WO2010013677A1 - 有機物含有水の処理方法及び装置 - Google Patents

有機物含有水の処理方法及び装置 Download PDF

Info

Publication number
WO2010013677A1
WO2010013677A1 PCT/JP2009/063352 JP2009063352W WO2010013677A1 WO 2010013677 A1 WO2010013677 A1 WO 2010013677A1 JP 2009063352 W JP2009063352 W JP 2009063352W WO 2010013677 A1 WO2010013677 A1 WO 2010013677A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen
group metal
platinum group
organic substance
Prior art date
Application number
PCT/JP2009/063352
Other languages
English (en)
French (fr)
Inventor
床嶋裕人
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2010522711A priority Critical patent/JP5447378B2/ja
Priority to US12/737,554 priority patent/US8771522B2/en
Priority to KR1020117000545A priority patent/KR101692212B1/ko
Priority to CN200980129136XA priority patent/CN102105408A/zh
Publication of WO2010013677A1 publication Critical patent/WO2010013677A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/13Use of sweep gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the present invention relates to a method and apparatus for treating organic substance-containing water, and more particularly to a method and apparatus for removing organic substances in water to be treated with a metal catalyst.
  • High-concentration chemicals and detergents are used for cleaning and surface treatment of electronic components, and a large amount of pure water is used to rinse them. Development of advanced water treatment technology is desired in order to improve the quality of pure water and the reuse rate of waste water.
  • Biological treatment or physicochemical treatment is widely used as a method for removing the TOC (total organic carbon) component in the treated water in the ultrapure water production process.
  • RO membrane reverse osmosis membrane
  • the physicochemical treatment includes the following methods (1) to (3).
  • the above methods (1) to (3) have a problem that energy consumption is large.
  • the driving power of the pressurizing pump for supplying water to the RO membrane separation device is large.
  • organic matter-containing wastewater is directly passed through the RO membrane separator, biofiling tends to occur in the RO membrane separator because the organic matter-containing wastewater has a high TOC concentration.
  • the organic matter in the organic matter-containing wastewater is a hardly decomposable organic matter typified by a nitrogen compound having a low molecular weight (such as urea), the removal efficiency is extremely poor.
  • An object of the present invention is to provide a method and apparatus for treating organic substance-containing water that can remove organic substances in water to be treated with low energy consumption.
  • the method for treating organic substance-containing water according to the first aspect of the present invention is characterized in that water to be treated containing an organic substance is brought into contact with a platinum group metal catalyst to remove the organic substance.
  • the method for treating organic substance-containing water according to the second aspect is characterized in that, in the first aspect, the platinum group metal catalyst adsorbs hydrogen.
  • the method for treating organic substance-containing water according to the third aspect is characterized in that, in the second aspect, the water to be treated contains dissolved oxygen.
  • the method for treating organic substance-containing water of the fourth aspect is the hydrogen adsorption step of supplying hydrogen to the platinum group metal catalyst and adsorbing hydrogen in the second or third aspect, and the platinum group adsorbing the hydrogen.
  • An organic substance removing step of contacting the water to be treated with a metal catalyst to remove organic substances is performed alternately.
  • a fifth aspect of the method for treating organic substance-containing water when a plurality of reaction vessels containing the platinum group metal catalyst are used and a hydrogen adsorption step is performed in some of the reaction vessels, An organic substance removing step is performed in the container.
  • the organic substance-containing water treatment method of the sixth aspect is characterized in that, in any of the first to fifth aspects, the platinum group metal catalyst is composed of fine particles of a platinum group metal.
  • the organic material-containing water treatment method of the seventh aspect is characterized in that, in the sixth aspect, the platinum group metal fine particles are supported on a carrier.
  • the organic substance-containing water treatment method according to the eighth aspect is characterized in that, in any one of the third to seventh aspects, the dissolved oxygen concentration in the water to be treated is 1 ppb to 100 ppb.
  • the method for treating organic substance-containing water according to the ninth aspect is the method according to any one of the first to eighth aspects, wherein after the water to be treated is brought into contact with the platinum group metal catalyst, the water is treated with an anion exchange resin and a cation. Contact with at least one of the exchange resins.
  • the method for treating organic substance-containing water according to the tenth aspect is the method according to the ninth aspect, wherein the water to be treated is brought into contact with the platinum group metal catalyst, then the water is degassed, and then the degassed water is treated with an anion. It is characterized by contacting with at least one of an exchange resin and a cation exchange resin.
  • the organic substance-containing water treatment method of the eleventh aspect is characterized in that, in any of the first aspect to the tenth aspect, the water to be treated is water to be treated for producing ultrapure water.
  • the organic substance-containing water treatment apparatus is an apparatus for removing organic substances by bringing water to be treated containing organic substances and dissolved oxygen into contact with a platinum group metal catalyst adsorbing hydrogen.
  • the present invention is characterized in that water to be treated is supplied to a reaction vessel other than the reaction vessel to perform the organic substance removing step.
  • the treatment apparatus for organic substance-containing water comprises, in the twelfth aspect, an ion exchange means having at least one of an anion exchange resin and a cation exchange resin into which the treated water flowing out of the reaction vessel is introduced.
  • the treatment apparatus for organic substance-containing water includes a deaeration device into which the treated water that has flowed out of the reaction vessel is introduced, and the deaeration treatment water from the deaeration device is the ion. It is introduced into the exchange means.
  • water to be treated containing an organic substance is brought into contact with a platinum group metal catalyst, and the organic substance is removed by the catalytic action of the platinum group metal catalyst. It can be easily removed at low energy.
  • RO membrane treatment and UV irradiation treatment are unnecessary, and energy consumption is small.
  • the platinum group metal catalyst adsorbs hydrogen and the water to be treated contains dissolved oxygen, the organic substance removal efficiency is improved.
  • the dissolved oxygen concentration in to-be-processed water is 1 ppb or more.
  • a hydrogen adsorption step of supplying hydrogen to a platinum group metal catalyst to adsorb hydrogen, and bringing the water to be treated into contact with the platinum group metal catalyst having adsorbed hydrogen to treat the organic substance. It is preferable to alternately perform the organic substance removing step to be removed. Thereby, hydrogen can be sufficiently adsorbed to the platinum group metal catalyst, and the organic matter removal efficiency can be increased.
  • the platinum group metal catalyst is accommodated in a plurality of reaction vessels, and while performing the hydrogen adsorption step in some reaction vessels, the organic substance removal step is performed in another reaction vessel, and this You may make it switch the reaction container which performs a hydrogen adsorption process sequentially. If it does in this way, the removal process of the organic substance in to-be-processed water can be implemented continuously.
  • the platinum group metal catalyst may be composed of fine particles of platinum group metal.
  • the platinum group metal fine particles may be supported on the surface of the carrier.
  • the platinum group metal catalyst may be formed by forming a coating of a platinum group metal such as platinum on a substrate such as a ceramic ball by plating or the like.
  • this water may be brought into contact with at least one of an anion exchange resin and a cation exchange resin. If it does in this way, the organic acid produced
  • the present invention is suitable for treating raw water for producing ultrapure water, for example, city water, well water, surface water, waste water from a drawing process for semiconductors or electronic components, and the like.
  • the present invention is suitable for the treatment of raw water having an organic substance concentration of 1 to 1000 ppb, particularly 1 to 50 ppb as TOC.
  • FIG. 1 is a system diagram showing an embodiment of the method and apparatus for treating organic substance-containing water of the present invention.
  • the open / close valve in the closed state is painted black, and the open / close valve in the open state is white.
  • the configuration of the processing apparatus will be described.
  • a raw water supply pipe 1 having an on-off valve 1 a is connected to an inlet of a catalyst packed column (reaction vessel) 4.
  • a catalyst packed column (reaction vessel) 4 In the middle of the raw water supply pipe 1, an oxygen supply pipe 2 provided with an on-off valve 2a and a hydrogen supply pipe 3 provided with an on-off valve 3a are connected.
  • a platinum group metal catalyst 4a is accommodated (packed in the present embodiment). Hydrogen is adsorbed on the platinum group metal catalyst 4a. Details of the catalyst packed column 4 will be described later.
  • the outlet of the catalyst packed column 4 is connected to the liquid phase chamber 6a of the degassing membrane module 6 via an outflow pipe 5 provided with an on-off valve 5a. From the middle of the outflow pipe 5, an extraction pipe 12 provided with an on-off valve 12 a is branched.
  • the deaeration membrane module 6 is partitioned into a liquid phase chamber 6a and a gas phase chamber 6b by a gas permeable membrane 6c.
  • the gas phase chamber 6 b is connected to the vacuum pump 11 via the pipe 10.
  • the gas permeable film 6c is a film that transmits gas such as oxygen, nitrogen, carbon dioxide, and water vapor but does not transmit water.
  • a silicone film, a polytetrafluoroethylene film, a polyolefin film, a polyurethane film, and the like. can be used.
  • the pressure on the decompression side (gas phase chamber 6b) of the membrane degassing module 6 is preferably 5 to 10 kPa. Since some water vapor passes through the gas permeable membrane 6c on the decompression side, it is preferable to flow a gas such as nitrogen on the decompression side to remove moisture and prevent deterioration of the membrane performance. If the pressure on the decompression side is less than 5 kPa, the amount of water vapor that passes through the gas permeable membrane 6c may be excessive. If the pressure on the decompression side exceeds 10 kPa, the gas removal efficiency may be reduced.
  • the flow rate of a gas such as nitrogen in the gas phase chamber 6b is preferably 5 to 25% by volume of the amount of water flowing into the liquid phase chamber 6a.
  • the liquid phase chamber 6 a of the degassing membrane module 6 is connected to the inlet of the ion exchange resin column 8 via the pipe 7.
  • the ion exchange resin column 8 is filled with an ion exchange resin 8a.
  • the ion exchange resin column 8 is preferably a non-regenerative mixed bed ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed and packed in accordance with the ion load as the ion exchange resin 8a.
  • a mixed bed type ion exchange apparatus By using a mixed bed type ion exchange apparatus, cations and anions in water are completely removed, and ultrapure water having extremely low electrical conductivity can be obtained.
  • residual organic substances and organic acids generated in the decomposition process of the organic substances are also removed.
  • a treated water pipe 9 is connected to the outlet of the ion exchange resin column 8.
  • platinum group metal of the platinum group metal catalyst 4a packed in the catalyst packed column 4 examples include ruthenium, rhodium, palladium, osmium, iridium and platinum. These platinum group metals can be used individually by 1 type, and can also be used in combination of 2 or more type. It can also be used as an alloy made of two or more metals. Moreover, the refined product of the mixture produced naturally can also be used without isolate
  • the platinum group metal catalyst 4a may be platinum group metal fine particles or a metal supported catalyst in which platinum group metal nanocolloid particles are supported on the surface of the carrier.
  • the platinum group metal catalyst may be formed by forming a coating of a platinum group metal such as platinum on a substrate such as a ceramic ball by plating or the like.
  • the method for producing platinum group metal nanocolloid particles includes a metal salt reduction reaction method and a combustion method.
  • the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanocolloid particles can be obtained.
  • platinum group metal chloride such as platinum, nitrate, sulfate, metal complex, etc., alcohol, citric acid or a salt thereof
  • a reducing agent such as formic acid, acetone, acetaldehyde and the like
  • platinum group metal nanocolloid particles can be produced.
  • a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours
  • platinum Nanocolloid particles can be produced.
  • the weight average particle diameter of the platinum group metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. If the weight average particle diameter of the metal nanocolloid particles is less than 1 nm, the catalytic activity for TOC decomposition and removal may be reduced. When the weight average particle diameter of the metal nanocolloid particles exceeds 50 nm, the specific surface area of the nanocolloid particles becomes small, and the catalytic activity for TOC decomposition and removal may be reduced.
  • the carrier on which the platinum group metal nanocolloid particles are supported examples thereof include magnesia, titania, alumina, silica-alumina, zirconia, activated carbon, zeolite, diatomaceous earth, and ion exchange resin.
  • an anion exchange resin can be particularly preferably used.
  • the platinum group metal nano-colloidal particles have an electric double layer and are negatively charged, so that they are stably supported on the anion exchange resin and hardly peeled off.
  • This anion exchange resin is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel type resin.
  • the exchange group of the anion exchange resin is preferably in the OH form.
  • the amount of platinum group metal nanocolloid particles supported on a carrier such as an anion exchange resin is preferably 0.01 to 0.2% by weight, more preferably 0.04 to 0.1% by weight. . If the supported amount of metal nanocolloid particles is less than 0.01% by weight, the catalytic activity for the decomposition and removal of organic substances may be insufficient. The supported amount of the metal nanocolloid particles is 0.2% by weight or less, and sufficient catalytic activity is exhibited for the decomposition and removal of the organic matter. Usually, it is not necessary to support the metal nanocolloid particles exceeding 0.2% by weight. In addition, when the amount of metal nanocolloid particles supported increases, the risk of metal elution into water also increases.
  • the on-off valves 1a and 5a are opened, the on-off valves 3a and 12a are closed, and raw water is passed through the raw water supply pipe 1.
  • the on-off valve 2a of the oxygen supply pipe 2 is opened to supply oxygen to the raw water in the raw water supply pipe 1.
  • the supply amount of oxygen is such that the decomposition reaction of the organic matter in the raw water can sufficiently proceed.
  • the total molar concentration of dissolved oxygen in the raw water and oxygen supplied from the oxygen supply pipe 2 is preferably one or more times the molar concentration of organic carbon in the raw water. Is more preferably 5 times or more in order to sufficiently proceed.
  • the dissolved oxygen concentration of water introduced into the catalyst packed column 4 is preferably 1 ppb or more, for example, 1 to 100 ppb, particularly 5 to 50 ppb.
  • the raw water containing organic matter and dissolved oxygen flows into the catalyst packed column 4 through the raw water supply pipe 1 and comes into contact with the platinum group metal catalyst 4a on which hydrogen is adsorbed. Thereby, the organic substance in the raw water and the platinum group metal catalyst come into contact with each other in the presence of hydrogen and oxygen, and the organic substance is efficiently decomposed and removed.
  • the platinum group metal catalyst 4a is an anion exchange resin carrying 0.01 to 0.2% by weight of platinum group metal non-nano colloidal particles
  • the water flow rate (SV) to the catalyst packed column 4 is 10 to 10%.
  • 500 hr -1, especially about 50 ⁇ 300 hr -1 is preferred.
  • the water from which organic substances have been removed in this way flows into the liquid phase chamber 6a of the degassing membrane module 6 through the pipe 5, and carbon dioxide, oxygen, nitrogen, and other gases are removed.
  • the degassed water deaerated by the deaeration membrane module 6 flows into the ion exchange resin column 8 through the pipe 7.
  • the ion exchange resin 8a in the ion exchange resin column 8 adsorbs and removes undecomposed organic matter contained in the degassed treated water, organic acids generated during the decomposition process of the organic matter, and the like.
  • the ion exchange treated water is discharged out of the system from the pipe 9.
  • Whether or not the hydrogen adsorption amount of the platinum group metal catalyst has decreased is determined by, for example, measuring the dissolved oxygen concentration of the inflow water and the outflow water to the catalyst packed column 4 and whether or not the difference in concentration is equal to or less than a predetermined value. Can be determined. That is, if the difference between the dissolved oxygen concentration of the inflowing water and the dissolved oxygen concentration of the effluent of the catalyst packed column 4 is not more than a predetermined value, the hydrogen adsorption amount is sufficient and the dissolved oxygen is removed by the reaction with hydrogen. On the contrary, when the value exceeds the predetermined value, the hydrogen adsorption amount is insufficient.
  • the on-off valve 3 a is opened, hydrogen is introduced into the catalyst packed column 4 through the pipe 3 and the pipe 1, and hydrogen is adsorbed on the platinum group metal catalyst 4 a in the column 4.
  • the on-off valve 12a may be closed and the inside of the catalyst packed column 4 may be pressurized to promote hydrogen adsorption.
  • the on-off valve 12a may be opened so that hydrogen from the column 4 is discharged from the pipe 12 so that hydrogen flows through the catalyst packed column 4.
  • the on-off valve 3a After sufficiently adsorbing hydrogen onto the platinum group metal catalyst 4a, the on-off valve 3a is closed, and the on-off valves 1a, 2a and 12a are opened to fill the catalyst packed column 4 with raw water.
  • the on-off valve 12a is closed, the on-off valve 5a is opened, and the valve is opened and closed as shown in FIG. 1, and the process returns to the organic matter removing step.
  • the above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment.
  • the hydrogen adsorption step may be omitted, and the platinum group metal catalyst 4a may be replaced with a new one when the amount of hydrogen adsorption of the platinum group metal catalyst 4a is reduced.
  • hydrogen water may be supplied from the hydrogen supply pipe 3 instead of the hydrogen gas.
  • the hydrogen water for example, treated water from the treated water pipe 9 or water in which TOC concentration is lower than that of the treated water is used.
  • Oxygen water may be supplied from the oxygen supply pipe 2 instead of oxygen gas.
  • oxygen water for example, treated water from the treated water pipe 9 or one in which oxygen is dissolved in water having a lower TOC concentration than the treated water is used.
  • FIG. 2 is a system diagram showing another embodiment of the method and apparatus for treating organic substance-containing water of the present invention.
  • the open / close valve in the closed state is painted black, and the open / close valve in the open state is white.
  • two catalyst-packed columns are installed in parallel, and the treatment of water to be treated can be continuously performed by changing the timing of performing the hydrogen adsorption process of these catalyst-filled columns. It is what.
  • the raw water supply pipe 20 branches into a branch pipe 21 having an on-off valve 21a and a branch pipe 22 having an on-off valve 22a.
  • the branch pipes 21 and 22 are connected to the inlets of the catalyst packed columns 41 and 42.
  • One end side of an oxygen water pipe 23 having an on-off valve 23 a is connected to the middle part of the raw water supply pipe 20, and the other end side of the pipe 23 is connected to the liquid phase chamber 50 a of the oxygen dissolving membrane module 50.
  • the oxygen-dissolving membrane module 50 is partitioned into a liquid phase chamber 50a and a gas phase chamber 50b by a gas permeable membrane 50c.
  • An oxygen gas supply pipe 51 and a discharge pipe 52 including a vacuum pump 53 are connected to the gas phase chamber 50b.
  • the oxygen water pipe 23 having the on-off valve 23a is connected to the liquid phase chamber 50a, to which the water supply pipe 54 is connected.
  • treated water from the treated water pipe 9 described later or water having a lower TOC concentration than the treated water is supplied.
  • Oxygen water is produced by the oxygen dissolving membrane module 50 as follows. Oxygen gas is supplied from the oxygen gas supply pipe 51 to the gas phase chamber 50b, and water is supplied from the water supply pipe 54 to the liquid phase chamber 50a. Part of the oxygen gas supplied into the gas phase chamber 50b permeates the gas permeable membrane 50c and dissolves in the water in the liquid phase chamber 50a. The remainder of the oxygen gas in the gas phase chamber 50b is sucked by the vacuum pump 53 and discharged from the discharge pipe 52 together with the water vapor and its condensed water that have permeated the gas permeable membrane 50c from the liquid phase chamber 50a. Oxygen water in the liquid phase chamber 50 a is supplied to the raw water supply pipe 20 through the oxygen water pipe 23.
  • the inside of the hydrogen dissolution membrane module 60 is partitioned into a liquid phase chamber 60a and a gas phase chamber 60b by a gas permeable membrane 60c.
  • a hydrogen gas supply pipe 61 and a discharge pipe 62 are connected to the gas phase chamber 60b.
  • a water supply pipe 64 and a hydrogen water pipe 30 are connected to the liquid phase chamber 60a.
  • the hydrogen water pipe 30 is branched into a branch pipe 31 having an on-off valve 31a and a branch pipe 32 having an on-off valve 32a.
  • the branch pipes 31 and 32 are connected to the branch pipes 21 and 22 of the raw water supply pipe 20.
  • treated water from the treated water pipe 9 described later or water having a lower TOC concentration than the treated water is supplied.
  • Hydrogen water is produced by the hydrogen-dissolving membrane module 60 as follows. Hydrogen gas is supplied from the hydrogen gas supply pipe 61 to the gas phase chamber 60b, and water is supplied from the water supply pipe 64 to the liquid phase chamber 60a. Part of the hydrogen gas supplied into the gas phase chamber 60b permeates the gas permeable membrane 60c and dissolves in the water in the liquid phase chamber 60a. The remainder of the hydrogen gas in the gas phase chamber 60b is discharged from the discharge pipe 62 together with the water vapor and its condensed water that have permeated the gas permeable membrane 60c from the liquid phase chamber 60a. The hydrogen water in the liquid phase chamber 60 a is supplied to the branch pipes 21 and 22 of the raw water supply pipe 20 through the hydrogen water pipe 30 and the branch pipes 31 and 32.
  • One end side of the outflow pipes 43 and 44 is connected to the outlet of the catalyst packed columns 41 and 42.
  • the other end sides of the outflow pipes 43 and 44 merge to form a pipe 45.
  • the tip of the pipe 45 is connected to the gas phase chamber 6 a of the deaeration membrane module 6.
  • the configuration of the catalyst packed columns 41 and 42 is the same as that of the catalyst packed column 4 in FIG.
  • the outflow pipes 43 and 44 are provided with on-off valves 43a and 44a, respectively.
  • deaeration membrane module 6 and the downstream side thereof are the same as those in FIG. 1, and members having the same functions are denoted by the same reference numerals.
  • the open / close valve is set to the open / close state shown in FIG. Specifically, the on-off valves 21a, 23a, 32a, 43a are opened, and the on-off valves 22a, 31a, 44a, 46a, 47a are closed.
  • raw water is treated by the catalyst packed column 41 and hydrogen is occluded in the platinum group metal catalyst 42a in the catalyst packed column 42.
  • Raw Water Treatment The raw water passes through the raw water supply pipe 20, oxygen water from the oxygen-dissolving membrane module 50 is supplied from the pipe 23, and then supplied to the catalyst packed column 41 through the branch pipe 21.
  • the organic matter in the raw water comes into contact with the metal catalyst 41a in the column 41 in the presence of hydrogen and oxygen, and the organic matter is efficiently decomposed and removed.
  • the water from which the organic matter has been removed flows into the liquid phase chamber 6a of the degassing membrane module 6 through the pipes 43 and 45, and gases such as carbon dioxide, oxygen, and nitrogen are removed.
  • the degassed treated water deaerated by the deaeration membrane module 6 flows into the ion exchange resin column 8 through the pipe 7, and undecomposed organic matter, organic acid generated in the process of decomposing the organic matter, and the like in the column 8. It is adsorbed and removed by the ion exchange resin 8a.
  • the treated water is discharged out of the system from the treated water pipe 9.
  • Hydrogen water produced by the hydrogen-dissolving membrane module 60 flows into the catalyst packed column 42 through the hydrogen water pipe 30 and the pipe 32. Thereby, hydrogen is adsorbed on the platinum group metal catalyst 42 a in the column 42.
  • the open / close valve 32a is closed, the open / close valve 22a is opened, the inside of the catalyst packed column 42 is filled with raw water, and then the open / close valve 44a is opened. As a result, the raw water is passed through the catalyst packed column 42 and processed.
  • the on-off valves 21 a and 43 a are closed, the on-off valve 46 a is opened, and the water in the catalyst packed column 41 is discharged from the pipe 46.
  • the on-off valve 46 a is closed, the on-off valve 31 a is opened, hydrogen water is supplied into the catalyst packed column 41, and hydrogen is adsorbed on the platinum group metal catalyst 41 a in the column 41.
  • the raw water can be treated continuously by changing the timing of the hydrogen adsorption treatment of the catalyst packed column 41 and the catalyst packed column 42.
  • raw water is passed through the catalyst packed column 41 to treat the raw water, and hydrogen water is supplied to the catalyst packed column 42 to perform hydrogen adsorption treatment on the platinum group metal catalyst 42a.
  • hydrogen water is supplied to the catalyst packed column 41 to perform hydrogen adsorption treatment on the platinum group metal catalyst 41a, and raw water is passed through the catalyst packed column 42 to treat the raw water.
  • the raw water can be continuously treated by alternately switching between the catalyst packed column that performs the raw water treatment and the catalyst packed column that performs the hydrogen adsorption treatment.
  • two catalyst-packed columns are used, but three or more catalyst-packed columns can be arranged in parallel, and continuous treatment can be performed by switching between raw water treatment and hydrogen adsorption treatment.
  • Example 1 Using the apparatus of FIG. 1, the raw water was treated under the following conditions.
  • Platinum group metal catalyst (catalyst resin): “Nano Saver” (platinum nano colloid carrying resin) manufactured by Kurita Kogyo Co., Ltd., 360 mL
  • Degassing membrane module “Lixel G420” manufactured by Celgard Ion exchange resin: Strongly basic anion exchange resin “KR-U” manufactured by Kurita Kogyo Co., Ltd. A1 ”221.5 mL and Kurita Kogyo's strong acid cation exchange resin“ KR-UC1 ”138.5 mL mixed resin Water volume: 0.72 L / min
  • the on-off valve 2a of the oxygen supply pipe 2 and the on-off valve 3a of the hydrogen supply pipe 3 were closed, and oxygen and hydrogen were not supplied to the raw water.
  • the dissolved oxygen concentration of the raw water at the inlet of the catalyst packed column 4 was 20 ppb.
  • the metal catalyst was previously adsorbed with hydrogen.
  • Example 1 The raw water was treated in the same manner as in Example 1 except that a low-pressure UV lamp device (“AZ-26” manufactured by Nippon Photo Science Co., Ltd.) was used instead of the catalyst packed column 4 and the amount of raw water was 5 L / min. went.
  • a low-pressure UV lamp device (“AZ-26” manufactured by Nippon Photo Science Co., Ltd.) was used instead of the catalyst packed column 4 and the amount of raw water was 5 L / min. went.

Abstract

 開閉弁1a、5aを開とし、開閉弁3a、12aを閉として、原水を原水供給配管1に通水する。酸素供給配管2の開閉弁2aを開弁し、原水供給配管1内の原水に酸素を供給する。有機物及び酸素を含有する原水は、原水供給配管1を通って触媒充填カラム4に流入し、水素を吸着させた白金族金属触媒4aと接触する。このように、原水中の有機物と白金族金属触媒4aとを、溶存酸素と、金属触媒に吸着している水素の存在下で接触させるため、被処理水中の有機物を低消費エネルギーで簡便かつ高効率にて除去することができる。

Description

有機物含有水の処理方法及び装置 発明の分野
 本発明は有機物含有水の処理方法及び装置に係り、特に被処理水中の有機物を金属触媒によって除去する方法及び装置に関する。
発明の背景
 電子部品の洗浄ないし表面処理のために、高濃度の薬液や洗剤が用いられており、それを濯ぐために大量の純水が用いられている。そして、純水の水質向上や排水の再利用率の向上のために、高度な水処理技術の開発が望まれている。
 超純水製造工程において被処理水中のTOC(全有機炭素)成分を除去する方法としては、生物処理又は物理化学処理が広く行われている。
 例えば、有機物含有排水を生物処理してTOC成分を除去した後、生物処理水を逆浸透膜(RO膜)処理して浄化する方法がある(例えば、特許文献1)。
 また、物理化学的処理としては、次の(1)~(3)の方法などがある。
(1)有機物含有排水を直接RO膜分離装置に通水して有機物を除去する方法
(2)有機物含有排水に酸化剤を添加して有機物を加熱分解する方法
(3)有機物含有排水に紫外線(UV)を照射して有機物を分解する方法(例えば、特許文献2)
などがある。
 特許文献1のように、有機物含有排水を生物処理してRO膜分離装置に通水する方法では、微生物による有機物除去で生成する生物代謝物によりRO膜の膜面が閉塞され、膜のフラックスが低下するという問題がある。また、RO膜分離装置の給水ポンプの消費電力も大きい。
 上記の(1)~(3)の方法は、いずれもエネルギー消費量が多いという問題がある。
 (1)の方法では、RO膜分離装置の給水のための加圧ポンプの駆動電力が大きい。有機物含有排水を直接RO膜分離装置に通水する場合、この有機物含有排水のTOC濃度が高いため、RO膜分離装置内でバイオファイリングが生じ易い。また、有機物含有排水中の有機物が、分子量の小さい窒素化合物(尿素など)に代表される難分解性有機物である場合には、除去効率が極端に悪い。
 (2)の方法では、加熱分解装置において、酸化剤が添加された有機物含有排水を蒸気等で加熱する際に、多量の熱エネルギーを必要とする。
 (3)の方法では、多量のUV照射電力を必要とする。なお、このUV照射にあっても、有機物含有排水中の有機物が難分解性有機物である場合に、分解効率が極端に悪い。
特開2002-336886号 特開2007-185587号
 本発明は、被処理水中の有機物を低消費エネルギーにて除去することができる有機物含有水の処理方法及び装置を提供することを目的とする。
 第1態様の本発明の有機物含有水の処理方法は、有機物を含有する被処理水を白金族金属触媒に接触させ、該有機物を除去することを特徴とするものである。
 第2態様の有機物含有水の処理方法は、第1態様において、該白金族金属触媒が水素を吸着していることを特徴とする。
 第3態様の有機物含有水の処理方法は、第2態様において、該被処理水が溶存酸素を含有していることを特徴とする。
 第4態様の有機物含有水の処理方法は、第2態様又は第3態様において、該白金族金属触媒に水素を供給して水素を吸着させる水素吸着工程と、この水素を吸着させた該白金族金属触媒に該被処理水を接触させて有機物を除去する有機物除去工程とを交互に実施することを特徴とする。
 第5態様の有機物含有水の処理方法は、第4態様において、該白金族金属触媒を収容した反応容器を複数個用い、一部の反応容器で水素吸着工程を行っているときに他の反応容器で有機物除去工程を行うことを特徴とする。
 第6態様の有機物含有水の処理方法は、第1態様ないし第5態様のいずれかの態様において、該白金族金属触媒が白金族金属の微粒子よりなることを特徴とする。
 第7態様の有機物含有水の処理方法は、第6態様において、該白金族金属の微粒子が担体に担持されていることを特徴とする。
 第8態様の有機物含有水の処理方法は、第3態様ないし第7態様のいずれか1項において、該被処理水中の溶存酸素濃度が1ppb~100ppbであることを特徴とする。
 第9態様の有機物含有水の処理方法は、第1態様ないし第8態様のいずれかの態様において、該被処理水を該白金族金属触媒に接触させた後、この水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることを特徴とする。
 第10態様の有機物含有水の処理方法は、第9態様において、該被処理水を該白金族金属触媒に接触させた後、この水を脱気処理し、次いで、この脱気処理水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることを特徴とする。
 第11態様の有機物含有水の処理方法は、第1態様ないし第10態様のいずれかの態様において、被処理水が超純水製造用の被処理水であることを特徴とする。
 第12態様の有機物含有水の処理装置は、有機物及び溶存酸素を含有する被処理水を、水素を吸着している白金族金属触媒に接触させて有機物を除去する装置であって、それぞれ白金族金属触媒を収容した複数個の反応容器と、該反応容器に被処理水を供給する給水手段と、該反応容器に水素を供給する水素供給手段と、該反応容器への被処理水の供給と水素の供給とを切り替える切替手段とを有しており、該切替手段は、水素を供給して水素吸着工程を行わせる反応容器を順次に切り替えるものであって、且つ水素吸着工程を行っている反応容器以外の反応容器に対して被処理水を供給して有機物除去工程を行わせるように構成されていることを特徴とするものである。
 第13態様の有機物含有水の処理装置は、第12態様において、前記反応容器から流出した処理水が導入される、アニオン交換樹脂及びカチオン交換樹脂の少なくとも一方を有するイオン交換手段を備えたことを特徴とする。
 第14態様の有機物含有水の処理装置は、第13態様において、前記反応容器から流出した処理水が導入される脱気装置を備えており、該脱気装置からの脱気処理水が前記イオン交換手段に導入されることを特徴とする。
 本発明の有機物含有水の処理方法及び装置にあっては、有機物を含有する被処理水を、白金族金属触媒に接触させ、白金族金属触媒の触媒作用によって該有機物を除去するため、有機物を低エネルギーにて簡便に除去することができる。この有機物含有水の処理方法及び装置では、RO膜処理やUV照射処理が不要とされ、エネルギー消費量が少ない。
 本発明において、白金族金属触媒が水素を吸着しており、被処理水が溶存酸素を含有していると、有機物の除去効率が向上する。なお、被処理水中の溶存酸素濃度は1ppb以上であることが好ましい。
 本発明の有機物含有水の処理方法において、白金族金属触媒に水素を供給して水素を吸着させる水素吸着工程と、この水素を吸着させた白金族金属触媒に被処理水を接触させて有機物を除去させる有機物除去工程とを交互に実施することが好ましい。これにより、白金族金属触媒に十分に水素を吸着させ、有機物除去効率を高くすることができる。
 また、本発明において、白金族金属触媒を複数個の反応容器に収容し、一部の反応容器で水素吸着工程を行っている間に、他の反応容器で有機物除去工程を行い、且つ、この水素吸着工程を行う反応容器を順次に切り替えるようにしてもよい。このようにすれば、被処理水中の有機物の除去処理を連続的に実施することができる。
 この白金族金属触媒は、白金族金属の微粒子よりなるものであってもよい。この白金族金属微粒子は担体の表面に担持されてもよい。また、白金族金属触媒は、セラミックボール等の基体に白金等の白金族の金属の被膜をめっき等により形成したものでもよい。
 本発明では、被処理水を白金族金属触媒に接触させた後、この水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方のイオン交換樹脂と接触させてもよい。このようにすれば、TOCの分解によって生成した有機酸がイオン交換樹脂によって吸着除去される。また、イオン交換樹脂と接触させる前に、白金族金属触媒で処理した水の脱気処理を行ってもよい。これにより、有機物の分解等によって生じた炭酸ガスが除去されるので、アニオン交換樹脂に対する炭酸イオン負荷が軽減される。
 本発明は超純水を製造するための原水、例えば、市水、井水、表流水や、半導体又は電子部品等の製図工程からの排水など、を処理する場合に好適である。本発明は、有機物濃度がTOCとして1~1000ppb特に1~50ppb程度の原水の処理に好適である。
本発明の有機物含有水の処理方法及び装置の実施の形態を示す系統図である。 本発明の有機物含有水の処理方法及び装置の別の実施の形態を示す系統図である。
詳細な説明
 以下に図面を参照して本発明の有機物含有水の処理方法及び装置の実施の形態を詳細に説明する。
[第1の実施の形態:第1図]
 第1図は本発明の有機物含有水の処理方法及び装置の実施の形態を示す系統図である。第1図において、閉状態の開閉弁は黒塗りとし、開状態の開閉弁は白ヌキとされている。先ず処理装置の構成を説明する。
<処理装置の構成>
 第1図の通り、開閉弁1aを備えた原水供給配管1が、触媒充填カラム(反応容器)4の流入口に接続されている。原水供給配管1の途中には、開閉弁2aを備えた酸素供給配管2と、開閉弁3aを備えた水素供給配管3とが接続されている。
 触媒充填カラム4内には、白金族金属触媒4aが収容(本実施の形態では充填)されている。この白金族金属触媒4aには、水素が吸着されている。触媒充填カラム4の詳細は後述する。
 触媒充填カラム4の流出口が、開閉弁5aを備えた流出配管5を介して脱気膜モジュール6の液相室6aに接続されている。流出配管5の途中から、開閉弁12aを備えた抜出配管12が分岐している。
 脱気膜モジュール6は、気体透過膜6cによって液相室6aと気相室6bに区画されている。気相室6bは、配管10を介して真空ポンプ11と接続されている。
 気体透過膜6cは、酸素、窒素、二酸化炭素、水蒸気などの気体は透過するが水は透過しない膜であり、例えば、シリコーン系膜、ポリテトラフルオロエチレン系膜、ポリオレフィン系膜、ポリウレタン系膜などを用いることができる。
 膜脱気モジュール6の減圧側(気相室6b)の圧力は、5~10kPaであることが好ましい。減圧側には若干の水蒸気が気体透過膜6cを透過して出てくるので、減圧側に窒素などの気体を流し、水分を除去して膜性能の低下を防ぐことが好ましい。減圧側の圧力が5kPa未満であると、気体透過膜6cを透過する水蒸気の量が過大となるおそれがある。減圧側の圧力が10kPaを超えると、気体の除去効率が低下するおそれがある。気相室6bの窒素などの気体の流量は、液相室6aへの通水量の5~25体積%であることが好ましい。この膜脱気モジュール6を用いることにより、水中の溶存酸素及び水に溶解している二酸化炭素を除去することができる。
 脱気膜モジュール6の液相室6aは、配管7を介してイオン交換樹脂カラム8の流入口に接続されている。
 イオン交換樹脂カラム8内にはイオン交換樹脂8aが充填されている。イオン交換樹脂カラム8は、イオン交換樹脂8aとして強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とをイオン負荷に応じて混合充填した非再生型混床式イオン交換装置であることが好ましい。混床式イオン交換装置により、水中のカチオンとアニオンが完全に除去されて、電気伝導率が極めて低い超純水を得ることができる。イオン交換樹脂カラム8において、残留有機物や、有機物の分解過程で生成する有機酸等も除去される。
 イオン交換樹脂カラム8の流出口に、処理水配管9が接続されている。
<触媒充填カラム4の構成>
 触媒充填カラム4に充填される白金族金属触媒4aの白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。これらの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。また、2種以上の金属よりなる合金として用いることもできる。また、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。
 この白金族金属触媒4aは、白金族金属の微粒子でもよく、白金族金属のナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。また、白金族金属触媒は、セラミックボール等の基体に白金等の白金族の金属の被膜をめっき等により形成したものでもよい。
 白金族金属のナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。金属塩還元反応法による場合、例えば、白金などの白金族金属の塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1~0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を白金族金属に対して4~20当量倍添加し、1~3時間煮沸することにより、白金族金属のナノコロイド粒子を製造することができる。また、例えば、ポリビニルピロリドン水溶液に、ヘキサクロロ白金酸、ヘキサクロロ白金酸カリウムなどを1~2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2~3時間加熱還流することにより、白金ナノコロイド粒子を製造することができる。
 白金族金属のナノコロイド粒子の重量平均粒子径は好ましくは1~50nmであり、より好ましくは1.2~20nmであり、さらに好ましくは1.4~5nmである。金属ナノコロイド粒子の重量平均粒子径が1nm未満であると、TOCの分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の重量平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、TOCの分解除去に対する触媒活性が低下するおそれがある。
 白金族金属のナノコロイド粒子を担持させる担体に特に制限はなく、例えば、マグネシア、チタニア、アルミナ、シリカ-アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金族金属のナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくい。このアニオン交換樹脂は、スチレン-ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。アニオン交換樹脂の交換基は、OH形であることが好ましい。
 アニオン交換樹脂等の担体への白金族金属のナノコロイド粒子の担持量は、0.01~0.2重量%であることが好ましく、0.04~0.1重量%であることがより好ましい。金属ナノコロイド粒子の担持量が0.01重量%未満であると、有機物の分解除去に対する触媒活性が不足するおそれがある。金属ナノコロイド粒子の担持量は0.2重量%以下で有機物の分解除去に対して十分な触媒活性が発現し、通常は0.2重量%を超える金属ナノコロイド粒子を担持させる必要はない。また、金属ナノコロイド粒子の担持量が増加すると、水中への金属の溶出のおそれも大きくなる。
<有機物除去工程>
 次に、被処理水中の有機物(TOC成分)を除去する有機物除去工程について説明する。
 第1図に示す装置において、開閉弁1a、5aを開とし、開閉弁3a、12aを閉として、原水を原水供給配管1に通水する。
 原水中の溶存酸素濃度が低い場合には、酸素供給配管2の開閉弁2aを開弁し、原水供給配管1内の原水に酸素を供給する。この酸素の供給量は、原水中の有機物の分解反応を十分に進行させ得る程度であることが好ましい。具体的には、原水中の溶存酸素と酸素供給配管2から供給される酸素とを合計したモル濃度が、原水中の有機物の炭素のモル濃度の1倍以上であることが好ましく、有機物除去反応を十分に進行させるためには5倍以上であることがより好ましい。触媒充填カラム4内に導入される水の溶存酸素濃度は1ppb以上例えば1~100ppb特に5~50ppbが好ましい。
 有機物及び溶存酸素を含有する原水は、原水供給配管1を通って触媒充填カラム4に流入し、水素を吸着させた白金族金属触媒4aと接触する。これにより、水素及び酸素の共存下で原水中の有機物と白金族金属触媒とが接触し、有機物が効率よく分解除去される。白金族金属触媒4aが、白金族金属のノナノコロイド粒子を0.01~0.2重量%担持させたアニオン交換樹脂である場合、触媒充填カラム4への通水速度(SV)は、10~500hr-1特に50~300hr-1程度が好適である。
 水素及び酸素の共存下に白金族金属触媒4aの触媒作用で有機物が効率よく分解除去される理由は以下の通りであると推測される。
 即ち、白金族金属触媒の存在下で、白金族金属触媒に吸着した水素と原水中の酸素とが結合し、白金族金属触媒表面に電子の偏在が生じる。
 この結果、白金族金属触媒表面の電子が粗の部分に尿素等の有機物の有する非共有電子対が結合(吸着)していると推測される。
 そして、続いて水素を供給することで、酸素が水素と接触して水になる際に、非共有電子対の結合が切れて有機物が金属触媒上から脱離し元の状態に戻る。このように有機物の吸着、脱離を繰り返すことで、有機物が分解され、原水から除去されるものと考えられる。
 このようにして有機物が除去された水は、配管5を通って脱気膜モジュール6の液相室6aに流入し、二酸化炭素、酸素、窒素等のガスが除去される。
 この脱気膜モジュール6で脱気された脱気処理水は、配管7を通ってイオン交換樹脂カラム8に流入する。このイオン交換樹脂カラム8内のイオン交換樹脂8aにより、脱気処理水中に含有される未分解の有機物や有機物の分解過程で生じる有機酸等が吸着除去される。イオン交換処理水は、配管9から系外に排出される。
<水素吸着工程>
 上記の有機物除去工程を継続することにより、触媒充填カラム4内の白金族金属触媒4aの水素吸着量が少なくなった場合、水素吸着工程を実施する。
 白金族金属触媒の水素吸着量が少なくなったか否かは、例えば、触媒充填カラム4への流入水及び流出水の溶存酸素濃度を測定し、この濃度差が所定値以下であるか否かによって判定することができる。即ち、触媒充填カラム4の流入水の溶存酸素濃度と流出水の溶存酸素濃度との差が所定値以下であれば、水素吸着量が十分であるため溶存酸素が水素との反応で除去されており、逆に所定値を超える場合は、水素吸着量が不足している。
 水素吸着工程の実施に際しては、第1図に示す弁開閉状態において、先ず開閉弁1a、2aを閉弁し、触媒充填カラム4内の水を排出した後、開閉弁5aを閉とする。
 次いで、開閉弁3aを開とし、水素を配管3及び配管1を介して触媒充填カラム4内に導入しカラム4内の白金族金属触媒4aに水素を吸着させる。このとき、開閉弁12aを閉とし、触媒充填カラム4内を加圧して水素の吸着を促進してもよい。また、開閉弁12aを開とし、カラム4からの水素を配管12より排出するようにして、触媒充填カラム4内に水素を流通させてもよい。
 十分に水素を白金族金属触媒4aに吸着させた後、開閉弁3aを閉、開閉弁1a、2a及び12aを開として触媒充填カラム4内を原水で満たす。次いで、開閉弁12aを閉、開閉弁5aを開として第1図の弁開閉状態とし、有機物除去工程に復帰する。
 上記の実施の形態は本発明の一例であり、本発明は上記実施の形態に限定されるものではない。
 例えば、水素吸着工程を省略し、白金族金属触媒4aの水素吸着量が少なくなったときに、白金族金属触媒4aを新品に交換してもよい。
 上記水素吸着工程で触媒充填カラム4に水素ガスを供給した後に該水素ガスを抜き出す手間を省略するために、水素供給配管3から水素ガスに代えて水素水を供給してもよい。この水素水としては、処理水配管9からの処理水や該処理水よりもTOC濃度の低い水に水素を溶解させたものなどが用いられる。
 酸素供給配管2から、酸素ガスに代えて酸素水を供給してもよい。この酸素水としては、処理水配管9からの処理水や該処理水よりもTOC濃度の低い水に酸素を溶解させたものなどが用いられる。
[第2の実施の形態:第2図]
 第2図は本発明の有機物含有水の処理方法及び装置の別の実施の形態を示す系統図である。第2図において、閉状態の開閉弁は黒塗りとし、開状態の開閉弁は白ヌキとされている。
 本実施の形態は、2機の触媒充填カラムを並列に設置し、これら触媒充填カラムの水素吸着工程を実施するタイミングを異ならせることにより、被処理水の処理を連続して実施し得るようにしたものである。
<処理装置の構成>
 原水供給配管20が、開閉弁21aを備えた分岐管21と開閉弁22aを備えた分岐管22とに分岐している。分岐管21,22が触媒充填カラム41,42の流入口に接続されている。原水供給配管20の途中部分に、開閉弁23aを備えた酸素水配管23の一端側が接続され、該配管23の他端側が酸素溶解膜モジュール50の液相室50aに接続されている。
 酸素溶解膜モジュール50は、気体透過膜50cによって液相室50aと気相室50bに区画されている。気相室50bには、酸素ガス供給配管51と、真空ポンプ53を備えた排出配管52が接続されている。液相室50aには、給水配管54が接続されている液相室50aには、上記の通り開閉弁23aを備えた酸素水配管23が接続されている。給水配管54には、後述する処理水配管9からの処理水又は該処理水よりもTOC濃度の低い水が供給される。
 以下の通り、酸素溶解膜モジュール50により酸素水が製造される。
 酸素ガス供給配管51から気相室50bに酸素ガスが供給されると共に、給水配管54から液相室50aに水が供給される。気相室50b内に供給された酸素ガスの一部が、気体透過膜50cを透過して液相室50a内の水に溶解する。気相室50b内の酸素ガスの残部が、液相室50aから気体透過膜50cを透過してきた水蒸気やその凝縮水と共に、真空ポンプ53に吸引されて排出配管52から排出される。この液相室50a内の酸素水が、酸素水配管23を介して原水供給配管20に供給される。
 水素溶解膜モジュール60内が、気体透過膜60cによって液相室60aと気相室60bに区画されている。気相室60bには、水素ガス供給配管61と、排出配管62が接続されている。液相室60aには、給水配管64と、水素水配管30が接続されている。水素水配管30は、開閉弁31aを備えた分岐管31と開閉弁32aを備えた分岐管32とに分岐している。分岐管31,32が、原水供給配管20の分岐管21,22に接続されている。給水配管64には、後述する処理水配管9からの処理水又は該処理水よりもTOC濃度の低い水が供給される。
 以下の通り、水素溶解膜モジュール60により水素水が製造される。
 水素ガス供給配管61から気相室60bに水素ガスが供給されると共に、給水配管64から液相室60aに水が供給される。気相室60b内に供給された水素ガスの一部が、気体透過膜60cを透過して液相室60a内の水に溶解する。気相室60b内の水素ガスの残部が、液相室60aから気体透過膜60cを透過してきた水蒸気やその凝縮水と共に排出配管62から排出される。この液相室60a内の水素水が、水素水配管30及び分岐管31,32を介して原水供給配管20の分岐管21,22に供給される。
 触媒充填カラム41,42の流出口に流出配管43,44の一端側が接続されている。流出配管43,44の他端側は合流して配管45となっている。配管45の先端が、脱気膜モジュール6の気相室6aに接続されている。
 触媒充填カラム41,42の構成は第1図の触媒充填カラム4と同様である。
 流出配管43,44はそれぞれ開閉弁43a,44aを備えている。流出配管43,44の開閉弁43a,44aよりも上流側に、それぞれ開閉弁46a,47aを備えた抜出配管46,47が接続されている。
 脱気膜モジュール6及びそれよりも下流側の構成は第1図における構成と同じであり、同一機能を奏する部材に同一符号を付してある。
 次に、このように構成された処理装置を用いた運転例について説明する。
<触媒充填カラム41に原水を通水する運転例>
 開閉弁を第2図に示す開閉状態にする。具体的には、開閉弁21a,23a,32a,43aを開とし、開閉弁22a,31a,44a,46a,47aを閉とする。
 これにより、次に説明する通り、触媒充填カラム41によって原水が処理されると共に、触媒充填カラム42内の白金族金属触媒42aに、水素が吸蔵される。
原水の処理
 原水は、原水供給配管20内を通り、酸素溶解膜モジュール50からの酸素水が配管23より供給された後、分岐管21を通って触媒充填カラム41に供給される。
 これにより、水素及び酸素の共存下で原水中の有機物とカラム41内の金属触媒41aとが接触し、有機物が効率よく分解除去される。
 有機物が除去された水は、配管43,45を通って脱気膜モジュール6の液相室6aに流入し、二酸化炭素、酸素、窒素等のガスが除去される。
 この脱気膜モジュール6で脱気された脱気処理水は、配管7を通ってイオン交換樹脂カラム8に流入し、未分解の有機物や有機物の分解過程で生じる有機酸等がカラム8内のイオン交換樹脂8aに吸着除去される。処理水は、処理水配管9から系外に排出される。
水素の吸蔵
 水素溶解膜モジュール60で製造された水素水が、水素水配管30及び配管32を通って触媒充填カラム42に流入する。これにより、カラム42内の白金族金属触媒42aに水素が吸着する。
<触媒充填カラム42に原水を通水する運転例>
 上記の運転例を継続することにより、触媒充填カラム41内の白金族金属触媒41aの水素吸着量が少なくなった場合、次の通り、原水の供給先を触媒充填カラム41から触媒充填カラム42に切り替えると共に、触媒充填カラム41内の白金族金属触媒41aに水素を吸着させる。
 即ち、第2図の弁開閉状態において、開閉弁32aを閉とし、開閉弁22aを開として、触媒充填カラム42内を原水で満たした後、開閉弁44aを開とする。これにより、触媒充填カラム42に原水が通水されて処理される。
 また、開閉弁21a,43aを閉とし、開閉弁46aを開として、触媒充填カラム41内の水を配管46から排出する。次いで、開閉弁46aを閉とし、開閉弁31aを開として、触媒充填カラム41内に水素水を供給し、水素をカラム41内の白金族金属触媒41aに吸着させる。
 本実施の形態によると、触媒充填カラム41と触媒充填カラム42の水素吸着処理のタイミングを異ならせることにより、原水の処理を連続的に実施することが可能である。
 即ち、触媒充填カラム41に原水を通水して原水の処理を行うと共に、触媒充填カラム42に水素水を供給して白金族金属触媒42aへの水素吸着処理を行い、その後、開閉弁の開閉により原水と水素水の流路を切り替え、触媒充填カラム41に水素水を供給して白金族金属触媒41aへの水素吸着処理を行うと共に、触媒充填カラム42に原水を通水して原水の処理を行う。このように、原水の処理を行う触媒充填カラムと、水素吸着処理を行う触媒充填カラムとを交互に切り替えることにより、原水の連続処理が可能となる。
 なお、第2図では、触媒充填カラムを2機用いているが、3機以上の触媒充填カラムを並列に配置して、原水処理と水素吸着処理とを切り替えて連続処理を行うこともできる。
 以下に実施例及び比較例を用いて本発明を詳細に説明する。
[実施例1]
 第1図の装置を用い、以下の条件で原水の処理を行った。
 白金族金属触媒(触媒樹脂):栗田工業(株)製「ナノセイバー」(白金
               ナノコロイド担持樹脂)、360mL
 脱気膜モジュール:セルガード社製「リキセルG420」
 イオン交換樹脂:栗田工業(株)製強塩基性アニオン交換樹脂「KR-U
        A1」221.5mLと栗田工業(株)製強酸性カチオ
        ン交換樹脂「KR-UC1」138.5mLとの混合樹脂
 水量:0.72L/min
 原水としては、尿素を超純水に3ppb(炭素換算濃度)溶解させた合成排水を用いた。
 酸素供給配管2の開閉弁2a及び水素供給配管3の開閉弁3aは閉とし、原水には酸素及び水素を供給しなかった。
 触媒充填カラム4の入口における原水の溶存酸素濃度は20ppbであった。
 金属触媒には、予め水素を吸着させておいた。
 イオン交換樹脂カラム8の出口配管9内の処理水のTOC濃度を測定した結果、1ppb以下であった。
[比較例1]
 触媒充填カラム4に代えて低圧UVランプ装置(日本フォトサイエンス社製「AZ-26」)を用い、原水の水量を5L/minとしたこと以外は実施例1と同様にして、原水の処理を行った。
 イオン交換樹脂カラム8の出口配管9内の処理水のTOC濃度を測定した結果、3ppbであり、尿素は全く分解されなかった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2008年7月28日付で出願された日本特許出願(特願2008-193626)に基づいており、その全体が引用により援用される。

Claims (14)

  1.  有機物を含有する被処理水を白金族金属触媒に接触させ、該有機物を除去することを特徴とする有機物含有水の処理方法。
  2.  請求項1において、該白金族金属触媒が水素を吸着していることを特徴とする有機物含有水の処理方法。
  3.  請求項2において、該被処理水が溶存酸素を含有していることを特徴とする有機物含有水の処理方法。
  4.  請求項2において、該白金族金属触媒に水素を供給して水素を吸着させる水素吸着工程と、この水素を吸着させた該白金族金属触媒に該被処理水を接触させて有機物を除去する有機物除去工程とを交互に実施することを特徴とする有機物含有水の処理方法。
  5.  請求項4において、該白金族金属触媒を収容した反応容器を複数個用い、一部の反応容器で水素吸着工程を行っているときに他の反応容器で有機物除去工程を行うことを特徴とする有機物含有水の処理方法。
  6.  請求項1において、該白金族金属触媒が白金族金属の微粒子よりなることを特徴とする有機物含有水の処理方法。
  7.  請求項6において、該白金族金属触媒の微粒子が担体に担持されていることを特徴とする有機物含有水の処理方法。
  8.  請求項3において、該被処理水中の溶存酸素濃度が1ppb~100ppbであることを特徴とする有機物含有水の処理方法。
  9.  請求項1において、該被処理水を該白金族金属触媒に接触させた後、この水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることを特徴とする有機物含有水の処理方法。
  10.  請求項9において、該被処理水を該白金族金属触媒に接触させた後、この水を脱気処理し、次いで、この脱気処理水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることを特徴とする有機物含有水の処理方法。
  11.  請求項1において、被処理水が超純水製造用の被処理水であることを特徴とする有機物含有水の処理方法。
  12.  有機物及び溶存酸素を含有する被処理水を、水素を吸着している白金族金属触媒に接触させて有機物を除去する装置であって、
     それぞれ白金族金属触媒を収容した複数個の反応容器と、
     該反応容器に被処理水を供給する給水手段と、
     該反応容器に水素を供給する水素供給手段と、
     該反応容器への被処理水の供給と水素の供給とを切り替える切替手段と
    を有しており、
     該切替手段は、水素を供給して水素吸着工程を行わせる反応容器を順次に切り替えるものであって、且つ水素吸着工程を行っている反応容器以外の反応容器に対して被処理水を供給して有機物除去工程を行わせるように構成されていることを特徴とする有機物含有水の処理装置。
  13.  請求項12において、前記反応容器から流出した処理水が導入される、アニオン交換樹脂及びカチオン交換樹脂の少なくとも一方を有するイオン交換手段を備えたことを特徴とする有機物含有水の処理装置。
  14.  請求項13において、前記反応容器から流出した処理水が導入される脱気装置を備えており、
     該脱気装置からの脱気処理水が前記イオン交換手段に導入されることを特徴とする有機物含有水の処理装置。
PCT/JP2009/063352 2008-07-28 2009-07-27 有機物含有水の処理方法及び装置 WO2010013677A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010522711A JP5447378B2 (ja) 2008-07-28 2009-07-27 有機物含有水の処理方法及び装置
US12/737,554 US8771522B2 (en) 2008-07-28 2009-07-27 Method and apparatus for treating organic matter-containing water
KR1020117000545A KR101692212B1 (ko) 2008-07-28 2009-07-27 유기물 함유수의 처리 방법 및 장치
CN200980129136XA CN102105408A (zh) 2008-07-28 2009-07-27 含有有机物的水的处理方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008193626 2008-07-28
JP2008-193626 2008-07-28

Publications (1)

Publication Number Publication Date
WO2010013677A1 true WO2010013677A1 (ja) 2010-02-04

Family

ID=41610376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063352 WO2010013677A1 (ja) 2008-07-28 2009-07-27 有機物含有水の処理方法及び装置

Country Status (6)

Country Link
US (1) US8771522B2 (ja)
JP (1) JP5447378B2 (ja)
KR (1) KR101692212B1 (ja)
CN (1) CN102105408A (ja)
TW (1) TWI504569B (ja)
WO (1) WO2010013677A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167633A (ja) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd 水処理方法及び装置
JP2012040482A (ja) * 2010-08-17 2012-03-01 Joplax Co Ltd 浄水カートリッジ及びその製造方法並びに浄水器
JP2012058137A (ja) * 2010-09-10 2012-03-22 Kurita Water Ind Ltd 溶存物質濃度の測定方法及び装置
JP2012219040A (ja) * 2011-04-06 2012-11-12 Nippon Kasei Chem Co Ltd 高純度尿素水の製造方法
JP2013208557A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd 有機物含有水の処理方法
US20140224741A1 (en) * 2012-02-12 2014-08-14 Bluflow Technologies, Inc. Method for Destruction of Reducible Contaminants in Waste or Ground Water
JP2016030232A (ja) * 2014-07-29 2016-03-07 オルガノ株式会社 有機溶剤精製システム及び方法
JP2016076588A (ja) * 2014-10-06 2016-05-12 オルガノ株式会社 炭酸ガス溶解水供給システム、炭酸ガス溶解水供給方法、およびイオン交換装置
JP2016076589A (ja) * 2014-10-06 2016-05-12 オルガノ株式会社 アンモニア溶解水供給システム、アンモニア溶解水供給方法、およびイオン交換装置
JP2019115892A (ja) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc除去装置及びtoc除去方法
JP2021126644A (ja) * 2020-02-14 2021-09-02 栗田工業株式会社 超純水製造装置及び超純水製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2802785C (en) 2011-08-25 2014-03-25 Tersano Inc. Treatment of water to extend half-life of ozone
US8882967B1 (en) * 2014-05-14 2014-11-11 The Southern Company Systems and methods for purifying process water
CN105084494A (zh) * 2015-08-06 2015-11-25 沈健龙 一种去除制药厂废水中炔雌醇和乙炔雌二醇的方法
CN105060574A (zh) * 2015-09-17 2015-11-18 温州泓呈祥科技有限公司 一种去除醇酸树脂车间废水中三甲苯的方法
CN112135796A (zh) * 2018-05-17 2020-12-25 沙特基础工业全球技术公司 再循环co2废气流的冷凝水的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864188A (ja) * 1981-10-15 1983-04-16 Osaka Gas Co Ltd 廃水処理方法
WO1998047824A1 (fr) * 1997-04-22 1998-10-29 Nippon Shokubai Co., Ltd. Appareil pour le traitement des eaux usees
JP2000334478A (ja) * 1999-06-01 2000-12-05 Joho Kagaku Kenkyusho:Kk 水の硝酸態窒素除去に関する物理化学的方法と脱窒装置
JP2001047044A (ja) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd 内分泌撹乱性物質含有水の処理方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052527A (en) * 1957-05-03 1962-09-04 Smith Corp A O Apparatus for removing dissolved oxygen from water
JPS5271000A (en) * 1975-12-10 1977-06-13 Tokuyama Soda Co Ltd Production of hydrogen peroxide
US4786418A (en) * 1988-03-11 1988-11-22 Union Carbide Corporation Process for aqueous stream purification
US5124292A (en) * 1990-03-30 1992-06-23 Chem Char Research, Inc. Process for the regeneration of activated carbon product by reverse burn gasification
DE4127918A1 (de) * 1991-03-05 1992-09-10 Interox Int Sa Verfahren zur herstellung von wasserstoffperoxid
JPH0818040B2 (ja) * 1991-05-17 1996-02-28 株式会社荏原総合研究所 純水又は超純水の精製方法及び装置
JPH06226048A (ja) * 1993-02-03 1994-08-16 Kurita Water Ind Ltd 揮発性有機ハロゲン化合物の処理方法
US5447640A (en) * 1993-06-28 1995-09-05 Permelec Electrode Ltd. Method and apparatus for sterilization of and treatment with ozonized water
FR2717168B1 (fr) * 1994-03-11 1996-04-26 Elf Aquitaine Procédé et catalyseur de désoxygénation catalytique poussée de l'eau de mer.
US5942126A (en) * 1997-01-03 1999-08-24 Nalco Chemical Company Process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
US20020096479A1 (en) * 2000-06-02 2002-07-25 Butters Brian E. System and method for photocatalytic treatment of contaminated media
US6391256B1 (en) * 1997-10-15 2002-05-21 Korea Electric Power Corporation Dissolved oxygen removal method using activated carbon fiber and apparatus thereof
DK0913193T3 (da) * 1997-10-21 2003-10-20 Karsten Pedersen Fremgangsmåde til fjernelse af giftige stoffer i vand
JP2003527950A (ja) * 2000-01-03 2003-09-24 ジャングバーワラ、ジュザー イオン交換による金属の除去方法およびその装置
CN100528362C (zh) 2000-01-31 2009-08-19 大阪瓦斯株式会社 废水的处理方法以及催化剂洗涤再生方法
NO313994B1 (no) * 2001-03-12 2003-01-13 Due Miljoe As Våtoksidasjon ved hjelp av en porös katalytisk kontaktor
JP5055662B2 (ja) 2001-05-11 2012-10-24 栗田工業株式会社 超純水製造装置及び超純水製造方法
DE102005038415B4 (de) * 2005-08-12 2007-05-03 Areva Np Gmbh Verfahren zum Reinigen von Wässern nukleartechnischer Anlagen
TWI293036B (en) 2005-08-12 2008-02-01 Univ Nat Sun Yat Sen Catalyst, method for producing the same and method for treating volatile organic compounds
JP5124946B2 (ja) 2006-01-12 2013-01-23 栗田工業株式会社 超純水製造装置における超純水中の過酸化水素の除去方法
JP4978144B2 (ja) * 2006-10-13 2012-07-18 栗田工業株式会社 水中の溶存酸素除去方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864188A (ja) * 1981-10-15 1983-04-16 Osaka Gas Co Ltd 廃水処理方法
WO1998047824A1 (fr) * 1997-04-22 1998-10-29 Nippon Shokubai Co., Ltd. Appareil pour le traitement des eaux usees
JP2000334478A (ja) * 1999-06-01 2000-12-05 Joho Kagaku Kenkyusho:Kk 水の硝酸態窒素除去に関する物理化学的方法と脱窒装置
JP2001047044A (ja) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd 内分泌撹乱性物質含有水の処理方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167633A (ja) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd 水処理方法及び装置
JP2012040482A (ja) * 2010-08-17 2012-03-01 Joplax Co Ltd 浄水カートリッジ及びその製造方法並びに浄水器
JP2012058137A (ja) * 2010-09-10 2012-03-22 Kurita Water Ind Ltd 溶存物質濃度の測定方法及び装置
JP2012219040A (ja) * 2011-04-06 2012-11-12 Nippon Kasei Chem Co Ltd 高純度尿素水の製造方法
US10752526B2 (en) * 2012-02-12 2020-08-25 Bluflow Technologies, Inc. Method for destruction of reducible contaminants in waste or ground water
US20140224741A1 (en) * 2012-02-12 2014-08-14 Bluflow Technologies, Inc. Method for Destruction of Reducible Contaminants in Waste or Ground Water
JP2013208557A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd 有機物含有水の処理方法
JP2016030232A (ja) * 2014-07-29 2016-03-07 オルガノ株式会社 有機溶剤精製システム及び方法
JP2016076589A (ja) * 2014-10-06 2016-05-12 オルガノ株式会社 アンモニア溶解水供給システム、アンモニア溶解水供給方法、およびイオン交換装置
JP2016076588A (ja) * 2014-10-06 2016-05-12 オルガノ株式会社 炭酸ガス溶解水供給システム、炭酸ガス溶解水供給方法、およびイオン交換装置
JP2019115892A (ja) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc除去装置及びtoc除去方法
JP7040008B2 (ja) 2017-12-27 2022-03-23 栗田工業株式会社 Toc除去装置
JP2021126644A (ja) * 2020-02-14 2021-09-02 栗田工業株式会社 超純水製造装置及び超純水製造方法
JP7405066B2 (ja) 2020-02-14 2023-12-26 栗田工業株式会社 超純水製造装置及び超純水製造方法

Also Published As

Publication number Publication date
CN102105408A (zh) 2011-06-22
KR20110053946A (ko) 2011-05-24
JP5447378B2 (ja) 2014-03-19
US20110180491A1 (en) 2011-07-28
TWI504569B (zh) 2015-10-21
JPWO2010013677A1 (ja) 2012-01-12
US8771522B2 (en) 2014-07-08
KR101692212B1 (ko) 2017-01-03
TW201016617A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
JP5447378B2 (ja) 有機物含有水の処理方法及び装置
JP5499753B2 (ja) 水処理方法及び装置
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
US20090127201A1 (en) Process and Apparatus for Removing Hydrogen Peroxide
TWI408107B (zh) 超純水製造裝置及其運轉方法
WO2015068635A1 (ja) 純水の製造方法及び装置
JP4920019B2 (ja) 過酸化水素低減方法、過酸化水素低減装置及び超純水製造装置並びに洗浄方法
TW201821371A (zh) 水處理方法及水處理裝置
JP4552327B2 (ja) 超純水製造装置
WO2019116653A1 (ja) 過酸化水素除去方法及び装置
JP2015073923A (ja) 超純水製造方法及び超純水製造システム
JP5919960B2 (ja) 有機物含有水の処理方法
CN113816554B (zh) 巯基乙酸异辛酯生产废水的处理方法及其处理装置
JP2000308815A (ja) オゾン溶解水の製造装置
JP7040008B2 (ja) Toc除去装置
WO2022190608A1 (ja) 水処理方法及び装置
TWI284117B (en) Method and system for treating wastewater containing hydrogen peroxide
JP2022124773A (ja) 水処理システム及び水処理方法
JP6728913B2 (ja) 超純水製造方法
JP2001044162A (ja) オゾン溶解水の製造装置
KR20230145404A (ko) 수 처리 방법 및 수 처리 장치
TW202218997A (zh) 水處理系統、純水製造方法及水處理方法
JP2003126873A (ja) 純水製造装置
CN115215405A (zh) 一种用于处理有机废水的吸附剂原位再生的方法和应用
JPH08168784A (ja) 純水の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129136.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522711

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117000545

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12737554

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09802920

Country of ref document: EP

Kind code of ref document: A1