中心軸に対して平行に原料が噴出するようになっている。
複数の第二原料噴出孔6B、6B・・は、円周上に等間隔に形成されている。
第二原料供給管6の外側には第二酸素供給管7が同軸的に設けられており、第二原料供給管6と第二酸素供給管7との間の空隙は、第二酸素供給路7Aとなっている。この第二酸素供給路7Aは、第一酸素供給路5Aに比較してその断面積が広くなっており、多くの酸素を供給できるようになっている。第二酸素供給路7Aの出口端は、複数の第二酸素噴出孔7B、7B・・が形成され、この第二酸素噴出孔7B、7B・・は円周上に等間隔に形成されている。これら第二酸素噴出孔7B、7B・・は、バーナ中心軸に平行方向に開口しており、酸素含有ガスがバーナ中心軸に対して平行方向に噴出されるようになっている。
また、第二酸素供給管7は、その厚さが厚くなっており、その内部には冷却水が循環して流れる冷却水通路71が形成され、バーナ自体を冷却できるようになっている。
さらに、バーナの先端部分は、外方に拡がったすり鉢状に凹んでおり、この部分が燃焼室8となっている。
すなわち、燃焼室8の傾斜した壁の部分は、第二酸素供給管7と第二原料供給管6と第一酸素供給管5の先端部分を斜めに形成することで構成され、燃焼室8の底部は円筒状の原料分散室9に続いている。原料分散室9は、原料供給管1の出口端部が粉体分散板2よりもバーナの先端方向に向けて薄肉となって円筒状に延びることによって形成されている。
さらに、燃焼室8の円錐状壁面には、燃料ガス噴出孔4B、4B・・、第一酸素噴出孔5B、5B・・、第二原料噴出孔6B、6B・・、第二酸素噴出孔7B、7B・・がそれぞれ開口している。
また、前記第二原料噴出孔6Bは第一酸素噴出孔5Bよりバーナの先端側に開口し、前記第二酸素噴出孔7Bは第二原料噴出孔6Bよりもバーナ先端側に開口している。
このような構造の無機質球状化粒子製造用バーナにあっては、第一原料供給路1Aの先端が多数の小孔を有する粉体分散板2を介して原料分散室9に接続され、第一原料供給路1Aの外周に設けられた燃料ガス供給路4Aと、該燃料ガス供給路4Aの外周に設けられた第一酸素供給路5Aとが、各供給路の先端に接続する出口側が拡径した燃焼室8に向けて開口しているため、バーナ火炎中における原料粉体の分散性が向上する。
第一原料供給路1Aと、第二原料供給路6Aに、それぞれ粒度の異なる原料粉体を供給するようにすれば、火炎中心部の温度の高い領域では、平均粒度の大きい粒子を、火炎外周部の温度が低い領域では、平均粒度の小さい粒子を効率よく分散させながら処理することができる。
平均粒度が大きい粒子は、比較的分散しやすいため、分散面積が小さい、火炎中心部に位置した第一原料供給路1Aから供給し、平均粒度が小さい粒子は、分散が困難であるため、分散面積の大きい第二原料供給路6Aから火炎中に供給する。こうすることで、原料粉体を火炎中に効率よく分散させることができる。
従って、本発明においては、平均粒度の大きい粒子と、平均粒度の小さい粒子を、一つのバーナにおいて、一度に最適な状態で処理できる。
図3は、本発明において使用される無機質球状化粒子製造装置の一例を示すもので、図中符号11は球状化炉を示す。この球状化炉11は、円筒形の竪型炉であって、その天井部には上述のバーナ12が、その先端側を炉内に臨ませるようにして垂直に取り付けられている。
球状化炉11の底部付近には空気導入口13が形成されており、ここから冷却用空気を内部に導入し、排出される燃焼ガスの温度を下げることができるようになっている。
球状化炉11の底部付近には燃焼ガス排出口14が形成されており、ここから生成した球状化粒子が燃焼ガスに搬送されて導出され、ダクト15、ダンパー16を介してサイクロン17の入口に送られるようになっている。
ダクト15は、そのダンパー16の上流側において、ダクト18に接続されて分岐され、このダクト18はバグフィルター19の入口に接続されている。
ダクト18には、その途中に空気導入ポート20が設けられており、このポート20から適宜空気をダクト18内に取り入れることにより、ダクト18内を流れる燃焼ガスの温度を下げて調節することができるようになっている。
また、サイクロン17の出口にはダクト21が接続され、このダクト21はダンパー22を介してバグフィルター19の入口に接続されている。
バーナ2の第一原料供給路1Aには第一原料供給パイプ(図示略)が接続され、この第一原料供給パイプは第一原料フィーダー23に接続されている。第一原料フィーダー23には、平均粒度10μm以上の粒径の粗い原料粉体が貯えられ、キャリアガス供給源24からのキャリアガスが送られ、このキャリアガスに所定量の原料粉体が搬送されて前記第一原料供給パイプを介してバーナ2の第一原料供給路1Aに送られるようになっている。
第一原料フィーダー23には、図示しない制御装置からの原料粉体供給量制御信号に応じて、所定量の原料粉体を送り出す送出機構が備えられている。
キャリアガスには、酸素、酸素富化空気、空気などの酸素濃度20vol%以上の酸素含有ガスが用いられる。
キャリアガス供給源24にも、図示しない制御装置からのキャリアガス供給量制御信号に応じて、所定量のキャリアガスを第一原料フィーダー23および第二原料フィーダー25にそれぞれ送り出す流量調整弁が備えられている。
バーナ2の第二原料供給路6Aには第二原料供給パイプ(図示略)が接続され、この第二原料供給パイプは第二原料フィーダー25に接続されている。第二原料フィーダー25には、平均粒度10μm未満の粒径の細かい原料粉体が貯えられ、キャリアガス供給源24からのキャリアガスが送られ、このキャリアガスに所定量の原料粉体が搬送されて前記第二原料供給パイプを介してバーナ2の第二原料供給路6Aに送られるようになっている。
第二原料フィーダー25にも、図示しない制御装置からの原料粉体供給量制御信号に応じて、所定量の原料粉体を送り出す送出機構が備えられている。
バーナ2の燃料供給路4Aには燃料供給パイプ(図示略)が接続され、この燃料供給パイプは燃料ガス供給源26に接続されている。燃料ガス供給源26は、液化石油ガス(LPG)、液化天然ガス(LNG)などの燃料ガスを貯えて、これを送り出すものであって、所定量の燃料ガスが前記燃料ガス供給パイプを介してバーナ2の燃料供給路4Aに送られるようになっている。
燃料ガス供給源26には、図示しない制御装置からの燃料ガス供給量制御信号に応じて、所定量の燃料ガスを送り出す送出機構が備えられている。
バーナ2の第一酸素供給路5Aには第一酸素供給パイプ(図示略)が接続され、この第一酸素供給パイプは第一酸素供給源27に接続されている。第一酸素供給源27は、前記酸素含有ガスを貯えて、これを送り出すものであって、所定量の酸素含有ガスが前記第一酸素供給パイプを介してバーナ2の第一酸素供給路5Aに送られるようになっている。
第一酸素供給源27には、図示しない制御装置からの第一酸素供給量制御信号に応じて、所定量の酸素含有ガスを送り出す送出機構が備えられている。
バーナ2の第二酸素供給路7Aには第二酸素供給パイプ(図示略)が接続され、この第二酸素供給パイプは第二酸素供給源28に接続されている。第二酸素供給源28は、前記酸素含有ガスを貯えて、これを送り出すものであって、所定量の酸素含有ガスが前記第二酸素供給パイプを介してバーナ2の第二酸素供給路7Aに送られるようになっている。
第二酸素供給源28にも、図示しない制御装置からの第二酸素供給量制御信号に応じて、所定量の酸素含有ガスを送り出す送出機構が備えられている。
なお、第一酸素供給源27と第二酸素供給源28とを一体化し、これに二基の送出機構を設け、それぞれの送出機構から第一酸素供給パイプと第二酸素供給パイプとに別々に酸素含有ガスを送り出し、バーナ2の第一酸素供給路5Aと第二酸素供給路7Aとにそれぞれ所定量の酸素含有ガスを供給するようにしてもよい。
次に、このような製造装置を用いた球状化粒子の製造方法の一例を説明する。
第一原料フィーダー23から、平均粒度10μm以上の粗粉をバーナ12の第一原料供給路1Aにおくり、第1原料噴出孔3から原料分散室9を介して燃焼室8に向けて噴出する。第二原料フィーダー25から、平均粒度10μm未満の微粉をバーナ12の第二原料供給路6Aにおくり、第二原料噴出孔6Bから燃焼室8に向けて噴出する。
ここで、原料粉体の供給先をその平均粒度10μmで区切った理由は、10μm未満の原料粉体は分散しにくい特性があるためである。
バーナ12の第一酸素供給路5A、第二酸素供給路7Aにそれぞれ所定量の酸素含有ガスを第一酸素供給源27、第二酸素供給源28から送り込み、第一酸素噴出孔5B、第二酸素噴出孔7Bを経て燃焼室8に向けて噴出する。
バーナ12の燃料供給路4Aに所定量の燃料ガスを燃料ガス供給源26から送り込み、燃料ガス噴出孔4Bを経て燃焼室8に向けて噴出する。
火炎中に噴出された粒径の異なる二種の原料粉体は、それぞれ火炎の高温の中心領域、低温の外側領域において、加熱されて溶融し、球状化して粒径の異なる球状化粒子となる。
この球状化粒子は、バーナ2から生成した燃焼ガスと空気導入口13から導入される空気とのガスに浮遊して球状化炉11の燃焼ガス排出口14からダクト15、ダンパー16を経てサイクロン17に送られる。燃焼ガスに空気を混合することでサイクロン17に導入されるガスの温度が低下し、サイクロン17での粒子捕集に適した温度となる。
サイクロン17では、ガス中に浮遊している球状化粒子のうち、粗粒の球状化粒子が捕集される。サイクロン17から導出されたガスはダクト21を介してバグフィルター19に送られ、ここで球状化粒子のうち、細粒の球状化粒子が捕集される。
また、必要に応じて、ダクト15のダンパー16を閉とし、ガスをダクト18に流して直接バグフィルター19に送ってすべての球状化粒子をここで捕集することもできる。この際、ガスの温度を下げる必要がある場合には、空気導入ポート20から適量の空気をガスに混入することもできる。
以上の操作により、原料粉体の粒度にほぼ一致した粒度の球状化粒子を一基のバーナ12により効率よく得ることができる。
以下、具体例を示す。
(例1)
図3に示す無機質球状化粒子製造装置を用いて球状化粒子を製造した。
原料粉体として全量でシリカ粉末20kg/hを7.5Nm/hの酸素からなるキャリアガスで搬送した。燃料ガスとしてLPG5Nm/hを供給した。酸素含有ガスとして全量で酸素20Nm/hをバーナ12に二分して導入して球状化粒子を製造し、98%以上のガラス化率が得られる球状化処理能力を求めた。
このとき、原料粉体の粒度に応じて前記第一酸素噴出孔5B(一次酸素)及び第二酸素噴出孔7B(二次酸素)に供給する酸素の割合を、一次酸素0~100%、二次酸素100~0%の範囲で変えて98%以上のガラス化率が達成できる条件を検討した。
平均粒度30μmと平均粒度2μmの原料粉体に対する処理結果を図4、図5、表1に示す。
30μm原料を処理する場合には、第一原料噴出孔3より原料粉体を噴出し、2μm原料を処理する場合においては、第二原料噴出孔6Bより原料粉体を噴出した。
30μm原料粉体については、サイクロン17で捕集し、2μm原料については、サイクロン17を介さずバグフィルター19で一括捕集した。
なお、従来技術との比較のため、特許文献3に記載の無機質球状化装置と同型のものを用いて上記条件下で球状化粒子を製造した。
Figure JPOXMLDOC01-appb-T000001
その結果、図4、図5に示すように、いかなる粒径の原料においても一次酸素50%以上、二次酸素50%以下の条件では98%以上のガラス化率は得られなかった。
また、従来技術との比較においても、一次酸素及び二次酸素の影響については、有意な差は見られなかった。
また、表1の結果より、本発明のバーナを用いることで、より原料粒度に近い無機質球状化粒子を得ることができることが確認された。
(例2)
原料粉体としてシリカ粉末を採用し、平均粒度15μmの原料粉体A、平均粒度2μmの原料粉体B、原料粉体A35wt%と原料粉体B65wt%を混合した平均粒度5μmの原料粉体Cの3種の原料粉体を用意した。
特許文献3に記載の従来技術のバーナを用い、原料粉体Cを20kg/hを7.5Nm/hの酸素からなるキャリアガスで搬送して供給した。燃料ガスとしてLPG5Nm/hを供給した。酸素20Nm/hを供給して球状化粒子を製造し、98%以上のガラス化率が得られる球状化処理能力を求めた。
本発明のバーナを用い、原料A7kg/hを5.25Nm/hの酸素からなるキャリアガスで第一原料噴出孔3へ搬送し、原料B13kg/hを2.25Nm/hの酸素からなるキャリアガスで第二原料噴出孔6Bへ搬送した。燃料ガスとしてLPG5Nm/hを燃料ガス噴出孔4Bに供給し、酸素全量20Nm/hを第一酸素噴出孔5Bと第二酸素噴出孔7Bに分割して供給して球状化粒子を製造し、98%以上のガラス化率が得られる球状化処理能力を求めた。
このとき、原料粉体の粒度に応じて前記第一酸素噴出孔5B(一次酸素)及び第二酸素噴出孔7B(二次酸素)に供給する酸素の割合は、一次酸素30%、二次酸素70%の比率で固定とし、原料粉体供給量を調整することで、バーナの処理能力を検討した。
結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2の結果より、本発明におけるバーナ構造を用いることで、より原料粒度に近い無機質球状化粒子を効率良く得ることが出来ることが確認された。
1・・第一原料供給管、1A・・第一原料供給路、2・・粉体分散板、3・・第一原料噴出孔、4・・燃料供給管、4A・・燃料供給炉、4B・・燃料ガス噴出孔、5・・第一酸素供給管、5A・・第一酸素供給路、5B・・第一酸素噴出孔、6・・第二原料供給管、6A・・第二原料供給路、6B・・第二原料噴出孔、7・・第二酸素供給管、7A・・第二酸素供給路、7B・・第二酸素噴出孔、8・・燃焼室、9・・原料分散室、11・・球状化炉、12・・バーナ、17・・サイクロン、19・・バグフィルター、23・・第一原料フィーダー、24・・キャリアガス供給源、25・・第二原料フィーダー、26・・燃料供給源、27・・第一酸素供給源、28・・第二酸素供給源。

Claims (4)

  1. 拡散型のバーナを用いて無機質球状化粒子を製造する工程を有する無機質球状化粒子の製造方法であって、
    前記バーナは、第一原料供給路、燃料供給路、原料分散室、第一酸素供給路、第二原料供給路、第二酸素供給路、燃焼室を具備し、
    バーナの中心に配した第一原料供給路の第一原料噴出孔から、粗粉をキャリアガスを用い、第一原料供給路の先端に設けた原料分散室に供給し、
    原料分散室の外周に設けた燃料供給路の燃料ガス噴出孔から、原料分散室の前方に設けた燃焼室へバーナの中心軸と平行に燃料ガスを供給し、
    第一酸素供給路から燃焼室の側面に開口した第一酸素噴出孔を通じて、酸素含有ガスを旋回流となるように燃焼室に供給し、
    第二原料供給路から第一酸素噴出孔よりも出口側の燃焼室側面に開口した第二原料供給孔を通じて、キャリアガスを用い微粉をバーナの中心軸と平行に燃焼室に供給し、
    第二酸素供給路から第二原料噴出孔よりも出口側の燃焼室側面に開口した第二酸素噴出孔を通じて、酸素含有ガスを供給する無機質球状化粒子の製造方法。
  2. サイクロンを用いて粗粒を捕集する工程と、
    バグフィルターを用いて微粒を捕集する工程とをさらに有し、
    竪型の球状化炉に前記バーナを設け、この球状化炉の下流に前記サイクロンと前記バグフィルターとを直列に設けることにより、異なる粒度分布を有する無機質球状化粒子を同時に製造する請求項1に記載の無機質球状化粒子の製造方法。
  3. バグフィルターを用いて無機質球状化粒子を一括捕集する工程をさらに有し、
    竪型の球状化炉に前記バーナを設け、この球状化炉の下流に前記バグフィルターを設ける請求項1に記載の無機質球状化粒子の製造方法。
  4. 請求項1ないし3のいずれかに記載の無機質球状化粒子の製造方法によって得られた無機質球状化粒子。
PCT/JP2009/003657 2008-08-04 2009-07-31 無機質球状化粒子の製造方法 WO2010016215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117003520A KR101536326B1 (ko) 2008-08-04 2009-07-31 무기질 구상화 입자의 제조방법
US13/057,526 US8252212B2 (en) 2008-08-04 2009-07-31 Method for manufacturing inorganic spheroidized particles
CN200980130259.5A CN102112395B (zh) 2008-08-04 2009-07-31 无机质球状化粒子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-201302 2008-08-04
JP2008201302A JP4864053B2 (ja) 2008-08-04 2008-08-04 無機質球状化粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2010016215A1 true WO2010016215A1 (ja) 2010-02-11

Family

ID=41663444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003657 WO2010016215A1 (ja) 2008-08-04 2009-07-31 無機質球状化粒子の製造方法

Country Status (6)

Country Link
US (1) US8252212B2 (ja)
JP (1) JP4864053B2 (ja)
KR (1) KR101536326B1 (ja)
CN (1) CN102112395B (ja)
MY (1) MY149030A (ja)
WO (1) WO2010016215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836849A (zh) * 2017-11-29 2019-06-04 浙江华飞电子基材有限公司 一种高成球率的球形二氧化硅的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135273A (zh) * 2011-02-27 2011-07-27 江西中船航海仪器有限公司 一种动力扩散式燃气喷枪
JP5888726B2 (ja) * 2011-11-17 2016-03-22 三菱日立パワーシステムズ株式会社 固体燃料ボイラシステムと固体燃料用バーナ
JP6070323B2 (ja) 2013-03-21 2017-02-01 大陽日酸株式会社 燃焼バーナ、バーナ装置、及び原料粉体加熱方法
CN104854406B (zh) 2013-03-21 2016-11-16 大阳日酸株式会社 燃烧烧嘴
JP6201264B2 (ja) * 2014-07-18 2017-09-27 大陽日酸株式会社 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置、無機質球状化粒子の製造方法及び無機質球状化粒子
JP6303241B2 (ja) * 2015-01-15 2018-04-04 大陽日酸株式会社 無機質球状化粒子製造装置、及び無機質球状化粒子製造方法
WO2020136565A2 (en) 2018-12-26 2020-07-02 3M Innovative Properties Company Burners and additive manufacturing methods
CN112664935B (zh) * 2020-12-25 2023-08-25 华中科技大学 一种喷雾燃烧合成纳米颗粒的系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748118A (ja) * 1993-06-02 1995-02-21 Nippon Sanso Kk 無機質球状化粒子製造用バーナー
JP2002179410A (ja) * 2000-12-14 2002-06-26 Tokuyama Corp 微細酸化物粒子の製造方法
JP2003175329A (ja) * 2001-10-03 2003-06-24 Denki Kagaku Kogyo Kk 球状無機質粉末の製造方法
JP2008286443A (ja) * 2007-05-16 2008-11-27 Taiyo Nippon Sanso Corp 無機質球状化粒子製造用バーナ
WO2008146373A1 (ja) * 2007-05-30 2008-12-04 Taiyo Nippon Sanso Corporation 無機質球状化粒子製造用バーナ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145613A (ja) 1982-02-15 1983-08-30 Denki Kagaku Kogyo Kk 溶融シリカ球状体、その製造法およびその装置
JPS62241543A (ja) 1986-04-11 1987-10-22 Nippon Steel Corp 溶射球状粒子製造用竪型炉のバ−ナ−点火方法
US5558822A (en) * 1995-08-16 1996-09-24 Gas Research Institute Method for production of spheroidized particles
JP3331491B2 (ja) * 1996-09-18 2002-10-07 日本酸素株式会社 無機質球状化粒子の製造装置
WO1998029690A1 (fr) * 1996-12-27 1998-07-09 Sumitomo Osaka Cement Co., Ltd. Dispositif et procede de combustion de combustible
JPH11199219A (ja) * 1998-01-16 1999-07-27 Nippon Sanso Kk 球状シリカ粒子の製造方法
JP3796565B2 (ja) * 2000-08-15 2006-07-12 信越化学工業株式会社 球状シリカ微粒子の製造方法
JP4606138B2 (ja) * 2004-11-30 2011-01-05 花王株式会社 無機質球状化粒子製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748118A (ja) * 1993-06-02 1995-02-21 Nippon Sanso Kk 無機質球状化粒子製造用バーナー
JP2002179410A (ja) * 2000-12-14 2002-06-26 Tokuyama Corp 微細酸化物粒子の製造方法
JP2003175329A (ja) * 2001-10-03 2003-06-24 Denki Kagaku Kogyo Kk 球状無機質粉末の製造方法
JP2008286443A (ja) * 2007-05-16 2008-11-27 Taiyo Nippon Sanso Corp 無機質球状化粒子製造用バーナ
WO2008146373A1 (ja) * 2007-05-30 2008-12-04 Taiyo Nippon Sanso Corporation 無機質球状化粒子製造用バーナ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836849A (zh) * 2017-11-29 2019-06-04 浙江华飞电子基材有限公司 一种高成球率的球形二氧化硅的制备方法
CN109836849B (zh) * 2017-11-29 2021-02-05 浙江华飞电子基材有限公司 一种高成球率的球形二氧化硅的制备方法

Also Published As

Publication number Publication date
CN102112395A (zh) 2011-06-29
MY149030A (en) 2013-06-28
JP4864053B2 (ja) 2012-01-25
JP2010037134A (ja) 2010-02-18
US20110133353A1 (en) 2011-06-09
KR101536326B1 (ko) 2015-07-13
CN102112395B (zh) 2014-03-19
US8252212B2 (en) 2012-08-28
KR20110047192A (ko) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4769276B2 (ja) 無機質球状化粒子製造用バーナ
WO2010016215A1 (ja) 無機質球状化粒子の製造方法
JP4922400B2 (ja) 無機質球状化粒子製造用バーナ
JP5236920B2 (ja) 無機質球状化粒子製造用バーナー及び無機質球状化粒子の製造方法及び装置
JP5074094B2 (ja) 無機質球状化粒子製造用バーナ
US6813902B2 (en) Systems and methods for increasing production of spheroidal glass particles in vertical glass furnaces
JP5603748B2 (ja) 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置、及び無機質球状化粒子の製造方法
JP5469938B2 (ja) 無機質球状化粒子の製造装置および製造方法
WO2021060028A1 (ja) 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置及び無機質球状化粒子の製造方法
JP5367471B2 (ja) 無機質球状化粒子製造用バーナ及び無機質球状化粒子製造装置、並びに無機質球状化粒子の製造方法
WO2021060027A1 (ja) 無機質球状化粒子製造用バーナ、無機質球状化粒子製造装置及び無機質球状化粒子の製造方法
JP7303239B2 (ja) 無機質球状化粒子製造用バーナ及び無機質球状化粒子の製造方法、並びに無機質球状化粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130259.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13057526

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003520

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09804702

Country of ref document: EP

Kind code of ref document: A1