WO2010015149A1 - 变焦透镜系统 - Google Patents

变焦透镜系统 Download PDF

Info

Publication number
WO2010015149A1
WO2010015149A1 PCT/CN2009/000892 CN2009000892W WO2010015149A1 WO 2010015149 A1 WO2010015149 A1 WO 2010015149A1 CN 2009000892 W CN2009000892 W CN 2009000892W WO 2010015149 A1 WO2010015149 A1 WO 2010015149A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
zoom
compensation
distance
imaging
Prior art date
Application number
PCT/CN2009/000892
Other languages
English (en)
French (fr)
Inventor
杜雪
张志辉
李荣彬
蒋金波
王文奎
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Publication of WO2010015149A1 publication Critical patent/WO2010015149A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer

Definitions

  • the present invention relates to a zoom lens system, and more particularly to a zoom lens system for a mobile phone with a zoom function, a digital camera or a video camera. Background technique
  • the zoom lens system is one of the important components of a zoom function system.
  • the structure of the existing zoom lens system generally includes a zoom unit, a zoom driving device, a compensation unit, a compensation driving device, and the like.
  • the zoom unit comprises a first lens group having positive refraction, a second lens group having negative refraction, and a third lens group having negative refraction, which are arranged in the same optical axis from the object side to the image side, in some lens systems.
  • the third lens group may not be provided in the middle;
  • the compensation unit is a fourth lens group having positive refraction disposed between the third lens group and the image side.
  • the first lens group and the third lens group are fixed with respect to the optical axis, and the second lens group, that is, the zoom unit is in the zoom drive Under the action of the device, the object moves toward the image side along the optical axis; the fourth lens group, that is, the compensation unit moves along the optical axis under the action of the compensation driving device to compensate for the change of the image plane position generated after the movement of the zoom unit. Since the movement of the compensation unit and the movement of the zoom unit must maintain a certain relationship to ensure that the image is exactly at the position of the imaging element, the structure of the zoom drive and the compensation drive is important in this conventional zoom lens system.
  • a zoom lens device disclosed in CN101065700A discloses a drive device structure of a zoom lens system.
  • the driving device structure includes a motor 1, a feed screw 20 and a motive shaft 25, and a driven shaft 27 which are arranged in parallel with the optical axis of the lens system.
  • a first gear 5 is mounted on the output shaft of the motor 1.
  • the feed screw 20 is attached to the end with a second gear 7 that meshes with the first gear 5.
  • the feed screw 20 is provided with a moving body 21 that cooperates therewith.
  • a third gear 6 that meshes with the second gear 7 is attached to one end of the motive shaft 25, and an intermittent transmission mechanism D that can intermittently drive the driven shaft 27 is attached to the other end.
  • a spiral zoom cam surface 36 is formed on the driven shaft 27.
  • the second holding frame 1'4 is provided with a driven portion 17 that can cooperate with the cam surface 36, which is equivalent to the zoom lens 12 of the zoom unit.
  • the third holding frame 15 is provided with a driven portion 19 that can cooperate with the moving body 21, and the focusing lens 13 corresponding to the compensation unit is mounted on the third holding frame 15.
  • the motor 1 is activated to drive the first gear 5 to rotate, further driving the second gear 7 and the third gear 6 to rotate; the second gear 7 drives the feed screw 20 to rotate, and the moving body 21 cooperates with the feed screw 20.
  • the axial movement along the lead screw 20 further drives the driven portion 19 to move, and finally the focus lens 13 is moved in the axial direction.
  • the third gear 6 drives the motive shaft 25 to rotate, and is driven by the intermittent transmission mechanism D.
  • the shaft 27 drives the cam surface 36 to rotate intermittently, so that the driven portion 17 moves correspondingly along the cam surface 36, and finally the zoom lens 12 is intermittently moved in the optical axis direction.
  • the image plane movement caused by the movement of the zoom lens 12 along the optical axis is compensated for by the movement of the focus lens 13.
  • the mechanical driving device in the current zoom lens system is very complicated, and the driving device and the compensating driving device are respectively driven by a power source through two sets of transmission mechanisms.
  • the structure includes a plurality of cooperating transmission components such as a gear, an intermittent transmission mechanism, a lead screw, etc., which not only has high manufacturing cost, but also occupies a large space, which is disadvantageous for reducing the volume of the zoom lens system, and requires between the respective transmission components. High transmission accuracy is guaranteed, which can greatly affect the image quality.
  • the original mechanical drive device cannot be used any more, and the mechanical drive device needs to be redesigned, which is not only troublesome in design and manufacture, but also further increases the cost. Summary of the invention
  • Embodiments of the present invention are directed to overcoming the deficiencies of the prior art described above, and provide a zoom lens system that is simple in structure, small in size, and that is precise and flexible in control.
  • the present invention provides a zoom lens system including a zoom unit, a compensation unit, and an imaging unit sequentially mounted on the same optical axis, and a drive transmission mechanism, further including a micro processing control unit, wherein the drive
  • the transmission mechanism includes a zoom stepper motor and a compensation stepper motor.
  • the zoom unit is mounted on an output shaft of the zoom stepping motor through a transmission member
  • the compensation unit is mounted on an output shaft of the compensation stepping motor through a transmission member
  • the micro processing control The unit adjusts a distance between the compensation unit driven by the compensation stepping motor and the imaging unit in accordance with a change in distance between the zoom unit driven by the zoom stepping motor and the imaging unit.
  • micro processing control unit comprises a data acquisition unit, a compensation data processing unit and a stepper motor drive control unit;
  • the data acquisition unit is configured to collect distance data between the zoom unit and the imaging unit;
  • the compensation data processing unit obtains distance data between the zoom unit and the imaging unit according to the distance data collected by the data collection unit;
  • the stepping motor drive control unit sends an indication to the compensation stepping motor to cause the compensation unit to move the corresponding distance.
  • the micro processing control unit further includes a data storage unit for storing a distance table of distance data between the zoom unit and the imaging unit and a correspondence table of distance data between the compensation unit and the imaging unit in one-to-one correspondence with the distance data,
  • the compensation data processing unit derives the distance data between the compensation unit and the imaging unit by means of a lookup in the data storage unit.
  • the method further includes a zoom control unit for extracting distance data between the zoom unit and the imaging unit, and inputting to the stepping motor drive control unit, and the stepping motor drive control unit receives the distance data input by the zoom control unit, The zoom stepping motor is instructed to drive the zoom unit to move by a corresponding distance.
  • the transmission member is a threaded structure.
  • the threaded structure includes an external thread disposed on the output shaft of the motor and an internal thread disposed on the nut to engage the external thread.
  • a screw is fixed to the output shaft of the stepping motor, and the thread structure includes an external thread disposed on the lead screw and an internal thread disposed on the nut to cooperate with the external thread.
  • the distance data between the zoom unit and the imaging unit and the distance data between the compensation unit and the imaging unit are respectively represented by the pitch of the zoom nut and the compensation nut.
  • the thread pitch of the zoom nut is equal to the thread pitch of the compensation nut.
  • the driving transmission mechanism includes a driving unit for driving the zoom unit.
  • the zoom stepping motor and the compensating stepping motor for driving the compensation unit have a two-stepping motor, which greatly simplifies the driving mechanism, consists of only a small number of parts, is compact, and has a zoom unit and The movement of the compensation unit is independent of each other, independent of each other, and easy to achieve precise control.
  • the two stepping motors are controlled by the micro processing control unit, and the distance between the compensation unit and the imaging unit can be adjusted according to the change of the distance between the zoom unit and the imaging unit, so that the two outputs correspondingly.
  • the size of the lens in the zoom unit or the compensation unit will change simultaneously.
  • the corresponding output of the compensation curve and the zoom curve can be realized by simply inputting the changed zoom data and compensation data into the microprocessor control unit without resetting the mechanical structure of the transmission mechanism.
  • the inventive zoom lens system is simple to manufacture, low in cost, and economical.
  • the program in the present invention can write a microprocessor such as CPLD, FPGA, DSPT, ARM or other microprocessor to realize miniaturization of the control unit, thereby further reducing the system volume and further reducing the weight of the system of the present invention. , more convenient to carry.
  • FIG. 1 is a schematic structural view of a conventional zoom lens system
  • FIG. 2 is a schematic view showing the mechanical assembly structure of the zoom lens system of the present invention.
  • Figure 3 is a schematic exploded view showing the mechanical structure of the zoom lens system of the present invention.
  • FIG. 4 is a schematic view showing an optical imaging structure in a zoom lens system of the present invention.
  • FIG. 5 is a schematic view showing the principle of displacement between the zoom unit and the compensation unit in the present invention
  • FIG. 6 is a schematic view showing the operation of each part of the zoom lens system of the present invention
  • Figure 7 is a control flow chart of the microprocessor control unit in the present invention.
  • Fig. 8 is a view showing the zoom data and the compensation data as a function of the number of steps of the stepping motor in the present invention.
  • the structure of the zoom lens system of the present invention includes a zoom unit mounted in the casing 50, an imaging element 56 (see FIG. 4), a compensation unit 64 for compensating for aberrations, and a drive. Transmission mechanism.
  • Two mutually parallel mounting shafts are fixed to the opposite side plates of the housing 50.
  • the zoom unit includes a zoom lens holding frame 61 slidably mounted on two mounting shafts and a zoom lens group 62 mounted in the holding frame 61.
  • the compensation unit includes a compensating lens holding frame 63 slidably mounted on the two mounting shafts and a compensating lens group 64 mounted in the holding frame 63.
  • the zoom lens group 62 and the compensation lens group 64 are mounted on the same optical axis.
  • a filter lens 55 (see Fig. 4) can also be mounted on the optical axis.
  • the drive transmission mechanism includes a zoom drive transmission mechanism and a compensation drive transmission mechanism.
  • the zoom drive transmission mechanism includes a zoom stepping motor 51 mounted on one of the side plates of the housing 50, and a lead screw (not shown) fixedly mounted on the output shaft of the zoom stepping motor 51, and cooperates with the lead screw.
  • the zoom nut 52 is fixedly coupled to the zoom lens holding frame 61.
  • the compensating drive transmission mechanism comprises a compensating stepping motor 53 mounted on one of the side plates of the housing 50, and a screw (not shown) fixedly mounted on the output shaft of the compensating stepping motor 53 for working with the lead screw Compensation nut 54.
  • the compensating nut 54 is fixedly coupled to the compensating lens holding frame 63.
  • the screw can be omitted, and the nut is directly fitted to the output shaft of the motor.
  • other thread structures may be provided between the motor output shaft and the nut, as long as the nut motor can be driven to move by the thread structure when the stepping motor rotates.
  • AA' in Fig. 5 is the optical axis
  • L1 and L2 are the conjugate distances.
  • the zoom lens group 62 is in the initial position
  • the object imaging position is just at the imaging element 56
  • the distance between the zoom lens group 62 and the imaging element 56 is constantly changing during the movement of the zoom lens group 62 toward the target object, that is, the object distance keep changing.
  • the image changes as the distance varies with the object distance, and the object imaging position is shifted from the imaging element 56 after the zoom lens group 62 is moved. If the offset is to be corrected so that the imaging position is still on the imaging element 56, then the compensation lens group 64 is needed to compensate the lens group.
  • the distance moved by 64 is just enough to compensate for the amount of shift due to the movement of the zoom lens group 62.
  • the zoom stepping motor 51 is activated, and the lead screw rotates with its output shaft, and the zoom nut 52 is driven to move, thereby driving the zoom lens group 62 fixedly coupled to the zoom nut 52 to move the displacement XI, the distance between the zoom lens group 62 and the imaging element. A change has occurred and the imaging position of the object deviates from the imaging element 56.
  • the screw is rotated with the output shaft, the drive compensation nut 54 is moved so as to drive the compensation lens group and the nut 54 fixedly connected to the compensation 64 in the opposite direction of displacement X2, i.e.,
  • the zoom lens group 62 is moved by the distance XI
  • the compensating lens group 64 is moved by the distance X2 in the opposite direction so that the imaging position can be exactly on the imaging element 56. That is, there is a one-to-one correspondence between the distance between the zoom lens group 62 and the imaging element 56 and the distance between the compensating lens group 64 and the imaging element 56. Only by ensuring the exact correspondence between the two distances can the correct imaging position be ensured. Control of this correspondence will be achieved by the microprocessor control unit set forth below.
  • the microprocessor control unit in the present invention is a microprocessor for adjusting the distance between the compensation unit and the imaging unit according to the change of the distance between the zoom unit and the imaging unit to satisfy the zooming. Completing the function of imaging compensation, the system can meet the requirements of the same type of zoom system within a certain focal length, and only need to modify the program accordingly, so that the structure can meet the needs of various zoom systems.
  • the microprocessor includes a data acquisition unit, a data storage unit, a compensation data processing unit, and a stepper motor drive control unit, wherein
  • the data acquisition unit is configured to collect distance data between the zoom unit and the imaging unit;
  • the compensation data processing unit obtains distance data between the zoom unit and the imaging unit according to the distance data collected by the data acquisition unit;
  • the stepping motor drive control unit sends an indication to the compensation stepping motor to cause the compensation unit to move the corresponding distance.
  • the data storage unit is configured to store distance data between the zoom unit and the imaging unit, a correspondence table of distance data between the compensation unit and the imaging unit corresponding to the distance data, wherein the zoom unit to the imaging unit Distance data, distance data from the compensation unit to the imaging unit can be obtained using conventional optical design methods or using existing professional optical design software such as Code V, Zemax, Oslo.
  • the storage distance correspondence table may not be provided.
  • a data storage unit but a compensation data calculation unit is provided in the microprocessor, and the compensation data calculation unit calculates the compensation unit to the imaging unit by using a zoom differential equation according to the distance data between the zoom unit and the imaging unit. Distance data.
  • the zoom lens system of the present invention further includes a zoom control unit for deriving distance data between the zoom unit and the imaging unit, and inputting to the stepping motor drive control unit, and the stepping motor drive control unit receiving the zoom control
  • the movement of the zoom unit can also be controlled by another independent control module.
  • the distance data between the zoom unit and the imaging unit is the zoom curve data obtained according to the result of the foregoing optical design, and then the distance from the zoom unit to the imaging unit is obtained according to the actual zoom operation of the user, for example, at the 1.5 ⁇ zoom, there is a A numerical value, such as 13 mm. drives the zoom unit to a designated position, from which point the system of the present invention can accommodate a variety of optical zoom designs of the same construction.
  • the zoom micro-processing control unit calculates a distance and a direction that the zoom unit needs to move according to the initial data between the zoom unit and the imaging unit, the initial distance data between the zoom unit and the imaging unit, the magnification, and the area of the imaging element, ie, the detector. And calculating the number of steps and direction of the zoom stepping motor rotation according to the distance of the movement and the pitch data of the zoom nut.
  • the compensation data processing unit searches for distance data between the compensation unit corresponding to the distance data and the imaging unit according to the distance data between the zoom unit and the imaging unit after the zoom unit moves, and then according to the initial between the compensation unit and the imaging unit.
  • the distance data calculates the distance and direction that the compensation unit needs to move, and further calculates the number of steps and directions for compensating the stepping motor rotation by combining the pitch data of the compensation nut;
  • the moving resolution of the zoom unit or the compensation unit in the system of the present invention can be expressed by the following formula (1).
  • Dresol tion StepAngle ⁇ p screw . screw . ( 1 )
  • StepAngle represents the step angle of the stepper motor
  • Pscrew is the pitch of the nut
  • Rscrew is the reduction ratio.
  • the Pscrew is 0.25 ran and the step angle is 18°. That means that every step forward movement of the stepper motor will move the nut forward or backward.
  • Dresolution 18° /360.
  • the ordinate indicates the distance from the zoom lens group or the compensation lens group to the imaging element such as CCD or CMOS, and the unit is mm; the abscissa indicates the number of steps of the zoom stepping motor or the compensation step motor, and the unit is step .
  • the curve a is a zoom curve
  • the curve b is a compensation curve.
  • the compensation lens group also moves to the Sb[n] point corresponding to Sa[n] on the curve b, so that It can satisfy the compensation effect of the compensation lens group on the zoom lens group, so that the imaging of the system does not deviate from the imaging surface during zooming.
  • the zoom lens group moves to x[l] it corresponds to the point value position of 17.8 mm on the curve a, at which time the compensating lens group moves to the point position position of 5.7 mm corresponding to the curve b.
  • the zoom lens group When the zoom lens group is moved from x[l] to x[2], it corresponds to the position of 17.2 mm on the curve a. At this time, the compensating lens group moves to the point position of 7.5 mm corresponding to the curve b.
  • the direction of moving toward the imaging unit is defined as a positive direction, and the direction of rotation of the stepping motor is marked as L.
  • the direction of movement away from the imaging unit is defined as the reverse direction, and the direction of rotation of the stepping motor Marked as Y. It is calculated that, in the present invention, the corresponding data of the zoom stepping motor and the compensation stepper motor rotation are shown in the abscissa in FIG. Industrial applicability
  • the drive transmission mechanism is provided with two stepping motors, so that the drive transmission mechanism is greatly simplified, consisting of only a small number of parts, and the structure is compact, and the movement of the zoom unit and the compensation unit are mutual Non-interference, independent, easy to achieve precise control.
  • the two stepping motors in the present invention are controlled by the micro processing control unit, and the distance between the compensating unit and the imaging unit can be adjusted according to the change in the distance between the zoom unit and the imaging unit, so that the two are correspondingly output.
  • the corresponding output of the compensation curve and the zoom curve can be realized by simply inputting the changed zoom data and compensation data into the microprocessor control unit without resetting the mechanical structure of the transmission mechanism.
  • the inventive zoom lens system is simple to manufacture and low in cost.
  • the program in the present invention can write a microprocessor such as CPLD, FPGA, DSPT, ARM or other microprocessor to realize miniaturization of the control unit, thereby further reducing the system volume and weight of the present invention. It is further lightened, more convenient to carry, and has a wide range of industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Description

变焦透镜系统 技术领域
本发明涉及一种变焦透镜系统, 特别是一种用于带有变焦功能的移动电 话、 数码相机或摄像机的变焦透镜系统。 背景技术
变焦透镜系统是具有变焦功能系统的重要组成部分之一。 现有的变焦透 镜系统的结构一般包括变焦单元、 变焦驱动装置、 补偿单元和补偿驱动装置 等。 其中变焦单元包括从物侧至像侧依次排列在同一光轴 ±的具有正折射的 第一透镜组、 具有负折射的第二透镜组和具有正折射的第三透镜组, 在某些 透镜系统中也可以不设置第三透镜组; 补偿单元为布置在第三透镜组与像侧 之间的具有正折射的第四透镜组。 当放大率从具有最短焦距的广角状态向具 有最长焦距的远焦端状态改变时, 第一透镜组和第三透镜组相对于光轴位置 固定, 第二透镜组, 即变焦单元在变焦驱动装置作用下由物侧向像侧沿着光 轴移动; 第四透镜组, 即补偿单元在补偿驱动装置作用下沿光轴移动以补偿 在变焦单元移动之后产生的像面位置变动。 由于补偿单元的移动与变焦单元 的移动必须保持某种特定关系, 才能保证像正好成在成像元件所在位置, 所 以这种传统的变焦透镜系统中, 变焦驱动装置和补偿驱动装置的结构是很重 要的。 公开号为 CN101065700A的变焦透镜装置中公开了一种变焦透镜系统 的驱动装置结构。 如图 1所示, 驱动装置结构包括马达 1、 与透镜系统的光 轴平行布置的进给丝杠 20和原动轴 25、 从动轴 27。 马达 1的输出轴上安装 有第一齿轮 5。 进给丝杠 20—端部安装有与第一齿轮 5啮合的第二齿轮 7, 进给丝杠 20上设有与其配合的移动体 21。原动轴 25的一端部安装有与第二 齿轮 7啮合的第三齿轮 6, 另一端安装有可以间歇带动从动轴 27的间歇传动 机构 D。 从动轴 27上形成有螺旋状的变焦用凸轮面 36。 第二保持框 1'4上设 有可以与凸轮面 36配合工作的从动部 17, 相当于变焦单元的变焦透镜 12安 装在第二保持框 14上。第三保持框 15上设有可以与移动体 21配合工作的从 动部 19, 相当于补偿单元的聚焦透镜 13安装在第三保持框 15上。 马达 1启 动, 带动第一齿轮 5转动, 进一步带动第二齿轮 7、 第三齿轮 6随之转动; 第二齿轮 7过带动进给丝杠 20转动,与进给丝杠 20配合的移动体 21沿着丝 杠 20轴向移动,进一步带动从动部 19移动,最终实现聚焦透镜 13沿轴向移 动; 同时, 第三齿轮 6带动原动轴 25转动, 通过间歇传动机构 D的作用, 从动轴 27带动凸轮面 36间歇性转动, 于是从动部 17沿着凸轮面 36相应移 动, 最终实现变焦透镜 12间歇性沿着光轴方向移动。 在凸轮面 36的特定形 状及间歇传动机构 D的作用下, 变焦透镜 12沿着光轴移动产生的像面移动, 恰好由聚焦透镜 13的移动弥补。
由上述的驱动装置结构可知, 目前的变焦透镜系统中的机械驱动装置是 非常复杂的, 其由一个动力源通过两套传动机构分别驱动变焦驱动装置和补 偿驱动装置。 其结构包括齿轮、 间歇传动机构、 丝杠等多个相互配合的传动 部件, 这不但制造成本高, 而且占据很大空间, 不利于减小变焦透镜系统的 体积, 同时要求各个传动部件之间要保证很高的传动精度, 否则会极大地影 响成像质量。 另外, 如果变焦系统的光学参数发生变化, 则原有的机械驱动 装置无法继续使用, 需要重新设计相适应的机械驱动装置, 不但设计、 制造 麻烦, 而且进一步增加了成本。 发明内容
本发明的实施例旨在克服上述现有技术的不足, 提供一种结构简单、 体 积小, 且控制精确、 灵活的变焦透镜系统。
为实现上述目的, 本发明提供了一种变焦透镜系统, 包括依次安装在 同一光轴上的变焦单元、补偿单元和成像单元, 以及驱动传动机构, 其中 还包括微处理控制单元,其中所述驱动传动机构包括变焦步进电机和补偿 步进电机。所述变焦单元通过传动件安装在变焦步进电机的输出轴上,所 述补偿单元通过传动件安装在补偿步进电机的输出轴上,所述微处理控制 单元根据由变焦步进电机驱动的变焦单元和成像单元之间的距离变化调 节由补偿步进电机驱动的补偿单元和成像单元之间的距离。
其中所述微处理控制单元包括数据采集单元、补偿数据处理单元和步 进电机驱动控制单元; 其中
所述数据采集单元用于釆集变焦单元到成像单元之间的距离数据; 所述补偿数据处理单元根据数据釆集单元采集到的距离数据得出变 焦单元到成像单元之间的距离数据;
所述步进电机驱动控制单元向补偿步进电机发出指示,使其带动补偿 单元移动相应的距离。
所述微处理控制单元还包括数据存储单元,用于存储变焦单元到成像 单元之间的距离数据和与该距离数据一一对应的补偿单元到成像单元之 间的距离数据的对应表,所述补偿数据处理单元通过在数据存储单元中査 找的方式得出补偿单元到成像单元之间的距离数据。
其中还包括变焦控制单元,其用于得出变焦单元到成像单元之间的距 离数据,并输入到所述步进电机驱动控制单元,步进电机驱动控制单元接 收变焦控制单元输入的距离数据,指令所述变焦步进电机带动变焦单元移 动相应的距离。 所述传动件是螺纹结构。
所述螺纹结构包括设置在电机输出轴上的外螺紋和设置在螺母上与 外螺纹配合的内螺紋。
所述步进电机输出轴上固定有丝杠,所述螺紋结构包括设置在丝杠上 的外螺纹和设置在螺母上与外螺紋配合的内螺纹。
所述变焦单元到成像单元之间的距离数据和补偿单元到成像单元之 间的距离数据分别由变焦螺母和补偿螺母的螺距表示。
所述变焦螺母的螺纹螺距和补偿螺母的螺纹螺距相等。
由上述技术方案可知, 本发明中, 驱动传动机构包括用于驱动变焦单元 的变焦步进电机和用于驱动补偿单元的补偿步进电机, 由于设有两个步进电 机, 使其驱动传动机构大为简化, 只由较少的零件组成, 结构紧凑, 而且变 焦单元和补偿单元的移动是互不千涉, 各自独立的, 易于实现精确控制。 本 发明中两个步进电机由微处理控制单元控制, 能根据变焦单元和成像单元之 间的距离变化来调节补偿单元和成像单元之间的距离, 使二者对应输出。 当 变焦透镜系统中的光路系统结构变化而导致光学参数变化时, 变焦单元或补 偿单元中透镜的尺寸将同时改变。 对本发明的系统来说, 只需简单地将变化 后的变焦数据和补偿数据输入微处理控制单元即可实现补偿曲线与变焦曲线 的对应输出, 而不需要重新设传动机构的机械结构, 所以本发明的变焦透镜 系统制造简单、 成本低、 经济。 另外, 本发明中的程序可写入诸如 CPLD, FPGA, DSPT, ARM的微处理器或其他微处理器,以实现控制单元的微型化, 从而使本发明的系统体积进一步减小、 重量进一步减轻, 携带更加方便。
通过以下参照附图对优选实施例的说明, 本发明的上述以及其它目的、 特征和优点将更加明显。
附图说明
图 1是现有的变焦透镜系统的结构示意图;
图 2是本发明的变焦透镜系统的机械装配结构示意图;
图 3是本发明的变焦透镜系统的机械结构分解示意图;
图 4是本发明的变焦透镜系统中的光学成像结构示意图;
图 5表示本发明中的变焦单元和补偿单元之间位移关系的原理示意图; 图 6表示本发明的变焦透镜系统的各部分动作过程示意图;
图 7是本发明中的微处理控制单元的控制流程图;
图 8表示本发明中, 变焦数据、 补偿数据随着步进电机转动步数变化的 示意图。
具体实施方式
下面将详细描述本发明的具体实施例。 应当注意, 这里描述的实施例只 用于举例说明, 并不用于限制本发明。
如图 2、 图 3和图 4所示, 本发明的变焦透镜系统的结构包括安装在壳 体 50内的变焦单元、 成像元件 56 (见图 4) 用于补偿像差的补偿单元 64以 及驱动传动机构。 在壳体 50的两相对侧板上固定有两根互相平行的安装轴。 所述的变焦单元包括滑动安装在两根安装轴上的变焦透镜保持框 61 和安装 在保持框 61 内的变焦透镜组 62。 所述补偿单元包括滑动安装在两根安装轴 上的补偿透镜保持框 63和安装在保持框 63内的补偿透镜组 64。其中变焦透 镜组 62与补偿透镜组 64安装在同一光轴上。 在该光轴上还可以安装滤光透 镜 55 (见图 4) 。
驱动传动机构包括变焦驱动传动机构和补偿驱动传动机构。 其中变焦驱 动传动机构包括安装在壳体 50的其中一块侧板上的变焦步进电机 51、 固定 安装在变焦步进电机 51输出轴上的丝杠(图中未示出), 与丝杠配合工作的 变焦螺母 52。 其中变焦螺母 52与变焦透镜保持框 61固定连接在一起。
补偿驱动传动机构包括安装在壳体 50 的其中一块侧板上的补偿步进电 机 53、 固定安装在补偿步进电机 53输出轴上的丝杠 (图中未示出) , 与丝 杠配合工作的补偿螺母 54。其中补偿螺母 54与补偿透镜保持框 63固定连接 在一起。
本实施例的驱动传动机构和补偿驱动传动机构中, 如果选用输出轴上设 有螺纹的步进电机, 可以省略丝杠, 而将螺母直接配合在电机输出轴上。 另 夕卜, 在电机输出轴与螺母之间也可以设置其他的螺纹结构, 只要当步进电机 转动时通过螺纹结构能够驱动螺母移动即可。
参见图 4、 图 5和图 6。 其中图 5中的 AA' 是光轴, Ll、 L2是共轭距。 假设变焦透镜组 62在初始位置时, 物体成像位置恰好在成像元件 56, 当变 焦透镜组 62向目标物体移动过程中,变焦透镜组 62与成像元件 56之间的距 离也不断变化, 即物距不断变化。 像距随物距的变化而发生变化, 于是变焦 透镜组 62移动后物体成像位置偏离了成像元件 56。 如果要纠正该偏移量, 使成像位置仍位于成像元件 56上, 则需要移动补偿透镜组 64, 补偿透镜组 64移动的距离要恰好能够补偿因变焦透镜组 62的移动而产生的偏移量。 启 动变焦步进电机 51, 丝杠随其输出轴转动, 驱动变焦螺母 52移动, 从而带 动与变焦螺母 52固定连接的变焦透镜组 62移动了位移 XI, 变焦透镜组 62 与成像元件之间的距离发生了变化, 物体的成像位置就偏离了成像元件 56。 为了补偿这个偏移量, 启动补偿步进电机 53, 丝杠随其输出轴转动, 驱动补 偿螺母 54移动,从而带动与补偿螺母 54固定连接的补偿透镜组 64向相反方 向移动位移 X2, 即当变焦透镜组 62移动距离 XI时, 补偿透镜组 64向相反 方向移动距离 X2, 成像位置才能正好在成像元件 56上。 也就是说变焦透镜 组 62和成像元件 56之间的距离与补偿透镜组 64和成像元件 56之间的距离 存在着一一对应的关系。 只有保证该两种距离的准确对应关系, 才能保证正 确的成像位置。这种对应关系的控制将通过下面阐述的微处理控制单元实现。
如图 7所示, 本发明中的微处理控制单元为一微处理器, 用于根据变焦 单元和成像单元之间的距离变化调节补偿单元和成像单元之间的距离来满 足在变焦的同时来完成成像补偿的功能,该系统能够满足一定焦距内的同 类型变焦系统的需求,而仅需对程序进行相应的改动就可以,这样就可以 以一种结构来满足多种变焦系统的需求。 微处理器包括数据采集单元、 数 据存储单元、 补偿数据处理单元和步进电机驱动控制单元, 其中
所述数据采集单元用于采集变焦单元到成像单元之间的距离数据; 所述补偿数据处理单元根据数据采集单元采集到的距离数据得出变焦单 元到成像单元之间的距离数据;
所述步进电机驱动控制单元向补偿步进电机发出指示, 使其带动补偿单 元移动相应的距离。
所述数据存储单元用于存储变焦单元到成像单元之间的距离数据、 与该 距离数据相对应的补偿单元到成像单元之间的距离数据的对应表, 其中的变 焦单元到成像单元之间的距离数据、 补偿单元到成像单元之间的距离数据均 可以釆用常规的光学设计方法或者利用现有的专业光学设计软件, 如 Code V、 Zemax、 Oslo取得。 另外, 本发明中也可以不设置用于存储距离对应表 的数据存储单元, 而是在微处理器中设置一个补偿数据计算单元, 由该补偿 数据计算单元根据变焦单元到成像单元之间的距离数据用变焦微分方程计算 出补偿单元到成像单元'之间的距离数据。
本发明的变焦透镜系统中还包括变焦控制单元, 其用于得出变焦单元到 成像单元之间的距离数据, 并输入到所述步进电机驱动控制单元, 步进电机 驱动控制单元接收变焦控制单元输入的距离数据, 指令所述变焦步进电机带 动变焦单元移动相应的距离。 变焦单元的移动也可以由另一个独立的控制模 块控制。 变焦单元到成像单元之间的距离数据是根据前述光学设计的结果得 到的变焦曲线数据, 然后根据使用者实际的变焦操作来得出变焦单元到成像 单元的距离, 比如在 1.5x变焦处, 有个数值, 比如 13mm.驱动该变焦单元到 达指定的位置, 从该点来看, 本发明的系统可以适应多种同样结构的光学变 焦设计。
所述变焦微处理控制单元根据变焦单元到成像单元之间初离数据、 变焦 单元到成像单元之间初始距离数据、 放大率、 成像元件即探测器的面积计算 出变焦单元需要移动的距离和方向, 并根据该移动的距离、 变焦螺母的螺距 数据计算出变焦步进电机转动的步数和方向。 所述的补偿数据处理单元根据 变焦单元移动后变焦单元到成像单元之间的距离数据査找与该距离数据对应 的补偿单元到成像单元之间的距离数据, 再根据补偿单元到成像单元之间初 始距离数据计算出补偿单元需要移动的距离和方向, 并进一步结合补偿螺母 的螺距数据计算出补偿步进电机转动的步数和方向;
通过下列公式(1 )能够表示出本发明的系统中的变焦单元或补偿单元的 移动分辨率。
Dresol tion = StepAngle · pscrew . screw . ( 1 )
360° 其中, StepAngle表示步进电机的步进角, Pscrew是螺母的螺距, Rscrew 是减速比。 本发明的系统中, Pscrew为 0.25ran, 步进角为 18° 。 那意味着 步进 电 机 每 向 前 移 动 一 步 将 使 螺 母 向 前 或 向 后 移 动 Dresolution=18° /360。 *0.25mm=0.0125mm=12.5um(微米)。 如果在本发明的 系统中使用减速机, 则能够取得更小的位移。 例如, 如果减速比是 1 : 10, 那么螺母的位移是 Dresolution=18° /360。 *0.25mm*0.1=1.25um (微米)。
贝 1J, 变焦单元或补偿单元的移动的距离可表示为:
Distance = Nstep . Dresolution ( 2 ) 其中, Distance是变焦单元或补偿单元需要移动的距离, Nstep是步进电 机的步数。
通过下列公式 (3 ) 能算出步进电机转动的步数:
T Distance Λ
Nstep = ― ■ 3 J
Dresolution 按照这个简单的公式可以计算出变焦步进电.机和补偿步进电机转动的步 数。
见图 8, 图中纵坐标表示变焦透镜组或补偿透镜组到成像元件如 CCD或 者 CMOS的距离, 单位为 mm; 横坐标表示变焦步进电机或补偿步进电机转 动的步数, 单位是步。
图示中曲线 a为变焦曲线,曲线 b为补偿曲线。当变焦透镜组运动到 x[n] 坐标处, 对应着曲线 a上 Sa[n], 此时补偿透镜组也对应移动到曲线 b上与 Sa[n]对应的 Sb[n]点, 这样就能满足我们所说的补偿透镜组对变焦透镜组的 补偿作用, 从而可以保证变焦的时候系统成像不会偏离成像面。 例如, 当变 焦透镜组运动到 x[l]时, 对应着曲线 a上的 17.8mm这个点值位置, 此时, 补偿透镜组运动到对应曲线 b的 5.7mm这个点值位置。 当变焦透镜组由 x[l] 运动到 x[2]时, 对应着曲线 a上的 17.2mm这个点值位置, 此时, 补偿透镜 组运动到对应曲线 b的 7.5mm这个点值位置。 在此过程中, 变焦单元中的变 焦步进电机需要移动的距离为 17.8mm-17.2mm=0.6mm,则对应的转动步数为 0.6mm/1.25um=480步, 方向为靠近成像单元。补偿单元中的补偿步进电机需 要移动的距离为 7.5mm-5.7mm=1.8n]m, 则转动步数为 1.8mm/1.25um= 440 步, 方向为远离成像单元。 在步进电机转动方向和步数计算单元中, 向靠近成像单元移动的方向定 义为正方向, 步进电机转动方向标记为 L 向远离成像单元移动的方向定义 为反方向, 步进电机转动方向标记为 Y。 经计算, 本发明中, 变焦步进电机 和补偿步进电机转动的对应数据见图 8中横坐标。 工业实用性
综上所述, 本发明中, 驱动传动机构设有两个步进电机, 使其驱动传动 机构大为简化, 只由较少的零件组成, 结构紧凑, 而且变焦单元和补偿单元 的移动是互不干涉, 各自独立的, 易于实现精确控制。 本发明中的两个步进 电机由微处理控制单元控制, 能根据变焦单元和成像单元之间的距离变化来 调节补偿单元和成像单元之间的距离, 使二者对应输出。 当变焦透镜系统中 的光路系统结构变化而导致光学参数变化时, 变焦单元或补偿单元中透镜的 尺寸将同时改变。 对本发明的系统来说, 只需简单地将变化后的变焦数据和 补偿数据输入微处理控制单元即可实现补偿曲线与变焦曲线的对应输出, 而 不需要重新设传动机构的机械结构, 所以本发明的变焦透镜系统制造简单、 成本低。 另夕卜, 本发明中的程序可写入诸如 CPLD, FPGA, DSPT, ARM的 微处理器或其他微处理器, 以实现控制单元的微型化, 从而使本发明的系统 体积进一步减小、重量进一步减轻, 携带更加方便, 具有广泛的工业实用性。
虽然已参照几个典型实施例描述了本发明, 但应当理解, 所用的术语是 说明和示例性、 而非限制性的术语。 由于本发明能够以多种形式具体实施而 不脱离发明的精神或实质, 所以应当理解, 上述实施例不限于任何前述的细 节, 而应在随附权利要求所限定的精神和范围内广泛地解释, 因此落入权利 要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims

权 利 要 求
1. 一种变焦透镜系统, 包括依次安装在同一光轴上的变焦单元、 补 偿单元和成像单元, 以及驱动传动机构, 其特征在于还包括微处理控制 单元, 其中所述驱动传动机构包括变焦步进电机 (51 ) 和补偿步进电机 ( 53 ) , 其中所述变焦单元通过传动件安装在变焦步进电机 (51 ) 的输 出轴上, 所述补偿单元通过传动件安装在补偿步进电机 (53 ) 的输出轴 上, 所述微处理控制单元根据由变焦步进电机 (51 ) 驱动的变焦单元和 成像单元之间的距离变化调节由补偿步进电机 (53 ) 驱动的补偿单元和 成像单元之间的距离以使曝光时成像位置在成像单元上。
2. 如权利要求 1所述的变焦透镜系统, 其特征在于所述微处理控制 单元包括数据采集单元、 补偿数据处理单元和步进电机驱动控制单元; 其中
所述数据采集单元用于采集变焦单元到成像单元之间的距离数据; 所述补偿数据处理单元根据数据采集单元釆集到的距离数据得出变 焦单元到成像单元之间的距离数据;
所述步进电机驱动控制单元向补偿步进电机发出指示, 使其带动补 偿单元移动相应的距离。
3. 如权利要求 2所述的变焦透镜系统, 其特征在于所述微处理控制 单元还包括数据存储单元, 用于存储变焦单元到成像单元之间的距离数 据和与该距离数据一一对应的补偿单元到成像单元之间的距离数据的对 应表, 所述补偿数据处理单元通过在数据存储单元中查找的方式得出补 偿单元到成像单元之间的距离数据。
4. 如权利要求 2所述的变焦透镜系统, 其特征在于还包括变焦控制 单元, 其用于得出变焦单元到成像单元之间的距离数据, 并输入到所述 步进电机驱动控制单元, 步进电机驱动控制单元接收变焦控制单元输入 的距离数据, 指令所述变焦步进电机带动变焦单元移动相应的距离。
5. 如权利要求 1-4之任一所述的变焦透镜系统, 其特征在于所述传 动件是螺紋结构。
6. 如权利要求 5所述的变焦透镜系统, 其特征在于所述螺紋结构包 括设置在电机输出轴上的外螺紋和设置在螺母上与外螺纹配合的内螺 纹。
7. 如权利要求 5所述的变焦透镜系统, 其特征在于所述步进电机输 出轴上固定有丝杠, 所述螺纹结构包括设置在丝杠上的外螺紋和设置在 螺母上与外螺紋配合的内螺紋。
8. 如权利要求 6或 7所述的变焦透镜系统, 其特征在于所述变焦单 元到成像单元之间的距离数据和补偿单元到成像单元之间的距离数据分 别由变焦螺母 (52) 和补偿螺母 (54) 的螺距表示。
9. 如权利要求 8 所述的变焦透镜系统, 其特征在于所述变焦螺母 ( 52) 的螺纹螺距和补偿螺母 (54) 的螺纹螺距相等。
PCT/CN2009/000892 2008-08-06 2009-08-06 变焦透镜系统 WO2010015149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101348952A CN101644815B (zh) 2008-08-06 2008-08-06 变焦透镜系统
CN200810134895.2 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010015149A1 true WO2010015149A1 (zh) 2010-02-11

Family

ID=41656771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000892 WO2010015149A1 (zh) 2008-08-06 2009-08-06 变焦透镜系统

Country Status (2)

Country Link
CN (1) CN101644815B (zh)
WO (1) WO2010015149A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830489A (zh) * 2011-12-17 2012-12-19 中国航空工业集团公司洛阳电光设备研究所 一种旋转变倍式光学系统景深补偿装置及方法
CN113687491A (zh) * 2021-07-16 2021-11-23 中国北方车辆研究所 一种双步进电机驱动的自动变焦机构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768391A (zh) * 2011-05-04 2012-11-07 亚洲光学股份有限公司 可控制相机镜头解像能力的镜框模块
CN113917647A (zh) * 2021-09-09 2022-01-11 西安应用光学研究所 一种基于步进电机的多组元连续变焦镜头装置及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338760Y (zh) * 1998-06-25 1999-09-15 中国科学院光电技术研究所 新型联动变焦物镜
CN2426157Y (zh) * 1999-07-19 2001-04-04 中国科学院光电技术研究所 程控高精度变焦距装置
CN1611975A (zh) * 2003-09-02 2005-05-04 佳能株式会社 成像设备
JP2007256977A (ja) * 2007-06-04 2007-10-04 Canon Inc 撮像装置、及びその制御方法
JP2008116593A (ja) * 2006-11-02 2008-05-22 Hitachi Ltd フォーカスレンズのトラッキング制御装置及び監視用途ズームカメラ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338760Y (zh) * 1998-06-25 1999-09-15 中国科学院光电技术研究所 新型联动变焦物镜
CN2426157Y (zh) * 1999-07-19 2001-04-04 中国科学院光电技术研究所 程控高精度变焦距装置
CN1611975A (zh) * 2003-09-02 2005-05-04 佳能株式会社 成像设备
JP2008116593A (ja) * 2006-11-02 2008-05-22 Hitachi Ltd フォーカスレンズのトラッキング制御装置及び監視用途ズームカメラ装置
JP2007256977A (ja) * 2007-06-04 2007-10-04 Canon Inc 撮像装置、及びその制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830489A (zh) * 2011-12-17 2012-12-19 中国航空工业集团公司洛阳电光设备研究所 一种旋转变倍式光学系统景深补偿装置及方法
CN113687491A (zh) * 2021-07-16 2021-11-23 中国北方车辆研究所 一种双步进电机驱动的自动变焦机构

Also Published As

Publication number Publication date
CN101644815A (zh) 2010-02-10
CN101644815B (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
JP6006349B2 (ja) 屈曲式ズームカメラモジュールの防振装置
JP5787510B2 (ja) 屈曲式ズームカメラモジュール
CN1257431C (zh) 步进式变焦距镜头照相机
JP2011154347A (ja) レンズ鏡筒
US8861104B2 (en) Lens barrel and imaging device
JP5612318B2 (ja) レンズ鏡筒及び撮像装置
JP2010008802A (ja) ズームレンズ鏡筒
WO2010015149A1 (zh) 变焦透镜系统
US9584708B2 (en) Optical system and lens control system having focus adjustment used for imaging apparatus
JP3599730B2 (ja) ズーム光学系
US8422152B2 (en) Lens barrel
WO2004099870A1 (ja) カメラ
CN103543522B (zh) 变焦透镜和具有该变焦透镜的图像拾取装置
JP2009169232A (ja) カメラのレンズ鏡筒
US7019914B2 (en) Lens barrel and image taking apparatus
CN115857250A (zh) 透镜镜筒以及摄像装置
JP2010169816A (ja) レンズ鏡筒
JP2002107598A (ja) 沈胴式レンズ鏡筒及びこれを用いた光学機器
JP2015004759A (ja) レンズ装置およびそれを有する撮像装置
JP2007333764A (ja) レンズ鏡筒、カメラ
JPH1164707A (ja) ズームレンズ鏡筒
JP2006337884A (ja) レンズ駆動装置
JP4351429B2 (ja) 沈胴式レンズ鏡筒
JP4898762B2 (ja) レンズ鏡筒
JP2010169734A (ja) レンズ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804449

Country of ref document: EP

Kind code of ref document: A1