WO2010013546A1 - 固体レーザ装置 - Google Patents

固体レーザ装置 Download PDF

Info

Publication number
WO2010013546A1
WO2010013546A1 PCT/JP2009/060624 JP2009060624W WO2010013546A1 WO 2010013546 A1 WO2010013546 A1 WO 2010013546A1 JP 2009060624 W JP2009060624 W JP 2009060624W WO 2010013546 A1 WO2010013546 A1 WO 2010013546A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
incident
state laser
light
excitation light
Prior art date
Application number
PCT/JP2009/060624
Other languages
English (en)
French (fr)
Inventor
恭史 池川
利幸 川嶋
菅 博文
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US13/055,995 priority Critical patent/US20110176574A1/en
Priority to EP09802791.5A priority patent/EP2312706A4/en
Publication of WO2010013546A1 publication Critical patent/WO2010013546A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • H01S3/027Constructional details of solid state lasers, e.g. housings or mountings comprising a special atmosphere inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1685Ceramics

Definitions

  • the present invention relates to a solid-state laser device that amplifies and outputs laser light by reciprocating laser light between a pair of reflecting mirrors via a slab type solid-state laser medium excited by excitation light.
  • one input / output end surface of a pair of input / output end surfaces for entering and emitting laser light in a solid-state laser medium extends along the direction opposite to the pair of input / output end surfaces. It is known that the excitation light is incident and the other incident / exit end surface is incident with the excitation light along a direction oblique to the opposing direction of the pair of incident / exit end surfaces (for example, non-patent document). 1). According to such a solid-state laser device, the entire solid-state laser medium can be excited uniformly.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a solid-state laser device capable of improving the coupling efficiency between excitation light and laser light.
  • a solid-state laser device transmits laser light between a first reflecting mirror and a second reflecting mirror via a slab type solid-state laser medium excited by pumping light.
  • a solid-state laser device that amplifies and outputs laser light by reciprocating, wherein the solid-state laser medium includes a first incident / exit end face and a second incident / exit end face on which laser light is incident and emitted, and an incident laser It has a reflection end face that reflects the laser light so that the light propagates in a zigzag shape, and the first entrance / exit end face is excited so that the excitation light propagates in a propagation path substantially the same as the laser light in the solid-state laser medium. It is characterized by making light incident.
  • the excitation light is incident on the first incident / exit end face of the solid-state laser medium and propagates in the solid-state laser medium on substantially the same propagation path as the laser light. Therefore, it is possible to suppress excitation of the region through which the laser beam does not pass in the solid-state laser medium by the excitation light, and it is possible to improve the coupling efficiency between the excitation light and the laser light.
  • the coupling efficiency between the excitation light and the laser light can be improved.
  • FIG. 1 is a configuration diagram of a first embodiment of a solid-state laser device according to the present invention.
  • FIG. 2 is a side view of a cooling device for cooling the solid-state laser medium of the solid-state laser device shown in FIG.
  • FIG. 3 is a cross-sectional view of the solid-state laser medium and the heat sink of the solid-state laser device shown in FIG.
  • FIG. 4 is a perspective view of the solid-state laser medium of the solid-state laser apparatus shown in FIG.
  • FIG. 5 is a plan view of the solid-state laser medium for explaining the shape of the solid-state laser medium.
  • FIG. 6 is a graph showing the relationship between the input power of excitation light and the output power of laser light.
  • FIG. 7 is a plan view of the solid-state laser medium for explaining the relationship between the beam diameter of the excitation light and the beam diameter of the laser light in the solid-state laser medium.
  • FIG. 8 is a side view of the solid-state laser medium for explaining the relationship between the beam diameter of the excitation light and the beam diameter of the laser light in the solid-state laser medium.
  • FIG. 9 is a side view of the solid-state laser medium for explaining another relationship between the beam diameter of the excitation light and the beam diameter of the laser light in the solid-state laser medium.
  • FIG. 10 is a plan view of the solid-state laser medium for explaining the generation of scattered light in the solid-state laser medium.
  • FIG. 11 is a side view of the solid-state laser medium for explaining the generation of scattered light in the solid-state laser medium.
  • FIG. 12 is a configuration diagram of the second embodiment of the solid-state laser device according to the present invention.
  • FIG. 1 is a configuration diagram of a first embodiment of a solid-state laser device according to the present invention.
  • a solid-state laser device 1 includes an end mirror (first reflecting mirror) 3 and an output mirror (second reflecting mirror) through a slab type solid-state laser medium 2 excited by pumping light L1.
  • ) 4 is a device that amplifies the laser beam L2 by reciprocating the laser beam L2 with respect to 4 and continuously (CW) oscillates the amplified laser beam L2 forward from the output mirror 4.
  • the solid-state laser medium 2 is formed in a rectangular parallelepiped shape, and both end faces facing in the longitudinal direction are incident / exit end faces (first entrance / exit end faces) 2a and entrance / exit end faces for entering and emitting the laser light L2. (Second incident / exit end face) 2b.
  • the laser beam L2 incident on the solid-state laser medium 2 is reflected by the reflection end faces 2c and 2d facing each other in the direction orthogonal to the longitudinal direction of the solid-state laser medium 2, and propagates in the solid-state laser medium 2 in a zigzag shape.
  • the end mirror 3 is a dichroic mirror in which dielectric multilayer films are formed on both main surfaces of a flat plate.
  • the main surface on the solid-state laser medium 2 side has a reflectivity of 99.9% for the laser beam L2 having a wavelength of 1030 nm, and a transmittance of 99.0% for the excitation light L1 having a center wavelength of 940 nm and FWHM of 3 nm and incident at 0 degrees.
  • a certain dielectric multilayer film is formed.
  • a non-reflective (AR) coating dielectric multilayer film having a transmittance with respect to the excitation light L1 of 99.4% is formed on the opposite main surface of the solid-state laser medium 2.
  • the output mirror 4 is a plano-concave mirror in which the solid laser medium 2 side is a concave surface and the opposite side of the solid laser medium 2 is a flat surface.
  • the curvature radius of the concave surface is 40 m, and a dielectric multilayer film having a reflectivity of 70% with respect to the laser beam L2 is formed on the concave surface.
  • a dielectric multilayer film of AR coating having a transmittance of 99.5% for the laser beam L2 is formed on the plane.
  • the pumping light L1 is supplied from the fiber-coupled semiconductor laser device 5 and condensed by the optical system 6.
  • the condensed excitation light L 1 passes through the end mirror 3 and enters the incident / exit end surface 2 a of the solid-state laser medium 2.
  • the incident / exit end face 2a makes the excitation light L1 incident so that the excitation light L1 propagates in the solid laser medium 2 on substantially the same propagation path as the laser light L2.
  • the optical system 6 is an aspherical condensing lens system (focal length 140 mm, 250 mm), and condenses the excitation light L1 so that the focal point of the excitation light L1 is located in the solid-state laser medium 2. More specifically, the optical system 6 is configured so that the distance between the incident / exit end face 2a and the focal point of the excitation light L1 is substantially equal to the distance between the incident / exit end face 2b and the focal point of the excitation light L1.
  • the pumping light L1 is condensed so that the pumping light L1 is not irradiated onto the end surfaces of the solid-state laser medium 2 excluding the end surfaces 2a and 2b and the reflecting end surfaces 2c and 2d.
  • the solid-state laser medium 2 is disposed in the vacuum chamber 8 in a state where the reflection end faces 2c and 2d are sandwiched between a pair of heat sinks 7 formed in a rectangular plate shape with copper.
  • the vacuum chamber 8 has a light transmission member (first light transmission member) 9 that transmits the laser light L2 traveling between the incident / exit end face 2a and the end mirror 3 and the excitation light L1 incident on the incident / exit end face 2a. Is provided.
  • the vacuum chamber 8 is provided with a light transmitting member (second light transmitting member) 11 that transmits the laser light L2 traveling between the incident / exit end face 2b and the output mirror 4.
  • the light transmissive members 9 and 11 are window materials in which an AR coating having a transmittance of 99.5% for the laser light L2 is applied to both main surfaces of a flat plate made of synthetic quartz.
  • a laser resonator is configured by the solid-state laser medium 2, the end mirror 3, and the output mirror 4.
  • the cavity length of this laser resonator is about 600 mm, and the solid-state laser medium 2 is installed so that the distance between the incident / exit end face 2a and the end mirror 3 is about 30 mm.
  • FIG. 2 is a side view of a cooling device for cooling the solid-state laser medium of the solid-state laser device shown in FIG.
  • the cooling device 20 includes a liquid nitrogen tank 21, and a heat sink 7 that holds the solid-state laser medium 2 is screwed to the bottom of the liquid nitrogen tank 21.
  • the liquid nitrogen tank 21 is provided with a nitrogen introducing pipe 22 for introducing liquid nitrogen into the tank 21 and a nitrogen outlet pipe 23 for extracting vaporized nitrogen from the tank 21.
  • the liquid nitrogen tank 21 is disposed in a vacuum vessel 24 made of stainless steel, and the vacuum vessel 24 is supported by a support member 25.
  • a region between the outer wall surface of the liquid nitrogen tank 21 and the inner wall surface of the vacuum vessel 24 is evacuated by the vacuum pump 26, whereby the liquid nitrogen tank 21 is thermally insulated.
  • the cooling device 20 includes a temperature controller 27 that can adjust the temperature of the heat sink 7 from a low temperature to a normal temperature.
  • the bottom of the vacuum vessel 24 is a vacuum chamber 8 that houses the solid-state laser medium 2 and the heat sink 7.
  • FIG. 3 is a cross-sectional view of the solid-state laser medium and the heat sink of the solid-state laser apparatus shown in FIG.
  • the solid-state laser medium 2 is a rectangular parallelepiped composite ceramic having a total length of 61.2 mm in the longitudinal direction and a square having a cross-sectional shape of 5 mm ⁇ 5 mm perpendicular to the longitudinal direction.
  • Both end portions of the solid-state laser medium 2 are YAGs not doped with rare earth ions, and an intermediate portion (a portion having a length of 41 mm;
  • Yb: YAG doped with 0.7 at.% Yb ions is sandwiching the Yb: YAG intermediate portion between the YAG end portions, both ends of the undoped portion function as heat sinks, so overheating of the intermediate portion of the doped portion is suppressed, and the laser beam
  • the beam quality of L2 can be improved.
  • the incident / exit end face 2a is inclined with respect to a plane orthogonal to the longitudinal direction of the solid-state laser medium 2 so as to form an angle of 50 degrees with the reflection end face 2d.
  • the incident / exit end face 2b is inclined with respect to a plane orthogonal to the longitudinal direction of the solid-state laser medium 2 so as to form an angle of 50 degrees with the reflection end face 2c. That is, the incident / exit end face 2a and the incident / exit end face 2b are inclined so as to be substantially parallel to each other, and are opposed in the longitudinal direction of the solid-state laser medium.
  • FIG. 4 is a perspective view of the solid-state laser medium of the solid-state laser apparatus shown in FIG.
  • the AR coating 12 for the excitation light L1 and the laser light L2 is applied to the incident / exit end faces 2a and 2b, and the SiO 2 coating 13 having a thickness of 3 ⁇ m is applied to the reflection end faces 2c and 2d. Is given.
  • the reflection end faces 2c and 2d are sandwiched by the pair of heat sinks 7 through the SiO 2 coating 13 and the 50 ⁇ m-thick indium layer (not shown).
  • the SiO 2 coating 13 prevents the heat sink 7 from absorbing evanescent light (exudation with a length of about the wavelength at the time of reflection) when the excitation light L1 and the laser light L2 are reflected by the reflection end faces 2c and 2d. .
  • the end surfaces 2e and 2f of the solid-state laser medium 2 excluding the input and output end surfaces 2a and 2b and the reflection end surfaces 2c and 2d are slit surfaces.
  • FIG. 5 is a diagram for explaining the shape of the solid-state laser medium.
  • the total length in the longitudinal direction of the solid-state laser medium 2 is L
  • the distance between the reflection end surfaces 2c and 2d is t
  • the angle between the incident / exit end surface 2a and the reflection end surface 2d is the input / output end surface 2b.
  • angle formed between the reflecting end face 2c a theta e.
  • the incident angle of the laser beam L2 for input and output end faces 2a theta in, reflecting end face 2c
  • the total reflection angle at the 2d theta TIR
  • the number of times of total reflection in the solid-state laser medium 2 and n b.
  • the solid-state laser medium 2 can be made to function in an arrangement like an end face excitation rod laser.
  • ⁇ in0 90 ° ⁇ e 0.9L 0 ⁇ L ⁇ 1.1L 0
  • L 0 t (n b ⁇ tan ⁇ TIR + 1 / tan ⁇ e)
  • the region between the outer wall surface of the liquid nitrogen tank 21 and the inner wall surface of the vacuum vessel 24 is evacuated by the vacuum pump 26, so that the liquid nitrogen tank 21 is vacuum insulated.
  • liquid nitrogen is introduced into the tank 21 through the nitrogen introduction pipe 22, and the vaporized nitrogen is led out from the tank 21 through the nitrogen lead-out pipe 23, while the solid laser medium 2 is passed through the heat sink 7. Is cooled.
  • the solid-state laser medium 2 is cooled by the temperature controller 27 to an extremely low temperature such as 77K or less.
  • the solid-state laser medium 2 is disposed in the vacuum chamber 8, dew condensation is prevented.
  • the reason for cooling the solid-state laser medium 2 is as follows. Since the solid-state laser medium 2 is Yb: YAG, it normally operates as a three-level laser, but when cooled, it operates as a four-level laser. Further, the stimulated emission cross-sectional area is about 1/10 of Nd: YAG at room temperature of about 300 K, but increases to substantially the same value as Nd: YAG when cooled. Furthermore, cooling improves the thermal conductivity and also improves the thermal strength. In this way, by cooling the solid-state laser medium 2, it is possible to operate as a laser with low heat generation and high efficiency.
  • the pumping light L1 having a wavelength of 940 nm is output from the semiconductor laser device 5 as shown in FIG.
  • the excitation light L 1 is collected by the optical system 6 and enters the incident / exit end face 2 a of the solid-state laser medium 2 disposed in the vacuum chamber 8 through the end mirror 3 and the light transmitting member 9.
  • the excitation light L1 incident on the incident / exit end face 2a propagates in a zigzag manner in the solid laser medium 2 and excites the solid laser medium 2.
  • the excitation light L1 is absorbed by about 95% by propagating through an intermediate portion of Yb: YAG doped with Yb ions.
  • the laser beam L2 having a beam diameter of 2.5 mm starts to reciprocate in the laser resonator constituted by the solid-state laser medium 2, the end mirror 3 and the output mirror 4, and the laser beam L2 is zigzag in the solid-state laser medium 2.
  • the light is amplified while propagating in a shape.
  • the propagation path of the excitation light L1 and the propagation path of the laser light L2 are substantially the same.
  • the optically amplified laser beam L2 is output as a continuous (CW) wave forward from the output mirror 4 when the pumping light power finally reaches 9W.
  • CW continuous
  • a thermal load is applied to the propagation path portion of the solid-state laser medium 2.
  • the solid-state laser medium 2 is cooled from the reflection end faces 2c and 2d via the pair of heat sinks 7, the steady state Then, the temperature distribution on the parabola with the center of the solid-state laser medium 2 as the maximum temperature point is maintained.
  • the excitation light L1 is incident on the incident / exit end surface 2a of the solid-state laser medium 2 and propagates in the solid-state laser medium 2 on substantially the same propagation path as the laser light L2. Therefore, it is possible to suppress excitation of the region where the laser light L2 does not pass in the solid-state laser medium 2 by the excitation light L1, and it is possible to improve the coupling efficiency between the excitation light L1 and the laser light L2. . As a result, as shown in FIG. 6, it is possible to realize a high average output laser in which the laser oscillation efficiency is dramatically improved.
  • the optical system 6 has a distance between the incident / exit end face 2a and the focal point F of the excitation light L1, and the focal point of the incident / exit end face 2b and the excitation light L1.
  • the excitation light L1 is condensed so as to be substantially equal to the distance from F.
  • the beam diameter of the excitation light L1 can be made smaller than the beam diameter of the laser light L2 in all the propagation paths in the solid-state laser medium 2, and the coupling efficiency between the excitation light L1 and the laser light L2 can be improved. It is possible to contribute.
  • the beam diameter of the excitation light L1 is not essential to make the beam diameter of the excitation light L1 smaller than the beam diameter of the laser light L2 in all the propagation paths in the solid-state laser medium 2. If the beam diameter of the excitation light L1 is made smaller than the beam diameter of the laser light L2 in at least a part of the propagation path in the solid-state laser medium 2, it can contribute to an improvement in the coupling efficiency between the excitation light L1 and the laser light L2. Because.
  • the portion where the beam diameter of the excitation light L1 is smaller than the beam diameter of the laser light L2 in the propagation path in the solid-state laser medium 2 can be taken long before and after the focal point F of the excitation light L1, as described above.
  • a position of the focal point F is preferable, but as shown in FIG. 9, the distance between the incident / exit end surface 2a and the focal point F of the excitation light L1 is larger than the distance between the incident / exit end surface 2b and the focal point F of the excitation light L1.
  • the optical system 6 may collect the excitation light L1 so as to shorten the length.
  • Such a position of the focal point F is particularly effective when the doping concentration of rare earth ions is high in the solid-state laser medium 2.
  • the energy conversion efficiency from the excitation light L1 to the laser light L2 is improved.
  • Can do This is because when the doping concentration of the rare earth ions in the solid-state laser medium 2 is high, the energy conversion efficiency from the excitation light L1 to the laser light L2 increases toward the excitation light incident surface side (that is, the incident / exit end surface 2a side). .
  • the optical system 6 includes the excitation light L1 so that the excitation light L1 is not irradiated onto the end faces 2e and 2f of the solid-state laser medium 2 excluding the incident / exit end faces 2a and 2b and the reflection end faces 2c and 2d. Condensing. That is, in the solid-state laser medium 2, the beam diameter of the excitation light L1 is smaller than the cross-sectional outline of the solid-state laser medium 2 both in the convergent part before reaching the focal point F and in the divergent part after reaching the focal point F. And included in the cross-sectional outline. Thereby, as shown in FIGS.
  • the excitation light L1 is scattered by irradiating the end faces 2e and 2f with the excitation light L1, and the scattered light (arrows shown in FIGS. 10 and 11) is It is possible to prevent a situation in which the region where the laser beam L2 does not pass in the solid-state laser medium 2 is excited.
  • the generation of such scattered light not only causes the temperature of the solid-state laser medium 2 to rise, but also causes an unnecessary gain region and hinders single mode oscillation of the laser light L2.
  • the light transmitting member 9 transmits the excitation light L1 together with the laser light L2
  • a light transmitting member that transmits the excitation light L1 is provided separately from the light transmitting member 9 that transmits the laser light L2. It is not necessary to provide the vacuum chamber 8, and the apparatus can be simplified and the cost can be reduced.
  • FIG. 12 is a configuration diagram of the second embodiment of the solid-state laser device according to the present invention.
  • the solid-state laser device 1 reciprocates the laser light L2 between the end mirror 3 and the output mirror 4 via the slab type solid-state laser medium 2 excited by the excitation light L1.
  • This is a device that amplifies the laser beam L2 and pulse-oscillates the amplified laser beam L2 forward from the output mirror 4.
  • differences from the solid-state laser device 1 that continuously (CW) oscillates the laser light L2 will be mainly described.
  • the solid-state laser device 10 includes a Pockels cell 14 and two polarizing plates 15.
  • the Pockels cell 14 is obtained by applying an AR coating having a transmittance of 99.5% to the laser light L2 on both end faces of a 6 mm diameter nonlinear optical crystal (BBO). Are disposed on the propagation path of the laser beam L2.
  • BBO nonlinear optical crystal
  • the Pockels cell 14 operates as a phase modulator and gives a phase difference of ⁇ / 4 to the P-polarized component and the S-polarized component of the laser light L2 by applying a voltage of 4.9 kV.
  • the polarizing plate 15 has a characteristic of a transmittance of 98% for the P-polarized component of the laser beam L2 incident at 55 degrees and a reflectance of 99.9% for the S-polarized component.
  • the Pockels cell 14 are arranged on the propagation path of the laser light L2. By such a combination with the polarizing plate 15, the Pockels cell 14 operates as a Q switch.
  • the Pockels cell 14 to which a voltage of 4.9 kV is applied rotates the polarization direction of the transmitted light by ⁇ / 2 in a reciprocating manner.
  • the S-polarized component light of the laser light L2 enters the Pockels cell 14 from the solid-state laser medium 2 side, the P-polarized component light returns by reciprocating the Pockels cell 14. Since the P-polarized light component is transmitted through the polarizing plate 15, the resonance mode is not established and laser oscillation does not occur.
  • the Pockels cell 14 operates at 5 kHz, when the voltage applied to the Pockels cell 14 becomes zero once every 200 ⁇ s, the light of the S-polarized component of the transmitted laser light L2 is transmitted without being phase-modulated as S-polarized light. . At this time, since the loss of the laser resonator is rapidly reduced, laser oscillation occurs and a pulse wave with a high peak value is output.
  • the excitation light L1 is incident on the incident / exit end face 2a of the solid-state laser medium 2 and is substantially the same as the laser light L2 in the solid-state laser medium 2. Propagate on the propagation path. Therefore, it is possible to suppress excitation of the region where the laser light L2 does not pass in the solid-state laser medium 2 by the excitation light L1, and it is possible to improve the coupling efficiency between the excitation light L1 and the laser light L2. .
  • the present invention is not limited to the above embodiment.
  • the solid-state laser medium 2 is not limited to Yb: YAG, and may be another Yb-based laser medium or an Nd-based laser medium such as Nd: YAG.
  • the amount of heat generated is about 1/3 that of an Nd laser medium, so that an efficient laser oscillation operation is possible.
  • a small amount of heat generation leads to various advantages such as a reduction in the load on the cooling system, a reduction in the size of the apparatus, and improvement in laser characteristics (thermal lens effect and reduction in thermal birefringence).
  • a solid-state laser device that amplifies and outputs laser light, wherein the solid-state laser medium has a first input / output end face and a second input / output end face for entering and emitting the laser light, and the incident laser light is zigzag-shaped.
  • the solid-state laser device having the above configuration preferably includes an optical system that condenses the excitation light so that the focus of the excitation light is located in the solid-state laser medium.
  • the beam diameter of the excitation light can be made smaller than the beam diameter of the laser light in at least a part of the propagation path in the solid-state laser medium, the coupling efficiency between the excitation light and the laser light is further increased. It becomes possible to improve.
  • the optical system condenses the excitation light so that the distance between the first incident / exit end face and the focal point of the excitation light is substantially equal to the distance between the second incident / exit end face and the focal point of the excitation light. It is preferable. According to this configuration, a portion where the beam diameter of the excitation light is smaller than the beam diameter of the laser beam in the propagation path in the solid-state laser medium can be long before and after the focal point of the excitation beam.
  • the optical system condenses the excitation light so that the distance between the first incident / exit end face and the focal point of the excitation light is shorter than the distance between the second incident / exit end face and the focal point of the excitation light.
  • the energy conversion efficiency from excitation light to laser light can be improved. This is because, for example, when the doping concentration of rare earth ions is high in a solid laser medium, the energy conversion efficiency from excitation light to laser light increases toward the excitation light incident surface side (that is, the first incident / exit end surface side). .
  • the optical system collects the excitation light so that the excitation light is not irradiated to the end surfaces of the solid-state laser medium excluding the first incident / exit end surface, the second incident / exit end surface, and the reflection end surface.
  • the excitation light is scattered by irradiating the end face of the solid-state laser medium excluding the entrance / exit end face and the reflection end face, thereby exciting the region where the laser light does not pass in the solid-state laser medium. Such a situation can be prevented.
  • the total length in the direction in which the first incident / exit end face and the second incident / exit end face face each other L
  • the number of times of total reflection in the solid-state laser medium when the n b
  • the solid-state laser medium can be made to function in an arrangement like an end face excitation rod laser.
  • ⁇ in0 90 ° ⁇ e 0.9L 0 ⁇ L ⁇ 1.1L 0
  • L 0 t (n b ⁇ tan ⁇ TIR + 1 / tan ⁇ e)
  • the solid-state laser medium is disposed in the vacuum chamber, and laser light traveling between the first incident / exit end face and the first reflecting mirror is transmitted through the vacuum chamber.
  • a first light transmitting member to be transmitted, and a second light transmitting member to transmit laser light traveling between the second incident / exit end face and the second reflecting mirror, are provided, and the first light transmitting member is provided.
  • the present invention can be used as a solid-state laser device capable of improving the coupling efficiency between excitation light and laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

 固体レーザ装置1は、励起光L1によって励起されたスラブ型の固体レーザ媒質2を介してエンドミラー3と出力鏡4との間でレーザ光L2を往復させることにより、レーザ光L2を増幅して出力する。固体レーザ媒質2は、レーザ光L2を入射及び出射させる入出射端面2a,2b、及び入射したレーザ光L2がジグザグ状に伝播するようにレーザ光L2を反射する反射端面2c,2dを有している。入出射端面2aは、固体レーザ媒質2内において励起光L1がレーザ光L2と略同一の伝播路上を伝播するように励起光L1を入射させる。これにより、励起光とレーザ光との結合効率を向上させることができる固体レーザ装置が実現される。

Description

固体レーザ装置
 本発明は、励起光によって励起されたスラブ型の固体レーザ媒質を介して1対の反射鏡の間でレーザ光を往復させることにより、レーザ光を増幅して出力する固体レーザ装置に関する。
 従来における上記技術分野の固体レーザ装置として、固体レーザ媒質においてレーザ光を入射及び出射させる1対の入出射端面のうち、一方の入出射端面には、1対の入出射端面の対向方向に沿って励起光を入射させ、他方の入出射端面には、1対の入出射端面の対向方向に対して斜めの方向に沿って励起光を入射させるものが知られている(例えば、非特許文献1参照)。このような固体レーザ装置によれば、固体レーザ媒質の全体を均一に励起することができる。
末田 敬一、外4名、「高出力LD励起薄型スラブYb:YAGレーザの開発」、社団法人 電子情報通信学会、p.17-20
 しかしながら、全体が均一に励起された固体レーザ媒質内をレーザ光がジグザグ状に伝播すると、励起されているにも拘らずレーザ光が通過しない領域が生じるため、励起光とレーザ光との結合効率が低下するという問題がある。このような結合効率の低下は、固体レーザ媒質の温度上昇に繋がり、レーザ光発振特性の低下(熱レンズ効果や熱複屈折の増大)を招くおそれがある。
 そこで、本発明は、このような事情に鑑みてなされたものであり、励起光とレーザ光との結合効率を向上させることができる固体レーザ装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る固体レーザ装置は、励起光によって励起されたスラブ型の固体レーザ媒質を介して第1の反射鏡と第2の反射鏡との間でレーザ光を往復させることにより、レーザ光を増幅して出力する固体レーザ装置であって、固体レーザ媒質は、レーザ光を入射及び出射させる第1の入出射端面及び第2の入出射端面、並びに入射したレーザ光がジグザグ状に伝播するようにレーザ光を反射する反射端面を有し、第1の入出射端面は、固体レーザ媒質内において励起光がレーザ光と略同一の伝播路上を伝播するように励起光を入射させることを特徴とする。
 この固体レーザ装置では、励起光は、固体レーザ媒質の第1の入出射端面に入射し、固体レーザ媒質内においてレーザ光と略同一の伝播路上を伝播する。そのため、固体レーザ媒質内においてレーザ光が通過しない領域が励起光によって励起されるのを抑制することができ、励起光とレーザ光との結合効率を向上させることが可能となる。
 本発明によれば、励起光とレーザ光との結合効率を向上させることができる。
図1は、本発明に係る固体レーザ装置の第1の実施形態の構成図である。 図2は、図1に示された固体レーザ装置の固体レーザ媒質を冷却するための冷却装置の側面図である。 図3は、図1に示された固体レーザ装置の固体レーザ媒質及びヒートシンクの横断面図である。 図4は、図1に示された固体レーザ装置の固体レーザ媒質の斜視図である。 図5は、固体レーザ媒質の形状を説明するための固体レーザ媒質の平面図である。 図6は、励起光の入力パワーとレーザ光の出力パワーとの関係を示すグラフである。 図7は、固体レーザ媒質内における励起光のビーム径とレーザ光のビーム径との関係を説明するための固体レーザ媒質の平面図である。 図8は、固体レーザ媒質内における励起光のビーム径とレーザ光のビーム径との関係を説明するための固体レーザ媒質の側面図である。 図9は、固体レーザ媒質内における励起光のビーム径とレーザ光のビーム径との他の関係を説明するための固体レーザ媒質の側面図である。 図10は、固体レーザ媒質内における散乱光の発生を説明するための固体レーザ媒質の平面図である。 図11は、固体レーザ媒質内における散乱光の発生を説明するための固体レーザ媒質の側面図である。 図12は、本発明に係る固体レーザ装置の第2の実施形態の構成図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 [第1の実施形態]
 図1は、本発明に係る固体レーザ装置の第1の実施形態の構成図である。図1に示されるように、固体レーザ装置1は、励起光L1によって励起されたスラブ型の固体レーザ媒質2を介してエンドミラー(第1の反射鏡)3と出力鏡(第2の反射鏡)4との間においてレーザ光L2を往復させることでレーザ光L2を増幅し、増幅されたレーザ光L2を出力鏡4から前方に連続(CW)発振する装置である。
 固体レーザ媒質2は、直方体状に形成されており、その長手方向において対向する両端面のそれぞれが、レーザ光L2を入射及び出射させる入出射端面(第1の入出射端面)2a及び入出射端面(第2の入出射端面)2bとなっている。固体レーザ媒質2に入射したレーザ光L2は、固体レーザ媒質2の長手方向と直交する方向において対向する反射端面2c,2dで反射されることにより、固体レーザ媒質2内をジグザグ状に伝播する。
 エンドミラー3は、平板の両主面に誘電体多層膜が形成されたダイクロイックミラーである。固体レーザ媒質2側の主面には、波長1030nmのレーザ光L2に対する反射率が99.9%であり、中心波長940nm、FWHM3nmの0度入射の励起光L1に対する透過率が99.0%である誘電体多層膜が形成されている。一方、固体レーザ媒質2の反対側の主面には、励起光L1に対する透過率が99.4%である無反射(AR)コーティングの誘電体多層膜が形成されている。
 出力鏡4は、固体レーザ媒質2側が凹面とされ且つ固体レーザ媒質2の反対側が平面とされた平凹ミラーである。凹面の曲率半径は40mであり、凹面には、レーザ光L2に対する反射率が70%の誘電体多層膜が形成されている。一方、平面には、レーザ光L2に対する透過率が99.5%であるARコーティングの誘電体多層膜が形成されている。
 励起光L1は、ファイバ結合型の半導体レーザ装置5から供給され、光学系6によって集光される。集光された励起光L1は、エンドミラー3を透過して、固体レーザ媒質2の入出射端面2aに入射する。このとき、入出射端面2aは、固体レーザ媒質2内において励起光L1がレーザ光L2と略同一の伝播路上を伝播するように励起光L1を入射させる。
 光学系6は、非球面集光レンズ系(焦点距離140mm,250mm)であり、励起光L1の焦点が固体レーザ媒質2内に位置するように励起光L1を集光する。より具体的には、光学系6は、入出射端面2aと励起光L1の焦点との距離が、入出射端面2bと励起光L1の焦点との距離と略等しくなるように、また、入出射端面2a,2b及び反射端面2c、2dを除く固体レーザ媒質2の端面に励起光L1が照射されないように、励起光L1を集光する。
 固体レーザ媒質2は、銅により矩形板状に形成された1対のヒートシンク7に反射端面2c,2dを挟持された状態で、真空チャンバ8内に配置されている。真空チャンバ8には、入出射端面2aとエンドミラー3との間を進行するレーザ光L2、及び入出射端面2aに入射する励起光L1を透過させる光透過部材(第1の光透過部材)9が設けられている。更に、真空チャンバ8には、入出射端面2bと出力鏡4との間を進行するレーザ光L2を透過させる光透過部材(第2の光透過部材)11が設けられている。光透過部材9,11は、合成石英からなる平板の両主面に、レーザ光L2に対する透過率が99.5%であるARコーティングが施された窓材である。
 以上のように構成された固体レーザ装置1においては、固体レーザ媒質2、エンドミラー3及び出力鏡4によってレーザ共振器が構成される。このレーザ共振器の共振器長は約600mmであり、固体レーザ媒質2は、入出射端面2aとエンドミラー3との距離が約30mmとなるように設置されている。
 図2は、図1に示された固体レーザ装置の固体レーザ媒質を冷却するための冷却装置の側面図である。図2に示されるように、冷却装置20は、液体窒素タンク21を備え、液体窒素タンク21の最下部には、固体レーザ媒質2を保持するヒートシンク7がねじ止めされている。液体窒素タンク21には、液体窒素をタンク21内に導入するための窒素導入管22、及び気化した窒素をタンク21内から導出するための窒素導出管23が設けられている。液体窒素タンク21は、ステンレス鋼からなる真空容器24内に配置されており、真空容器24は、支持部材25によって支持されている。液体窒素タンク21の外壁面と真空容器24の内壁面との間の領域は真空ポンプ26によって真空引きされ、これにより、液体窒素タンク21は真空断熱される。更に、冷却装置20は、ヒートシンク7の温度を低温から常温まで調節可能な温度コントローラ27を備えている。なお、真空容器24の底部が、固体レーザ媒質2及びヒートシンク7を収容する真空チャンバ8となっている。
 図3は、図1に示された固体レーザ装置の固体レーザ媒質及びヒートシンクの横断面図である。図3に示されるように、固体レーザ媒質2は、長手方向における全長が61.2mmであり且つ長手方向と直交する断面形状が5mm×5mmの正方形である直方体状のコンポジットセラミックスである。固体レーザ媒質2の両端部(長手方向における先端から10.1mmの長さの部分)は、希土類イオンがドープされていないYAGであり、その両端部の間の中間部(長さ41mmの部分、図3に示されたドットハチング部分)は、Ybイオンが0.7at.%ドープされたYb:YAGである。このように、Yb:YAGである中間部を、YAGである両端部で挟むことにより、非ドープ部の両端部がヒートシンクとして機能するため、ドープ部の中間部の過熱を抑制して、レーザ光L2のビーム品質を向上させることができる。
 固体レーザ媒質2において、入出射端面2aは、反射端面2dと50度の角度をなすように、固体レーザ媒質2の長手方向と直交する面に対して傾斜している。また、入出射端面2bは、反射端面2cと50度の角度をなすように、固体レーザ媒質2の長手方向と直交する面に対して傾斜している。つまり、入出射端面2a及び入出射端面2bは、互いに略平行となるように傾斜し、固体レーザ媒質の長手方向において対向している。
 図4は、図1に示された固体レーザ装置の固体レーザ媒質の斜視図である。図4に示されるように、入出射端面2a,2bには、励起光L1及びレーザ光L2に対するARコーティング12が施されており、反射端面2c,2dには、厚さ3μmのSiOコーティング13が施されている。これにより、反射端面2c,2dは、SiOコーティング13、及び厚さ50μmのインジウム層(図示せず)を介して、1対のヒートシンク7によって挟持されることになる。SiOコーティング13は、励起光L1及びレーザ光L2が反射端面2c,2dで反射する際のエバネッセント(反射時の波長程度の長さでの染み出し)がヒートシンク7に吸収されるのを防止する。なお、入出射端面2a,2b及び反射端面2c、2dを除く固体レーザ媒質2の端面2e,2fは、スリ面となっている。
 図5は、固体レーザ媒質の形状を説明するための図である。図5に示されるように、固体レーザ媒質2の長手方向における全長:L、反射端面2c,2d間の距離:t、入出射端面2aと反射端面2dとがなす角度、及び入出射端面2bと反射端面2cとがなす角度:θとする。また、入出射端面2aに対するレーザ光L2の入射角:θin、反射端面2c,2dでの全反射角:θTIR、固体レーザ媒質2内での全反射回数:nとする。このとき、下記の関係式(1),(2)を満たすと、固体レーザ媒質2を端面励起のロッドレーザのような配置で機能させることができる。
  0.9θin0≦θin≦1.1θin0  ・・・(1)
  ここで、θin0=90°-θ
  0.9L≦L≦1.1L      ・・・(2)
  ここで、L=t(n・tanθTIR+1/tanθ
 次に、固体レーザ装置1の動作について説明する。
 まず、図2に示されるように、液体窒素タンク21の外壁面と真空容器24の内壁面との間の領域が真空ポンプ26によって真空引きされて、液体窒素タンク21が真空断熱される。続いて、液体窒素が窒素導入管22を介してタンク21内に導入されると共に、気化した窒素が窒素導出管23を介してタンク21内から導出されつつ、ヒートシンク7を介して固体レーザ媒質2が冷却される。このとき、固体レーザ媒質2は、温度コントローラ27によって、例えば77K以下というような極低温に冷却される。なお、固体レーザ媒質2は真空チャンバ8内に配置されているため、結露は防止される。
 ここで、固体レーザ媒質2を冷却する理由は次の通りである。固体レーザ媒質2は、Yb:YAGであるため、通常は3準位レーザとして動作するが、冷却すると4準位レーザとして動作する。また、誘導放出断面積は、300K程度の室温ではNd:YAGの1/10程度であるが、冷却するとNd:YAGと略同程度の値に上昇する。更に、冷却することで熱伝導率が向上し、熱的耐力も向上する。このように、固体レーザ媒質2を冷却することで、発熱が少なく且つ効率が高いレーザとして動作させることができる。
 固体レーザ媒質2が極低温に冷却された状態で、図1に示されるように、半導体レーザ装置5から波長940nmの励起光L1が出力される。励起光L1は、光学系6によって集光され、エンドミラー3及び光透過部材9を介して、真空チャンバ8内に配置された固体レーザ媒質2の入出射端面2aに入射する。入出射端面2aに入射した励起光L1は、固体レーザ媒質2内をジグザグ状に伝播し、固体レーザ媒質2を励起する。励起光L1は、YbイオンがドープされたYb:YAGである中間部を伝播することで、95%程度吸収される。
 そして、固体レーザ媒質2、エンドミラー3及び出力鏡4によって構成されたレーザ共振器内において、ビーム径2.5mmのレーザ光L2が往復し始め、レーザ光L2は、固体レーザ媒質2内においてジグザグ状に伝播しながら光増幅されていく。このとき、固体レーザ媒質2内では、励起光L1の伝播路とレーザ光L2の伝播路とは略同一である。
 光増幅されたレーザ光L2は、最終的に励起光パワー9Wに達すると、出力鏡4から前方に連続(CW)波として出力される。なお、励起光L1の伝搬に伴い、固体レーザ媒質2の伝播路上部分に熱負荷がかかるが、1対のヒートシンク7を介して反射端面2c,2dから固体レーザ媒質2を冷却するため、定常状態では固体レーザ媒質2の中心を最高温度点とする放物線上の温度分布が維持されるようになる。
 以上説明したように、固体レーザ装置1においては、励起光L1は、固体レーザ媒質2の入出射端面2aに入射し、固体レーザ媒質2内においてレーザ光L2と略同一の伝播路上を伝播する。そのため、固体レーザ媒質2内においてレーザ光L2が通過しない領域が励起光L1によって励起されるのを抑制することができ、励起光L1とレーザ光L2との結合効率を向上させることが可能となる。その結果、図6に示されるように、レーザ発振効率が飛躍的に向上した高平均出力レーザを実現することが可能となる。
 また、固体レーザ装置1においては、光学系6は、図7,8に示されるように、入出射端面2aと励起光L1の焦点Fとの距離が、入出射端面2bと励起光L1の焦点Fとの距離と略等しくなるように、励起光L1を集光する。これにより、固体レーザ媒質2内の伝播路の全部において、励起光L1のビーム径をレーザ光L2のビーム径よりも小さくすることができ、励起光L1とレーザ光L2との結合効率の向上に寄与させることが可能となる。
 なお、固体レーザ媒質2内の伝播路の全部において、励起光L1のビーム径をレーザ光L2のビーム径よりも小さくすることは必須ではない。固体レーザ媒質2内の伝播路の少なくとも一部において、励起光L1のビーム径をレーザ光L2のビーム径よりも小さくすれば、励起光L1とレーザ光L2との結合効率の向上に寄与し得るからである。
 そして、固体レーザ媒質2内の伝播路において励起光L1のビーム径がレーザ光L2のビーム径よりも小さくなる部分を、励起光L1の焦点Fの前後に長くとり得るという観点からは、上述したような焦点Fの位置が好ましいが、図9に示されるように、入出射端面2aと励起光L1の焦点Fとの距離が、入出射端面2bと励起光L1の焦点Fとの距離よりも短くなるように、光学系6が励起光L1を集光するようにしてもよい。このような焦点Fの位置は、固体レーザ媒質2において希土類イオンのドープ濃度が高い場合に特に有効であり、そのような場合に、励起光L1からレーザ光L2へのエネルギ変換効率を向上させることができる。これは、固体レーザ媒質2において希土類イオンのドープ濃度が高いと、励起光L1からレーザ光L2へのエネルギ変換効率が励起光入射面側(すなわち、入出射端面2a側)ほど高くなるからである。
 また、固体レーザ装置1においては、光学系6は、入出射端面2a,2b及び反射端面2c、2dを除く固体レーザ媒質2の端面2e,2fに励起光L1が照射されないように、励起光L1を集光する。つまり、固体レーザ媒質2内においては、励起光L1のビーム径は、焦点F到達前の収束部分においても焦点F到達後の発散部分においても、固体レーザ媒質2の断面外形よりも小さくなっており、且つその断面外形内に含まれている。これにより、図10,11に示されるように、端面2e,2fに励起光L1が照射されることにより励起光L1が散乱し、その散乱光(図10,11に示された矢印)が、固体レーザ媒質2内においてレーザ光L2が通過しない領域を励起するような事態を防止することができる。このような散乱光の発生は、固体レーザ媒質2の温度上昇を招くばかりか、不要な利得領域を発生させてレーザ光L2の単一モード発振を阻害する要因となる。
 また、固体レーザ装置1においては、光透過部材9がレーザ光L2と共に励起光L1を透過させるため、レーザ光L2を透過させる光透過部材9とは別に、励起光L1を透過させる光透過部材を真空チャンバ8に設けることが不要となり、装置の簡便化及び低コスト化を図ることができる。
 [第2の実施形態]
 図12は、本発明に係る固体レーザ装置の第2の実施形態の構成図である。図12に示されるように、固体レーザ装置1は、励起光L1によって励起されたスラブ型の固体レーザ媒質2を介してエンドミラー3と出力鏡4との間においてレーザ光L2を往復させることでレーザ光L2を増幅し、増幅されたレーザ光L2を出力鏡4から前方にパルス発振する装置である。以下、レーザ光L2を連続(CW)発振する上記固体レーザ装置1との相違点について主に説明する。
 図12に示されるように、固体レーザ装置10は、ポッケルスセル14と、2枚の偏光板15とを備えている。ポッケルスセル14は、直径6mmの非線形光学結晶(BBO)の両端面に、レーザ光L2に対する透過率が99.5%であるARコーティングが施されたものであり、真空チャンバ8と出力鏡4との間におけるレーザ光L2の伝播路上に配置されている。ポッケルスセル14は、位相変調器として動作し、4.9kVの電圧が加えられることで、レーザ光L2のP偏光成分とS偏光成分とにλ/4の位相差を与える。偏光板15は、55度入射のレーザ光L2のP偏光成分に対しては透過率98%、そのS偏光成分に対しては反射率99.9%という特性を有しており、真空チャンバ8とポッケルスセル14との間におけるレーザ光L2の伝播路上に配置されている。このような偏光板15との組合せにより、ポッケルスセル14は、Qスイッチとして動作する。
 次に、固体レーザ装置10の動作について説明する。
 4.9kVの電圧が加えられたポッケルスセル14は、透過する光の偏光方向を往復でλ/2回転させる。ここでは、レーザ光L2のS偏光成分の光が固体レーザ媒質2側からポッケルスセル14に入射するため、ポッケルスセル14を往復することでP偏光成分の光が戻ることになる。このP偏光成分の光は、偏光板15を透過するため、共振モードが成立せずレーザ発振されない。ポッケルスセル14は5kHzで動作するため、200μsに1回、ポッケルスセル14に掛かる電圧がゼロとなると、透過するレーザ光L2のS偏光成分の光は、位相変調を受けずS偏光のまま透過する。このとき、レーザ共振器の損失が急激に減少するため、レーザ発振が起こり、尖頭値の高いパルス波が出力される。
 以上のような固体レーザ装置10においても、上記固体レーザ装置1と同様に、励起光L1は、固体レーザ媒質2の入出射端面2aに入射し、固体レーザ媒質2内においてレーザ光L2と略同一の伝播路上を伝播する。そのため、固体レーザ媒質2内においてレーザ光L2が通過しない領域が励起光L1によって励起されるのを抑制することができ、励起光L1とレーザ光L2との結合効率を向上させることが可能となる。
 本発明は、上記実施形態に限定されるものではない。
 例えば、固体レーザ媒質2は、Yb:YAGに限定されず、他のYb系レーザ媒質であってもよいし、Nd:YAG等のNd系レーザ媒質であってもよい。ただし、Yb系レーザ媒質を用いると、Nd系レーザ媒質の1/3程度の発熱量であるため、効率の良いレーザ発振動作が可能となる。そして、発熱量が少ないことは、冷却系への負荷低減、装置の小型化、レーザの特性向上(熱レンズ効果や熱複屈折の縮小)と様々な利点に繋がる。
 ここで、上記実施形態による固体レーザ装置では、励起光によって励起されたスラブ型の固体レーザ媒質を介して第1の反射鏡と第2の反射鏡との間でレーザ光を往復させることにより、レーザ光を増幅して出力する固体レーザ装置であって、固体レーザ媒質は、レーザ光を入射及び出射させる第1の入出射端面及び第2の入出射端面、並びに入射したレーザ光がジグザグ状に伝播するようにレーザ光を反射する反射端面を有し、第1の入出射端面は、固体レーザ媒質内において励起光がレーザ光と略同一の伝播路上を伝播するように励起光を入射させる構成を用いている。
 上記構成による固体レーザ装置は、励起光の焦点が固体レーザ媒質内に位置するように励起光を集光する光学系を備えることが好ましい。この構成によれば、固体レーザ媒質内における伝播路の少なくとも一部において、励起光のビーム径をレーザ光のビーム径よりも小さくすることができるため、励起光とレーザ光との結合効率を更に向上させることが可能となる。
 このとき、光学系は、第1の入出射端面と励起光の焦点との距離が、第2の入出射端面と励起光の焦点との距離と略等しくなるように、励起光を集光することが好ましい。この構成によれば、固体レーザ媒質内の伝播路において励起光のビーム径がレーザ光のビーム径よりも小さくなる部分を、励起光の焦点の前後に長くとることができる。
 また、光学系は、第1の入出射端面と励起光の焦点との距離が、第2の入出射端面と励起光の焦点との距離よりも短くなるように、励起光を集光することが好ましい。この構成によれば、励起光からレーザ光へのエネルギ変換効率を向上させることができる。これは、例えば固体レーザ媒質において希土類イオンのドープ濃度が高いと、励起光からレーザ光へのエネルギ変換効率が励起光入射面側(すなわち、第1の入出射端面側)ほど高くなるからである。
 更に、光学系は、第1の入出射端面、第2の入出射端面及び反射端面を除く固体レーザ媒質の端面に励起光が照射されないように、励起光を集光することが好ましい。この構成によれば、入出射端面及び反射端面を除く固体レーザ媒質の端面に励起光が照射されることにより、励起光が散乱して、固体レーザ媒質内においてレーザ光が通過しない領域を励起するような事態を防止することができる。
 上記構成による固体レーザ装置においては、固体レーザ媒質において、第1の入出射端面と第2の入出射端面とが対向する方向における全長:L、反射端面間の距離:t、第1の入出射端面と反射端面とがなす鋭角側の角度、及び第2の入出射端面と反射端面とがなす鋭角側の角度:θ、第1の入出射端面に対するレーザ光の入射角:θin、反射端面での全反射角:θTIR、固体レーザ媒質内での全反射回数:nとしたとき、下記の関係式(1),(2)を満たすことが好ましい。この構成によれば、固体レーザ媒質を端面励起のロッドレーザのような配置で機能させることができる。
  0.9θin0≦θin≦1.1θin0  ・・・(1)
  ここで、θin0=90°-θ
  0.9L≦L≦1.1L      ・・・(2)
  ここで、L=t(n・tanθTIR+1/tanθ
 上記構成による固体レーザ装置においては、固体レーザ媒質は、真空チャンバ内に配置されており、真空チャンバには、第1の入出射端面と第1の反射鏡との間を進行するレーザ光を透過させる第1の光透過部材、及び第2の入出射端面と第2の反射鏡との間を進行するレーザ光を透過させる第2の光透過部材が設けられており、第1の光透過部材は、第1の入出射端面に入射する励起光を透過させることが好ましい。この構成によれば、レーザ光を透過させる光透過部材とは別に、励起光を透過させる光透過部材を真空チャンバに設けることが不要となるため、装置の簡便化及び低コスト化を図ることができる。
 本発明は、励起光とレーザ光との結合効率を向上させることができる固体レーザ装置として利用可能である。
 1,10…固体レーザ装置、2…固体レーザ媒質、2a…入出射端面(第1の入出射端面)、2b…入出射端面(第2の入出射端面)、2c,2d…反射端面、3…エンドミラー(第1の反射鏡)、4…出力鏡(第2の反射鏡)、6…光学系、8…真空チャンバ、9…光透過部材(第1の光透過部材)、11…光透過部材(第2の光透過部材)、L1…励起光、L2…レーザ光、F…焦点。

Claims (7)

  1.  励起光によって励起されたスラブ型の固体レーザ媒質を介して第1の反射鏡と第2の反射鏡との間でレーザ光を往復させることにより、前記レーザ光を増幅して出力する固体レーザ装置であって、
     前記固体レーザ媒質は、前記レーザ光を入射及び出射させる第1の入出射端面及び第2の入出射端面、並びに入射した前記レーザ光がジグザグ状に伝播するように前記レーザ光を反射する反射端面を有し、
     前記第1の入出射端面は、前記固体レーザ媒質内において前記励起光が前記レーザ光と略同一の伝播路上を伝播するように前記励起光を入射させることを特徴とする固体レーザ装置。
  2.  前記励起光の焦点が前記固体レーザ媒質内に位置するように前記励起光を集光する光学系を備えることを特徴とする請求項1記載の固体レーザ装置。
  3.  前記光学系は、前記第1の入出射端面と前記励起光の焦点との距離が、前記第2の入出射端面と前記励起光の焦点との距離と略等しくなるように、前記励起光を集光することを特徴とする請求項2記載の固体レーザ装置。
  4.  前記光学系は、前記第1の入出射端面と前記励起光の焦点との距離が、前記第2の入出射端面と前記励起光の焦点との距離よりも短くなるように、前記励起光を集光することを特徴とする請求項2記載の固体レーザ装置。
  5.  前記光学系は、前記第1の入出射端面、前記第2の入出射端面及び前記反射端面を除く前記固体レーザ媒質の端面に前記励起光が照射されないように、前記励起光を集光することを特徴とする請求項2~4のいずれか一項記載の固体レーザ装置。
  6.  前記固体レーザ媒質において、前記第1の入出射端面と前記第2の入出射端面とが対向する方向における全長:L、前記反射端面間の距離:t、前記第1の入出射端面と前記反射端面とがなす鋭角側の角度、及び前記第2の入出射端面と前記反射端面とがなす鋭角側の角度:θ、前記第1の入出射端面に対する前記レーザ光の入射角:θin、前記反射端面での全反射角:θTIR、前記固体レーザ媒質内での全反射回数:nとしたとき、下記の関係式(1),(2)を満たすことを特徴とする請求項1~5のいずれか一項記載の固体レーザ装置。
      0.9θin0≦θin≦1.1θin0  ・・・(1)
      ここで、θin0=90°-θ
      0.9L≦L≦1.1L      ・・・(2)
      ここで、L=t(n・tanθTIR+1/tanθ
  7.  前記固体レーザ媒質は、真空チャンバ内に配置されており、
     前記真空チャンバには、前記第1の入出射端面と前記第1の反射鏡との間を進行する前記レーザ光を透過させる第1の光透過部材、及び前記第2の入出射端面と前記第2の反射鏡との間を進行する前記レーザ光を透過させる第2の光透過部材が設けられており、
     前記第1の光透過部材は、前記第1の入出射端面に入射する前記励起光を透過させることを特徴とする請求項1~6のいずれか一項記載の固体レーザ装置。
PCT/JP2009/060624 2008-07-30 2009-06-10 固体レーザ装置 WO2010013546A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/055,995 US20110176574A1 (en) 2008-07-30 2009-06-10 Solid-state laser device
EP09802791.5A EP2312706A4 (en) 2008-07-30 2009-06-10 SEMICONDUCTOR LASER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008196699A JP2010034413A (ja) 2008-07-30 2008-07-30 固体レーザ装置
JP2008-196699 2008-07-30

Publications (1)

Publication Number Publication Date
WO2010013546A1 true WO2010013546A1 (ja) 2010-02-04

Family

ID=41610252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060624 WO2010013546A1 (ja) 2008-07-30 2009-06-10 固体レーザ装置

Country Status (4)

Country Link
US (1) US20110176574A1 (ja)
EP (1) EP2312706A4 (ja)
JP (1) JP2010034413A (ja)
WO (1) WO2010013546A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010855B2 (en) 2008-12-22 2018-07-03 Asahi Kasei Chemicals Corporation Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin
US20210203118A1 (en) * 2019-02-27 2021-07-01 Mitsubishi Heavy Industries, Ltd. Laser apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308965B2 (ja) 2015-03-26 2018-04-11 三菱重工業株式会社 レーザ発振装置
JP6560954B2 (ja) * 2015-10-16 2019-08-14 三菱重工業株式会社 固体レーザ増幅装置
JP6632315B2 (ja) 2015-10-16 2020-01-22 三菱重工業株式会社 固体レーザ増幅装置
FR3064411B1 (fr) * 2017-03-24 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'amplification laser a controle actif de la qualite de faisceau et barres d'extremite.
US11881676B2 (en) * 2019-01-31 2024-01-23 L3Harris Technologies, Inc. End-pumped Q-switched laser
JP7518692B2 (ja) 2020-07-31 2024-07-18 浜松ホトニクス株式会社 レーザ装置
JP7513886B2 (ja) 2020-09-30 2024-07-10 日亜化学工業株式会社 レーザ装置、及びレーザ装置の動作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284356U (ja) * 1988-12-19 1990-06-29
JPH03286583A (ja) * 1990-04-02 1991-12-17 Mitsubishi Electric Corp レーザダイオード励起固体レーザ装置
JPH09312430A (ja) * 1996-05-22 1997-12-02 Sadao Nakai ジグザグスラブ固体レーザ及び増幅器
JP2000089006A (ja) * 1998-09-11 2000-03-31 Mitsubishi Electric Corp 固体光学素子マウントセル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710940A (en) * 1985-10-01 1987-12-01 California Institute Of Technology Method and apparatus for efficient operation of optically pumped laser
US4974230A (en) * 1988-08-23 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tm,Ho:YLF laser end-pumped by a semiconductor diode laser array
GB2259603B (en) * 1991-09-06 1995-07-19 Mitsubishi Electric Corp Diode pumped solid-state laser
JPH0653574A (ja) * 1992-07-31 1994-02-25 Sumitomo Metal Mining Co Ltd スラブ型レーザ素子及びその製造方法
US5708672A (en) * 1996-01-29 1998-01-13 Laser Power Corporation Dual wavelength solid state laser
US6094297A (en) * 1998-07-07 2000-07-25 Trw Inc. End pumped zig-zag slab laser gain medium
JP3100948B2 (ja) * 1998-10-22 2000-10-23 ファナック株式会社 固体レーザ発振装置
US6904069B2 (en) * 2000-12-29 2005-06-07 The Regents Of The University Of California Parasitic oscillation suppression in solid state lasers using optical coatings
DE60210770T2 (de) * 2001-03-22 2006-08-31 Xsil Technology Ltd. Ein laserbearbeitungssystem und -verfahren
JP2003258350A (ja) * 2002-02-27 2003-09-12 Nec Corp 複合レーザロッド、並びにその製造方法およびそれを用いたレーザ装置
JP4627445B2 (ja) * 2005-02-23 2011-02-09 浜松ホトニクス株式会社 レーザ増幅装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284356U (ja) * 1988-12-19 1990-06-29
JPH03286583A (ja) * 1990-04-02 1991-12-17 Mitsubishi Electric Corp レーザダイオード励起固体レーザ装置
JPH09312430A (ja) * 1996-05-22 1997-12-02 Sadao Nakai ジグザグスラブ固体レーザ及び増幅器
JP2000089006A (ja) * 1998-09-11 2000-03-31 Mitsubishi Electric Corp 固体光学素子マウントセル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEIICHI SUEDA: "Development of high-power LD-pumped thin-slab Yb:YAG laser", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, pages 17 - 20
See also references of EP2312706A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010855B2 (en) 2008-12-22 2018-07-03 Asahi Kasei Chemicals Corporation Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin
US20210203118A1 (en) * 2019-02-27 2021-07-01 Mitsubishi Heavy Industries, Ltd. Laser apparatus
US11569630B2 (en) * 2019-02-27 2023-01-31 Mitsubishi Heavy Industries, Ltd. Laser apparatus

Also Published As

Publication number Publication date
EP2312706A4 (en) 2013-06-26
JP2010034413A (ja) 2010-02-12
EP2312706A1 (en) 2011-04-20
US20110176574A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2010013546A1 (ja) 固体レーザ装置
US6785304B2 (en) Waveguide device with mode control and pump light confinement and method of using same
US7839908B2 (en) Mode control waveguide laser device
US7042631B2 (en) Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
US7193771B1 (en) Power scalable optical systems for generating, transporting, and delivering high power, high quality laser beams
WO2011027731A1 (ja) 平面導波路型レーザ装置
JP4407039B2 (ja) 固体レーザ装置および固体レーザ装置システム
JP2000133863A (ja) 固体レーザ装置
CN112397977B (zh) 一种板条激光器
JP2012160645A (ja) 固体レーザ装置
WO2011027471A1 (ja) 平面導波路型レーザのための固体レーザ励起モジュール
JP2005057043A (ja) 固体レーザ装置及び波長変換光学部材の製造方法
WO2011027579A1 (ja) 平面導波路型レーザ装置
JP2004296671A (ja) 固体レーザ装置
JP5645753B2 (ja) 平面導波路型レーザ装置
JP2005039093A (ja) レーザ装置
JP4101838B2 (ja) 固体レーザ励起モジュール及びレーザ発振器
US20020094006A1 (en) Solid-state laser device and solid-state laser amplifier provided therewith
JP4402048B2 (ja) 固体レーザ励起モジュール及びレーザ発振器
WO2005088782A1 (en) Optical amplifier
JP2000077750A (ja) 固体レーザ装置
US9214784B2 (en) Laser device
JP2011254035A (ja) 固体レーザ装置
JP2010080927A (ja) レーザ装置
JP2009182053A (ja) レーザー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009802791

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13055995

Country of ref document: US