WO2005103779A1 - 光ファイバ接続部構造及び光モニタ装置 - Google Patents

光ファイバ接続部構造及び光モニタ装置 Download PDF

Info

Publication number
WO2005103779A1
WO2005103779A1 PCT/JP2004/005793 JP2004005793W WO2005103779A1 WO 2005103779 A1 WO2005103779 A1 WO 2005103779A1 JP 2004005793 W JP2004005793 W JP 2004005793W WO 2005103779 A1 WO2005103779 A1 WO 2005103779A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
connection structure
optical
fiber connection
Prior art date
Application number
PCT/JP2004/005793
Other languages
English (en)
French (fr)
Inventor
Norifumi Shukunami
Hiroyuki Furukawa
Keiko Sasaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/005793 priority Critical patent/WO2005103779A1/ja
Priority to JP2006512458A priority patent/JP4657205B2/ja
Publication of WO2005103779A1 publication Critical patent/WO2005103779A1/ja
Priority to US11/583,107 priority patent/US7296940B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring

Definitions

  • the present invention relates to a structure of a connection portion of a fusion spliced optical fiber and an optical monitoring device that monitors the power of an optical signal propagating through the optical fiber, and particularly focuses on light emitted from the fusion spliced portion.
  • the present invention relates to an optical fiber connection structure and an optical monitoring device.
  • Optical fibers have been developed as a medium for transmitting optical signals.
  • the material include a quartz glass fiber and a plastic fiber used in an optical communication system.
  • it is used for all optical components that make up the system, including transmission lines. Specifically, it is used for a laser diode (LD) as a signal light source, a photodiode (PD) as a light receiver, an optical power splitter for splitting part of light, an optical switch for switching the optical path, and wavelength multiplexing / demultiplexing of optical signals.
  • LD laser diode
  • PD photodiode
  • an optical switch for switching the optical path
  • wavelength multiplexing / demultiplexing of optical signals Wavelength, a multiplexer / demultiplexer, an optical isolator that transmits light in one direction, an optical filter that filters light, an optical amplification fiber that serves as an optical amplification medium, and the like.
  • an optical module such as an optical modulator or an optical amplifier, it is necessary to connect optical fiber
  • connection methods for optical fibers include, for example, a physical connection method and a fusion spl ice method in which a glass base material is heated to a high temperature and melted for connection.
  • the optical fiber is reinforced with ferrules such as zirconia, glass or metal, and connected using an adapter.
  • a discharge is generated by an electrode, and the fibers are brought into contact with each other during the fusion to perform fusion splicing.
  • a fusion splicing device using such a method has been put to practical use.
  • quartz glass fibers are provided with a UV coat formed using an ultraviolet (UV) curable resin to prevent breakage due to damage to the glass surface.
  • UV ultraviolet
  • the above UV coat is removed once and fusion splicing is performed. After connection, the connection is protected again using a heat-shrinkable tube or the like.
  • a recoating technique has been put to practical use, in which the UV coat once removed is again covered with the same thickness using a UV curable resin (for example, see Patent Documents 1 and 2 below). This recoating technique is an effective means for high-density mounting of optical fibers and connecting parts.
  • the UV curable resin used in the above-mentioned recoating technology is not only a coating material for optical fibers, but also a lens forming material, an optical adhesive, an adhesive for bonding optical discs, and a hard coat for plastic films for LCDs. It is used in a wide range of fields such as resin for 3D modeling. As can be seen from the application, UV-curable resins have wavelengths longer than ultraviolet (200-400 nm), visible light (400-800 nm), and light of wavelengths used in optical communications (800-1650 nm). It has excellent permeability to
  • Patent Document 1
  • Patent Document 2
  • connection loss occurs due to a mismatch between the eccentricity of the core and the mismatch of the mode field diameter.
  • the connection loss of the same type of optical fiber is about 0.1 dB.
  • a part of the optical signal L1 propagating through the core 101 is radiated from the core 101 to the clad 102 due to the connection loss described above.
  • the light L 1 ′ emitted to the clad 102 propagates through the optical fiber in a clad mode.
  • Fig. 8 shows an example of a measurement system that evaluates the ratio of cross-mode light coupling to another optical fiber (crosstalk) when the fusion spliced part of the optical fiber is close to another optical fiber.
  • two light sources having wavelengths of, for example, 980 nm and 1480 nm are used as the light source 200.
  • a recoating portion 104 transparent to the light output from the light source 200 is formed near the fusion splicing portion S.
  • the optical power meter 201 measures the intensity P 1 [dBm] of the light that has propagated through the optical fiber F 1, and the cladding coupled to another optical fiber F 2 close to the fusion spliced portion S of the optical fiber F 1.
  • the distance from the fusion splicing part S to the optical power meter 202 is L [cm].
  • FIG. 11 is a diagram illustrating a configuration example of a general optical amplifier.
  • the pumping light output from the pumping light source (LD) 301 is supplied to an erbium-doped fiber (EDF) 300 via a WDM force bracket 302.
  • EDF erbium-doped fiber
  • a part of the input light supplied from the input terminal IN to the EDF 300 via the optical isolator 303 and the WDM coupler 302 is branched by the branching power brabler 305 and monitored by the light receiver 306, and the light from the EDF 300 is A part of the output light sent to the output terminal OUT via the isolator 304 is branched by the branching power blur 307 and monitored by the light receiver 308.
  • each component and connecting optical fiber is modularized in a mounting state as shown in the schematic diagram of FIG.
  • the fusion spliced portion S of the optical fiber between the excitation light source 301 and the WD M force brass 302 and the optical fiber between the branching force brass 305 and the light receivers 310 In the case where the fusion splicing part S is close to the above, part of the excitation light leaks to the input monitor side via the fusion splicing part S, and the light of the input light monitored by the photodetector 306 The SN ratio may be degraded.
  • the input optical power to the optical amplifier is 130 dBm and the loss of the branching power bracket 305 is 13 dB
  • the power of the monitor light is -43 dBm.
  • the power of the pump light is 20 dBm and the amount of cross between the optical fibers on the pump light side and the input monitor light side is 50 to 60 dB dB
  • the light receiving device 3 The excitation light of 40 to 130 dBm leaks into 06. Therefore, when the leakage component of the excitation light having a higher power than the input monitor light is input to the photodetector 306, the monitoring accuracy of the input light to the optical amplifier deteriorates.
  • the light emitted from the fusion spliced portion S of the optical fiber as described above can be used as a monitor light for monitoring the power of an optical signal propagating through the optical fiber from a different viewpoint. It is possible. However, heretofore, no proposal has been made regarding the specific configuration of the optical monitor that actively utilizes the light radiated from the fusion splicing portion S.
  • the present invention has been made in view of the above points, and it is a first object of the present invention to realize an optical fiber connecting portion structure capable of reliably preventing light emitted from a fusion splicing portion from being coupled into another optical fiber. The purpose of. It is a second object of the present invention to provide a small-sized optical monitor device having a simple configuration using light emitted from a fusion splicing portion. Disclosure of the invention
  • the optical fiber connecting portion structure of the present invention includes a fusion splicing portion in which each one end of two optical fibers having a core and a cladding and a coating portion provided outside the cladding is fusion-bonded.
  • a recoat portion that re-covers the removed portion of the coating portion, and of the light propagating through the core, which is radiated to the clad side when passing through the fusion spliced portion.
  • Radiation light coupling blocking means for preventing the radiation light from coupling into another optical fiber close to the outside of the recoil section.
  • the recoil portion may be formed using a material that absorbs the radiation light.
  • the outer peripheral surface of the recoat portion may be formed so as to have a shape capable of irregularly reflecting the radiated light.
  • a material that absorbs the radiated light may be applied to an outer peripheral surface of the recoil portion that is transparent to the radiated light.
  • An optical monitoring device is a device for monitoring the power of light propagating through an optical fiber having a core and a clad, wherein the fusion splicing existing on the optical fiber among the light propagating through the core.
  • a light-receiving element for receiving radiation emitted to the cladding side when passing through the section, and detecting a power of light propagating through the optical fiber based on a photocurrent generated by the light-receiving element.
  • the power of the light propagating through the optical fiber can be monitored only by providing the light receiving element by using the light radiated from the fusion splicing portion.
  • FIG. 1 is a diagram showing a first embodiment of the optical fiber connection structure according to the present invention.
  • FIG. 2 is a diagram showing a modification of the first embodiment.
  • FIG. 3 is a view showing a second embodiment of the optical fiber connection structure according to the present invention.
  • FIG. 4 is a diagram showing a third embodiment of the optical fiber connection structure according to the present invention.
  • FIG. 5 is a diagram showing an embodiment of the optical monitoring device according to the present invention.
  • FIG. 6 is a diagram showing an application example of the optical monitoring device of FIG.
  • FIG. 7 is a diagram illustrating leakage of clad mode light into another optical fiber in a conventional optical fiber connection structure.
  • FIG. 8 is a diagram showing an example of a measurement system for evaluating the crosstalk of clad mode light in a conventional optical fiber connection structure.
  • FIG. 9 is a diagram showing a measurement result of a relationship between a distance and a crosstalk amount in the measurement system of FIG.
  • FIG. 10 is a diagram for explaining a problem of a known technique for preventing occurrence of crosstalk in a conventional optical fiber connection structure.
  • FIG. 11 is a diagram illustrating a configuration example of a general optical amplifier.
  • FIG. 12 is a diagram schematically showing a mounted state of the optical amplifier of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a first embodiment of the optical fiber connection structure according to the present invention.
  • the optical fiber connecting portion structure of the present embodiment is a fusion splicing portion in which each one end of two optical fibers having a core 1, a cladding 2, and a UV coating portion (UV coating) 3 is fusion spliced.
  • a material that has S and is capable of absorbing light emitted from the fusion spliced portion S is used as the recoat portion 10 formed in the portion where the UV coating portion 3 is removed for fusion splicing. It is characterized by the following.
  • the material (recoat material) used for the recoat portion 10 is realized, for example, by mixing a coloring material with a UV curable resin.
  • the coloring material mixed with the UV curable resin a material that absorbs less light in the ultraviolet (200 to 400 nm) wavelength region is preferable so that the curability of the UV light is not hindered. That's right.
  • coloring materials can be roughly classified into pigments and dyes. Further, pigments are divided into inorganic pigments and organic pigments.
  • inorganic pigment Rippon Black is known to exhibit very large absorption characteristics.
  • the first recoil part 11 is formed using a UV curable resin in which the force pump rack is not mixed, and then the UV light is mixed with the force pump rack. It is effective to carry out double recoating in which the second recoat part 11 is formed using a cured resin.
  • an inorganic pigment such as titanium oxide or zinc oxide may be mixed with the UV curable resin in addition to the above-described carbon black.
  • organic pigments for example, cyanine dyes, phthalocyanine dyes, azo dyes and the like are known as near-infrared absorbing dyes, and UV curable resins mixed with such organic pigments are used.
  • a recoat portion 10 may be formed.
  • the optical signal L 1 propagating in the core 1 surrounded by the clad 2 is partially lost due to the eccentricity of the core in the fusion spliced portion S and the mismatch of the mode field diameter.
  • the radiation L 1 ′ from the fusion splicing part S is absorbed by the recoat part 10 (FIG. 1) or the second recoat part 12 (FIG. 2). become. Therefore, even when other optical fibers are close to each other, it is possible to reliably avoid a situation in which the radiated light L 1 ′ from the fusion splicing part S leaks into the other optical fibers and causes crosstalk. become.
  • FIG. 3 is a diagram showing an optical fiber connection structure of the second embodiment.
  • the optical fiber connecting portion structure of the present embodiment has a fusion splicing portion S in which each one end of two optical fibers having a core 1, a cladding 2, and a UV coating portion 3 is fusion spliced, At the part where the UV coating part 3 was removed for fusion splicing, a recoated part 13 with irregularities on the surface was formed to diffusely reflect the light L 1 ′ emitted from the fusion spliced part S. It is characterized by. For example, when recoating the vicinity of the fusion spliced portion S using the same UV curable resin as in the past, the recoat portion 13 is several tens of times longer than the wavelength of the optical signal L1 propagating through the core 1.
  • the light radiated from the fusion splicing portion S is the light signal L which is the surface roughness of the recoating portion 13 (in this case, the surface roughness is represented using the unevenness sizes H and T shown in FIG. 3). If the wavelength is one order of magnitude smaller than the wavelength of 1, almost no irregular reflection occurs on such an uneven surface.
  • the surface roughness of the recoat portion 13 is substantially the same as the wavelength of the optical signal L1 and the shape of the irregularities is periodic, a diffraction phenomenon occurs on such irregularities, and light is identified. It becomes strongly reflected in the angle direction.
  • the fusion splicing is performed by setting the irregularities H and T on the surface of the recoat portion 13 to about 100 to 100 m and making the irregularities substantially random.
  • the light radiated from the portion S is irregularly reflected on the uneven surface.
  • specific examples of the cladding diameter D2, the UV coating outer diameter D3, and the recoat length W are as follows.
  • the cladding diameter D2 is 125 zm.
  • the UV coating outer diameter D3 is about 250 lim, and the recoat length W is about 10 to 20 mm.
  • the optical fiber to which the present invention can be applied is not limited to the above specific examples.
  • the UV curable resin is cured by using a mold 20 as shown in the upper part of FIG. 3 in which random irregularities are formed by bead blast or the like. It is better to do the processing.
  • a material that is transparent to light in the wavelength region of 200 to 400 nm is used to cure the UV curable resin filled between the optical fiber. Is preferred.
  • the light L 1 ′ emitted from the fusion splicing portion S is irregularly reflected on the outer peripheral surface of the recoating portion 13, so that other optical fibers are close to each other. In this case, it is possible to substantially prevent the radiation L 1 ′ from the fusion splicing part S from leaking into another optical fiber.
  • FIG. 4 is a diagram illustrating an optical fiber connecting portion structure according to the third embodiment.
  • the optical fiber connection structure of the present embodiment is obtained by fusion splicing one end of each of two optical fibers having a core 1, a clad 2, and a UV coating (UV coating) 3.
  • a recoating portion 14 After forming a recoating portion 14 using the same UV curable resin as the conventional one at the portion where the UV coating portion 3 was removed for the fusion splicing, the recoating portion 14 was formed.
  • An absorber applying portion 15 for absorbing the light L 1 ′ emitted from the fusion splicing portion S is formed on the surface of the substrate.
  • the absorbing material application section 15 is, for example, an ink or the like in which the same coloring material as in the first embodiment described above is mixed with a solvent different from the UV curable resin used for forming the recoating section 14. It is formed by applying the above-described ink to the entire surface of the recoating part 14 which is transparent to the radiation L 1 ′ from the fusion splicing part S.
  • solvents include aliphatic hydrocarbons (petroleum ether, hexane, heptane, octane), aliphatic oxygen compounds (acetals, alcohols, acetone, acetate esters), and aliphatic nitrogen compounds (acetonitrile) , Aromatic compounds (benzene, toluene, xylene, styrene), aromatic nitrogen compounds (pyridine), aliphatic halogen compounds (chloroform, methyl chloride, dichloromethane, carbon tetrachloride), aromatic halogen compounds (Benzene benzene, benzyl chloride) and the like can be used.
  • aliphatic hydrocarbons petroleum ether, hexane, heptane, octane
  • aliphatic oxygen compounds acetals, alcohols, acetone, acetate esters
  • aliphatic nitrogen compounds acetonitrile
  • Aromatic compounds benzene
  • the light L 1 ′ radiated from the fusion splicing portion S is transmitted through the recoating portion 14 and then absorbed by the absorber applying portion 15. Therefore, even when other optical fibers are close to each other, it is possible to reliably avoid a situation in which the radiated light L 1 ′ from the fusion splicing part S leaks into the other optical fibers and causes crosstalk. Will be possible.
  • the absorber application part 15 can be formed with a thickness of the order of 0.1 mm. In addition, there is also obtained an effect that the method is very advantageous.
  • FIG. 5 is a diagram showing a configuration of an embodiment of the optical monitoring device according to the present invention.
  • the optical monitoring device of the present embodiment includes a light L 1 radiated from a fusion splicing portion S in order to monitor the power of an optical signal L 1 propagating through an optical fiber having a core 1 and a cladding 2.
  • the light receiving element (PD) 30 is provided on the surface of the recoating section 4 where the 'reaches.
  • the light receiving element 30 emits the light L 1 ′ radiated from the fusion splicing part S and transmitted through the recoat part 4 formed using the same transparent UV curable resin as before.
  • This is a general light receiving element that receives light and generates a photocurrent according to the power of the light L 1 ′.
  • the light receiving element 30 is fixed to the optical fiber such that the light receiving surface of the light receiving element 30 is located on the outer peripheral surface of the recoding section 4.
  • the light L 1, radiated from the fusion splicing part S, is received by the light receiving element 30, and the light L 1, according to the value of the photocurrent output from the light receiving element 30.
  • the power of the optical signal L1 propagating through the optical fiber can be easily monitored.
  • a part of the optical signal L1 is branched using, for example, a fiber fusion fogger or a dielectric multilayer film, and the branched light is separated.
  • the optical monitoring device of the present embodiment As described above, by utilizing the light L 1 ′ emitted from the fusion splicing portion S, The power of the optical signal L1 can be monitored only by providing the light receiving element 30 on the outer peripheral surface of the recoding section 4. This makes it possible to realize a small-sized optical monitor device with a small number of components.
  • one light receiving element 30 is provided on the outer peripheral surface of the recoating section 4.
  • it may be provided in the circumferential direction of the outer peripheral surface of the connecting portion 4.
  • the light receiving surface of the light receiving element 30 is disposed on the outer peripheral surface of the recoating unit 4 .
  • the light receiving surface is located near the outer peripheral surface of the recoating unit 4.
  • the light receiving element 30 may be arranged so as to perform the above operation.
  • an application is also possible in which a lens is formed on the outer peripheral surface of the recording unit 4 so that light emitted from the outer peripheral surface of the recoating unit 4 is focused on the light receiving surface of the light receiving element 30.
  • the present invention as described above, it is possible to realize an optical fiber connecting portion structure that can reliably prevent the light emitted from the fusion splicing portion from coupling into another optical fiber, In addition, it is possible to provide a small-sized optical monitor device with a simple configuration using light emitted from the fusion splicing part. Therefore, the present invention has great industrial applicability in various fields such as optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

本発明の光ファイバ接続部構造は、コア、クラッド及びUV被覆部を有する2本の光ファイバの各一端を融着接続した融着接続部を有し、その融着接続部の近傍でUV被覆部の除去された部分を再被覆するリコート部が、融着接続部から放射される光を吸収することが可能な材料を用いて形成される。これにより、融着接続部から放射される光がリコート部の外側に近接する他の光ファイバ中に結合するのを確実に阻止できるようになる。

Description

明 細 書 光ファイバ接続部構造及び光モニタ装置 技術分野
本発明は、 融着接続された光ファイバの接続部の構造と、 光ファイバを伝播す る光信号のパワーをモニタする光モニタ装置に関し、 特に、 融着接続部から放射 される光に着目した光ファイバの接続部構造及び光モニタ装置に関する。 背景技術
光ファイバは、 光信号を伝送する媒体として発達してきた。 その材料としては、 例えば、 光通信システムで用いられている石英ガラスファイバ、 プラスチックフ アイバが挙げられる。 光通信システムでは、 伝送路を初めとしてシステムを構成 するあらゆる光部品に使用されている。 具体的には、 信号光源となるレーザダイ オード (L D)、 受光器となるフォトダイオード (P D)、 光の一部を分岐する光 力ブラ、 光路を切り替える光スィッチ、 光信号の波長多重分離に用いられる波長 合分波器、 光を一方向に伝える光アイソレータ、 光を濾波する光フィルタ、 光の 増幅媒体となる光増幅用ファイバ等が挙げられる。 これら複数の光部品を集めて、 光変調器や光増幅器等の光モジュールを完成させるためには、 光ファイバ同士の 接続が必要となる。
光ファイバ同士の一般的な接続方法は、 例えば、 物理的に接続する方法と、 ガ ラス母材を高温にして融かして接続する融着接続 (fus ion spl ice) 方法とが挙 げられる。 物理的に接続する方法は、 光ファイバを、 ジルコニァ、 ガラス又は金 属等のフエルールで補強し、 アダプタを用いて接続している。 融着接続方法は、 電極により放電を発生させ、 放電中にファイバ同士を接触させて融着接続を行う ものであり、 このような方法を利用した融着接続装置が実用化されている。
一般に、 石英ガラスファイバは、 ガラス表面が傷つくことによる破断を防ぐた めに、 紫外線 (UV) 硬化樹脂を用いて形成された UVコートが施されている。 'このため、 融着接続作業時には、 上記の UVコートを一度除去して融着接続を行 い、 接続後は当該接続部を熱収縮チューブ等を用いて再び保護する。 現在、 一度 除去した UVコートを、 UV硬化樹脂を用いて再び同等の太さで覆う、 リコ一ト 技術が実用化されている (例えば、 下記の特許文献 1, 2参照)。 このリコ一ト 技術は、 光ファイバ及び接続部分の高密度実装化においては、 有効な手段である。 上記のリコート技術に用いられる UV硬化樹脂は、 光ファイバのコ一ト材の他に も、 例えば、 レンズ形成材料や光学用接着剤、 光ディスクの貼り合わせ用接着剤、 LCD用プラスチックフィルムのハードコート、 3次元立体造形用樹脂等の幅広 い分野で使用されている。 UV硬化樹脂は、 その用途から分かるように、 紫外線 (200〜400 nm) 以上の波長である、 可視光 (400〜800 nm) 及び 光通信で使用されている波長 (800〜 1650 n m) の光に対して優れた透過 性を有している。
特許文献 1
特開 2001— 343548号公報
特許文献 2
特開平 10— 73729号公報
ところで、 上記のような従来の方法によつて融着接続された光フアイバの接続 部では、 コァの偏心ゃモ一ドフィールド径のミスマッチにより接続損失が発生す る。 例えば、 同種の光ファイバにおける接続損失は 0. l dB程度である。 この ため、 例えば図 7に示すように、 光ファイバの融着接続部 Sでは、 上記の接続損 失により、 コア 101を伝播する光信号 L 1の一部がコァ 101からクラッド 1 02に放射される。 このクラッド 102に放射された光 L 1 ' は、 クラッドモー ドとして光ファイバを伝播する。 そして、 クラッドモードが伝播している光ファ ィバと他の光ファイバが近接すると、 そのクラッドモードの光 L 1 ' が、 他の光 フアイバに漏れ込むという現象が発生する。
図 8は、 光ファイバの融着接続部が他の光ファイバに近接した場合に、 クラッ ドモードの光が他の光ファイバに結合する割合 (クロストーク) を評価した測定 系の一例である。 この測定系では、 光源 200として、 例えば 980 nm及び 1 480 nmの波長をもつ 2種類の光源が用いられる。 ここでは、 光源 200から 出力される光に対して透明なリコート部 104が融着接続部 Sの近傍に形成され た光ファイバ F 1を伝播した光の強度 P 1 [dBm] を光パワーメータ 201で 測定すると共に、 該光ファイバ F 1の融着接続部 Sに近接する他の光ファイバ F 2に結合したクラッドモードの光の強度 P 2 [dBm] を光パワーメータ 202 で測定し、 各々の測定結果を基にクロストーク量 [dB] =P 1 [dBm] 一 P 2 [dBm] が求められる。 なお、 クラッドモードの光が結合される光ファイバ F 2について、 融着接続部 Sから光パワーメータ 202までの距離を L [cm] としている。
図 9は、 図 8の測定系における距離 L [cm] とクロストーク量 [dB] の関 係の測定結果を示したものである。 L= 5〜30 cmの範囲において、 980 η mの波長の光では 50~67 dBのクロス 1 クが発生し、 1480 nmの波長 の光では 50〜53 dBのクロストークが発生することが分かる。 これらのクロ ストーク量は、 例えば光増幅器における励起光パワーと信号入力パワーの比を想 定すると、 光 S N比の劣化を招き得るレベルに相当する。
上記のような光フアイバの融着接続部でのクロス I ^一クの発生を防ぐための 1 つの方法として、 例えば図 10の上段に示すように UVコートに着色を施した光 ファイバを使用することが考えられる。 しかしながら、 UVコートに着色を施し た光ファイバについても、 図 10の下段に示すように、 その融着接続部 S' をリ コートした場合、 当該リコート部 104' の材料として従来の高透過率の UV硬 化樹脂が使われていれば、 近接する光ファイバの融着接続部 Sから放射される光 が漏れ込んでしまう可能性がある。
図 11は、 一般的な光増幅器の構成例を示した図である。 この構成例では、 励 起光源 (LD) 301から出力される励起光が WDM力ブラ 302を介してエル ピウムド一プファイバ (EDF) 300に供給される。 また、 入力端子 I Nから 光アイソレータ 303及び WDMカプラ 302を介して EDF 300に与えられ る入力光の一部が分岐力ブラ 305で分岐されて受光器 306でモニタされると 共に、 EDF 300から光アイソレータ 304を介して出力端子 OUTに送られ る出力光の一部が分岐力ブラ 307で分岐されて受光器 308でモニタされる。 上記のような一般的な光増幅器の各構成要素は、 融着接続部 Sを有する光ファ ィバによって各々の間が接続される。 各構成要素及び接続用光ファイバは、 例え ば図 1 2の概略図に示すような実装状態でモジュール化される。 このような実装 状態において、 例えば、 励起光源 3 0 1及び WD M力ブラ 3 0 2間の光ファイバ の融着接続部 Sと、 分岐力ブラ 3 0 5及び受光器 3 0 6間の光ファイバの融着接 続部 Sとが近接するような場合、 励起光の一部が融着接続部 Sを介して入力モニ 夕側に漏れ込み、 受光器 3 0 6でモニタされる入力光の光 S N比が劣化してしま う可能性がある。 具体的に、 例えば、 光増幅器への入力光パワーを一 3 0 d Bm、 分岐力ブラ 3 0 5の損失を 1 3 d Bとすると、 入力光モニタ用の受光器 3 0 6に 到達する入力モニタ光のパワーは— 4 3 d Bmとなる。 このとき、 励起光のパヮ 一を 2 0 d Bmとし、 励起光側及び入力モニタ光側の各光ファイバ間におけるク ロス 1 ク量を 5 0〜6 0 d B d Bとすると、 受光器 3 0 6には— 4 0〜一 3 0 d B mの励起光が漏れ込む。 したがって、 入力モニタ光よりもパワーの大きな励 起光の漏れ込み成分が受光器 3 0 6に入力されることで、 光増幅器への入力光の モニタ精度に劣化が発生してしまう。
なお、 光ファイバの融着接続部において意図的に損失を発生させる、 軸ずれス プライス技術も実用化されている。 この軸ずれスプライス技術を用いれば 3 d B 程度の損失を容易に発生させることができる。 このような軸ずれスプライス技術 が適用される場合には、 より多くの光がクラッドモードを伝播することになり、 それが他の光ファイバに漏れ込んでより大きな光 S N比の劣化が発生する可能性 がある。
一方、 上述したような光ファイバの融着接続部 Sから放射される光については、 その見方を変えると光ファイバを伝播する光信号のパワーをモニタするためのモ ニタ光等として利用することも可能である。 しかしながら、 従来、 融着接続部 S から放射される光を積極的に利用するような光モニタの具体的な構成に関する提 案はなされてこなかった。
本発明は上記の点に着目してなされたもので、 融着接続部から放射される光の 他の光ファイバ中への結合を確実に阻止できる光ファイバ接続部構造を実現する ことを第 1の目的とする。 また、 融着接続部から放射される光を利用して簡易な 構成で小型の光モニタ装置を提供することを第 2の目的とする。 発明の開示
このため、 本発明の光ファイバ接続部構造は、 コア及ぴクラッド並びに前記ク ラッドの外側に設けられた被覆部を有する 2本の光ファイバの各一端を融着接続 した融着接続部と、 その融着接続部の近傍で前記被覆部の除去された部分を再被 覆したリコート部と、 前記コアを伝播する光のうちで前記融着接続部を通過する 際に前記クラッド側に放射される放射光が、 前記リコ一ト部の外側に近接する他 の光ファイバ中に結合するのを阻止する放射光結合阻止手段と、 を備えたことを 特徴とする。
かかる光ファイバ接続部構造では、 コアを伝播する光は、 融着接続部の通過時 にその一部がコア外部のクラッドに放射されるが、 その放射光は放射光結合阻止 手段によってリコート部の外部への伝播が阻止される。 よって、 リコート部の外 側に他の光ファイバが近接していても、 その光ファイバ中に融着接続部からの放 射光が結合することが回避されるようになる。
上記放射光結合阻止手段の 1つの態様としては、 前記放射光を吸収する材料を 用いて前記リコ一卜部を形成するようにしてもよい。 また、 他の態様としては、 前記リコート部の外周面が前記放射光を乱反射可能な形状となるように成形して もよい。 さらに、 別の態様としては、 前記放射光に対して透明な前記リコ一ト部 の外周面に、 前記放射光を吸収する材料を塗布するようにしてもよい。
本発明の光モニタ装置は、 コア及びクラッドを有する光ファイバを伝播する光 のパワーをモニタする装置であって、 前記コアを伝播する光のうちで前記光ファ ィバ上に存在する融着接続部を通過する際に前記クラッド側に放射される放射光 を受光する受光素子を備え、 その受光素子で発生する光電流に基づいて前記光フ アイバを伝播する光のパワーを検出することを特徴とする。
かかる構成の光モニタ装置では、 融着接続部から放射される光を利用すること により、 受光素子を設けるだけで光ファイバを伝播する光のパワーをモニタでき るようになる。 図面の簡単な説明
図 1は、 本発明による光ファイバ接続部構造の第 1実施形態を示す図である。 図 2は、 上記第 1実施形態についての変形例を示す図である。
図 3は、 本発明による光ファイバ接続部構造の第 2実施形態を示す図である。 図 4は、 本発明による光フアイバ接続部構造の第 3実施形態を示す図である。 図 5は、 本発明による光モニタ装置の一実施形態を示す図である。
図 6は、 図 6の光モニタ装置の応用例を示す図である。
図 7は、 従来の光ファイバ接続部構造におけるクラッドモード光の他の光ファ ィバへの漏れ込みを説明する図である。
図 8は、 従来の光ファイバ接続部構造におけるクラッドモード光のクロスト一 クを評価するための測定系の一例を示す図である。
図 9は、 図 8の測定系における距離とクロストーク量の関係の測定結果を示す 図である。
図 1 0は、 従来の光ファイバ接続部構造におけるクロストークの発生を防ぐた めの公知技術の問題点を説明する図である。
図 1 1は、 一般的な光増幅器の構成例を示した図である。
図 1 2は、 図 1 1の光増幅器の実装状態の概略を示す図である。 発明を実施するための最良の形態
以下、 本発明の光ファイバ接続部構造及び光モニタ装置を実施するための最良 の形態について添付図面を参照しながら説明する。 なお、 全図を通して同一の符 号は同一又は相当部分を示すものとする。
図 1は、 本発明による光ファイバ接続部構造の第 1実施形態を示す図である。 図 1において、 本実施形態の光ファイバ接続部構造は、 コア 1、 クラッド 2及 び UV被覆部 (UVコート) 3を有する 2本の光ファイバの各一端を融着接続し た融着接続部 Sを有し、 融着接続のために UV被覆部 3を除去した部分に形成さ れるリコート部 1 0として、 融着接続部 Sから放射される光を吸収することが可 能な材料を用いることを特徴とする。 このリコート部 1 0に用いられる材料 (リ コート材) は、 例えば、 UV硬化樹脂に色材を混ぜることで実現される。 なお、 UV硬化樹脂に混ぜられる色材については、 UV光の硬化性が妨げられないよう に、 紫外線 (2 0 0〜 4 0 0 n m) の波長領域での光の吸収が少ないものが好ま しい。
上記の色材について具体的に説明すると、 一般的な色材は顔料及び染料に大別 することができる。 さらに、 顔料は無機顔料及び有機顔料に分けられる。 例えば、 無機顔料の力一ボンブラックは、 非常に大きい吸収特性を示すことが知られてい る。 しかし、 紫外線領域での吸収量も高いため、 カーボンブラックを混入した U V硬化樹脂の内部に、 完全に硬化されない部分が発生する可能性がある。 このよ うな場合、 例えば図 2に示すように、 最初に力一ポンプラックを混ぜていない U V硬化樹脂を用いて第 1リコ一ト部 1 1を形成した後、 力一ポンプラックを混入 した UV硬化樹脂を用いて第 2リコ一ト部 1 1を形成する、 2重リコートを実施 することが有効である。 なお、 本発明において UV硬化樹脂に混入される無機顔 料としては、 上記のカーボンブラックの他にも、 例えば、 酸化チタンや酸化亜鉛 等の無機顔料を UV硬化樹脂に混ぜるようにしてもよい。
また、 上記の有機顔料としては、 例えば、 シァニン系色素やフタロシアニン系 色素、 ァゾ系色素等が近赤外線吸収色素として知られており、 このような有機顔 料を混ぜた UV硬化樹脂を用いてリコート部 1 0を形成してもよい。
上記のような光ファイバ接続部構造では、 クラッド 2に囲まれたコア 1を伝播 する光信号 L 1は、 融着接続部 Sにおけるコアの偏心やモードフィールド径のミ スマッチなどにより、 その一部がコア外部のクラッドに放射されるようになる力 融着接続部 Sからの放射光 L 1 ' はリコート部 1 0 (図 1 ) 又は第 2リコート部 1 2 (図 2 ) において吸収されるようになる。 このため、 他の光ファイバが近接 する場合でも、 融着接続部 Sからの放射光 L 1 ' が他の光ファイバに漏れ込んで クロストークを発生させるような状況を確実に回避することが可能になる。
次に、 本発明による光ファイバ接続部構造の第 2実施形態について説明する。 図 3は、 第 2実施形態の光フアイバ接続部構造を示す図である。
図 3において、 本実施形態の光ファイバ接続部構造は、 コア 1、 クラッド 2及 び UV被覆部 3を有する 2本の光ファイバの各一端を融着接続した融着接続部 S を有し、 融着接続のために UV被覆部 3を除去した部分に、 表面に凹凸を設けた リコート部 1 3を形成し、 融着接続部 Sから放射される光 L 1 ' を乱反射させる ようにしたことを特徴とする。 リコート部 1 3は、 例えば、 従来と同様の UV硬化樹脂を用いて融着接続部 S 付近をリコ一トする際に、 コア 1を伝播する光信号 L 1の波長に対して数十倍〜 数百倍程度のランダムな凹凸形状が外周面に形成されるようにしたものである。 具体的に、 融着接続部 Sから放射される光は、 リコート部 1 3の表面粗さ (ここ では図 3に示す凹凸サイズ H及び Tを用いて表面粗さを表すも) が光信号 L 1の 波長よりも 1桁以上小さな場合、 そのような凹凸面では殆ど乱反射されない。 ま た、 リコート部 1 3の表面粗さが光信号 L 1の波長と同程度であり、 かつ、 凹凸 の形状が周期的である場合、 そのような凹凸面では回折現象が起きて光が特定の 角度方向に強く反射されるようになる。 そこで、 本実施形態では、 リコート部 1 3の表面の凹凸サイズ H, Tを 1 0〜1 0 0 m程度とし、 かつ、 その凹凸形状 を実質的にランダムなものにすることによって、 融着接続部 Sから放射される光 が当該凹凸面で乱反射されるようにしている。 なお、 上記の凹凸サイズ H, 丁と の比較として、 クラッド径 D 2、 U V被覆外径 D 3及びリコート長 Wの具体的な 一例を挙げておくと、 クラッド径 D 2は 1 2 5 z m、 U V被覆外径 D 3は 2 5 0 li m, リコート長 Wは 1 0〜2 0 mm程度となる。 ただし、 本発明を適用可能な 光ファイバは上記の具体例に限定されるものではない。
上記のような凹凸形状を有するリコート部 1 3の形成には、 例えば、 ビーズブ ラスト等でランダムな凹凸を形成した図 3の上側に示すような型 2 0を利用して、 UV硬化樹脂の硬化処理を行うのがよい。 また、 上記の型 2 0については、 光フ アイバとの間に充填される U V硬化樹脂を硬化させるために、 2 0 0〜4 0 0 n mの波長領域の光に対して透明な材料を使用するが好ましい。
上記のような光フアイパ接続部構造によれば、 融着接続部 Sから放射される光 L 1 ' がリコート部 1 3の外周面で乱反射されるようになるため、 他の光フアイ バが近接する場合でも、 融着接続部 Sからの放射光 L 1 ' が他の光ファイバに漏 れ込むのを実質的に回避することが可能になる。
次に、 本発明による光ファイバ接続部構造の第 3実施形態について説明する。 図 4は、 第 3実施形態の光ファイバ接続部構造を示す図である。
図 4において、 本実施形態の光ファイバ接続部構造は、 コア 1、 クラッド 2及 び U V被覆部 (UVコート) 3を有する 2本の光ファイバの各一端を融着接続し た融着接続部 Sを有し、 融着接続のために UV被覆部 3を除去した部分に、 従来 と同様の UV硬化樹脂を用いてリコート部 1 4を形成した後、 該リコート部 1 4 の表面に対して、 融着接続部 Sから放射される光 L 1 ' を吸収する吸収材塗布部 1 5を形成したことを特徴とする。
上記の吸収材塗布部 1 5は、 例えば、 リコート部 1 4の形成に用いる UV硬化 樹脂とは異なる溶剤に、 前述した第 1実施形態の場合と同様の色材を混ぜたィン キ等を使用し、 融着接続部 Sからの放射光 L 1 ' に対して透明なリコート部 1 4 の表面全体に上記インキを塗布することによって形成される。 上記の溶剤の具体 例としては、 脂肪族炭化水素 (石油エーテル, へキサン, ヘプタン, オクタン)、 脂肪族酸素化合物 (ァセタール, アルコール類, アセトン, 酢酸エステル)、 脂 肪族含窒化合物 (ァセトニトリル)、 芳香族化合物 (ベンゼン, トルエン, キシ レン, スチレン)、 芳香族含窒化合物 (ピリジン)、 脂肪族ハロゲン系化合物 (ク ロロホルム、 塩化メチル、 ジクロルメタン、 四塩化炭素)、 芳香族ハロゲン系化 合物 (クロ口ベンゼン、 塩化ベンジル) 等を使用することが可能である。
上記のような光フアイバ接続部構造によれば、 融着接続部 Sから放射される光 L 1 ' はリコ一ト部 1 4を透過した後に吸収材塗布部 1 5で吸収されるようにな るため、 他の光ファイバが近接する場合でも、 融着接続部 Sからの放射光 L 1 ' が他の光ファイバに漏れ込んでクロストークを発生させるような状況を確実に回 避することが可能になる。 また、 従来の熱収縮チューブを利用したリコ一ト部の 保護方法とは異なり、 0 . 1 mmオーダの厚さで吸収材塗布部 1 5を形成するこ とができるため、 光ファイバの実装面において非常に有利になるという効果も得 られる。
次に、 本発明による光モニタ装置の一実施形態について説明する。
図 5は、 本発明による光モニタ装置の一実施形態の構成を示す図である。
図 5において、 本実施形態の光モニタ装置は、 コア 1及びクラッド 2を有する 光ファイバを伝播する光信号 L 1のパワーをモニタするために、 融着接続部 Sか ら放射される光 L 1 ' が到達するリコート部 4の表面に受光素子 (P D) 3 0を 設けて構成される。 この受光素子 3 0は、 融着接続部 Sから放射され、 従来と同 様の透明な UV硬化樹脂を用いて形成されたリコート部 4を透過した光 L 1 ' を 受光し、 その光 L 1 ' のパワーに応じた光電流を発生する一般的な受光素子であ る。 ここでは、 受光素子 3 0の受光面がリコ一ト部 4の外周面上に位置するよう に、 受光素子 3 0が光ファイバに対して固定されているものとする。
上記のような構成の光モニタ装置では、 融着接続部 Sから放射される光 L 1, を受光素子 3 0で受光することにより、 その受光素子 3 0から出力される光電流 の値に応じて光ファイバを伝播する光信号 L 1のパワーを容易にモニタすること が可能になる。 従来、 光ファイバを伝播する光信号 L 1のパワーをモニタするた めには、 例えばファイバ融着カブラや誘電体多層膜等を用いて光信号 L 1の一部 を分岐し、 その分岐光を光ファイバ等を介して受光素子まで導く必要があつたが、 上記のような本実施形態の光モニタ装置によれば、 融着接続部 Sから放射される 光 L 1 ' を利用することで、 リコ一ト部 4の外周面上に受光素子 3 0を設けるだ けで光信号 L 1のパワーをモニタできるようになる。 これにより、 部品点数の少 ない小型の光モニタ装置を実現することが可能になる。
なお、 上記光モニタ装置の実施形態では、 リコート部 4の外周面上に 1つの受 光素子 3 0を設けるようにしたが、 例えば図 6に示すように、 複数の受光素子 3 0をリコ一ト部 4の外周面の円周方向に設けるようにしてもよい。 このように複 数の受光素子 3 0を設けることによって、 融着接続部 Sから放射される光を効率 良く受光することができる。 さらに、 リコー卜部 4の外周面の円周方向に沿った リング状の受光素子が実現できれば、 融着接続部 Sから放射される光 L 1 ' を一 層効率良く受光することが可能である。
また、 上記光モニタ装置の実施形態では、 受光素子 3 0の受光面をリコート部 4の外周面上に配置する一例を示したが、 リコ一ト部 4の外周面の近傍に受光面 が位置するように受光素子 3 0を配置するようにしてもよい。 この場合、 リコー ト部 4の外周面から出射される光を受光素子 3 0の受光面に集光させるようなレ ンズをリコ一ト部 4の外周面上に形成する応用も可能である。 産業上の利用可能性
以上説明したような本発明によれば、 融着接続部から放射される光の他の光フ アイパ中への結合を確実に阻止できる光ファイバ接続部構璋が実現可能になり、 また、 融着接続部からの放射光を利用した簡易な構成で小型の光モニタ装置を提 供できるようになる。 よって、 本発明は、 光通信等を初めとする多様な分野にお いて産業上の利用可能性が大である。

Claims

請 求 の 範 囲
( 1 ) コァ及びクラッド並びに前記クラッドの外側に設けられた被覆部を有す る 2本の光ファイバの各一端を融着接続した融着接続部と、 その融着接続部の近 傍で前記被覆部の除去された部分を再被覆したリコート部とを含む光ファイバ接 続部構造であって、
前記コアを伝播する光のうちで前記融着接続部を通過する際に前記クラッド側 に放射される放射光が、 前記リコート部の外側に近接する他の光ファイバ中に結 合するのを阻止する放射光結合阻止手段を備えたことを特徴とするを光ファィバ 接続部構造。
( 2 ) 請求項 1に記載の光ファイバ接続部構造であって、
前記放射光結合阻止手段は、 前記放射光を吸収する材料を用いて前記リコー卜 部を形成したことを特徴とする光ファイバ接続部構造。
( 3 ) 請求項 2に記載の光ファィバ接続部構造であつて、
前記リコ一ト部は、 紫外線硬化樹脂に色材を混ぜた材料を用いて形成されるこ とを特徴とする光フアイバ接続部構造。
( 4 ) 請求項 3に記載の光ファィバ接続部構造であつて、
前記色材は、 無機顔料であることを特徴とする光ファイバ接続部構造。
( 5 ) 請求項 4に記載の光ファイバ接続部構造であつて、
前記リコ一ト部は、 紫外線硬化樹脂を用いて前記クラッドの外側に形成した第 1リコート部と、 紫外線硬化樹脂にカーボンブラックを混ぜた材料を用いて前記 第 1リコート部の外側に形成した第 2リコート部とを有することを特徴とする光 ファイバ接続部構造。
( 6 ) 請求項 3に記載の光ファィバ接続部構造であつて、
前記色材は、 有機顔料であることを特徴とする光フアイバ接続部構造。
( 7 ) 請求項 1に記載の光ファイバ接続部構造であって、
前記放射光結合阻止手段は、 前記リコート部の外周面が前記放射光を乱反射可 能な形状となるように成形したことを特徴とする光ファィバ接続部構造。
( 8 ) 請求項 7に記載の光ファイバ接続部構造であって、
前記リコート部の外周面は、 前記コアを伝播する光の波長よりも大きな表面粗 さをもつランダムな凹凸形状となるように成形されることを特徴とする光フアイ バ接続部構造。
( 9 ) 請求項 1に記載の光ファィバ接続部構造であつて、
前記放射光結合阻止手段は、 前記放射光に対して透明な前記リコート部の外周 面に、 前記放射光を吸収する材料を塗布したことを特徴とする光フアイパ接続部 構 Ja。
( 1 0 ) 請求項 9に記載の光ファイバ接続部構造であって、
前記放射光結合阻止手段は、 紫外線硬化樹脂を用いて形成された前記リコート 部の外周面に、 紫外線硬化樹脂とは異なる溶剤に色材を混ぜた材料を塗布したこ とを特徴とする光フアイバ接続部構造。
( 1 1 ) 請求項 1 0に記載の光ファイバ接続部構造であって、
前記色材は、 無機顔料であることを特徴とする光ファイバ接続部構造。
( 1 2 ) 請求項 1 0に記載の光ファイバ接続部構造であって、
前記色材は、 有機顔料であることを特徴とする光フアイパ接続部構造。
( 1 3 ) コア及びクラッドを有する光ファイバを伝播する光のパワーをモニタ する光モニタ装置であって、
前記コアを伝播する光のうちで前記光ファイバ上に存在する融着接続部を通過 する際に前記クラッド側に放射される放射光を受光する受光素子を備え、 その受 光素子で発生する光電流に基づいて前記光ファイバを伝播する光のパワーを検出 することを特徴とする光モニタ装置。
( 1 4 ) 請求項 1 3に記載の光モニタ装置であって、
前記放射光を受光する受光素子が前記光ファイバの外側に複数設けられたこと を特徴とする光モニタ装置。
( 1 5 ) コア及びクラッドを有する光ファイバを伝播する光のパワーをモニタ する方法であって、
前記コアを伝播する光のうちで前記光ファイバ上に存在する融着接続部を通過 する際に前記クラッド側に放射される放射光を受光し、 その受光パワーに基づい て前記光ファイバを伝播する光のパワーを検出することを特徴とする光モニタ方 法。
PCT/JP2004/005793 2004-04-22 2004-04-22 光ファイバ接続部構造及び光モニタ装置 WO2005103779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/005793 WO2005103779A1 (ja) 2004-04-22 2004-04-22 光ファイバ接続部構造及び光モニタ装置
JP2006512458A JP4657205B2 (ja) 2004-04-22 2004-04-22 光ファイバ接続部構造
US11/583,107 US7296940B2 (en) 2004-04-22 2006-10-19 Optical fiber connecting portion structure and light monitor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005793 WO2005103779A1 (ja) 2004-04-22 2004-04-22 光ファイバ接続部構造及び光モニタ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/583,107 Continuation US7296940B2 (en) 2004-04-22 2006-10-19 Optical fiber connecting portion structure and light monitor apparatus

Publications (1)

Publication Number Publication Date
WO2005103779A1 true WO2005103779A1 (ja) 2005-11-03

Family

ID=35197119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005793 WO2005103779A1 (ja) 2004-04-22 2004-04-22 光ファイバ接続部構造及び光モニタ装置

Country Status (3)

Country Link
US (1) US7296940B2 (ja)
JP (1) JP4657205B2 (ja)
WO (1) WO2005103779A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292674A (ja) * 2005-04-14 2006-10-26 Fujikura Ltd 光パワーモニタ方法、光パワーモニタ装置及び光デバイス
US7371019B2 (en) 2004-12-13 2008-05-13 Nufern Method and apparatus for sensing light
WO2010010888A1 (ja) * 2008-07-25 2010-01-28 パナソニック電工株式会社 活線検出装置
US7985028B2 (en) 2008-06-30 2011-07-26 Fujitsu Limited Optical fiber splicing technique and optical member unit
JP2016061944A (ja) * 2014-09-18 2016-04-25 住友電気工業株式会社 ファンアウト部品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103779A1 (ja) * 2004-04-22 2005-11-03 Fujitsu Limited 光ファイバ接続部構造及び光モニタ装置
JP5164271B2 (ja) * 2008-06-24 2013-03-21 株式会社フジクラ 光コネクタの接続確認方法および接続確認装置
US9267330B2 (en) * 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
DE102008062847A1 (de) * 2008-12-23 2010-06-24 Jt Optical Engine Gmbh + Co. Kg Spleißverbindung zwischen zwei optischen Fasern sowie Verfahren zum Herstellen einer solchen Spleißverbindung
JP6363680B2 (ja) * 2016-11-16 2018-07-25 ファナック株式会社 レーザ装置
US11086075B2 (en) * 2019-10-30 2021-08-10 Alliance Fiber Optic Products, Inc. Fiber array units with mode-field diameter conversion, and fabrication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411753A (en) * 1977-06-28 1979-01-29 Nippon Telegr & Teleph Corp <Ntt> Reinforcing method of optical fiber connecting parts
JPS59184313A (ja) * 1983-04-05 1984-10-19 Fujikura Ltd 金属コート光ファイバの終端部の形成方法
JPH0493904A (ja) * 1990-08-06 1992-03-26 Hitachi Cable Ltd 金属管被覆光ファイバの接続部及びその接続方法
JPH10224304A (ja) * 1997-02-03 1998-08-21 Sumitomo Electric Ind Ltd 光信号授受装置、光通信装置、光通信方法および光ファイバ判別方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022735A (en) * 1989-11-07 1991-06-11 The Charles Stark Draper Laboratory, Inc. Fiber splice coating system
JP3500041B2 (ja) 1996-07-02 2004-02-23 古河電気工業株式会社 光ファイバとその製造方法
US6481903B1 (en) * 1998-08-07 2002-11-19 Tycom (U.S.) Inc. Optical fiber splice protector and method for applying same
US6535671B1 (en) * 2000-02-29 2003-03-18 Eigenlight Corporation Optical fiber tap with integral reflecting surface and method of making same
JP2001343548A (ja) 2000-05-31 2001-12-14 Totoku Electric Co Ltd 異種光ファイバ接続用部品
US6602601B2 (en) * 2000-12-22 2003-08-05 Corning Incorporated Optical fiber coating compositions
US7029187B2 (en) * 2002-05-31 2006-04-18 Corning Incorporated Optical fiber splice manufacturing process
US7207732B2 (en) * 2003-06-04 2007-04-24 Corning Incorporated Coated optical fiber and curable compositions suitable for coating optical fiber
WO2005103779A1 (ja) * 2004-04-22 2005-11-03 Fujitsu Limited 光ファイバ接続部構造及び光モニタ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411753A (en) * 1977-06-28 1979-01-29 Nippon Telegr & Teleph Corp <Ntt> Reinforcing method of optical fiber connecting parts
JPS59184313A (ja) * 1983-04-05 1984-10-19 Fujikura Ltd 金属コート光ファイバの終端部の形成方法
JPH0493904A (ja) * 1990-08-06 1992-03-26 Hitachi Cable Ltd 金属管被覆光ファイバの接続部及びその接続方法
JPH10224304A (ja) * 1997-02-03 1998-08-21 Sumitomo Electric Ind Ltd 光信号授受装置、光通信装置、光通信方法および光ファイバ判別方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371019B2 (en) 2004-12-13 2008-05-13 Nufern Method and apparatus for sensing light
JP2006292674A (ja) * 2005-04-14 2006-10-26 Fujikura Ltd 光パワーモニタ方法、光パワーモニタ装置及び光デバイス
US7985028B2 (en) 2008-06-30 2011-07-26 Fujitsu Limited Optical fiber splicing technique and optical member unit
WO2010010888A1 (ja) * 2008-07-25 2010-01-28 パナソニック電工株式会社 活線検出装置
CN102105828A (zh) * 2008-07-25 2011-06-22 松下电工株式会社 活线检测装置
JP2016061944A (ja) * 2014-09-18 2016-04-25 住友電気工業株式会社 ファンアウト部品

Also Published As

Publication number Publication date
JPWO2005103779A1 (ja) 2008-03-13
JP4657205B2 (ja) 2011-03-23
US7296940B2 (en) 2007-11-20
US20070036499A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US7296940B2 (en) Optical fiber connecting portion structure and light monitor apparatus
US7184623B2 (en) Apparatus, system and method for an adiabatic coupler for multi-mode fiber-optic transmission systems
US5412746A (en) Optical coupler and amplifier
US6185358B1 (en) Optical attenuator and method of manufacturing same
AU2014293293B2 (en) Fiber optic cable and connector assembly including integrated enhanced functionality
US8160414B1 (en) Self forming waveguides for optical coupling and methodologies for making same
CN105264415A (zh) 用于光纤连接器的自写入波导及相关方法
JP2017054110A (ja) 光モジュール
EP1483612B1 (en) Optical energy switching device and method
US7352937B2 (en) Devices, systems and methods for connecting a single mode fiber to a legacy multi-mode fiber
PL229961B1 (pl) Urządzenie do selektywnego zwiększania strat modów wyższych rzędów
WO2018140780A1 (en) Systems and methods for reduced end-face reflection back-coupling in fiber-optics
US8261442B2 (en) Method for splicing a bend-optimized optical fiber
JP5168316B2 (ja) 光ファイバ接続部構造
Warier The ABCs of fiber optic communication
JP2007206149A (ja) 光ファイバの接続方法及び光硬化性樹脂
Kihara Optical performance analysis of single-mode fiber connections
Zhang Coupling fibers to planar waveguides using a high-temperature epoxy
CN220399674U (zh) 具有高功率滤波、分光、光隔离作用的组合器件
Waki et al. Investigation of self-written waveguide technique toward easy splicing method for SMF in optical networks
Wood et al. 3-Port Fibre Optic Beam Splitters for Space Division Multiplexed Systems
Abd-Alla et al. Improvement of the performance of advanced local area optical communication networks by reduction the effects of the propagation problems,“
CA2414795A1 (en) Fiber optic coupler
Neumann et al. Components for Single-Mode Fibers
Zohrabyan et al. In-fiber variable optical attenuation with ultra-low electrical power consumption

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11583107

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11583107

Country of ref document: US

122 Ep: pct application non-entry in european phase