WO2010010888A1 - 活線検出装置 - Google Patents

活線検出装置 Download PDF

Info

Publication number
WO2010010888A1
WO2010010888A1 PCT/JP2009/063089 JP2009063089W WO2010010888A1 WO 2010010888 A1 WO2010010888 A1 WO 2010010888A1 JP 2009063089 W JP2009063089 W JP 2009063089W WO 2010010888 A1 WO2010010888 A1 WO 2010010888A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
refractive index
optical fiber
hot
optical
Prior art date
Application number
PCT/JP2009/063089
Other languages
English (en)
French (fr)
Inventor
雄一 内田
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008192760A external-priority patent/JP2010032650A/ja
Priority claimed from JP2008192758A external-priority patent/JP2010032272A/ja
Priority claimed from JP2008192759A external-priority patent/JP2010032273A/ja
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to CN2009801290901A priority Critical patent/CN102105828A/zh
Priority to EP09800402A priority patent/EP2306225A4/en
Priority to US13/054,849 priority patent/US20110140011A1/en
Publication of WO2010010888A1 publication Critical patent/WO2010010888A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • G02B6/4291Optical modules with tapping or launching means through the surface of the waveguide by accessing the evanescent field of the light guide

Definitions

  • the present invention relates to a live line detection device that detects whether or not an optical line formed by connecting one end portions of two optical fibers is in a live line state.
  • the optical line formed by the optical fiber for optical communication stored in the optical termination box installed in the office, building, home, etc. is in a live state.
  • a hot-line detection device that detects this.
  • a hot-wire detection device for example, a hot-wire detection device that can detect a hot-wire state without bending an optical fiber has been proposed (see, for example, Patent Document 1).
  • the live line state refers to a state where the optical line normally transmits light.
  • the hot-wire state can be detected without bending the optical fiber, so that the optical fiber breaks due to the bending of the optical fiber or a transmission error due to a temporary increase in transmission loss. Occurrence and the like can be prevented.
  • FIG. 20 shows a configuration diagram of a conventional hot-wire detection apparatus shown in Patent Document 1.
  • the conventional hot-wire detection apparatus has a fused portion 2 ′ formed by fusing one end portions of two optical fibers 1 ′ and 1 ′ constituting the optical line A ′.
  • a light detector 50 ' that detects light leaked from the fusion part 2' through the fusion reinforcement sleeve 42 'by a light receiving element (not shown).
  • the connection loss due to the axial deviation and angular deviation of the optical axes of the two optical fibers 1 ′ and 1 ′ In general, the two optical fibers 1 ′ and 1 ′ are fused so that is minimized. Therefore, the fusion part 2 ′ shown in FIG. 20 has a connection loss of about 0.2 dB at a wavelength of 1310 nm.
  • the power of light propagating through an optical fiber is wide, and may be as low as ⁇ 20 dBm. In this case, the power of light leaking from the fused portion 2 ′ is reduced. Further, the distance between the light receiving element installed outside the fusion reinforcing sleeve 42 'and the fusion part 2' is large. As a result, the power of the light reaching the light receiving surface of the light receiving element is reduced, resulting in a problem that the light receiving efficiency is lowered, the S / N ratio is lowered, and it is difficult to detect a live line.
  • An object of the present invention is to provide a live line detection device capable of more stable live line detection.
  • a hot-wire detection device is a hot-wire detection device that detects a hot-wire state of an optical line including two optical fibers, and a refractive index distribution at a connection portion of the two optical fibers is Different from the refractive index distribution of the other part in the optical axis direction, a part of the light which is formed by connecting the two optical fibers and propagates in the core of one optical fiber is changed to the other optical fiber. And a light receiving element that is bonded to the outer peripheral surface of the clad of the other optical fiber via a light-transmitting adhesive layer and detects light leaked by the light leakage generating part. Yes.
  • FIG. 1 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 1 of the present invention.
  • (A) to (D) are explanatory diagrams of a refractive index distribution when a single mode fiber is used as an optical fiber
  • (A) is a diagram showing a schematic configuration of the optical fiber
  • (B) (A) shows the refractive index distribution of the BB cross section shown in (A)
  • (C) shows the refractive index distribution of the CC cross section shown in (A)
  • (D) shows the DD cross section shown in (A). Refractive index distribution is shown.
  • FIGS. 1 to (D) are explanatory diagrams of a refractive index distribution when a GI type multimode fiber is used as an optical fiber, and (A) is a diagram showing a schematic configuration of the optical fiber. ) Shows the refractive index distribution of the BB cross section shown in (A), (C) shows the refractive index distribution of the CC cross section shown in (A), and (D) shows DD shown in (A). The refractive index profile of the cross section is shown. (A), (B) is explanatory drawing of the hot-wire detection apparatus by Embodiment 2 of this invention.
  • FIG. 1 is a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 3 of the present invention
  • (B) is a cross-sectional view of the optical fiber taken along the line BB
  • (C) is a light for light leakage generation. The cross section in the CC cross section of the fiber is shown.
  • (A), (B) is the figure which expanded and showed the melt
  • (A) is a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 4 of the present invention
  • (B) is a cross-sectional view taken along line BB in (A)
  • (C) is a cross-sectional view taken along line BB.
  • the refractive index distribution of the cross section is shown, (D) shows a cross sectional view of the DD cross section in (A), and (E) shows the refractive index distribution of the DD cross section.
  • (A) shows the optical path diagram of the SI type multimode fiber
  • (B) shows the optical path diagram of the GI type multimode fiber
  • (C) shows the optical path diagram in the vicinity of the fused portion on the right side in FIG.
  • D shows an optical path diagram in the vicinity of the left fusion part in FIG. 7 (A).
  • FIG. 1 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 5 of the present invention
  • (B) shows a cross-sectional view of the BB cross section in (A)
  • (C) shows a BB cross section.
  • the refractive index distribution of the cross section is shown
  • (D) shows a cross sectional view of the DD cross section in (A)
  • (E) shows the refractive index distribution of the DD cross section.
  • the schematic block diagram of the hot-wire detection apparatus by Embodiment 6 of this invention is shown.
  • (A) to (D) are explanatory diagrams of a refractive index distribution when a single mode fiber is used as an optical fiber
  • (A) is a diagram showing a schematic configuration of the optical fiber
  • (B) (A) shows the refractive index distribution of the BB cross section shown in (A)
  • (C) shows the refractive index distribution of the CC cross section shown in (A)
  • (D) shows the DD cross section shown in (A).
  • Refractive index distribution is shown.
  • (A) to (D) are explanatory diagrams of a refractive index distribution when a GI type multimode fiber is used as an optical fiber
  • (A) is a diagram showing a schematic configuration of the optical fiber.
  • FIG. 9 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 7 of the present invention.
  • FIG. 10 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 8 of the present invention.
  • A has shown the schematic block diagram of the hot-wire detection apparatus by Embodiment 9 of this invention.
  • B has shown the schematic block diagram of the comparative example with the hot-wire detection apparatus by Embodiment 9 of this invention.
  • FIG. 18 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 13 of the present invention. The block diagram of the conventional hot-wire detection apparatus is shown.
  • FIG. 1 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 1 of the present invention.
  • the hot-line detection device detects whether or not an optical line A configured by connecting one ends of two optical fibers 1 and 1 is in a live-line state.
  • the apparatus includes optical fibers 1 and 1, a light leakage generation unit 3, a light receiving element chip 5 (an example of a light receiving element), a current-voltage conversion circuit 100, a determination unit 200, and a display unit 300.
  • the current-voltage conversion circuit 100, the determination unit 200, and the display unit 300 are not shown.
  • the light leakage generating unit 3 connects the optical fibers 1 and 1 so that the refractive index distribution of the connection part of the two optical fibers 1 and 1 is different from the refractive index distribution of other parts in the optical axis direction.
  • a part of the light propagating in the core of one optical fiber 1 (right optical fiber 1 in the illustrated example) is clad in the other optical fiber 1 (left optical fiber 1 in the illustrated example). Let 12 leak light.
  • the light receiving element chip 5 has a transparent adhesive layer 4 (light transmissive) made of a transparent adhesive on the outer peripheral surface of the clad 12 of the other optical fiber 1, that is, the outer peripheral surface of the strand 10 constituted by the core 11 and the clad 12.
  • the light leaked by the light leakage generating unit 3 is detected through an example of the adhesive layer.
  • the optical fibers 1 and 1 are connected by fusing one end portions thereof, and a fused portion 2 is formed at a connection portion of the optical fibers 1 and 1, and a light leakage generating portion 3 is formed in the fused portion 2.
  • a fused portion 2 is formed at a connection portion of the optical fibers 1 and 1, and a light leakage generating portion 3 is formed in the fused portion 2.
  • the thick arrow in FIG. 1 indicates the light propagation direction.
  • the current-voltage conversion circuit 100 is constituted by an operational amplifier, for example, and converts the current signal output from the light receiving element chip 5 into a voltage signal.
  • the determination unit 200 is configured by, for example, a microcomputer or an IC (Integrated Circuit) including a resistor, a capacitor, an amplifier circuit, and the like, and the optical line A is based on the voltage signal output from the current-voltage conversion circuit 100. It is determined whether or not it is in a live line state, and the determination result is displayed on the display unit 300.
  • the display unit 300 is configured by, for example, a liquid crystal display panel or a light emitting diode, and displays a determination result by the determination unit 200.
  • the optical fibers 1 and 1 for example, quartz glass fibers having excellent environmental resistance such as propagation loss, transmission bandwidth, and mechanical strength are used.
  • a single mode fiber is used as the quartz glass fiber.
  • a step index type (Step-Index type: SI type) multimode fiber, a graded index type (Grated-Index type: GI type) multimode fiber, or others
  • a fiber capable of forming the light leakage generating part 3 such as a special fiber may be employed.
  • the optical fibers 1 and 1 are not limited to quartz glass fibers, and multicomponent glass fibers, plastic fibers, and the like may be employed.
  • the coating 13 is removed and the strands 10 are exposed on the fused part 2 side.
  • the light receiving element chip 5 is bonded via the transparent adhesive layer 4 so that the light receiving surface faces the cladding 12 side of the other optical fiber 1 on the outer peripheral surface of the strand 10, that is, the outer peripheral surface of the cladding 12. ing.
  • the length of the portion where the outer peripheral surface of the strand 10 is exposed is about 10 mm, and the light receiving element chip 5 extends from the light leakage generation unit 3 in the optical axis direction of the other optical fiber 1. They are spaced apart by a specified length (for example, about 2 to 5 mm).
  • the transparent adhesive layer 4 is an adhesive that is transparent to light having these wavelengths. What is necessary is just to form by the epoxy resin, acrylic resin, etc. which are.
  • the transparent adhesive layer 4 is not necessarily formed of a material having a refractive index higher than that of the clad 12, and may be formed of a material having a refractive index intermediate between air and the clad 12.
  • the light receiving element chip 5 for example, a photodiode chip can be used.
  • the wavelength of light propagating through the optical fiber 1, that is, light for optical communication is in a wavelength region of 1 ⁇ m band (for example, 1510 nm and 1310 nm)
  • a diode chip may be employed.
  • the wavelength of light propagating through the optical fiber 1 is in the wavelength region of 0.8 ⁇ m band (for example, 850 nm)
  • a Si photodiode chip having high light receiving sensitivity in the wavelength region of 0.8 ⁇ m band may be employed.
  • the light receiving element chip 5 having high light receiving sensitivity in each wavelength region is individually provided. Just do it.
  • FIGS. 2A to 2D are explanatory diagrams of the refractive index distribution when a single mode fiber is used as the optical fibers 1 and 1, and FIG. 2A shows a schematic configuration of the optical fibers 1 and 1.
  • (B) shows the refractive index distribution of the BB cross section shown in (A)
  • (C) shows the refractive index distribution of the CC cross section shown in (A)
  • (D) shows (A) The refractive index distribution of the DD section shown in FIG.
  • the X direction indicates a direction orthogonal to the optical axis direction.
  • the refractive index gradually decreases as the distance from the center increases, the refractive index is lower than the refractive index n1 of the core 11, and the refractive index of the cladding 12 A region higher than n2 is included.
  • the length of this region in the x direction is larger than the core diameter (diameter) of the optical fibers 1 and 1. Note that the refractive index distribution when the SI type multimode fiber is employed as the optical fibers 1 and 1 is the same as that shown in FIGS.
  • FIGS. 3A to 3D are explanatory diagrams of a refractive index distribution when a GI type multimode fiber is used as the optical fibers 1 and 1, and FIG. (B) shows the refractive index distribution of the BB cross section shown in (A), (C) shows the refractive index distribution of the CC cross section shown in (A), and (D) shows The refractive index distribution of the DD section shown in (A) is shown.
  • FIGS. 3B and 3D show the refractive index distributions of the portions that are not melted when the optical fibers 1 and 1 are fused, and are the original refractive index distributions of the optical fibers 1 and 1. It has a refractive index distribution that gradually decreases with a square distribution toward.
  • the refractive index distribution of FIG. 3C gradually decreases as the distance from the center decreases, and the refractive index is lower than the refractive index n1 of the core 11 and the refractive index n2 of the cladding 12. Higher areas are included. The length of this region in the x direction is larger than the diameter of the core of the optical fibers 1 and 1.
  • the light leakage generation part 3 has a refractive index higher than the refractive index n2 of the cladding 12 in the vicinity of the fusion part 2, and also in the optical axis direction.
  • the optical fibers 1 and 1 are fused to form an intermediate refractive index region 11a having a refractive index lower than the refractive index n1 of the core 11 at other portions.
  • the two optical fibers 1 are made by abutting the end faces on the one end portion side of the optical fibers 1, 1, heating and melting them by arc discharge or the like, and then cooling. , 1 may be connected.
  • the core 11 and the clad 12 undergo a phase change from the solid phase to the liquid phase and mix with each other for a short time, and the intermediate refraction between the refractive index of the core 11 and the refractive index of the clad 12 is achieved.
  • a region having a rate is formed.
  • the intermediate refractive index region 11a having a desired size can be formed by appropriately changing the conditions (temperature, time, etc.) at the time of fusion from the conditions that minimize the connection loss. .
  • the light beam path of the leakage light generated by the leakage light generation unit 3 is illustrated by arrows. That is, out of the leaked light generated by the leak generation part 3, the light ray P1 whose incident complementary angle at the boundary between the clad 12 and air is larger than the total reflection critical complementary angle leaks from the clad 12 and goes out. The light rays P2 and P3 whose incident complementary angle is smaller than the total reflection critical complementary angle are totally reflected at the boundary between the cladding 12 and air.
  • the difference in refractive index between the cladding 12 and air is large.
  • the ratio of total reflection at the boundary between 12 and air is high, and many of them propagate like rays P2 and P3.
  • the light ray P2 indicates a light ray that propagates through the wire 10 while repeating total reflection. Since the refractive index difference between the clad 12 and the transparent adhesive layer 4 is smaller than the refractive index difference between the clad 12 and air, the ratio of light totally reflected at the interface between the clad 12 and the transparent adhesive layer 4 is small, and the clad 12 Most of the light that reaches the interface between the transparent adhesive layer 4 and the transparent adhesive layer 4 reaches the light receiving surface of the light receiving element chip 5.
  • a light ray P3 is a light ray that is totally reflected once at the boundary between the clad 12 and air and then passes through the interface between the clad 12 and the transparent adhesive layer 4 and reaches the light receiving surface of the light receiving element chip 5. .
  • FIG. 1 an example in which the light beam P3 is totally reflected once is shown, but the present invention is not limited to this. It may pass through the interface with the layer 4 and reach the light receiving surface of the light receiving element chip 5.
  • the optical fiber so that the refractive index distribution at the connecting portion of the two optical fibers 1 and 1 is different from the refractive index distribution at other portions in the optical axis direction. 1 and 1 is provided at a connection site, and includes a light leakage generating unit 3 that leaks a part of light propagating through the core of one optical fiber 1 to the cladding 12 of the other optical fiber 1. .
  • the absolute amount of leaked light can be increased as compared to the case where the optical fibers 1 'and 1' are fused so as to minimize the connection loss as in the conventional example shown in FIG.
  • the light receiving element chip 5 is bonded to the outer peripheral surface of the clad 12 of the other optical fiber 1 through the transparent adhesive layer 4. Therefore, the distance between the light receiving element chip 5 and the outer peripheral surface of the clad 12 can be shortened as compared with the case where the fusion reinforcing sleeve 42 'or the like is interposed as in the conventional example shown in FIG. The arrival efficiency to the light receiving element chip 5 can be improved.
  • the distance between the light receiving element chip 5 and the light leakage generating unit 3 is too short, the light intensity distribution of the leaked light from the light leakage generating unit 3 directly affects the output current from the light receiving element chip 5, There is a possibility that the output current of the element chip 5 varies.
  • the light receiving element chip 5 is arranged away from the light leakage generation unit 3 by a specified length (for example, about 2 to 5 mm) in the optical axis direction. Therefore, the light intensity distribution is averaged by repeating the total reflection of the leaked light generated in the leaked light generating section 3, and the output current of the light receiving element chip 5 can be suppressed from varying, and the light receiving element chip 5 is stabilized. An output can be obtained.
  • the light leakage generating unit 3 is formed by fusing the optical fibers 1 and 1 so that the intermediate refractive index region 11a is formed. Therefore, the refractive index distribution locally changes in the light propagation direction, the light intensity distribution also changes when the light passes through the fusion part 2, and a part of the light is leaked from the light leak generation part 3 as a core. 11 can leak into the cladding 12.
  • the size of the intermediate refractive index region 11a is adjusted to control the refractive index distribution, thereby obtaining the leakage light necessary for hot-line detection. That is, in the hot-wire detection apparatus according to the present embodiment, leakage light can be guided to the light receiving element chip 5 without adding another member for generating leakage light.
  • FIG. 4 (A) and 4 (B) are explanatory diagrams of the hot-wire detection apparatus according to Embodiment 2 of the present invention.
  • the basic configuration of the hot-wire detection apparatus according to the present embodiment is substantially the same as that of the first embodiment. The differences are as follows. First, before fusing the two optical fibers 1 and 1, as shown in FIG. 4 (A), each of the one end portions is individually melted so that the refractive index distribution of the connection portion is different from the other portions. The optical fibers 1 and 1 are different from the original refractive index distribution. Then, as shown in FIG. 4 (B), one end portions of the optical fibers 1 and 1 are fused together to form the fused portion 2, thereby forming the light leakage generating portion 3. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted as appropriate.
  • the cores 11 and 11 and the clads 12 and 12 are melted as the optical fibers 1 and 1 are melted. Are mixed together to form the intermediate refractive index region 11a.
  • the intermediate refractive index region 11a cannot be made too large simply by changing the fusing conditions.
  • each optical fiber 1 is connected to the strand 10 before the one end portions of the two optical fibers 1 and 1 are fused to each other as shown in FIG.
  • the core diameter of each optical fiber 1 is continuously changed along the optical axis direction by deforming into a spherical shape having a diameter larger than the diameter.
  • the light leakage generation unit 3 can be more reliably formed, and the range of the region where the light leakage generation unit 3 is formed in the cross section orthogonal to the optical axis direction is wider. This makes it possible to increase the amount of leakage light necessary for hot-line detection.
  • the basic configuration of the hot-wire detection apparatus of the third embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 5, the light leakage generating unit 3 connects the one end portions of the optical fibers 1 and 1 to each other. 1 and 1 are different in that they are formed by sandwiching and connecting optical fibers 6 for light leakage having different core diameters. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted as appropriate.
  • FIG. 5A shows a schematic configuration diagram of the hot-wire detection apparatus according to Embodiment 3 of the present invention
  • FIG. 5B shows a cross-sectional view of the optical fiber 1 taken along the line BB
  • FIG. The section in CC section of optical fiber 6 for use is shown.
  • the optical fiber 6 for light leakage generation is composed of a quartz glass fiber.
  • the outer diameter of the cladding 62 is the same as the outer diameter of the claddings 12 and 12 of the optical fibers 1 and 1. That is, in the optical fiber 6 for light leakage generation, the outer diameter of the strand 60 is the same as the outer diameter of the strands 10 and 10 of the optical fibers 1 and 1.
  • the core diameter (diameter) of the core 61 is larger than the core diameters of the cores 11 and 11 of the optical fibers 1 and 1. Both ends of the optical fiber 6 for light leakage generation are fused to one end of each of the optical fibers 1 and 1 so that the optical axes thereof coincide with the optical axes of the optical fibers 1 and 1.
  • both ends of the optical fiber 6 for light leakage generation are fused to the respective one end portions of the optical fibers 1 and 1 to form fused portions 2 and 2.
  • a fused portion 2 (the fused portion 2 on the right side in FIG. 5) between one optical fiber 1 (the right side optical fiber 1 in FIG. 5) and the optical fiber 6 for leaking light. )
  • the core diameter changes from the smaller to the larger, so that connection loss hardly occurs and the light leakage generating part 3 is not formed.
  • the fused portion 2 (the fused portion on the left side in FIG. 5) between the optical fiber 6 for light leakage and the other optical fiber 1 (the left side optical fiber 1 in FIG. 5).
  • the light leakage generation part 3 is formed in the fusion part 2.
  • the optical fiber 6 for light leakage and the other optical fiber 1 are single mode fibers
  • the amount of leaked light in the leaked light generating unit 3 changes according to the difference between the (natural mode) and the light distribution state determined based on the refractive index distribution of the cross section orthogonal to the optical axis direction of the other optical fiber 1.
  • the optical fiber 6 for leaking light and the other optical fiber 1 are multimode fibers
  • the area of the cross-sectional area of the core 61 of the optical fiber 6 for leaking light and the cross-sectional area of the core 11 of the other optical fiber 1 is used.
  • the amount of leaked light changes according to the difference. Therefore, regardless of whether the single-mode fiber or the multi-mode fiber is used as the optical fiber 6 for leaking light and the other optical fiber 1, the amount of leaked light increases as the area difference of the core 11 increases.
  • the core diameter of the optical fiber 6 for leaking light sandwiched between the one ends of the two optical fibers 1 and 1 is appropriately selected to generate the leaked light. If both end portions of the optical fiber 6 are fused to one end portions of the two optical fibers 1 and 1, the light leakage generating portion 3 can be formed. For this reason, it is possible to more reliably secure the amount of leaked light necessary for hot-line detection, and it is possible to form the leaked light generating unit 3 without changing the fusion conditions.
  • the refractive index of the core 61 of the optical fiber 6 for light leakage generation and the refractive index of the core 11 of the other optical fiber 1 are the same, and FIG. As indicated by the thick arrows, a part of light leaks from the core 61 of the optical fiber 6 for light leakage to the cladding 12 of the other optical fiber 1.
  • the refractive index of the core 61 of the optical fiber 6 for leaking light is different from the refractive index of the core 11 of the other optical fiber 1, the amount of leaked light generated in the light leak generating unit 3 is increased. Therefore, it is possible to detect the live line more reliably.
  • the optical fiber for leaking light having a large core diameter is used as the refractive index of the other optical fiber 1 having the smaller core diameter. If the refractive index is lower than 6, refraction occurs at the fused portion 2 between the optical fiber 6 for light leakage and the other optical fiber 1. Therefore, as shown in FIG. 6B, the spread of light in the strand 10 of the other optical fiber 1 is increased, and the incident complementary angle at the boundary between the core 11 and the clad 12 of the other optical fiber 1 is increased. However, since the light larger than the total reflection critical complementary angle is refracted and enters the clad 12 of the other optical fiber 1, the amount of leakage light increases.
  • the core diameter of the optical fiber 6 for generating light leakage is larger than the core diameter of the optical fibers 1 and 1, but the present invention is not limited to this. That is, as the optical fiber 6 for generating light leakage, one having a core diameter smaller than that of the optical fibers 1 and 1 may be used. In this case, the fusion between one optical fiber 1 and the optical fiber 6 for generating light leakage is used.
  • the light leakage generating part 3 is formed in the direction of the attachment part 2, and the light leakage generation part 3 is not formed in the fusion part 2 between the optical fiber 6 for light leakage generation and the other optical fiber 1.
  • FIG. 7A shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 4 of the present invention
  • FIG. 7B shows a cross-sectional view of the BB cross section in FIG. The refractive index distribution of the -B cross section is shown
  • (D) shows the cross sectional view of the DD cross section in (A)
  • (E) shows the refractive index distribution of the DD cross section.
  • the basic configuration of the live line detection apparatus of the present embodiment is substantially the same as that of the third embodiment.
  • the difference is that, as shown in FIG. 7, the light leakage generating unit 3 has the same core diameter as that of the optical fibers 1, 1 at one end portions of the optical fibers 1, 1 and the core 11 of the optical fibers 1, 1. This is because the optical fibers 7 for leaking light having different refractive indexes are connected with being sandwiched therebetween. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted as appropriate.
  • the optical fiber 7 for light leakage generation is composed of a quartz glass fiber.
  • the outer diameter of the cladding 72 is the same as the outer diameter of the claddings 12 and 12 of the optical fibers 1 and 1. That is, in the optical fiber 7 for generating light leakage, the outer diameter of the strand 70 is the same as the outer diameter of the strands 10 and 10 of the optical fibers 1 and 1. Further, in the optical fiber 7 for light leakage generation, the core diameter of the core 71 is the same as the core diameters of the cores 11 and 11 of the optical fibers 1 and 1.
  • the optical fiber 7 for light leakage generation is fused at both ends in the optical axis direction to one end of each of the optical fibers 1 and 1 with the optical axes aligned with the optical fibers 1 and 1.
  • an SI type multimode fiber is used as the optical fibers 1 and 1
  • the optical fibers 1 and 1 and the numerical aperture (NA) are used as the optical fibers 7 for light leakage generation.
  • the same GI type multimode fiber is used.
  • Both ends of the optical fiber 7 for generating light leakage and one end of the optical fibers 1 and 1 are fused to form fused portions 2 and 2, respectively, and one of the optical fibers 1 and 1 in the optical axis direction is formed.
  • the SI-type multi-fiber is formed with a fusion part 2 (fusing part 2 on the right side in FIG. 7A) between the optical fiber 1 (right optical fiber 1 in FIG. 7A) and the optical fiber 7 for leaking light as a boundary.
  • the mode fiber is changed to the GI type multimode fiber. Thereby, the light leakage generating part 3 is formed in the right fusion part 2.
  • FIG. 8A shows an optical path diagram of the SI type multimode fiber
  • FIG. 8B shows an optical path diagram of the GI type multimode fiber
  • FIG. 8C shows the fusion on the right side in FIG. 7A
  • FIG. 8D shows an optical path diagram in the vicinity of the left fusion part 2 in FIG. 7A.
  • the core 11 portion is high, and the clad 12 portion has a low stepped refractive index distribution. Therefore, the thick line in FIG. As indicated by the arrows, there is light having a maximum incident complementary angle at any position in the radial direction (x direction) of the optical fiber 1.
  • the refractive index distribution of the core 11 changes in a convex curve with the refractive index n1 as a peak.
  • the incident angle of light changes according to the position of the optical fiber 7 in the radial direction (x direction).
  • the optical fiber 7 for light leakage made of a GI type multimode fiber since there is only light having a small incident angle, the locus of the light meanders in a sinusoidal shape.
  • the peripheral part close to the cladding 72 When light having a large complementary angle is incident on the light, the light leaks to the clad 72 without staying in the core 71.
  • the optical fiber 7 for light leakage made of GI multimode fiber is sandwiched between the optical fibers 1 and 1 made of SI type multimode fiber. Since it comprises, it becomes possible to ensure more reliably the light quantity of the leak light required for a hot-line detection, and it becomes possible to form the leak light generation part 3, without changing the conditions of a fusion
  • an SI type multimode fiber is used as the optical fibers 1 and 1
  • a GI type multimode fiber having the same NA as the optical fibers 1 and 1 is used as the optical fiber 7 for leaking light. It is not limited to this.
  • an SI type multimode fiber is used as the optical fibers 1 and 1
  • an SI type multimode fiber having the same core diameter and a different (small) NA as the optical fiber 1 and 1 is used as the optical fiber 7 for generating light leakage. May be.
  • a GI type multimode fiber may be used as the optical fibers 1 and 1
  • an SI type multimode fiber having the same core diameter and NA as the optical fibers 1 and 1 may be used as the optical fiber 7 for generating light leakage.
  • the light leakage generation part 3 is formed in the fusion part 2 between the other optical fiber 1 and the optical fiber 7 for light leakage generation, which changes from the SI type multimode fiber to the GI type multimode fiber.
  • the light leakage generating part 3 is formed in the fused part 2 between the one optical fiber 1 and the optical fiber 7 for generating light leakage.
  • FIG. 9A is a schematic configuration diagram of the hot-wire detection apparatus according to Embodiment 5 of the present invention
  • FIG. 9B is a cross-sectional view taken along the line BB in FIG. The refractive index distribution of the -B cross section is shown
  • (D) shows a cross sectional view of the DD cross section in (A)
  • (E) shows the refractive index distribution of the DD cross section.
  • the basic configuration of the hot-wire detection apparatus of the present embodiment is substantially the same as that of the first embodiment.
  • the light leakage generation unit 3 connects the one end portions of the optical fibers 1 and 1 to each other.
  • the optical fibers 1 and 1 are different from each other in that they are made of the same material (quartz glass) as the clads 12 and 12 of the optical fibers 1 and 1 and are connected by sandwiching a fiber 8 having a uniform refractive index.
  • the refractive index of the fiber 8 is set to the same value as the refractive index of the claddings 12 and 12 of the optical fibers 1 and 1. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted as appropriate.
  • both end portions of the fiber 8 and one end portion of the optical fibers 1 and 1 are fused to form the fused portions 2 and 2, respectively.
  • light other than the light that reaches the core 11 of the other optical fiber 1 becomes leaked light.
  • the fiber 8 made of the same material as the claddings 12 and 12 of the optical fibers 1 and 1 and having a uniform refractive index is sandwiched between the optical fibers 1 and 1.
  • the light leakage generating part 3 is formed.
  • FIG. 10 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 6 of the present invention.
  • the hot-wire detection apparatus of the present embodiment includes a plurality of light receiving element chips 51 and 52 that can individually detect a plurality of (here, two) lights having different wavelength bands. It is characterized by.
  • the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the same optical fibers 1 and 1 as those in the first embodiment are employed.
  • the length of the portion where the outer peripheral surface of the strand 10 is exposed is about 10 mm as in the first embodiment.
  • the light receiving element chip 5 is arranged in the optical axis direction of the other optical fiber 1 so as to be separated from the light leakage generation unit 3 by a specified length (for example, about 2 to 5 mm) as in the first embodiment.
  • two lights having different wavelength bands for example, light having a wavelength of 1550 nm and light having a wavelength of 850 nm are assumed.
  • the two lights having different wavelength bands are not limited to these, and for example, light having a wavelength of 1310 nm and light having a wavelength of 850 nm may be employed.
  • FIG. 10 shows a case where light having a wavelength of 1550 nm and light having a wavelength of 850 nm are employed.
  • the transparent adhesive layer 4 is formed of an epoxy resin or an acrylic resin, which is an adhesive that is transparent to light of these wavelengths.
  • each of the light receiving element chips 51 and 52 a photodiode chip having a different crystal material can be used.
  • light having a wavelength of 1550 nm and light having a wavelength of 850 nm are assumed as light propagating through the optical fiber 1, that is, light for optical communication. Therefore, as the light receiving element chip 51, an InGaAs photodiode chip having high light receiving sensitivity in a wavelength region of 1.5 ⁇ m band is employed.
  • a Si photodiode chip having high light receiving sensitivity in a wavelength region of 0.8 ⁇ m band is employed as the light receiving element chip 52. Note that the Si photodiode has no light receiving sensitivity to light in the 1 ⁇ m band. InGaAs photodiodes are sensitive to light in the 1.3 ⁇ m band and 1.5 ⁇ m band, and are much less sensitive to light in the 0.8 ⁇ m band.
  • FIGS. 11A to 11D are explanatory diagrams of a refractive index distribution when a single mode fiber is used as an optical fiber
  • FIG. 11A is a diagram showing a schematic configuration of the optical fibers 1 and 1.
  • (B) shows the refractive index distribution of the BB cross section shown in (A)
  • (C) shows the refractive index distribution of the CC cross section shown in (A)
  • (D) shows the refractive index distribution of (A).
  • the refractive index distribution of DD section is shown.
  • FIGS. 11A to 11D single mode fibers are used as the optical fibers 1 and 1.
  • the refractive index distributions in FIGS. 11B to 11D are the same as the refractive index distributions in FIGS. 2B to 2D, and thus description thereof is omitted.
  • FIG. 12A to 12D are explanatory diagrams of a refractive index distribution when a GI type multimode fiber is used as the optical fibers 1 and 1, and FIG. 12A is a schematic configuration diagram of the optical fibers 1 and 1.
  • B shows the refractive index distribution of the BB cross section shown in (A)
  • C shows the refractive index distribution of the CC cross section shown in (A)
  • D shows (A) The refractive index distribution of the DD section shown in FIG.
  • the refractive index distributions in FIGS. 12B to 12D are the same as the refractive index distributions in FIGS.
  • the traveling path of the light beam P1 having a wavelength of 1310 nm among the leakage light generated in the leakage light generating unit 3 is illustrated by a one-dot chain line arrow, and the traveling path of the light beam P2 having a wavelength of 850 nm is illustrated by a solid arrow. This is illustrated in
  • a plurality of light receiving element chips 51 and 52 capable of individually detecting a plurality of lights having different wavelength bands are provided. Therefore, in addition to being able to obtain the effects of the first embodiment, it is possible to easily perform hot-line detection for each of the plurality of lights with respect to the optical line A through which the plurality of lights having different wavelength bands are propagated.
  • the detection sensitivities of the light receiving element chips 51 and 52 are: (1) the light receiving sensitivity of the light receiving element chips 51 and 52 with respect to the detection target wavelength, (2) the amount of leakage light of each detection target wavelength in the light leakage generation unit 3; 3) Comprehensive with four elements (1) to (4): arrival efficiency of leakage light of detection target wavelength to each light receiving element chip 51, 52, (4) area of light receiving surface of light receiving element chips 51, 52 It is decided.
  • the detection target wavelengths of the light receiving element chips 51 and 52 are different and the crystal materials are different, the light receiving sensitivity (1) and the area (4) of the light receiving surface are different from each other. Become.
  • the light amount (2) of the leakage light of each detection target wavelength in the light leakage generation unit 3 is not significantly different, the arrival efficiency is obtained when there is a difference between the light receiving sensitivity (1) and the area (4) of the light receiving surface.
  • the hot-wire detection apparatus of the present embodiment regarding the arrangement of the plurality of light receiving element chips 51 and 52, it is preferable that the light receiving element chip 51 having a lower detection sensitivity is disposed closer to the light leakage generating unit 3. As a result, the difference in detection sensitivity between the light receiving element chips 51 and 52 can be reduced, and the detection sensitivity of the light receiving element chips 51 and 52 can be set to substantially the same value. be able to.
  • FIG. 13 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 7 of the present invention.
  • the basic configuration of the hot-wire detection apparatus according to the present embodiment is substantially the same as that of the sixth embodiment.
  • the light receiving element chips 51, 52 are the same so that the distances from the light leakage generating unit 3 of the light receiving element chips 51, 52 (the prescribed length described in the first embodiment) are the same. Is at the point where it is arranged.
  • the light receiving element chip 51 and the light receiving element chip 52 are disposed to face each other with the other optical fiber 1 interposed therebetween. Note that the same components as those in the first to sixth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the plurality of light receiving element chips 51 and 52 are arranged along the optical axis direction of the other optical fiber 1. Therefore, a part of the light of the detection target wavelength to be detected by the light receiving element chip 52 arranged on the downstream side (left side in FIG. 10) enters the light receiving element chip 51 arranged on the upstream side. As a result, the leakage light of the detection target wavelength reaching the light receiving element chip 52 is reduced, the efficiency of the leakage light reaching the light receiving element chip 52 is lowered, and the output current may be reduced.
  • the plurality of light receiving element chips 51 and 52 are arranged so that the distance from the light leakage generating unit 3 is the same. Therefore, the arrival efficiency of leaked light with respect to each of the light receiving element chips 51 and 52 can be made substantially the same.
  • the light beam P ⁇ b> 1 of the light having the detection target wavelength but also the light beam P ⁇ b> 2 having the detection target wavelength of the light receiving device chip 52 is incident on the light receiving element chip 51.
  • the light ray P2 that passes through the light ray path reaching the light receiving element chip 51 is the light ray P2 that does not originally reach the light receiving element chip 52, and does not lead to a decrease in the arrival efficiency of leaked light to the light receiving element chip 52.
  • the light intensity distribution of the leaked light from the light leakage generating unit 3 directly affects the output current of the light receiving element chips 51 and 52, and the light receiving element. It is conceivable that the output currents of the chips 51 and 52 vary. Therefore, it is preferable to set the specified length so that the light generated by the light leakage generating unit 3 is totally reflected at least once and reaches the light receiving element chips 51 and 52. As a result, the light intensity distribution is averaged, the output current of the light receiving element chips 51 and 52 can be suppressed from varying, and the stable output of the light receiving element chips 51 and 52 can be obtained.
  • FIG. 14 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 8 of the present invention.
  • the basic configuration of the hot-wire detection apparatus according to the present embodiment is substantially the same as that of the sixth embodiment.
  • the optical line A is an optical line for two-way communication, and as shown in FIG. 14, the light receiving element chips 51 and 52 and the light receiving element chips 51 and 52 are leaked in the optical axis direction. It is in the point arrange
  • the same components as those in the first to seventh embodiments are denoted by the same reference numerals and description thereof is omitted.
  • a plurality of (here, two) lights propagating from the right side to the left side and different wavelength bands from each other and a plurality of lights propagating from the left side to the right side and having different wavelength bands (from each other)
  • two light beams propagate through the optical fibers 1 and 1.
  • the former light beam paths are collectively shown by solid arrows, and the latter light beam paths are collectively shown by dashed arrows.
  • the light receiving element chips 51 and 52 arranged on the right side receive the light path indicated by the wavy line, that is, the light leakage light propagating from the left side to the right side
  • the light receiving element chips 51 and 52 arranged on the left side receive a light beam path indicated by a solid line, that is, light leakage light propagating from the right side to the left side.
  • each of the light receiving element chips 51, 52, 51, 52 it is possible to prevent light having a propagation direction opposite to that of the detection target light from reaching.
  • the left light receiving element chips 51 and 52 and the right light receiving element chips 51 and 52 are desirably arranged symmetrically with respect to the cross section including the fused portion 2.
  • the optical line A is configured to transmit light of a plurality of wavelength bands in both directions, but it is not necessary to transmit the same number of wavelength bands in both directions. The light of a different number of wavelength bands may be transmitted. Moreover, the form which only transmits the light of one wavelength band in both directions may be sufficient.
  • the method for forming the light leakage generation unit 3 in the above sixth to seventh embodiments is not limited to the formation method described in the first embodiment.
  • the light leakage generation unit 3 is formed using the method of the second embodiment. May be.
  • one end portions of the optical fibers 1 and 1 are connected to each other with a light leakage generating optical fiber 6 having a core diameter different from that of the optical fibers 1 and 1, thereby connecting the light leakage generating portions. 3 may be formed.
  • the optical fibers 1 and 1 have the same core diameter as that of the optical fibers 1 and 1 and a refractive index different from that of the core 11 of the optical fibers 1 and 1, as shown in the fourth embodiment.
  • the light leakage generating part 3 may be formed by connecting the optical fiber 7 between the two.
  • one end of the optical fibers 1 and 1 is sandwiched between fibers made of the same material (quartz glass) as the claddings 12 and 12 of the optical fibers 1 and 1 and having a uniform refractive index.
  • the light leakage generating part 3 may be formed by connecting with.
  • FIG. 15A shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 9 of the present invention.
  • FIG. 15B shows a schematic configuration diagram of a comparative example with the hot-wire detection apparatus according to the ninth embodiment of the present invention.
  • the same components as those in the first to eighth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the basic configuration of the live line detection apparatus of the present embodiment is the same as that of the live line detection apparatus of the first embodiment.
  • the difference is that the transparent adhesive layer 4 is disposed between the light receiving element chip 5 and the light leakage generating unit 3 so that the leakage light from the light leakage generating unit 3 does not leak into the air through the transparent adhesive layer 4.
  • the area of the optical fiber 1 in contact with the cladding 12 is limited.
  • the transparent adhesive layer 4 is greatly expanded toward the light leakage generating part 3 in the optical axis direction of the optical fibers 1 and 1. Therefore, between the light receiving element chip 5 and the light leakage generating unit 3, part of the light leaked from the light leakage generating unit 3 leaks to the outside (in the air) through the transparent adhesive layer 4. Thereby, the arrival efficiency of leakage light by the light receiving element chip 5 is lowered.
  • the light leaked from the light leakage generating unit 3 is transmitted between the light receiving element chip 5 and the light leakage generating unit 3.
  • the region where the clad 12 of the other optical fiber 1 and the transparent adhesive layer 4 are in contact with each other is limited so as not to leak into the air.
  • the size of the region where the clad 12 of the other optical fiber 1 is in contact with the transparent adhesive layer 4 is larger than the size of the same region shown in FIG. It has been made smaller.
  • the application amount of the adhesive to be the transparent adhesive layer 4 and the load when the light receiving element chip 5 is bonded may be appropriately set.
  • the size of the region where the transparent adhesive layer 4 and the clad 12 are in contact with each other is slightly larger than the size of the light receiving element chip 5, but is not limited to this. That is, the area where the transparent adhesive layer 4 and the clad 12 are in contact may be formed to the same size as the light receiving surface of the light receiving element chip 5.
  • the size of the light receiving surface of the light receiving element chip 5 and the size of the light receiving element chip 5 are substantially the same.
  • the size of the region where the transparent adhesive layer 4 and the cladding 12 are in contact is limited. Therefore, the arrival efficiency of leaked light to the light receiving element chip 5 can be further improved.
  • FIG. 16 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 10 of the present invention.
  • the basic configuration of the hot-wire detection apparatus according to the present embodiment is substantially the same as that of the first embodiment. The difference is that, as shown in FIG. 16, a part of the light receiving surface of the light receiving element chip 5 is an effective light receiving region 5a in which the light receiving sensitivity can be regarded as uniform, and the size of the region where the transparent adhesive layer 4 and the cladding 12 are in contact with each other. However, it is set smaller than the size of the light receiving element chip 5 and larger than the effective light receiving region 5a. Since other configurations are the same as those of the ninth embodiment, description thereof is omitted.
  • the amount of adhesive used to form the adhesive layer 4 can be reduced, and at the same time, the light arrival efficiency to the light receiving element chip 5 can be improved.
  • FIG. 17A shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 11 of the present invention.
  • FIG. 17B shows a schematic configuration diagram of a comparative example with the hot-wire detection apparatus according to Embodiment 11 of the present invention.
  • the same components as those in the first to tenth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the basic configuration of the live line detection device of the present embodiment is substantially the same as that of the ninth embodiment. The difference is that, as shown in FIG. 17 (A), between the light receiving element chip 5 and the light leakage generating part 3, the leakage light generated by the light leakage generating part 3 is reflected on the outer peripheral surface of the other optical fiber 1.
  • the reflective part 6x for limiting the size of the light leakage generating part 3 side in the area where the transparent adhesive layer 4 and the clad 12 are in contact is attached.
  • the reflection portion 6x is attached over the entire circumference of the cladding 12 in the circumferential direction. That is, the reflecting portion 6x is formed concentrically with the clad 12.
  • a metal material having a high reflectance with respect to the light propagating through the optical fiber 1 may be employed.
  • the light used in optical communication is generally near infrared light having a wavelength of 850 nm, 1310 nm, 1550 nm, or the like. Therefore, for example, Au, Ag, Al, Cu or the like is preferably used as the metal material, and it is preferable to use Au having excellent oxidation resistance.
  • the leakage light generated by the leakage light generation unit 3 can be reflected by the reflection unit 6x made of a metal film. Therefore, as in the comparative example shown in FIG. 17B, the light leaked to the light receiving element chip 5 compared to the configuration in which the region where the transparent adhesive layer 4 and the clad 12 are in contact with the light leakage generating unit 3 is greatly expanded. Can be further improved. Even if the adhesive spreads toward the light leakage generating part 3 at the time of manufacture, the area where the transparent adhesive layer 4 and the clad 12 are in contact with each other is limited by the reflecting part 6x, so that the leaked light reaches the light receiving element chip 5. A decrease in efficiency can be prevented.
  • FIG. 18A shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 12 of the present invention.
  • FIG. 18B shows a schematic configuration diagram of a comparative example with the hot-wire detection apparatus according to Embodiment 12 of the present invention.
  • the same components as those in the first to eleventh embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the basic configuration of the live line detection apparatus of the present embodiment is substantially the same as that of the ninth embodiment.
  • the difference is that, as shown in FIG. 18A, between the light receiving element chip 5 and the light leakage generating unit 3, the leakage light generated by the light leakage generating unit 3 is totally reflected on the outer peripheral surface of the other optical fiber 1.
  • the reflective part 7x for restricting the size on the light leakage generating part 3 side in the region where the transparent adhesive layer 4 and the clad 12 are in contact is attached.
  • the reflecting portion 7x is attached over the entire circumference of the cladding 12 in the circumferential direction. That is, the reflecting portion 7 x is formed concentrically with the clad 12.
  • the porous glass film constituting the above-described reflecting portion 7x has an average refractive index (equivalent refractive index) of about 1.01 to 1.05 and a value close to 1 that is the refractive index of air. Can be adopted. That is, as the porous glass film, one having a refractive index sufficiently smaller than the refractive index of the transparent adhesive layer 4 and the refractive index of the cladding 12 can be adopted.
  • silica airgel may be adopted as a material of the porous glass film.
  • the leakage light generated by the leakage light generation unit 3 can be totally reflected by the reflection unit 7x. Therefore, as in the comparative example shown in FIG. 18B, the light leaked to the light receiving element chip 5 compared to the configuration in which the region where the transparent adhesive layer 4 and the clad 12 are in contact with the light leakage generating unit 3 is greatly expanded. Can be further improved. Even if the adhesive spreads toward the light leakage generating part 3 at the time of manufacture, the area where the transparent adhesive layer 4 and the clad 12 are in contact with each other is limited by the reflecting part 7x, so that the leakage light reaches the light receiving element chip 5. A decrease in efficiency can be prevented.
  • FIG. 19 shows a schematic configuration diagram of a hot-wire detection apparatus according to Embodiment 13 of the present invention.
  • the same components as those in the first to twelfth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the basic configuration of the live line detection apparatus of the present embodiment is substantially the same as that of the eleventh embodiment.
  • the difference is that the reflecting portion 6x is formed across the optical fibers 1 and 1, as shown in FIG.
  • the reflection portion 6x is formed across the optical fibers 1 and 1, but at least the transparent adhesive layer 4 and the light leakage generation portion 3 in the optical axis direction of the optical fibers 1 and 1. What is necessary is just to form over the substantially whole area between.
  • the reflection part 6x is formed over the entire area between the transparent adhesive layer 4 and the light leakage generation part 3. Therefore, it is possible to prevent dew condensation from occurring on the surface of the clad 12 of the other optical fiber 1 between the transparent adhesive layer 4 and the light leakage generator 3. Therefore, it is possible to prevent leakage light generated in the leakage light generation unit 3 from leaking into the air through water droplets, and to prevent a reduction in the arrival efficiency of the leakage light to the light receiving element chip 5.
  • a hot-wire detection device is a hot-wire detection device that detects whether or not an optical line including two optical fibers is in a hot-wire state, and the two optical fibers
  • the light transmitted through the core of one of the optical fibers is formed by connecting the two optical fibers so that the refractive index distribution of the connecting portion of the optical fiber differs from the refractive index distribution of the other portion in the optical axis direction.
  • a light leakage generating portion that leaks a part of the light to the cladding of the other optical fiber, and a light that is adhered to the outer peripheral surface of the cladding of the other optical fiber via a light-transmitting adhesive layer, And a light receiving element for detection.
  • a light leakage generating section that causes a part of the light propagating in the core of one optical fiber to leak to the cladding of the other optical fiber. Therefore, the absolute light quantity of the leaked light can be increased as compared with a configuration in which two optical fibers are fused so as to minimize the connection loss.
  • the light receiving element chip is bonded to the outer peripheral surface of the clad of the other optical fiber through the light transmitting adhesive layer. Therefore, the distance between the light receiving element chip and the outer peripheral surface of the clad of the other optical fiber can be shortened. Therefore, the arrival efficiency of leaked light to the light receiving element can be improved.
  • the light leakage generation unit has an intermediate refraction having a refractive index that is higher than the refractive index of the clad in the other part and lower than the refractive index of the core in the other part. It is preferable that the two optical fibers are fused to form a rate region.
  • the light leakage generating part can be formed without adding another member for light leakage generation.
  • the light leakage generation unit may connect one end of the one optical fiber and one end of the other optical fiber before fusing the two optical fibers. It is preferable that each of the one end portions is melted separately to make the one end portions different from the refractive index distribution of the other portion, and then the one end portions are fused.
  • the light leakage generation unit connects the two optical fibers with a light leakage generation optical fiber having a core diameter different from that of the two optical fibers interposed therebetween. It is preferable that it is formed.
  • the light leakage generating portion can be formed by appropriately selecting the core diameter of the light generating optical fiber sandwiched between the two optical fibers. For this reason, it is possible to more reliably secure the amount of leaked light necessary for hot-line detection, and it is possible to form the leaked light generating portion without changing the fusion conditions.
  • the refractive index of the core of the optical fiber for generating light leakage is different from the refractive index of the core of each of the two optical fibers.
  • the light leakage generating section can be configured by appropriately selecting a light leakage generating optical fiber having a refractive index different from the refractive indexes of the cores of the two optical fibers.
  • the light leakage generation unit may be configured to use the two optical fibers as light leakage generating optical fibers having the same core diameter as the two optical fibers but having a different core refractive index. It is preferable that it is formed by connecting with a pinch in between.
  • the optical fiber for generating light leakage is appropriately selected by selecting an optical fiber having the same core diameter as the two optical fibers and having a different refractive index of the core from each of the two optical fibers.
  • a generating part can be formed. For this reason, it is possible to more reliably secure the amount of leaked light necessary for hot-line detection, and it is possible to form the leaked light generating portion without changing the fusion conditions.
  • the light leakage generation unit sandwiches the two optical fibers made of the same material as the clad of the two optical fibers and having a uniform refractive index. It is preferable that it is formed by connecting with.
  • a light leakage generating portion is formed by sandwiching a fiber having the same refractive index between the two optical fibers, which is made of the same material as the clad of the two optical fibers. For this reason, it is possible to more reliably secure the amount of leaked light necessary for hot-line detection, and it is possible to form the leaked light generating portion without changing the fusion conditions.
  • the light receiving element is a plurality of light receiving elements capable of individually detecting a plurality of lights having different wavelength bands and transmission directions.
  • a plurality of light receiving elements capable of individually detecting a plurality of lights having at least one of the wavelength band and the transmission direction. For this reason, it is possible to individually perform hot-line detection of a plurality of lights having different wavelength bands and transmission directions.
  • the plurality of light receiving elements are arranged so that the distance from the light leakage generating unit is the same.
  • the arrival efficiency of leakage light to each light receiving element can be made substantially the same.
  • the plurality of light receiving elements are arranged closer to the light leakage generating portion as the light receiving element has a lower detection sensitivity.
  • the difference in detection sensitivity between the light receiving elements can be reduced, and hot line detection can be performed more reliably for each of a plurality of lights having different wavelength bands and transmission directions. it can.
  • the optical line is an optical line for two-way communication, and the plurality of light receiving elements are arranged on both sides of the light leakage generation unit in the optical axis direction. It is preferable.
  • the light-transmitting adhesive layer may be configured such that light leaked from the light-leakage generating part passes through the light-transmitting adhesive layer between the light receiving element and the light leakage generating part. Therefore, it is preferable that a region in contact with the clad of the other optical fiber is limited so as not to leak into the air.
  • a region where the light-transmitting adhesive layer and the cladding of the other optical fiber are in contact with each other is limited. Therefore, it is possible to prevent leakage light from the light leakage generation part from leaking into the air through the light-transmitting adhesive layer between the light receiving element and the light leakage generation part. As a result, the arrival efficiency of leaked light to the light receiving element chip can be further improved, and more stable live line detection can be achieved.
  • the light is generated at the light leakage generation unit, which is disposed on the outer peripheral surface of the other optical fiber so as to limit the region between the light receiving element and the light leakage generation unit. It is preferable to further include a reflection portion made of a metal film that reflects the leaked light.
  • the other optical fiber is passed through the adhesive layer.
  • Light can be prevented from leaking into the air, and the arrival efficiency of leaked light to the light receiving element can be further improved.
  • the size of the area where the adhesive layer and the other optical fiber are in contact with each other is limited by the reflecting part. A reduction in reach efficiency can be prevented.
  • the adhesive layer is removed from the other optical fiber. Accordingly, light can be prevented from leaking into the air, and the arrival efficiency of the leaked light to the light receiving element can be further improved.
  • the size of the area where the adhesive layer and the other optical fiber are in contact with each other is limited by the reflecting part. A reduction in reach efficiency can be prevented.
  • the reflection part is formed so as to cover an outer periphery of the clad of the other optical fiber between the light-transmitting adhesive layer and the light leakage generation part. It is preferable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

漏光発生部3は、2本の光ファイバ1,1の接続部位の屈折率分布が光軸方向の他の部位の屈折率分布と異なるように、光ファイバ1,1を接続することで接続部位に形成され、一方の光ファイバ1(図示例では、右側の光ファイバ1)のコア内を伝搬してきた光の一部を他方の光ファイバ1(図示例では、左側の光ファイバ1)のクラッド12へ漏光させる。受光素子チップ5は、他方の光ファイバ1のクラッド12の外周面に透明な接着剤からなる透明接着層4を介して接着され、漏光発生部3により漏光された光を検出する。

Description

活線検出装置
 本発明は、2本の光ファイバの一端部同士を接続して形成した光線路が活線状態にあるか否かを検出する活線検出装置に関するものである。
 従来から、光ファイバ通信技術の分野においては、局内、ビル内、宅内等に設置される光成端箱に収納された光通信用の光ファイバにより形成される光線路が、活線状態か否かを検出する活線検出装置が知られている。このような活線検出装置として、例えば光ファイバを屈曲させずに活線状態を検出することができる活線検出装置が提案されている(例えば、特許文献1参照)。ここで、活線状態とは、光線路が光を正常に伝送している状態のことを指す。
 この活線検出装置では、光ファイバを屈曲させずに、活線状態を検出することができるので、光ファイバを屈曲させることによる光ファイバの折損や、一時的な伝送損失の増加による伝送エラーの発生等を防止することができる。
 図20は、特許文献1に示す従来の活線検出装置の構成図を示している。図20に示すように、従来の活線検出装置は、光線路A’を構成する2本の光ファイバ1’,1’の一端部同士を融着することで形成された融着部2’を保護するとともに、融着部2’から漏れる光を漏洩させる融着補強スリーブ42’と、融着補強スリーブ42’を収納するとともに各光ファイバ1’,1’が導出されるケース40’と、ケース40’の開口部に嵌入され、融着部2’から融着補強スリーブ42’を通して漏れた光を受光素子(図示せず)で検出する光検出部50’とを備えている。
 ところで、2本の光ファイバ1’,1’の一端部同士を融着する場合には、当該2本の光ファイバ1’,1’の光軸の軸ずれ及び角度ずれ等に起因する接続損失が最小となるように当該2本の光ファイバ1’,1’が融着されるのが一般的である。そのため、図20に示す融着部2’は、接続損失が波長1310nmにおいて、0.2dB程度にされている。
 しかしながら、光通信では光ファイバを伝搬する光のパワーが広範囲であり、-20dBm程度にまで小さくなることもあり、この場合、融着部2’から漏れる光のパワーが小さくなってしまう。また、融着補強スリーブ42’外に設置される受光素子と融着部2’との距離は離れている。これらのことから、受光素子の受光面に到達する光のパワーが低下する結果、受光効率が低下してS/N比が低下し、活線検出が困難になるという問題があった。
 本発明の目的は、より安定した活線検出が可能な活線検出装置を提供することである。
特開2007-85934号公報
 本発明の一局面による活線検出装置は、2本の光ファイバを含む光線路の活線状態を検出する活線検出装置であって、前記2本の光ファイバの接続部位の屈折率分布が光軸方向の他の部位の屈折率分布と異なるように、前記2本の光ファイバを接続することで形成され、一方の光ファイバのコア内を伝搬してきた光の一部を他方の光ファイバのクラッドへ漏光させる漏光発生部と、前記他方の光ファイバのクラッドの外周面に光透過性接着層を介して接着され、前記漏光発生部により漏光された光を検出する受光素子とを備えている。
本発明の実施の形態1による活線検出装置の概略構成図を示している。 (A)~(D)は、光ファイバとして、シングルモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバの概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。 (A)~(D)は、光ファイバとして、GI型マルチモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバの概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。 (A)、(B)は、本発明の実施の形態2による活線検出装置の説明図である。 (A)は、本発明の実施の形態3における活線検出装置の概略構成図を示し、(B)は光ファイバのB-B断面における断面図を示し、(C)は漏光発生用の光ファイバのC-C断面における断面を示している。 (A)、(B)は、図5に示す融着部を拡大して示した図である。 (A)は、本発明の実施の形態4における活線検出装置の概略構成図を示し、(B)は、(A)におけるB-B断面の断面図を示し、(C)はB-B断面の屈折率分布を示し、(D)は(A)におけるD-D断面の断面図を示し、(E)はD-D断面の屈折率分布を示している。 (A)はSI型マルチモードファイバの光路図を示し、(B)はGI型マルチモードファイバの光路図を示し、(C)は図7(A)における右側の融着部付近の光路図を示し、(D)は図7(A)における左側の融着部付近の光路図を示している。 (A)は、本発明の実施の形態5における活線検出装置の概略構成図を示し、(B)は、(A)におけるB-B断面の断面図を示し、(C)はB-B断面の屈折率分布を示し、(D)は(A)におけるD-D断面の断面図を示し、(E)はD-D断面の屈折率分布を示している。 本発明の実施の形態6による活線検出装置の概略構成図を示している。 (A)~(D)は、光ファイバとして、シングルモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバの概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。 (A)~(D)は、光ファイバとして、GI型マルチモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバの概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。 本発明の実施の形態7による活線検出装置の概略構成図を示している。 本発明の実施の形態8による活線検出装置の概略構成図を示している。 (A)は、本発明の実施の形態9による活線検出装置の概略構成図を示している。(B)は、本発明の実施の形態9による活線検出装置との比較例の概略構成図を示している。 本発明の実施の形態10による活線検出装置の概略構成図を示している。 (A)は、本発明の実施の形態11による活線検出装置の概略構成図を示している。(B)は、本発明の実施の形態11による活線検出装置との比較例の概略構成図を示している。 (A)は、本発明の実施の形態12による活線検出装置の概略構成図を示している。(B)は、本発明の実施の形態12による活線検出装置との比較例の概略構成図を示している。 本発明の実施の形態13による活線検出装置の概略構成図を示している。 従来の活線検出装置の構成図を示している。
 (実施の形態1)
 図1は、本発明の実施の形態1による活線検出装置の概略構成図を示している。図1に示すように本活線検出装置は、2本の光ファイバ1,1の一端部同士を接続して構成された光線路Aが活線状態にあるか否かを検出する活線検出装置であり、光ファイバ1,1、漏光発生部3、受光素子チップ5(受光素子の一例)、電流-電圧変換回路100、判別部200、及び表示部300を備えている。なお、図1以外の活線検出装置の構成図において、電流-電圧変換回路100、判別部200、及び表示部300は図示を省略する。
 漏光発生部3は、2本の光ファイバ1,1の接続部位の屈折率分布が光軸方向の他の部位の屈折率分布と異なるように、光ファイバ1,1を接続することで接続部位に形成され、一方の光ファイバ1(図示例では、右側の光ファイバ1)のコア内を伝搬してきた光の一部を他方の光ファイバ1(図示例では、左側の光ファイバ1)のクラッド12へ漏光させる。
 受光素子チップ5は、他方の光ファイバ1のクラッド12の外周面、すなわち、コア11とクラッド12とで構成される素線10の外周面に透明な接着剤からなる透明接着層4(光透過性接着層の一例)を介して接着され、漏光発生部3により漏光された光を検出する。
 なお、光ファイバ1,1は、一端部同士を融着することで接続され、光ファイバ1,1の接続部位に融着部2が形成され、この融着部2において漏光発生部3が形成されている。また、図1中の太線の矢印は光の伝搬方向を示している。
 電流-電圧変換回路100は、例えばオペアンプにより構成され、受光素子チップ5から出力された電流信号を電圧信号に変換する。
 判別部200は、例えばマイクロコンピュータ、又は抵抗器、コンデンサ、及び増幅回路等を内蔵したIC(Integrated Circuit)により構成され、電流-電圧変換回路100から出力された電圧信号に基づいて光線路Aが活線状態にあるか否かを判別し、判別結果を表示部300に表示させる。表示部300は、例えば、液晶表示パネル、又は発光ダイオードにより構成され、判別部200による判別結果を表示する。
 本実施の形態では、光ファイバ1,1としては、伝搬損失、伝送帯域幅、及び機械的強度等の耐環境性に優れた、例えば石英ガラスファイバが用いられている。また、本実施の形態では、石英ガラスファイバとして、シングルモードファイバが用いられている。但し、これは一例であり、シングルモードファイバに限らず、ステップインデックス型(Step-Index型:SI型)マルチモードファイバ、グレーデッドインデックス型(Grated-Index型:GI型)マルチモードファイバ、又はその他の特殊ファイバ等の漏光発生部3が形成可能なファイバを採用してもよい。また、光ファイバ1,1としては、石英ガラスファイバに限らず、多成分ガラスファイバやプラスチックファイバ等を採用してもよい。
 図1に示すように、光ファイバ1,1は、それぞれ融着部2側において、被覆13が除去されて、素線10が露出されている。そして、受光素子チップ5は、素線10の外周面、つまり、クラッド12の外周面において、受光面が他方の光ファイバ1のクラッド12側に向くように、透明接着層4を介して接着されている。
 ここで、光ファイバ1,1において、素線10の外周面が露出した部分の長さは10mm程度であり、受光素子チップ5は、他方の光ファイバ1の光軸方向において漏光発生部3から規定長さ(例えば、2~5mm程度)だけ離れて配置されている。
 光ファイバ1を伝搬する光としては、例えば波長が1550nmの光や、1310nmの光や、850nmの光を想定しており、透明接着層4は、これらの波長の光に対して透明な接着剤であるエポキシ系樹脂やアクリル系樹脂などにより形成すればよい。なお、透明接着層4は、必ずしもクラッド12よりも屈折率が高い材料で形成する必要はなく、空気とクラッド12との中間の屈折率を有する材料で形成してもよい。
 また、受光素子チップ5としては、例えばフォトダイオードチップを用いることができる。ここで、光ファイバ1を伝搬する光、つまり、光通信用の光の波長が1μm帯の波長領域(例えば、1510nm、1310nm)の場合には、1μm帯の波長領域で受光感度の高いInGaAsフォトダイオードチップを採用すればよい。
 また、光ファイバ1を伝搬する光の波長が0.8μm帯の波長領域(例えば850nm)の場合には、0.8μm帯の波長領域で受光感度の高いSiフォトダイオードチップを採用すればよい。
 また、光ファイバ1を伝搬する光が、例えば1μm帯の波長領域の光及び0.8μm帯の波長領域である場合には、各波長領域それぞれにおいて受光感度の高い受光素子チップ5を個別に設ければよい。
 次に、光線路Aの屈折率分布について図2(A)~(D)を参照して説明する。図2(A)~(D)は、光ファイバ1,1として、シングルモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバ1,1の概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。なお、X方向は、光軸方向に直交する方向を示している。
 図2(B),(D)は光ファイバ1,1を融着する際に溶融されない部位の屈折率分布を示し、光ファイバ1,1本来の屈折率分布である階段状の屈折率分布を有している。
 これに対して、図2(C)の屈折率分布は、中心から離れるにつれて屈折率が徐々に小さくなっていき、且つ、屈折率がコア11の屈折率n1よりも低く、クラッド12の屈折率n2よりも高い領域が含まれている。そして、この領域のx方向の長さは、光ファイバ1,1のコア径(直径)よりも大きくなっている。なお、光ファイバ1,1として、SI型マルチモードファイバを採用した場合の屈折率分布も図2(B)~(D)と同様の屈折率分布となる。
 図3(A)~(D)は、光ファイバ1,1として、GI型マルチモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバ1,1の概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。
 ここで、図3(B),(D)は光ファイバ1,1を融着する際に溶融されない部位の屈折率分布を示し、光ファイバ1,1本来の屈折率分布である、中心から外に向かって2乗分布をもって徐々に小さくなる屈折率分布を有している。これに対して、図3(C)の屈折率分布は、中心から離れるにつれて屈折率が徐々に小さくなっていき、且つ、屈折率がコア11の屈折率n1よりも低くクラッド12の屈折率n2よりも高い領域が含まれている。そして、この領域のx方向の長さは、光ファイバ1,1のコアの直径よりも大きくなっている。
 ここで、漏光発生部3は、図2(A)及び図3(A)に示すように、融着部2付近において、クラッド12の屈折率n2よりも屈折率が高く、且つ、光軸方向の他の部位におけるコア11の屈折率n1よりも屈折率が低い中間屈折率領域11aが形成されるように、光ファイバ1,1を融着することで形成されている。
 光ファイバ1,1の一端部同士を融着する際には、光ファイバ1,1の一端部側の端面を突き合わせ、アーク放電等によって加熱溶融させてから冷却することにより2本の光ファイバ1,1を接続すればよい。
 これにより、加熱溶融させたときにコア11及びクラッド12が短時間ではあるが固相から液相に相変化して混じり合い、コア11の屈折率とクラッド12の屈折率との中間的な屈折率を有する領域が形成される。そして、融着する際の条件(温度、時間など)を、接続損失が最小となるような条件から適宜変更していくことにより、所望の大きさの中間屈折率領域11aを形成することができる。
 図1では漏光発生部3で発生した漏れ光の光線経路が矢印で例示されている。すなわち、漏光発生部3で発生した漏れ光のうち、クラッド12と空気との境界における入射補角が全反射臨界補角よりも大きな光線P1は、クラッド12からも漏れて外部に出てしまうが、入射補角が全反射臨界補角よりも小さな光線P2,P3は、クラッド12と空気との境界で全反射する。
 ここで、本実施の形態のように光ファイバ1,1として石英ガラスファイバを用いる場合には、クラッド12と空気との屈折率差が大きいので、漏光発生部3で発生した漏れ光は、クラッド12と空気との境界で全反射される割合が高く、その多くが光線P2,P3のように伝搬する。
 光線P2は全反射を繰り返しながら素線10内を伝搬していく光線を示している。クラッド12と透明接着層4との屈折率差はクラッド12と空気との屈折率差よりも小さいので、クラッド12と透明接着層4との界面で全反射される光の割合が少なく、クラッド12と透明接着層4との界面に到達した光の多くは、受光素子チップ5の受光面に到達する。
 光線P3は、クラッド12と空気との境界で1回だけ全反射された後、クラッド12と透明接着層4との界面を通過して受光素子チップ5の受光面に到達する光線を示している。なお、図1では、光線P3として、1回だけ全反射される例を示したが、これに限定されず、クラッド12と空気との境界で複数回全反射された後、クラッド12と透明接着層4との界面を通過して受光素子チップ5の受光面に到達するものであってもよい。
 以上説明したように本実施の形態における活線検出装置では、2本の光ファイバ1,1の接続部位の屈折率分布が光軸方向の他の部位の屈折率分布と異なるように、光ファイバ1,1を接続することで接続部位に形成され、一方の光ファイバ1のコア内を伝搬してきた光の一部を他方の光ファイバ1のクラッド12へ漏光させる漏光発生部3を備えている。
 そのため、図20に示した従来例のように光ファイバ1’,1’を接続損失が最小となるように融着したものに比べて、漏れ光の絶対光量を増やすことができる。また、本実施の形態による活線検出装置では、受光素子チップ5が、透明接着層4を介して他方の光ファイバ1のクラッド12の外周面に接着されている。そのため、図20に示した従来例のように融着補強スリーブ42’等が介在する場合に比べて、受光素子チップ5とクラッド12の外周面との距離を短くすることができ、漏れ光の受光素子チップ5への到達効率を向上させることができる。
 更に、受光素子チップ5と他方の光ファイバ1のクラッド12の外周面との間に空気が介在していないため、空気よりも屈折率が大きい透明接着層4に、クラッド12から多くの漏れ光を入射させることができ、漏れ光の受光素子チップ5への到達効率を向上させることができる。
 その結果、光線路Aを伝搬する光のパワーの大小によらず活線検出が可能となる。すなわち、光線路Aを伝搬する光のパワーが大きいときは勿論、光のパワーが小さい場合であっても活線検出が可能となり、より安定した活線検出が可能となる。
 なお、受光素子チップ5と漏光発生部3との距離が近すぎると、漏光発生部3からの漏れ光の光強度分布が、受光素子チップ5からの出力電流にそのまま影響を及ぼしてしまい、受光素子チップ5の出力電流がばらつく虞がある。
 しかしながら、本実施の形態では、上述のように受光素子チップ5が、光軸方向において漏光発生部3から規定長さ(例えば、2~5mm程度)だけ離れて配置されている。そのため、漏光発生部3で発生した漏れ光が全反射を繰り返すことで光強度分布が平均化され、受光素子チップ5の出力電流がばらつくことを抑制することができ、受光素子チップ5の安定した出力を得ることが可能となる。
 また、本実施の形態の活線検出装置では、漏光発生部3が、中間屈折率領域11aが形成されるように光ファイバ1,1を融着することで形成されている。そのため、光の伝搬方向で局所的に屈折率分布が変化し、融着部2を光が通過する際に光強度分布も変化し、一部の光を漏光発生部3からの漏れ光としてコア11からクラッド12に漏れさせることができる。
 これにより、光ファイバ1,1を融着する際に中間屈折率領域11aの大きさを調節して屈折率分布を制御することにより、活線検出に必要な漏れ光を得ることができる。すなわち、本実施の形態の活線検出装置では、漏光発生用の別部材を追加することなく、漏れ光を受光素子チップ5に導くことができる。
 (実施の形態2)
 図4(A)、(B)は、本発明の実施の形態2による活線検出装置の説明図である。本実施の形態の活線検出装置の基本構成は実施の形態1と略同じである。相違点は、下記の通りである。まず、2本の光ファイバ1,1を融着する前に、図4(A)に示すように一端部のそれぞれを個別に溶融させて接続部位の屈折率分布を他の部位とは異ならせ、光ファイバ1,1本来の屈折率分布とは異ならせる。そして、図4(B)に示すように光ファイバ1,1の一端部同士を融着して融着部2を形成することで漏光発生部3を形成する。なお、他の構成は実施の形態1と同じなので図示および説明を適宜省略する。
 ところで、実施の形態1で説明したように2本の光ファイバ1,1の一端部同士を融着する際には、光ファイバ1,1の溶融に伴い、コア11,11とクラッド12,12とが混じり合って中間屈折率領域11aが形成されるが、単に融着の条件を変化させただけでは、中間屈折率領域11aをあまり大きくすることができない。
 これに対して、本実施の形態では、2本の光ファイバ1,1の一端部同士を融着する前に図4(A)に示すように各光ファイバ1の一端部を素線10の直径よりも直径が大きな球状に変形させて各光ファイバ1のコア径を上記光軸方向に沿って連続的に変化させている。
 そのため、本実施の形態の活線検出装置によれば、漏光発生部3をより確実に形成することができると共に、光軸方向に直交する断面における漏光発生部3の形成領域の範囲をより広くすることが可能となり、活線検出に必要な漏れ光の光量をさらに多くすることができる。
 (実施の形態3)
 実施の形態3の活線検出装置の基本構成は実施の形態1と略同じであって、図5に示すように、漏光発生部3が、光ファイバ1,1の一端部同士を、光ファイバ1,1とはコア径の異なる漏光発生用の光ファイバ6を挟んで接続することにより形成されている点が相違する。なお、他の構成は実施の形態1と同じなので図示および説明を適宜省略する。
 図5(A)は、本発明の実施の形態3における活線検出装置の概略構成図を示し、(B)は光ファイバ1のB-B断面における断面図を示し、(C)は漏光発生用の光ファイバ6のC-C断面における断面を示している。
 図6(A)、(B)は、図5に示す融着部2を拡大して示した図である。漏光発生用の光ファイバ6は、光ファイバ1,1と同様、石英ガラスファイバにより構成されている。ここで、漏光発生用の光ファイバ6は、クラッド62の外径が光ファイバ1,1のクラッド12,12の外径と同じである。つまり、漏光発生用の光ファイバ6は、素線60の外径が光ファイバ1,1の素線10,10の外径と同じである。
 また、漏光発生用の光ファイバ6は、コア61のコア径(直径)が光ファイバ1,1のコア11,11のコア径よりも大きい。そして、漏光発生用の光ファイバ6は、光軸が光ファイバ1,1の光軸と一致するように、両端部が光ファイバ1,1それぞれの一端部に融着されている。
 ここで、漏光発生用の光ファイバ6は、両端部が光ファイバ1,1のそれぞれの一端部と融着され、融着部2,2が形成されている。光ファイバ1,1の光軸方向において、一方の光ファイバ1(図5の右側の光ファイバ1)と漏光発生用の光ファイバ6との融着部2(図5の右側の融着部2)を境界としてコア径が小さい方から大きい方へと変化するので接続損失はほとんど発生せず漏光発生部3は形成されない。
 しかしながら、光ファイバ1,1の光軸方向において漏光発生用の光ファイバ6と他方の光ファイバ1(図5の左側の光ファイバ1)との融着部2(図5の左側の融着部2)では、当該融着部2を境界としてコア径が大きい方から小さい方へ変化するので、当該融着部2において、漏光発生部3が形成される。
 ここで、漏光発生用の光ファイバ6及び他方の光ファイバ1が、シングルモードファイバの場合、漏光発生用の光ファイバ6の光軸方向に直交する断面の屈折率分布に基づいて定まる光分布状態(固有モード)と、他方の光ファイバ1の光軸方向に直交する断面の屈折率分布に基づいて決まる光分布状態との差に応じて、漏光発生部3における漏れ光の光量が変化する。
 また、漏光発生用の光ファイバ6及び他方の光ファイバ1がマルチモードファイバの場合、漏光発生用の光ファイバ6のコア61の断面積と他方の光ファイバ1のコア11の断面積との面積差に応じて漏れ光の光量が変化する。そのため、漏光発生用の光ファイバ6及び他方の光ファイバ1として、シングルモードファイバ及びマルチモードファイバのいずれを採用しても、コア11の面積差が大きいほど漏れ光の光量が多くなる。
 したがって、本実施の形態の活線検出装置では、2本の光ファイバ1,1の上記一端部同士の間に挟む漏光発生用の光ファイバ6のコア径を適宜選定して当該漏光発生用の光ファイバ6の両端部それぞれを2本の光ファイバ1,1の一端部と融着すれば漏光発生部3を形成することが可能となる。そのため、活線検出に必要な漏れ光の光量をより確実に確保することが可能となると共に、融着の条件を変更することなく漏光発生部3を形成することが可能となる。
 ところで、本実施の形態の活線検出装置では、漏光発生用の光ファイバ6のコア61の屈折率と他方の光ファイバ1のコア11の屈折率とが同じであり、図6(A)中に太線の矢印で示したように漏光発生用の光ファイバ6のコア61から他方の光ファイバ1のクラッド12へ光の一部が漏れる。
 しかしながら、漏光発生用の光ファイバ6のコア61の屈折率と他方の光ファイバ1のコア11の屈折率とを異ならせておけば、漏光発生部3で発生する漏れ光の光量を増加させることができ、より確実に活線検出を行うことができる。
 例えば、光ファイバ1,1及び漏光発生用の光ファイバ6としてSI型マルチモードファイバを採用した場合、コア径が小さい他方の光ファイバ1の屈折率が、コア径が大きい漏光発生用の光ファイバ6の屈折率よりも低いとすると、漏光発生用の光ファイバ6と他方の光ファイバ1との融着部2での屈折が生じる。そのため、図6(B)に示すように、他方の光ファイバ1の素線10内での光の広がりが大きくなり、他方の光ファイバ1のコア11とクラッド12との境界での入射補角が全反射臨界補角よりも大きな光は屈折して他方の光ファイバ1のクラッド12へ入っていくので、漏れ光の光量が増加する。
 なお、本実施の形態では、漏光発生用の光ファイバ6のコア径が光ファイバ1,1のコア径よりも大きいものとしたが、これに限定されない。すなわち、漏光発生用の光ファイバ6として、光ファイバ1,1よりもコア径の小さなものを用いてもよく、この場合には、一方の光ファイバ1と漏光発生用の光ファイバ6との融着部2の方に漏光発生部3が形成され、漏光発生用の光ファイバ6と他方の光ファイバ1との融着部2の方には漏光発生部3は形成されない。
 (実施の形態4)
 図7(A)は、本発明の実施の形態4における活線検出装置の概略構成図を示し、(B)は、(A)におけるB-B断面の断面図を示し、(C)はB-B断面の屈折率分布を示し、(D)は(A)におけるD-D断面の断面図を示し、(E)はD-D断面の屈折率分布を示している。
 本実施の形態の活線検出装置の基本構成は実施の形態3と略同じである。相違点は、図7に示すように、漏光発生部3が、光ファイバ1,1の一端部同士を光ファイバ1,1とコア径が同じで光ファイバ1,1のコア11とはコア71の屈折率が異なる漏光発生用の光ファイバ7を挟んで接続することにより形成されている点にある。なお、他の構成は実施の形態1と同じなので図示および説明を適宜省略する。
 漏光発生用の光ファイバ7は、光ファイバ1,1と同様、石英ガラスファイバにより構成されている。ここにおいて、漏光発生用の光ファイバ7は、クラッド72の外径が光ファイバ1,1のクラッド12,12の外径と同じである。つまり、漏光発生用の光ファイバ7は、素線70の外径が光ファイバ1,1の素線10,10の外径と同じである。また、漏光発生用の光ファイバ7は、コア71のコア径も光ファイバ1,1のコア11,11のコア径と同じである。そして、漏光発生用の光ファイバ7は、光軸方向の両端部が光ファイバ1,1と光軸を合わせて光ファイバ1,1それぞれの一端部と融着されている。ここで、本実施の形態では、光ファイバ1,1として、例えばSI型マルチモードファイバを用い、漏光発生用の光ファイバ7として、例えば光ファイバ1,1と開口数(Numerical Aperture:NA)が同じGI型マルチモードファイバが用いられている。
 漏光発生用の光ファイバ7の両端部と光ファイバ1,1の一端部とは、それぞれ融着され融着部2,2が形成されており、光ファイバ1,1の光軸方向において一方の光ファイバ1(図7(A)の右側の光ファイバ1)と漏光発生用の光ファイバ7との融着部2(図7(A)の右側の融着部2)を境界としてSI型マルチモードファイバからGI型マルチモードファイバへ変化している。これにより、右側の融着部2において漏光発生部3が形成される。
 一方、光ファイバ1,1の光軸方向において漏光発生用の光ファイバ7と他方の光ファイバ1(図7(A)の左側の光ファイバ1)との融着部2(図7(A)の左側の融着部2)の境界においては、GI型マルチモードファイバからSI型マルチモードファイバへ変化するので漏光発生部3は形成されない。この点について図8(A)~(D)を参照しながら説明する。
 図8(A)はSI型マルチモードファイバの光路図を示し、図8(B)はGI型マルチモードファイバの光路図を示し、図8(C)は図7(A)における右側の融着部2付近の光路図を示し、図8(D)は図7(A)における左側の融着部2付近の光路図を示している。
 SI型マルチモードファイバでは図7(C)に示すように、コア11の部分が高く、クラッド12の部分が低い階段状の屈折率分布を有しているので、図8(A)の太線の矢印で示すように、光ファイバ1の径方向(x方向)のどの位置でも入射補角が最大の光が存在する。
 一方、GI型マルチモードファイバでは図7(E)に示すように、コア11の屈折率分布が、屈折率n1をピークとして上に凸の曲線を描いて変化するので、図8(B)の太線の矢印で示すように、光ファイバ7の径方向(x方向)の位置に応じて光の入射補角が変化する。
 つまり、GI型マルチモードファイバからなる漏光発生用の光ファイバ7では、コア71内でコア71の中心に近い部分には入射補角が大きな光が存在するが、クラッド72に近い周縁部には入射補角の小さい光しか存在しないので、光線の軌跡は正弦波状に蛇行する。
 したがって、図8(C)に示すように、SI型マルチモードファイバよりなる一方の光ファイバ1からGI型マルチモードファイバよりなる漏光発生用の光ファイバ7のコア71において、クラッド72に近い周縁部に入射補角の大きな光が入射すると、コア71内に留まれずにクラッド72へ漏れてしまう。
 一方、図8(D)に示すように、GI型マルチモードファイバよりなる漏光発生用の光ファイバ7からSI型マルチモードファイバよりなる他方の光ファイバ1へ光が入射すると、損失は生じない。
 以上説明したように、本実施の形態の活線検出装置によれば、GI型マルチモードファイバからなる漏光発生用の光ファイバ7を、SI型マルチモードファイバからなる光ファイバ1,1で挟んで構成しているため、活線検出に必要な漏れ光の光量をより確実に確保することが可能となるとともに、融着の条件を変更することなく漏光発生部3を形成することが可能となる。
 なお、本実施の形態では、光ファイバ1,1として、SI型マルチモードファイバを用い、漏光発生用の光ファイバ7として光ファイバ1,1とNAが同じGI型マルチモードファイバを用いたが、これに限定されない。
 すなわち、光ファイバ1,1として、SI型マルチモードファイバを用い、漏光発生用の光ファイバ7として光ファイバ1,1とはコア径が同じでNAが異なる(小さい)SI型マルチモードファイバを用いてもよい。
 また、光ファイバ1,1として、GI型マルチモードファイバを用い、漏光発生用の光ファイバ7として光ファイバ1,1とコア径及びNAが共に同一のSI型マルチモードファイバを用いてもよい。
 この場合、SI型マルチモードファイバからGI型マルチモードファイバへと変化する、他方の光ファイバ1と漏光発生用の光ファイバ7との融着部2の方に漏光発生部3が形成され、上記一方の光ファイバ1と漏光発生用の光ファイバ7との融着部2の方には漏光発生部3は形成されることになる。
 (実施の形態5)
 図9(A)は、本発明の実施の形態5における活線検出装置の概略構成図を示し、(B)は、(A)におけるB-B断面の断面図を示し、(C)はB-B断面の屈折率分布を示し、(D)は(A)におけるD-D断面の断面図を示し、(E)はD-D断面の屈折率分布を示している。
 本実施の形態の活線検出装置の基本構成は実施の形態1と略同じであるが、図9(A)に示すように、漏光発生部3が、光ファイバ1,1の一端部同士を光ファイバ1,1のクラッド12,12と同じ材料(石英ガラス)からなり、屈折率が一様なファイバ8を挟んで接続することにより形成されている点が相違する。
 ここで、ファイバ8の屈折率は、光ファイバ1,1のクラッド12,12の屈折率と同じ値に設定されている。なお、他の構成は実施の形態1と同じなので図示及び説明を適宜省略する。
 本実施の形態の活線検出装置では、ファイバ8の両端部と光ファイバ1,1の一端部とがそれぞれ融着されて融着部2,2が形成されており、一方の光ファイバ1のコア11からファイバ8中へ拡がって出射した光のうち、他方の光ファイバ1のコア11に到達する光以外は漏れ光となる。
 このように、本実施の形態の活線検出装置によれば、光ファイバ1,1のクラッド12,12と同じ材料からなり、屈折率が一様なファイバ8を、光ファイバ1,1で挟んで漏光発生部3が形成されている。
 そのため、必要な漏れ光の光量をより確実に確保することが可能となるとともに、融着の条件を変更することなく漏光発生部3を形成することが可能となる。
 (実施の形態6)
 図10は、本発明の実施の形態6による活線検出装置の概略構成図を示している。本実施の形態の活線検出装置は、図10に示すように、波長帯の異なる複数(ここでは、2つ)の光を個別に検出可能な複数の受光素子チップ51,52を設けたことを特徴とする。
 なお、本実施の形態において、実施の形態1~5と同一のものは同一の符号を付し、説明を省略する。また、光ファイバ1,1としては、実施の形態1と同一のものが採用されている。また、光ファイバ1,1において、素線10の外周面が露出した部分の長さは実施の形態1と同様、10mm程度である。また、受光素子チップ5は、他方の光ファイバ1の光軸方向において、実施の形態1と同様、漏光発生部3から規定長さ(例えば、2~5mm程度)だけ離れて配置されている。
 光ファイバ1,1を伝搬する光としては、波長帯の異なる2つの光、例えば波長が1550nmの光と波長が850nmの光とを想定している。なお、波長帯の異なる2つの光としては、これらのものに限定されず、例えば、波長が1310nmの光と波長が850nmの光とを採用してもよい。図10では、波長が1550nmの光と波長が850nmの光とを採用した場合が示されている。
 透明接着層4は、これらの波長の光に対して透明な接着剤であるエポキシ系樹脂やアクリル系樹脂などにより形成されている。
 また、各受光素子チップ51,52としては、それぞれ結晶材料の異なるフォトダイオードチップを用いることができる。ここで、本実施の形態では、光ファイバ1を伝搬する光、つまり、光通信用の光として、波長が1550nmの光と波長が850nmの光とが想定されている。そのため、受光素子チップ51として、1.5μm帯の波長領域で受光感度の高いInGaAsフォトダイオードチップが採用されている。
 また、受光素子チップ52として、0.8μm帯の波長領域で受光感度の高いSiフォトダイオードチップが採用されている。なお、Siフォトダイオードは、1μm帯の光に対して受光感度がない。また、InGaAsフォトダイオードは1.3μm帯、1.5μm帯の光に対して受光感度があり、0.8μm帯の光に対して受光感度がかなり小さい。
 ここで、上述の光線路Aの屈折率分布について図11(A)~(D)を参照して説明する。図11(A)~(D)は、光ファイバとして、シングルモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバ1,1の概略構成を示した図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。
 なお、図11(A)~(D)では、光ファイバ1,1としてシングルモードファイバが用いられている。図11(B)~図11(D)の屈折率分布は、図2(B)~(D)の屈折率分布と同一であるため、説明を省略する。
 図12(A)~(D)は、光ファイバ1,1として、GI型マルチモードファイバを用いた場合の屈折率分布の説明図であり、(A)は光ファイバ1,1の概略構成図であり、(B)は(A)に示すB-B断面の屈折率分布を示し、(C)は(A)に示すC-C断面の屈折率分布を示し、(D)は(A)に示すD-D断面の屈折率分布を示している。
 図12(B)~(D)の屈折率分布は、図3(B)~(D)の屈折率分布と同一であるため、説明を省略する。
 漏光発生部3で発生した漏れ光の多くは全反射を繰り返しながら素線10内を伝搬し、クラッド12と透明接着層4,4との界面を通過して受光素子チップ51,52の受光面に到達する。図10では、漏光発生部3で発生した漏れ光のうち波長が1310nmの光の光線P1の進行経路を一点鎖線の矢印で例示し、波長が850nmの光の光線P2の進行経路を実線の矢印で例示している。
 以上説明した本実施の形態の活線検出装置によれば、波長帯の異なる複数の光を個別に検出可能な複数の受光素子チップ51,52が設けられている。そのため、実施の形態1の効果を得ることができることに加えて、波長帯の異なる複数の光が伝搬される光線路Aに関して複数の光それぞれについて活線検出を容易に行うことができる。
 ところで、受光素子チップ51,52の検出感度は、(1)受光素子チップ51,52の検出対象波長に対する受光感度、(2)漏光発生部3での各検出対象波長の漏れ光の光量、(3)各受光素子チップ51,52への検出対象波長の漏れ光の到達効率、(4)受光素子チップ51,52の受光面の面積、の4つの要素(1)~(4)で総合的に決まる。
 ここで、本実施の形態の活線検出装置では、各受光素子チップ51,52の検出対象波長が異なり結晶材料が異なるので、受光感度(1)及び受光面の面積(4)が異なる値となる。また、漏光発生部3での各検出対象波長の漏れ光の光量(2)は大差がないので、受光感度(1)及び受光面の面積(4)それぞれについて差がある場合には、到達効率(3)を調整することで各受光素子チップ51,52の検出感度をほぼ同じ値に揃えることが可能となる。
 また、本実施の形態の活線検出装置によれば、複数の受光素子チップ51,52の配置に関して、検出感度が低い受光素子チップ51ほど漏光発生部3に近い側に配置することが好ましい。これにより、受光素子チップ51,52の検出感度の差を小さくして、受光素子チップ51,52の検出感度を略同じ値に揃えることができ、各光それぞれについてより確実に活線検出を行うことができる。
 (実施の形態7)
 図13は、本発明の実施の形態7による活線検出装置の概略構成図を示している。本実施の形態による活線検出装置の基本構成は実施の形態6と略同じである。相違点は、図13に示すように、受光素子チップ51,52の漏光発生部3からの距離(実施の形態1で説明した規定長さ)が同じになるように、受光素子チップ51,52が配置されている点にある。ここで、受光素子チップ51と受光素子チップ52とは他方の光ファイバ1を挟んで対向配置されている。なお、実施の形態1~6と同様の同一のものは同一の符号を付して説明を省略する。
 ところで、実施の形態6の活線検出装置では、複数の受光素子チップ51,52が他方の光ファイバ1の光軸方向に沿って配置されている。そのため、下流側(図10の左側)に配置されている受光素子チップ52で検出すべき検出対象波長の光の一部が、上流側に配置されている受光素子チップ51に入射してしまう。これにより、受光素子チップ52に到達する検出対象波長の漏れ光が減少し、受光素子チップ52への漏れ光の到達効率が低下し、出力電流が低下する虞がある。
 これに対して、本実施の形態の活線検出装置では、複数の受光素子チップ51,52が、漏光発生部3からの距離が同じになるように配置されている。そのため、受光素子チップ51,52のそれぞれに対する漏れ光の到達効率を略同じにすることができる。
 なお、図13では、受光素子チップ51に検出対象波長の光の光線P1だけでなく受光素子チップ52の検出対象波長の光線P2も入射している。しかしながら、受光素子チップ51に到達する光線経路を通る光線P2は、元々、受光素子チップ52には到達しない光線P2であり、受光素子チップ52への漏れ光の到達効率の減少につながるものではない。
 なお、受光素子チップ51,52と漏光発生部3との距離が近すぎると、漏光発生部3からの漏れ光の光強度分布が受光素子チップ51,52の出力電流にそのまま影響し、受光素子チップ51,52の出力電流がばらつくことが考えられる。そのため、漏光発生部3で発生した光が少なくとも1回は全反射して受光素子チップ51,52に到達するように上記規定長さを設定することが好ましい。これにより、光強度分布が平均化され、受光素子チップ51,52の出力電流がばらつくのを抑制することができ、受光素子チップ51,52の安定した出力を得ることが可能となる。
 (実施の形態8)
 図14は、本発明の実施の形態8による活線検出装置の概略構成図を示している。本実施の形態による活線検出装置の基本構成は実施の形態6と略同じである。相違点は、光線路Aが双方向通信用の光線路であり、また、図14に示すように、受光素子チップ51,52と受光素子チップ51,52とが、光軸方向において漏光発生部3を挟んで両側に配置されている点にある。なお、本実施の形態において、実施の形態1~7と同一のものは同一の符号を付して説明を省略する。
 本実施の形態では、図14に示すように、右側から左側に伝搬され、互いに波長帯の異なる複数(ここでは、2つ)の光と、左側から右側に伝搬され互いに波長帯の異なる複数(ここでは、2つ)の光とが光ファイバ1,1を伝搬している。そして、前者の複数の光の光線経路が実線の矢印でまとめて示され、後者の複数の光の光線経路が破線の矢印でまとめて示されている。
 そして、本実施の形態の活線検出装置によれば、右側に配置された受光素子チップ51,52が波線で示す光線経路、すなわち、左側から右側へと伝搬する光の漏れ光を受光し、左側に配置された受光素子チップ51,52が実線で示す光線経路、すなわち、右側から左側へと伝搬する光の漏れ光を受光する。
 そのため、受光素子チップ51,52、51,52のそれぞれにおいて、検出対象の光とは伝搬方向が逆の光が到達することを防止することができる。
 なお、図14において、左側の受光素子チップ51,52と、右側の受光素子チップ51,52とは、融着部2を含む断面に対して左右対称な配置となっていることが望ましい。また、本実施の形態では、光線路Aが双方向に複数の波長帯の光が伝送される形態となっているが、両方向で同じ数の波長帯の光が伝送される必要はなく、両方向で異なる数の波長帯の光が伝送されてもよい。また、両方向とも1つの波長帯の光のみが伝送される形態でもよい。
 なお、上記実施の形態6~7における漏光発生部3の形成方法は実施の形態1で説明した形成方法に限らず、例えば、実施の形態2の手法を用いて、漏光発生部3を形成してもよい。
 また、光ファイバ1,1の一端部同士を、実施の形態3に示すように、光ファイバ1,1とはコア径の異なる漏光発生用の光ファイバ6を挟んで接続することにより漏光発生部3を形成するようにしてもよい。
 また、光ファイバ1,1の一端部同士を、実施の形態4に示すように、光ファイバ1,1とコア径が同じで光ファイバ1,1のコア11とは屈折率が異なる漏光発生用の光ファイバ7を挟んで接続することにより漏光発生部3を形成してもよい。
 また、光ファイバ1,1の一端部同士を、実施の形態5に示すように、光ファイバ1,1のクラッド12,12と同じ材料(石英ガラス)からなり屈折率が一様なファイバを挟んで接続することにより漏光発生部3を形成してもよい。
 (実施の形態9)
 図15(A)は、本発明の実施の形態9による活線検出装置の概略構成図を示している。図15(B)は、本発明の実施の形態9による活線検出装置との比較例の概略構成図を示している。なお、本実施の形態において、実施の形態1~8と同一のものは、同一の符号を付して説明を省略する。
 本実施の形態の活線検出装置は、実施の形態1における活線検出装置と基本的な構成は同一である。相違点は、透明接着層4が、受光素子チップ5と漏光発生部3との間において、漏光発生部3からの漏れ光が透明接着層4を介して空気中へ漏れないように、他方の光ファイバ1のクラッド12と接する領域が制限されている点にある。
 図15(B)に示すように、比較例では、透明接着層4が光ファイバ1,1の光軸方向において漏光発生部3側へ大きく拡がっている。そのため、受光素子チップ5と漏光発生部3との間において、漏光発生部3からの漏れ光の一部が透明接着層4を通して外部(空気中)へ漏れてしまう。これにより、受光素子チップ5による漏れ光の到達効率が低下する。
 一方、図15(A)に示すように、本実施の形態の活線検出装置では、受光素子チップ5と漏光発生部3との間において、漏光発生部3からの漏れ光が透明接着層4を通して空気中へ漏れないように、他方の光ファイバ1のクラッド12と透明接着層4との接する領域が制限されている。
 具体的には、図15(A)に示すように、他方の光ファイバ1のクラッド12と透明接着層4との接する領域のサイズが、図15(B)に示す同領域のサイズに比べて小さくされている。
 これを実現するためには、透明接着層4となる接着剤の塗布量及び受光素子チップ5を接着する際の荷重等を適宜設定すればよい。なお、本実施の形態では、透明接着層4とクラッド12との接する領域のサイズを、受光素子チップ5のサイズよりもやや大きなサイズにしているが、これに限定されない。すなわち、透明接着層4とクラッド12との接する領域を受光素子チップ5の受光面と同じサイズに形成してもよい。なお、本実施の形態において、受光素子チップ5の受光面のサイズと受光素子チップ5のサイズとは略同じである。
 以上、説明したように、本実施の形態の活線検出装置によれば、実施の形態1の効果を得ることができることに加えて、透明接着層4とクラッド12との接する領域のサイズが制限されているため、漏れ光の受光素子チップ5への到達効率をより向上させることができる。
 (実施の形態10)
 図16は、本発明の実施の形態10による活線検出装置の概略構成図を示している。本実施の形態の活線検出装置の基本構成は実施の形態1と略同じである。相違点は、図16に示すように、受光素子チップ5の受光面の一部が受光感度を均一とみなせる有効受光領域5aとなっており、透明接着層4とクラッド12との接する領域のサイズが、受光素子チップ5のサイズよりも小さく、且つ、有効受光領域5aよりも大きく設定されている。その他の構成は実施の形態9と同じであるため説明を省略する。
 このように構成することで、接着剤層4を形成する接着剤の使用量を低下させると同時に、受光素子チップ5への光の到達効率を向上させることができる。
 (実施の形態11)
 図17(A)は、本発明の実施の形態11による活線検出装置の概略構成図を示している。図17(B)は、本発明の実施の形態11による活線検出装置との比較例の概略構成図を示している。なお、本実施の形態において、実施の形態1~10と同一のものは、同一の符号を付して説明を省略する。
 本実施の形態の活線検出装置の基本構成は実施の形態9と略同じでる。相違点は、図17(A)に示すように、受光素子チップ5と漏光発生部3との間において、他方の光ファイバ1の外周面に、漏光発生部3で発生した漏れ光を反射する金属膜から構成され、透明接着層4とクラッド12との接する領域の漏光発生部3側のサイズを制限するための反射部6xが被着されている点にある。
 ここで、反射部6xは、クラッド12の周方向の全周に亘って被着されている。つまり、反射部6xは、クラッド12と同心円状に形成されている。
 反射部6xを構成する金属膜の材料としては、光ファイバ1を伝搬する光に対して反射率の高い金属材料を採用すればよい。光通信で使用される光は一般的に、波長が850nm、1310nm、1550nmなどの近赤外光である。そのため、金属材料として例えば、Au、Ag、Al、Cu等を採用することが好ましく、中でも耐酸化性に優れたAuを採用することが好ましい。
 このように、本実施の形態の活線検出装置では、漏光発生部3で発生した漏れ光を金属膜からなる反射部6xにより反射することができる。そのため、図17(B)に示す比較例のように、透明接着層4とクラッド12との接する領域が漏光発生部3側へ大きく拡がっている構成に比べて、受光素子チップ5への漏れ光の到達効率をより一層向上させることができる。また、製造時に接着剤が漏光発生部3側へ拡がってしまっても、透明接着層4とクラッド12との接する領域が反射部6xによって制限されるので、受光素子チップ5への漏れ光の到達効率の低下を防止することができる。
 (実施の形態12)
 図18(A)は、本発明の実施の形態12による活線検出装置の概略構成図を示している。図18(B)は、本発明の実施の形態12による活線検出装置との比較例の概略構成図を示している。なお、本実施の形態において、実施の形態1~11と同一のものは、同一の符号を付して説明を省略する。
 本実施の形態の活線検出装置の基本構成は実施の形態9と略同じである。相違点は、図18(A)に示すように、受光素子チップ5と漏光発生部3との間において、他方の光ファイバ1の外周面に、漏光発生部3で発生した漏れ光を全反射させる多孔質ガラス膜から構成され、透明接着層4とクラッド12との接する領域の漏光発生部3側のサイズを制限するための反射部7xが被着されている点にある。
 ここで、反射部7xは、クラッド12の周方向の全周に亘って被着されている。つまり、反射部7xは、クラッド12と同心状に形成されている。
 上述の反射部7xを構成する多孔質ガラス膜としては、平均屈折率(等価屈折率)が1.01~1.05程度であり、空気の屈折率である1に近い値となっているものを採用することができる。つまり、多孔質ガラス膜としては、透明接着層4の屈折率及びクラッド12の屈折率に比べて屈折率が十分小さいものを採用することができる。
 ここで、多孔質ガラス膜の材料としては、例えば、シリカエアロゲルを採用すればよい。
 このように、本実施の形態の活線検出装置では、漏光発生部3で発生した漏れ光を反射部7xにより全反射することができる。そのため、図18(B)に示す比較例のように、透明接着層4とクラッド12との接する領域が漏光発生部3側へ大きく拡がっている構成に比べて、受光素子チップ5への漏れ光の到達効率をより一層向上させることができる。また、製造時に接着剤が漏光発生部3側へ拡がってしまっても、透明接着層4とクラッド12との接する領域が反射部7xによって制限されるので、受光素子チップ5への漏れ光の到達効率の低下を防止することができる。
 (実施の形態13)
 図19は、本発明の実施の形態13による活線検出装置の概略構成図を示している。なお、本実施の形態において、実施の形態1~12と同一のものは、同一の符号を付して説明を省略する。
 本実施の形態の活線検出装置の基本構成は実施の形態11と略同じである。相違点は、図19に示すように、反射部6xが光ファイバ1,1に跨って形成されている点にある。ここで、本実施の形態では、反射部6xが、光ファイバ1,1に跨って形成されているが、光ファイバ1,1の光軸方向において、少なくとも、透明接着層4と漏光発生部3との間のほぼ全域に亘って形成されていればよい。
 ところで、実施の形態11で説明した図17(A)の活線検出装置では、反射部6xと漏光発生部3との間で他方の光ファイバ1のクラッド12の露出部位が存在する。そのため、使用環境によっては、クラッド12,12表面に結露が生じる場合がある。ここで、水の屈折率は1.3程度であるので、このような結露が生じた場合、クラッド12と水との屈折率差がクラッド12と空気との屈折率差よりも小さく、漏光発生部3で発生した漏れ光の一部が水滴を通して空気中へ漏れてしまい、受光素子チップ5への漏れ光の到達効率が低下する虞がある。
 これに対して、本実施の形態の活線検出装置では、反射部6xが、透明接着層4と漏光発生部3との間の全体に亘って形成されている。そのため、透明接着層4と漏光発生部3との間で他方の光ファイバ1のクラッド12の表面に結露が発生することを防止することができる。そのため、漏光発生部3で発生した漏れ光が水滴を通して空気中へ漏れるのを防止でき、受光素子チップ5への漏れ光の到達効率の低下を防止することができる。
 なお、本実施の形態の反射部6xに代えて、実施の形態12で説明した反射部7xを採用しても、同様の効果が得られる。
 上記活線検出装置の技術的特徴は下記のように纏めることができる。
 (1)本発明の一局面による活線検出装置は、2本の光ファイバを含む光線路が活線状態にあるか否かを検出する活線検出装置であって、前記2本の光ファイバの接続部位の屈折率分布が光軸方向の他の部位の屈折率分布と異なるように、前記2本の光ファイバを接続することで形成され、一方の光ファイバのコア内を伝搬してきた光の一部を他方の光ファイバのクラッドへ漏光させる漏光発生部と、前記他方の光ファイバのクラッドの外周面に光透過性接着層を介して接着され、前記漏光発生部により漏光された光を検出する受光素子とを備えている。
 この構成によれば、一方の光ファイバのコア内を伝搬してきた光の一部を他方の光ファイバのクラッドへ漏光させる漏光発生部が設けられている。そのため、2本の光ファイバを接続損失が最小となるように融着した構成に比べて、漏れる光の絶対光量を増やすことができる。
 また、受光素子チップが、光透過性接着層を介して他方の光ファイバのクラッドの外周面に接着されている。そのため、受光素子チップと他方の光ファイバのクラッドの外周面との距離を短くすることができる。よって、漏れ光の受光素子への到達効率を向上させることができる。
 また、受光素子チップと他方の光ファイバのクラッドの外周面との間に空気が介在する構成に比べて、空気よりも大きい屈折率を有する光透過性接着層にクラッドから多くの漏れ光が入射して、漏れ光の受光素子への到達効率を向上させることができる。その結果、より安定した活線検出が可能となる。
 (2)また、上記活線検出装置において、前記漏光発生部は、前記他の部位のクラッドの屈折率より高く、且つ、前記他の部位のコアの屈折率よりも低い屈折率を有する中間屈折率領域が形成されるように、前記2本の光ファイバを融着させることで形成されていることが好ましい。
 この構成によれば、漏光発生用の別部材を追加することなく、漏光発生部を形成することができる。
 (3)また、上記活線検出装置において、前記漏光発生部は、前記2本の光ファイバを融着させる前に、前記一方の光ファイバの一端部と前記他方の光ファイバの一端部とをそれぞれを個別に溶融させることで、各一端部の屈折率分布を前記他の部位の屈折率分布と異ならせた後、前記一端部同士を融着することで形成されていることが好ましい。
 この構成によれば、漏光発生部をより確実に形成することができると共に、光軸方向に直交する断面における漏光発生部の形成領域の範囲をより広くすることが可能となり、活線検出に必要な漏れ光の光量をさらに多くすることができる。
 (4)また、上記活線検出装置において、前記漏光発生部は、前記2本の光ファイバを、当該2本の光ファイバとはコア径の異なる漏光発生用の光ファイバを挟んで接続することで形成されていることが好ましい。
 この構成によれば、2本の光ファイバの間に挟む漏光発生用の光ファイバのコア径を適宜選定することで、漏光発生部を形成することができる。そのため、活線検出に必要な漏れ光の光量をより確実に確保することが可能になると共に、融着の条件を変更することなく漏光発生部を形成することができる。
 (5)また、上記活線検出装置において、前記漏光発生用の光ファイバのコアの屈折率が、前記2本の光ファイバそれぞれのコアの屈折率と異なることが好ましい。
 この構成によれば、漏光発生用の光ファイバとして、屈折率が、2本の光ファイバのそれぞれのコアの屈折率と異なるものを適宜選択することで、漏光発生部を構成することができる。
 (6)また、上記活線検出装置において、前記漏光発生部は、前記2本の光ファイバを、前記2本の光ファイバとコア径が同じでコアの屈折率が異なる漏光発生用の光ファイバを挟んで接続することで形成されていることが好ましい。
 この構成によれば、漏光発生用の光ファイバとして、2本の光ファイバとコア径が同一で、2本の光ファイバのそれぞれとコアの屈折率が異なる光ファイバを適宜選択することで、漏光発生部を形成することができる。そのため、活線検出に必要な漏れ光の光量をより確実に確保することが可能となると共に、融着の条件を変更することなく漏光発生部を形成することができる。
 (7)また、上記活線検出装置において、前記漏光発生部は、前記2本の光ファイバを、当該2本の光ファイバのクラッドと同じ材料から構成され、屈折率が一様なファイバを挟んで接続することで形成されていることが好ましい。
 この構成によれば、2本の光ファイバのクラッドと同じ材料から構成され、屈折率が一様なファイバを2本の光ファイバで挟むことで、漏光発生部が形成されている。そのため、活線検出に必要な漏れ光の光量をより確実に確保することが可能となると共に、融着の条件を変更することなく漏光発生部を形成することができる。
 (8)また、上記活線検出装置において、前記受光素子は、波長帯及び伝送方向の少なくともいずれか一方が異なる複数の光を個別に検出可能な複数の受光素子であることが好ましい。
 この構成によれば、波長帯と伝送方向との少なくともいずれか一方が異なる複数の光を個別に検出可能な複数の受光素子が設けられている。そのため、波長帯と伝送方向との少なくとも一方の異なる複数の光の活線検出を個別に行うことができる。
 (9)また、上記活線検出装置において、前記複数の受光素子は、前記漏光発生部からの距離が同じになるように配置されてなることが好ましい。
 この構成によれば、各受光素子への漏れ光の到達効率を略同じにすることができる。
 (10)また、上記活線検出装置において、前記複数の受光素子は、検出感度が低い受光素子ほど前記漏光発生部に近い側に配置されていることが好ましい。
 この構成によれば、各受光素子の検出感度の差を小さくすることができ、波長帯及び伝送方向の少なくともいずれか一方が異なる複数の光のそれぞれについて、より確実に活線検出を行うことができる。
 (11)また、上記活線検出装置において、前記光線路は、双方向通信用の光線路であり、前記複数の受光素子は、前記光軸方向において前記漏光発生部を挟んで両側に配置されていることが好ましい。
 この構成によれば、各受光素子が検出対象とする光とは伝送方向が逆の光が各受光素子に到達することを防止することができる。
 (12)また、上記活線検出装置において、前記光透過性接着層は、前記受光素子と前記漏光発生部との間において、前記漏光発生部からの漏れ光が前記光透過性接着層を介して空気中へ漏れないように、前記他方の光ファイバのクラッドと接する領域が制限されていることが好ましい。
 この構成によれば、光透過性接着層と他方の光ファイバのクラッドとの接する領域が制限されている。そのため、受光素子と漏光発生部との間で漏光発生部からの漏れ光が光透過性接着層を通して空気中へ漏れることを防止することができる。その結果、漏れ光の受光素子チップへの到達効率がより向上させることができ、より安定した活線検出を可能にすることができる。
 (13)また、上記活線検出装置において、前記受光素子と前記漏光発生部との間において、前記領域を制限するように前記他方の光ファイバの外周面に配置され、前記漏光発生部で発生した漏れ光を反射する金属膜により構成された反射部を更に備えることが好ましい。
 この構成によれば、光透過性接着層と他方の光ファイバのクラッドとの接する領域のサイズが金属膜から構成される反射部によって制限されるため、他方の光ファイバから接着剤層を介して光が空気に漏れることを防止し、受光素子への漏れ光の到達効率をより一層向上させることができる。また、製造時に接着剤が漏光発生部側へ拡がってしまったとしても、反射部により、接着剤層と他方の光ファイバとが接する領域のサイズが制限されるため、受光素子への漏れ光の到達効率の低下を防止することができる。
 (14)また、上記活線検出装置において、前記受光素子と前記漏光発生部との間において、前記領域を制限するように前記他方の光ファイバの外周面に配置され、前記漏光発生部で発生した漏れ光を全反射する多孔質ガラス膜により構成された反射部を更に備えることが好ましい。
 この構成によれば、光透過性接着層と他方の光ファイバのクラッドとの接する領域のサイズが多孔質ガラス膜から構成される反射部によって制限されるため、他方の光ファイバから接着剤層を介して光が空気に漏れることを防止し、受光素子への漏れ光の到達効率をより一層向上させることができる。また、製造時に接着剤が漏光発生部側へ拡がってしまったとしても、反射部により、接着剤層と他方の光ファイバとが接する領域のサイズが制限されるため、受光素子への漏れ光の到達効率の低下を防止することができる。
 (15)また、上記活線検出装置において、前記反射部は、前記光透過性接着層と前記漏光発生部との間において、前記他方の光ファイバのクラッドの外周を覆うように形成されていることが好ましい。
 この構成によれば、光透過性接着層と漏光発生部との間で他方の光ファイバのクラッド表面に結露が発生することを防止することができる。また、当該クラッドと結露による水滴とが直接接するのを防止できるため、漏光発生部で発生した漏れ光が水滴を通して空気中へ漏れるのを防止することができる。その結果、受光素子への漏れ光の到達効率の低下を防止することができる。

Claims (15)

  1.  2本の光ファイバを含む光線路が活線状態にあるか否かを検出する活線検出装置であって、
     前記2本の光ファイバの接続部位の屈折率分布が光軸方向の他の部位の屈折率分布と異なるように、前記2本の光ファイバを接続することで形成され、一方の光ファイバのコア内を伝搬してきた光の一部を他方の光ファイバのクラッドへ漏光させる漏光発生部と、
     前記他方の光ファイバのクラッドの外周面に光透過性接着層を介して接着され、前記漏光発生部により漏光された光を検出する受光素子とを備えることを特徴とする活線検出装置。
  2.  前記漏光発生部は、前記他の部位のクラッドの屈折率より高く、且つ、前記他の部位のコアの屈折率よりも低い屈折率を有する中間屈折率領域が形成されるように、前記2本の光ファイバを融着させることで形成されていることを特徴とする請求項1記載の活線検出装置。
  3.  前記漏光発生部は、前記2本の光ファイバを融着させる前に、前記一方の光ファイバの一端部と前記他方の光ファイバの一端部とをそれぞれを個別に溶融させることで、各一端部の屈折率分布を前記他の部位の屈折率分布と異ならせた後、前記一端部同士を融着することで形成されていることを特徴とする請求項2記載の活線検出装置。
  4.  前記漏光発生部は、前記2本の光ファイバを、当該2本の光ファイバとはコア径の異なる漏光発生用の光ファイバを挟んで接続することで形成されていることを特徴とする請求項1記載の活線検出装置。
  5.  前記漏光発生用の光ファイバのコアの屈折率が、前記2本の光ファイバそれぞれのコアの屈折率と異なることを特徴とする請求項4記載の活線検出装置。
  6.  前記漏光発生部は、前記2本の光ファイバを、前記2本の光ファイバとコア径が同じでコアの屈折率が異なる漏光発生用の光ファイバを挟んで接続することで形成されていることを特徴とする請求項1記載の活線検出装置。
  7.  前記漏光発生部は、前記2本の光ファイバを、当該2本の光ファイバのクラッドと同じ材料から構成され、屈折率が一様なファイバを挟んで接続することで形成されていることを特徴とする請求項1記載の活線検出装置。
  8.  前記受光素子は、波長帯及び伝送方向の少なくともいずれか一方が異なる複数の光を個別に検出可能な複数の受光素子であることを特徴とする請求項1~7のいずれかに記載の活線検出装置。
  9.  前記複数の受光素子は、前記漏光発生部からの距離が同じになるように配置されてなることを特徴とする請求項8記載の活線検出装置。
  10.  前記複数の受光素子は、検出感度が低い受光素子ほど前記漏光発生部に近い側に配置されていることを特徴とする請求項8記載の活線検出装置。
  11.  前記光線路は、双方向通信用の光線路であり、
     前記複数の受光素子は、前記光軸方向において前記漏光発生部を挟んで両側に配置されていることを特徴とする請求項9又は10記載の活線検出装置。
  12.  前記光透過性接着層は、前記受光素子と前記漏光発生部との間において、前記漏光発生部からの漏れ光が前記光透過性接着層を介して空気中へ漏れないように、前記他方の光ファイバのクラッドと接する領域が制限されていることを特徴とする請求項1~11のいずれかに記載の活線検出装置。
  13.  前記受光素子と前記漏光発生部との間において、前記領域を制限するように前記他方の光ファイバの外周面に配置され、前記漏光発生部で発生した漏れ光を反射する金属膜により構成された反射部を更に備えることを特徴とする請求項12記載の活線検出装置。
  14.  前記受光素子と前記漏光発生部との間において、前記領域を制限するように前記他方の光ファイバの外周面に配置され、前記漏光発生部で発生した漏れ光を全反射する多孔質ガラス膜により構成された反射部を更に備えることを特徴とする請求項12記載の活線検出装置。
  15.  前記反射部は、前記光透過性接着層と前記漏光発生部との間において、前記他方の光ファイバのクラッドの外周を覆うように形成されていることを特徴とする請求項13又は14記載の活線検出装置。
PCT/JP2009/063089 2008-07-25 2009-07-22 活線検出装置 WO2010010888A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801290901A CN102105828A (zh) 2008-07-25 2009-07-22 活线检测装置
EP09800402A EP2306225A4 (en) 2008-07-25 2009-07-22 METHOD FOR DETECTING DIRECT LINES
US13/054,849 US20110140011A1 (en) 2008-07-25 2009-07-22 Hot line detection device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-192760 2008-07-25
JP2008-192759 2008-07-25
JP2008192760A JP2010032650A (ja) 2008-07-25 2008-07-25 活線検出装置
JP2008192758A JP2010032272A (ja) 2008-07-25 2008-07-25 活線検出装置
JP2008192759A JP2010032273A (ja) 2008-07-25 2008-07-25 活線検出装置
JP2008-192758 2008-07-25

Publications (1)

Publication Number Publication Date
WO2010010888A1 true WO2010010888A1 (ja) 2010-01-28

Family

ID=41570348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063089 WO2010010888A1 (ja) 2008-07-25 2009-07-22 活線検出装置

Country Status (4)

Country Link
US (1) US20110140011A1 (ja)
EP (1) EP2306225A4 (ja)
CN (1) CN102105828A (ja)
WO (1) WO2010010888A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086415A2 (ja) * 2010-01-15 2011-07-21 パナソニック電工株式会社 活線検出装置
EP2659252B1 (en) * 2010-12-30 2020-07-22 LM WP Patent Holding A/S Method and apparratus for determining load of a wind turbine blade

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334952B2 (ja) 2014-02-24 2018-05-30 株式会社フジクラ 光パワーモニタ装置、ファイバレーザおよび光パワーモニタ方法
JP5873541B1 (ja) * 2014-10-06 2016-03-01 株式会社フジクラ 光パワーモニタ装置および光パワーモニタ方法
EP3343203B1 (en) * 2016-12-28 2019-11-13 Vito NV Optical methods for phase change materials
JP6564418B2 (ja) * 2017-04-20 2019-08-21 ファナック株式会社 光パワーモニタ装置およびレーザ装置
US10302865B1 (en) * 2017-12-20 2019-05-28 The Boeing Company Remote optical amplifiers powered by scattered light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255231A (ja) * 2000-03-10 2001-09-21 Chubu Electric Power Co Inc 光線路の活線検出装置
JP2002156564A (ja) * 2000-09-05 2002-05-31 Matsushita Electric Ind Co Ltd 光信号読取装置
JP2005062704A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd 光モジュール、光減衰装置、光送受信モジュール並びに光導波部材
WO2005103779A1 (ja) * 2004-04-22 2005-11-03 Fujitsu Limited 光ファイバ接続部構造及び光モニタ装置
JP2007085934A (ja) 2005-09-22 2007-04-05 Hokkaido Electric Power Co Inc:The 光伝送路判別装置、並びにこの光伝送路判別装置を用いた光成端トレイ、光成端ユニット、光成端装置、および光伝送路管理システム
JP2008032592A (ja) * 2006-07-31 2008-02-14 Central Japan Railway Co 光ファイバ路線監視システム
JP2009014681A (ja) * 2007-07-09 2009-01-22 Panasonic Electric Works Co Ltd 光ファイバの活線検出装置及び光成端箱

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076375A (en) * 1975-12-24 1978-02-28 Bell Telephone Laboratories, Incorporated Directional optical waveguide coupler and power tap arrangement
JPS539129A (en) * 1976-07-13 1978-01-27 Matsushita Electric Ind Co Ltd Light branching system
JPS5340538A (en) * 1976-09-25 1978-04-13 Matsushita Electric Ind Co Ltd Photo branching device
FR2427626A1 (fr) * 1978-05-30 1979-12-28 Comp Generale Electricite Dispositif de derivation pour detecter la lumiere parcourant une fibre optique
US4475789A (en) * 1981-11-09 1984-10-09 Canadian Patents & Development Limited Optical fiber power tap
US5095519A (en) * 1990-11-30 1992-03-10 At&T Bell Laboratories Apparatus and method for producing an in-line optical fiber attenuator
US6481903B1 (en) * 1998-08-07 2002-11-19 Tycom (U.S.) Inc. Optical fiber splice protector and method for applying same
EP1186924A3 (en) * 2000-09-05 2003-08-13 Matsushita Electric Industrial Co., Ltd. Optical signal reading apparatus using light leaked out of light transmission path
WO2003030409A1 (en) * 2001-09-28 2003-04-10 Protodel International Limited Monitor for an optical fibre and multi-guide optical fibre circuits and methods of making them
JP2006258554A (ja) * 2005-03-16 2006-09-28 Sumitomo Osaka Cement Co Ltd 光モニタ方法および光モニタ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255231A (ja) * 2000-03-10 2001-09-21 Chubu Electric Power Co Inc 光線路の活線検出装置
JP2002156564A (ja) * 2000-09-05 2002-05-31 Matsushita Electric Ind Co Ltd 光信号読取装置
JP2005062704A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd 光モジュール、光減衰装置、光送受信モジュール並びに光導波部材
WO2005103779A1 (ja) * 2004-04-22 2005-11-03 Fujitsu Limited 光ファイバ接続部構造及び光モニタ装置
JP2007085934A (ja) 2005-09-22 2007-04-05 Hokkaido Electric Power Co Inc:The 光伝送路判別装置、並びにこの光伝送路判別装置を用いた光成端トレイ、光成端ユニット、光成端装置、および光伝送路管理システム
JP2008032592A (ja) * 2006-07-31 2008-02-14 Central Japan Railway Co 光ファイバ路線監視システム
JP2009014681A (ja) * 2007-07-09 2009-01-22 Panasonic Electric Works Co Ltd 光ファイバの活線検出装置及び光成端箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2306225A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086415A2 (ja) * 2010-01-15 2011-07-21 パナソニック電工株式会社 活線検出装置
WO2011086415A3 (ja) * 2010-01-15 2011-09-29 パナソニック電工株式会社 活線検出装置
EP2659252B1 (en) * 2010-12-30 2020-07-22 LM WP Patent Holding A/S Method and apparratus for determining load of a wind turbine blade

Also Published As

Publication number Publication date
EP2306225A1 (en) 2011-04-06
CN102105828A (zh) 2011-06-22
EP2306225A4 (en) 2012-11-28
US20110140011A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2010010888A1 (ja) 活線検出装置
US7228033B2 (en) Optical waveguide lens and method of fabrication
WO2017217539A1 (ja) 結合型マルチコア光ファイバの軸合わせ方法
US20080247714A1 (en) Optical fiber/glass tube fusion-spliced structure, optical fiber assembly including the structure and glass tube used in the structure
WO2016031096A1 (ja) 光素子、終端器、波長可変レーザ装置及び光素子の製造方法
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP3888942B2 (ja) 光ファイバ部品
JP2011145216A (ja) 活線検出装置
US7352937B2 (en) Devices, systems and methods for connecting a single mode fiber to a legacy multi-mode fiber
TWI396876B (zh) Variable splitting ratio fiber coupler and its manufacturing method
JP2010032650A (ja) 活線検出装置
JP2010032273A (ja) 活線検出装置
JP2008170327A (ja) 屈折率検出装置、および、液位検出装置
CN114234840B (zh) 一种基于拉锥双球型无芯光纤的曲率传感器及制备方法
JP4276990B2 (ja) 光ファイバコリメータおよびこれを用いた光ファイバ部品
US9535218B1 (en) Fiber optics fiber inline tap monitoring
JP2010032272A (ja) 活線検出装置
US20130108218A1 (en) Waveguide and connecting element
KR20010109797A (ko) 탭 커플러
JP2020134618A (ja) レンズ構造体及び光接続構造
CN110646895B (zh) 光插座及光收发器
Shukla Elements of Optical Communication and Opto Electronics
JP2001159580A (ja) 光ファイバの漏洩光検出装置および方法
JP2024049011A (ja) 光ファイバセンサ
Senior et al. Spectral transmission effects concerning wavelength multiplexed optical fibre sensor systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129090.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 245/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009800402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13054849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE