WO2010007854A1 - 情報処理装置及び情報処理方法 - Google Patents

情報処理装置及び情報処理方法 Download PDF

Info

Publication number
WO2010007854A1
WO2010007854A1 PCT/JP2009/061136 JP2009061136W WO2010007854A1 WO 2010007854 A1 WO2010007854 A1 WO 2010007854A1 JP 2009061136 W JP2009061136 W JP 2009061136W WO 2010007854 A1 WO2010007854 A1 WO 2010007854A1
Authority
WO
WIPO (PCT)
Prior art keywords
attribute
interest
person
time
customer
Prior art date
Application number
PCT/JP2009/061136
Other languages
English (en)
French (fr)
Inventor
蔵人 前野
Original Assignee
沖電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沖電気工業株式会社 filed Critical 沖電気工業株式会社
Publication of WO2010007854A1 publication Critical patent/WO2010007854A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising

Definitions

  • the present invention relates to an information processing apparatus and an information processing method.
  • Japanese Patent Application Laid-Open No. 2003-016243 discloses a customer purchase behavior analysis system that can aggregate and analyze behaviors from when a customer enters a store to when the customer leaves the store.
  • the customer has a contactless IC card.
  • pre-purchase behavior position, flow line, residence time
  • pre-purchase behavior and purchase results are compared and analyzed. This allows you to collect a large amount of customer purchase behavior data, what path you are interested in, what product you are interested in, what you finally bought and what you did (with interest) Can be analyzed for each customer.
  • Japanese Patent Application Laid-Open No. 8-137916 discloses a technique for detecting that a customer has a wireless receiver and receives information transmitted from a wireless transmitter installed on a shelf, the customer is in the vicinity of the corresponding shelf. Is disclosed. If the information of the same wireless transmission device is received for a long time, it is determined that the customer is staying in front of the shelf and is interested in the product on the shelf. Further, by checking with the purchase information at the time of liquidation, it is possible to determine whether or not the purchase is actually made, and the purchase behavior can be analyzed.
  • the conventional location information analysis system as described above can determine only the interest of each product to be analyzed when judging the interest of the customer.
  • the customer's interest for each product can be estimated from the stay time before the product for each product. It was. However, it was not possible to determine what attributes the customer is interested in. In other words, it has not been possible to determine in detail whether the customer is interested in the price, function, size, color, or brand of the product.
  • the present invention provides a new and improved information processing apparatus and information processing method capable of calculating an interest in a measurement target of a person and estimating an attribute of the measurement target in which the person is interested. .
  • the interest level calculation for calculating the interest level of a person for each measurement target based on the positional relationship between the person and one or a plurality of measurement targets and the temporal change in the positional relationship.
  • a unit an attribute storage unit that stores one or more attributes related to the measurement target, an attribute value that the attribute has, and a degree of interest in the measurement target as an interest level of the one or more attributes related to the measurement target.
  • An information processing apparatus includes a correlation or a correlation calculation unit that calculates a correlation between an attribute and an interest level of one or more attributes.
  • One aspect of the present invention is an interest level prediction unit that predicts an interest level of an arbitrary attribute related to an arbitrary measurement target of a person from an attribute value of the arbitrary attribute based on the correlation calculated by the correlation calculation unit. Further, it may be provided.
  • the measurement object may be a predetermined item, a person, or a region.
  • the interest level calculation unit that calculates the interest level of one person in a predetermined region based on the positional relationship between the person and one predetermined region and the temporal change in the positional relationship.
  • An attribute storage unit that stores one or a plurality of attributes related to the predetermined region, an attribute value that the attribute has, and a correlation calculation unit that calculates a correlation between each interest level and the attribute value for the plurality of predetermined regions.
  • a companion time measuring unit that measures a time when a distance between a person and one or a plurality of measurement objects satisfies a predetermined threshold as an accompaniment time, and a person within the predetermined area is measured. Calculates the degree of relationship between the person and the measurement target based on the relationship between the accompanying time and the simultaneous existence time, and the simultaneous existence time measurement unit that measures the time at which the target exists at the same time as the simultaneous existence time.
  • Another aspect of the present invention provides a classification unit that classifies a person and a measurement object into a plurality of groups based on the degree of relationship between the person and the measurement object when at least one of the person and the measurement object is plural. Further, it may be provided.
  • the attribute has a property that cannot be directly compared by quantity, and may be a color, a function, a brand, or the like of a measurement target.
  • the attribute has a property that can be directly compared with the quantity, and may be the capacity, price, size, weight, power consumption, discount rate, etc. of the measurement target.
  • the companion time is measured as the companion time when the distance between the first customer and one or more second customers different from the first customer satisfies a predetermined threshold.
  • the simultaneous existence time measurement unit that measures the time in which the first customer and the second customer are simultaneously present in the predetermined area as the simultaneous existence time, and the accompanying time and the simultaneous existence time.
  • the first customer and the second customer are based on the positional relationship between the first customer and the second customer and one or more items, and the temporal change in the positional relationship.
  • An interest level calculation unit that calculates an interest level for an item for each item, an attribute storage unit that stores one or more attributes related to the item, an attribute value of the attribute, and an interest level for the item.
  • a correlation calculation unit that calculates the relationship between attributes, or the correlation between the attributes and the interest level of one or more attributes for each first customer or second customer, and the first customer Alternatively, based on the correlation for each second customer, the relationship between an arbitrary item and the interest level of the first customer or the second customer is calculated, and the highest interest level of the first customer or the second customer is calculated. Extract high first customer or second customer A, and a customer item relation calculation unit.
  • the interest level calculation unit calculates the interest level of the person to be measured based on the positional relationship between the person and the one or more measurement targets and the temporal change in the positional relationship.
  • An information processing method is provided which includes treating the interest level of one or more attributes as a degree of interest, and calculating a relationship between the attributes or a correlation between the attribute and the interest level of the one or more attributes.
  • the step of the accompanying time measurement unit measuring, as the accompanying time, the time when the distance between the person and one or a plurality of measurement objects satisfies a predetermined threshold, and the simultaneous existence time measurement
  • the step of measuring the time when the person and the measurement object are simultaneously present in the predetermined area as the simultaneous existence time, and the degree-of-relation calculation unit is measuring the person based on the relationship between the accompanying time and the simultaneous existence time.
  • An information processing method including a step of calculating a degree of relationship between objects is provided.
  • the present invention it is possible to calculate the interest of a person to be measured and to estimate the attribute of the person to which the person is interested.
  • the position information analysis system of the present embodiment detects and analyzes a large amount of position information and flow lines of movable objects such as customers such as customers and articles such as products, and analyzes the intention and meaning.
  • an object in the present embodiment, (1) an object (item), a person or a place (area) that is a target of human interest, and a measurement target such as a color, price, function, capacity, brand, size, Think of it as a set of places.
  • a measurement target such as a color, price, function, capacity, brand, size
  • the present embodiment is applied to the retail business
  • the retailer can take an appropriate approach such as sales promotion to an appropriate person.
  • the second step has the following two steps: (2-1) a step of measuring a human relationship distance by a transition of a human positional relationship; (2-2) A step of estimating the group composition (family, friends, etc.) of people from the distance of human relations.
  • the third step has the following two steps: (3-1) A step of comparing the interest profile of members constituting the group with the attributes of the product; (3-2) A step of estimating who decides to purchase if a product is purchased.
  • FIG. 1 is a block diagram showing the configuration of the positional information analysis system according to this embodiment.
  • the position information analysis system includes a position detection unit 10, a peripheral information storage unit 200, an interest measurement unit 100, an attribute information storage unit 201, an attribute conversion unit 101, and an attribute classification information storage unit 202.
  • the position detection unit 10 identifies and records the position of a person or an article (product, cart, basket, etc.).
  • the peripheral information storage unit 200 stores the arrangement of products.
  • the interest measurement unit 100 measures the interest of each product in units of people based on the arrangement of the products and the positions of people and articles.
  • the attribute information storage unit 201 stores a product attribute set (color, price, function, capacity, brand, size, etc.).
  • the attribute conversion unit 101 converts the interest of the attribute set into the interest of each person based on the attribute of the product and the interest of each product.
  • the attribute classification information storage unit 202 stores relationships between product attributes.
  • the analysis unit 102 analyzes the interest in a plurality of attribute sets for each person and estimates the interest in the attribute unit.
  • the interest profile generation unit 103 generates an interest estimation result in attribute units for each person.
  • the interest profile storage unit 203 stores an interest profile for each person for each person.
  • the position detection unit 10 detects position information of a person or an article.
  • the position detection unit 10 detects the coordinates of the person or article and the identifier 1 associated with the person or article. As shown in FIG. 2, the position detection unit 10 outputs a combination of coordinates, identifier 1, and time as position information together with the time at which the position is detected for each identifier.
  • FIG. 2 is an explanatory diagram illustrating an example of position information output by the position detection unit 10 of the present embodiment.
  • a technique in which a person possesses a device and detects the position and identifier of the device as the position and identifier of the person can be used.
  • the above devices include ultrasonic tags (ZPS (zone positioning system) technology by Furukawa Machine Metal Co., Ltd.), impulse radio UWB (ultra wideband) tags, Wi-Fi tags, Wi-Fi mobile phones, There are passive RFID (radio-frequency identification).
  • a technique for detecting an identifier and a position for identifying a person by a combination of person / object recognition and tracking by a monitoring camera or the like may be used.
  • the position of each person is estimated based on anonymous tracking by a pressure sensor combined with a pressure sensor embedded in a carpet or the like and a personal authentication device, or the authentication result of a personal authentication device placed in various places. Technology, etc. may be used.
  • the types of people whose position is to be detected include customers, store clerk, and employees.
  • examples of articles that are position detection targets include merchandise, portable equipment / equipment, and carts and shopping baskets in particular in retail stores.
  • the position of the cart or shopping basket may be regarded as the position of the person who carries it.
  • the position of the cart or the like can be handled as a person's position by inserting a mechanism for identifying an individual (a card reader, various personal authentication devices, etc.).
  • a mechanism for identifying an individual a card reader, various personal authentication devices, etc.
  • the cart identifier is different from the human identifier, it can be converted by constructing a conversion table for converting the cart identifier and the human identifier by various personal authentication devices.
  • the environmental information can be, for example, an identifier 2 indicating a product placed on a product shelf arranged in a retail store, and coordinates of the product shelf on which the product is placed.
  • an identifier 2 indicating a place such as a bread corner, a fresh fish corner, a tasting corner, an event corner, a smoking corner, a toilet, a locker corner, and the like, and coordinates of the range of the place may be used.
  • the coordinates may be a single coordinate or a plurality of coordinates, and may indicate an area of an arbitrary shape surrounded by a rectangle, a circle, a curve, or the like by a value indicating a range.
  • the place may be an area where a store clerk, a sales clerk, or the like in the store explains the product or service.
  • the interest measurement unit 100 compares the position of the article detected by the position detection unit 10 or the position of the article or place held in the peripheral information storage unit 200 with the position of the person detected by the position detection unit 10. Measure the degree of interest for each item or place in units.
  • the interest measurement unit 100 is an example of an interest level calculation unit.
  • the position of the article is detected by the position detection unit 10
  • the position of the person detected by the position detection unit 10 and the position of the article detected by the position detection unit 10 can be compared.
  • the position of the article or place is held in the peripheral information storage unit 200
  • the position of the person detected by the position detection unit 10 is compared with the position of the article or place held in the peripheral information storage unit 200. can do.
  • the distance threshold corresponds to 50 cm and the interest level corresponds to the staying seconds
  • the time when the person A enters the range of the distance 50 cm from the place B is set as the start time as shown in FIG.
  • the time that goes out of range is the end time.
  • the time obtained by subtracting the start time from the end time is calculated as the stay time.
  • the degree of interest of the person A with respect to the place B can be set to 30, for example.
  • 4A and 4B are explanatory diagrams illustrating an example of an interest level calculation method performed by the interest measurement unit 100 according to the present embodiment.
  • 4A shows the relationship between distance D and time tA
  • FIG. 4B is a plan view showing the relationship between person A and place B.
  • the degree of interest can be expressed in two dimensions: stay seconds per day and number of visits. For example, when a person visits a total of three times of 10 seconds, 20 seconds, and 20 seconds, the degree of interest can be expressed as (50, 3).
  • FIG. 5 is an explanatory diagram illustrating an example of information output by the interest measurement unit 100 of the present embodiment.
  • the degree of interest is aggregated and output for each identifier 1 and for each identifier 2.
  • the output time may be a stay start time or a stay end time.
  • the number of visits and time in units of one week, one month, and one year may be used to express in a higher multidimensional manner.
  • the degree of interest to be measured may be calculated and output in real time, or may be calculated and output collectively after accumulating position information.
  • the results calculated in real time may be accumulated and the results may be output collectively.
  • the attribute information storage unit 201 is an example of an attribute storage unit, and holds one or more attributes (category, color, price, function, capacity, brand, size, etc.) of an article or a place.
  • FIG. 6 is an explanatory diagram illustrating an example of information held by the attribute information storage unit 201 according to the present embodiment.
  • category 1 (“product” in product A) is an attribute of product A
  • category 2 (“camera” in product A) and color (“black” in product A) are attributes specific to category 1.
  • Price (“20,000 yen” for product A), etc.
  • attributes (“with strobe” for product A), capacity (“128 MB” for product A), size (product A) Then "50cc”).
  • the categories included in category 1 include, for example, equipment (articles), events (places), restaurants (places), sales corners (places), information corners (places), etc., in addition to products (goods).
  • the category included in the category 2 of the product includes, for example, a refrigerator and a television in addition to the camera.
  • the attribute group can be uniquely determined by specifying the identifier 2 indicating the product or location.
  • Some attribute values change with a fixed article or time. For example, the expected waiting time when category 1 is a restaurant (location) may be updated every minute, for example. Moreover, the price and discount rate of goods (articles) may also change with time.
  • the attribute conversion unit 101 converts the interest level for each product into an interest level for the attribute and outputs it.
  • FIG. 7 is an explanatory diagram illustrating an example of information output by the attribute conversion unit 101 according to the present embodiment.
  • the attribute conversion unit 101 collectively outputs who (identifier 1) has what degree of interest in which attribute set (attribute group).
  • the attribute value of the attribute uses the value of the time (start time) at which the distance that is the reference for the interest level is equal to or less than the threshold.
  • the value of the time (end time) when the distance is equal to or greater than the threshold value may be used.
  • an average value may be used, or an intermediate value may be used.
  • the attribute value depends on the category 1 or 2 such as the value at the end time when the attribute is the price or discount rate of the product, and the value at the start time when the attribute is the waiting time of the place. May be calculated according to the policy.
  • the relationship between the measured attribute and the degree of interest may be calculated and output in real time, or may be calculated and output for data collected for a certain period of time. Also, the results calculated in real time may be accumulated and output together.
  • the attribute classification information storage unit 202 is a partial set of a plurality of attributes of a product, and holds an attribute group indicating a relationship between the attributes of the product.
  • the attribute group is a classification used when the analysis unit 102 performs analysis.
  • an attribute group “white goods” can be defined as a relationship between category 2 attributes.
  • Category 2 related to “white goods” includes, for example, a microwave oven (identifier 3: 0100), a refrigerator (identifier 3: 0101), a dishwasher (identifier 3: 0102), and the like.
  • an attribute group “digital home appliance” can be defined as a relationship between category 2 attributes.
  • Category 2 related to “digital home appliances” includes, for example, a television (0021), a camera (0010), and a recording / reproducing device (0022).
  • an attribute group “living life product” can be defined as a relationship between category 2 attributes.
  • FIG. 8 is an explanatory diagram showing an example of attribute group information held by the attribute classification information storage unit 202 according to the present embodiment.
  • Category 2 related to “life products for living alone” includes, for example, a microwave oven, a refrigerator, a vacuum cleaner, and the like, and a product having a small capacity or size is designated as each attribute.
  • IP Internet Protocol
  • Attribute groups may also be configured dynamically. For example, a category of product groups in which a specific person has a high degree of interest may be used as a group. Further, the attribute group may be obtained by averaging the distribution of the product groups of people who are close to each other in the product group with a high degree of interest, and the average product group may be a new group.
  • the attributes stored in the attribute classification information storage unit 202 include attributes that cannot be compared with a uniform index because the indices (for example, units) of the attribute values are different from each other.
  • a composite attribute is defined as a unified measure.
  • the composite attribute is defined in advance with a conversion formula, a conversion table, or the like as shown in FIG.
  • FIG. 9 is an explanatory diagram showing an example of composite attribute information held by the attribute classification information storage unit 202 according to the present embodiment.
  • the conversion expression or conversion table may be an expression or table that converts a single attribute value into a single composite attribute value, or an expression or table that converts multiple attribute values into a single composite attribute value. Good.
  • “color” of the product can be compared on a uniform scale even if the products of category 2 are different.
  • TV screen size and “width of the sofa” It cannot be compared on a uniform scale.
  • both can be compared on a uniform scale. For example, if the screen size is less than 28 inches, it is considered that 8.7 m 2 is suitable for a television, so it is converted to “8.7 m 2 ”. Similarly, if the sofa is less than 100 cm in width, it is converted to “8.7 m 2 ”.
  • the analysis unit 102 categorizes the interest level of the attribute set unit input to the analysis unit 102 for each person (identifier 1) by item or attribute classification information storage unit 202 taking the same value in categories such as categories 1 and 2. Analyzes by attribute groups held in This unit is defined as the analysis unit. Note that the analysis unit is not limited to the category value or attribute group, but may be classified by attribute value, for example. For example, by classifying and analyzing by the manufacturer attribute value, it is possible to analyze such as finding other attributes that contribute to the degree of interest for the products manufactured by company A.
  • the analysis unit 102 is an example of a correlation calculation unit.
  • an attribute group classified using the attribute group information (FIG. 8) stored in the attribute classification information storage unit 202 may be used as an analysis unit.
  • the attribute group information conditions to be treated as the same attribute group are defined based on values such as categories and other attributes. Therefore, objects that match the conditions of the same attribute group may be handled as the same analysis unit. For example, in the example of FIG. 8, an object treated as an attribute group “living goods” has a category 1 value of “product” and a category 2 value of “TV”, “TV rack”, “sofa”, or “ Any of “tables” may be used.
  • the object treated as an attribute group “living goods for living alone” is a category 1 value “product” and a category 2 value “microwave”, and the capacity value is 10 liters or less, or the value of category 2 In the case of “refrigerator”, the capacity value may be either 40 liters or less.
  • FIG. 10 is a graph showing the relationship between the recordable capacity and the interest level when category 2 is a camera.
  • FIG. 11 is a graph showing the relationship between the size and the degree of interest when category 2 is a camera.
  • the correlation coefficient is 0.8 and high. That is, it can be estimated that the greater the capacity, the higher the degree of interest.
  • the correlation coefficient is 0.2, and that the person is less interested in the size difference than the capacity.
  • the Calhoun correlation coefficient (reference: “correlation coefficient based on geometric thickness” (Journal of the Institute of Electronics, Information and Communication Engineers, A, Vol. J85-A, No. 4, pp. 490-494) may be calculated for the fit to various curves such as a quadratic curve, etc.
  • Fig. 12 shows the relationship between the recordable capacity and the degree of interest when category 2 is a camera.
  • attribute values can be handled in the same column even in the case of different attributes in different categories.
  • Attribute with low correlation coefficient is unlikely to be a factor that affects people's interest, and even if the attribute value changes, it can be estimated that the effect on the interest level is minor. In such a case, it is not very important what kind of regression line or curve is applied, and the fitted line or curve is far from the actual distribution and has poor accuracy.
  • attributes having a high correlation it can be said that it is a factor that affects human interest. Therefore, it is possible to estimate a person's preference by examining what kind of distribution curve has a high correlation and what part of the curve has a high degree of interest. In such a case, the range of values of interest can be specified simply by obtaining the average value or variance of the attribute values.
  • the regression curve may be converted to take a value between 0 and 1 indicating the relative interest level.
  • the regression curve may have a distribution in which the ratio of the maximum interest level in each attribute in the analysis unit is maximized.
  • the degree of interest for a large number of attributes can be estimated by using multiple regression instead of a linear relationship such as the degree of interest and capacity.
  • the interest level of the category 2 of the product (article) is analyzed in time series, it is possible to know whether the product or place of interest is known and whether the interest is rising (attracting attention). . That is, if the number of seconds and the number of times of interest tend to increase, it can be estimated that interest is rising.
  • the number of seconds is long but the number is small, it can be estimated that the purchase is lost.
  • the number of seconds and the number of times are long, and the same degree of interest is also shown for a product having the same category and a certain degree of attribute, it can be determined that they are lost in comparison.
  • the store side knows the above case, it is also possible to guide the sale of products with high profit margins or products to be sold by adjusting prices and the like among the products being compared. In this way, gradient information such as an increasing tendency / decreasing tendency on the time axis can be calculated and used.
  • the distribution of multiple attribute values with a high degree of interest may form a cluster.
  • a set of attribute value ranges of interest can be specified by using a clustering method such as the k-means method.
  • attribute or compound attribute value difference contributes to the change in interest in the attribute set in each analysis unit such as categories 1 and 2 and attribute groups.
  • a correlation coefficient can be used as the contribution.
  • a function that approximates the distribution of the interest level and the attribute value is obtained.
  • the change in contribution on the time axis can be used as a gradient, and a function that approximates the distribution of interest and attribute values can be obtained as a curved surface with the time axis added (this curved surface is called a curved surface of interest).
  • the interest profile generation unit 103 selects the contribution of the attribute or the composite attribute to the interest level and the relationship between the interest level and the attribute value in the analysis unit output from the analysis unit 102. Further, as shown in FIG. 13, the interest profile generation unit 103 generates a profile for each person (for each value of the identifier 1) stored in the interest profile storage unit 203.
  • FIG. 13 is an explanatory diagram illustrating an example of information generated by the interest profile generation unit 103 according to the present embodiment.
  • the selection criteria is, for example, that only items that have a high degree of contribution to the degree of interest are selected for each attribute or composite attribute in the analysis unit. For example, there are a method of selecting only articles having a contribution of 0.5 or more, and a method of selecting three attributes and composite attributes in descending order of contribution. Further, an article whose contribution degree is rapidly improved or an article having a steep slope in the time direction of the curved surface of interest can be regarded as a change in human interest. For this reason, it may be selected as an important article.
  • the profile by the corresponding analysis unit may not exist. It can be determined that an analysis unit having a profile is related to the degree of interest. For example, if the analysis is performed in the analysis unit of category 2 “refrigerator” but there is no corresponding profile, it can be estimated that the refrigerator is not interested. By performing the above selection, it is possible to specify an attribute that affects the degree of interest, and in addition to which range the attribute affects, can be obtained as an analysis unit.
  • the following effects can be obtained. (1) Based on the change in the positional relationship between the position of a person and the position of an article, not only the degree of interest for each article, but also what attribute of an article is interested in which attribute is not affected. it can. In addition, it is possible to detect whether or not the attribute affects the interest for each attribute unit. (2) Not only the direct attribute of the article but also the attribute such as the size of the living room that is suitable for use can be considered and analyzed. (3) It is possible to analyze the change of interest change in the time axis direction in attribute units. (4) It is possible to identify an attribute that affects interest and a range that the attribute affects. (5) Only attributes that affect interest can be stored as profiles.
  • FIG. 14 is a block diagram showing the configuration of the positional information analysis system according to this embodiment.
  • the position information analysis system includes a position detection unit 10, an accompanying measurement unit 300, a simultaneous presence measurement unit 301, a relationship information storage unit 401, a relationship analysis unit 302, a relationship profile storage unit 402, and the like. Become.
  • the position detection unit 10 identifies and records the position of a person or an article (product, cart, basket, etc.).
  • the position detection unit 10 is the same as the position detection unit 10 described above, and detailed description thereof is omitted.
  • the accompanying measurement unit 300, the simultaneous presence measurement unit 301, the relationship information storage unit 401, the relationship analysis unit 302, and the relationship profile storage unit 402 are executed by a computer such as a server device, for example.
  • the computer includes a CPU, a memory, an input / output I / F, a display unit, a network connection unit, a storage unit, and the like.
  • the relationship information storage unit 401 and the relationship profile storage unit 402 include, for example, a storage medium such as an HDD (hard disk drive) and a flash memory, and a recording / reproducing device.
  • the accompanying measurement unit 300 measures the accompanying time of a person or an article.
  • the simultaneous presence measuring unit 301 measures the time during which people and articles exist simultaneously within a certain range.
  • the relationship information storage unit 401 stores the measurement values of the accompanying measurement unit 300 and the simultaneous presence measurement unit 301.
  • the relationship analysis unit 302 uses the data held in the relationship information storage unit 401 to analyze the relationship between people and articles.
  • the relationship profile storage unit 402 stores the analysis result.
  • the accompanying measurement unit 300 measures the accompanying time of a person or an article.
  • the measurement may be performed in units of one hour or in units of one day or one week.
  • the distance between the positions of the two identifiers 1 obtained from the position detection unit 10 is measured, and the time when the distance is equal to or less than the threshold is measured as the accompanying time.
  • 15A and 15B are explanatory diagrams illustrating an example of a method for measuring the accompanying time by the accompanying measuring unit 300 according to the present embodiment.
  • FIG. 15A shows the relationship between distance D and time t
  • FIG. 15B is a plan view showing the relationship between person X and person Y.
  • FIG. 16 is an explanatory diagram illustrating an example of information output by the accompanying measurement unit 300 according to the present embodiment.
  • FIG. 16 shows an example in which a person with an identifier 1 of 0001 and a person with an identifier 1 of 0002 were accompanied by 2008/3/4 16:15:10 for 5100 seconds and were not accompanied by 2100 seconds at other times. Is shown.
  • FIG. 16 shows that the person with identifier 1 0001 and the person with identifier 1 0003 were accompanied by 19:30:10 on 2008/3/4 for 2520 seconds, and were not accompanied by 4680 seconds at other times.
  • the time may be a companion start time or a companion end time.
  • the position detection unit 10 may detect the presence / absence of a companion in a specific area (such as in a store).
  • the accompanying measurement unit 300 may measure the accompanying time and non-accompanying time in a specific area (such as in a store). At this time, the non-accompanying time to be measured exists in a specific area (such as in a store), but it may be a non-accompanying time.
  • the simultaneous presence measuring unit 301 measures the time during which people and articles exist simultaneously in a specific area.
  • FIG. 17 is a plan view showing the relationship between the person X and the person Y in the detection area.
  • FIG. 18 is an explanatory diagram illustrating an example of information output by the simultaneous presence measurement unit 301 according to the present embodiment.
  • the information output by the simultaneous presence measurement unit 301 has the same configuration as the information output by the accompanying measurement unit.
  • the simultaneous presence measuring unit 301 may use, for example, only articles that have been detected in the past by the accompanying measurement unit 300.
  • the relationship information storage unit 401 stores the results output by the accompanying measurement unit 300 and the simultaneous presence measurement unit 301.
  • the relationship information storage unit 401 receives the result from the relationship analysis unit 302, and can delete the corresponding data when the value of the accompanying time is shorter than the threshold value and the value of the simultaneous existence time is also lower than the threshold value.
  • the relationship analysis unit 302 estimates the relationship between a person and an article based on the result of the accompanying measurement unit 300 held in the relationship information storage unit 401 and the accompanying time and the simultaneous existence time as the result of the simultaneous presence measuring unit 301. To do. Note that the ratio of accompanying time and non-accompanying time may be used instead of the accompanying time. Moreover, you may use ratio of simultaneous existence time and non-simultaneous existence time instead of simultaneous existence time.
  • FIG. 19 is a graph showing the relationship between the accompanying time and the simultaneous existence time. Based on the accompanying time and the simultaneous existence time, the relationship between the person and the article can be classified as shown in FIG. 19, for example.
  • Class 1 in FIG. 19 is a case where visitors always come together but are not accompanied.
  • the classification 2 is a case where visitors always accompany them.
  • category 3 is a case in which they do not visit or accompany them together.
  • category 4 is accompanied when visiting together, but is often visited separately.
  • the classification 1 can be estimated as a relationship such as a parent and child or a family
  • the classification 2 can be estimated as a good relationship such as a lover or a couple.
  • Class 3 can be estimated to be another person and irrelevant, and class 4 is the same as 1 and 2, but it can be estimated that there are many opportunities to visit individually such as living in the neighborhood.
  • the category 1 is not an article of his own but an article of a family or the like.
  • the category 2 is an article that is a favorite and has no skin.
  • the classification 3 can be estimated as an article of another person.
  • the category 4 is an article to be taken occasionally.
  • the classifications 1, 2, and 4 can be judged as related persons, and the classification 3 can be judged as a red person.
  • the data of classification 3 may be deleted from the relationship information storage unit 401.
  • the depth of the relationship may be recorded as the length of the simultaneous existence time and the accompanying time, or may be recorded as a ratio of the non-concurrent existence time and the non-accompanying time.
  • the relationship analysis unit 302 detects a plurality of people who have a common relationship with each other, and defines a relationship group.
  • a case where a plurality of persons having values A, B, C, D, E, and F of an identifier 1 are detected will be described. For example, if there are a plurality of identifiers B, C, D, E who are determined to be related to a person having a value A of an identifier 1, (A, B, C, D, E) is 1
  • One group can be estimated.
  • A, B, C, D, and F who are determined to be related to the person of value B, (A, B, C, D, F) is estimated as one group. it can.
  • a plurality of identifiers 1 that are determined to be related to each of C, D, E, and F are compared. And, for example, assuming the largest relationship group that includes all people, among them, only those who are related to 60% or more of all people are left, and the people who make up the relationship group are specified. be able to.
  • the relationship profile storage unit 402 holds the relationship depth data output from the relationship analysis unit 302.
  • the positional information analysis system of the present embodiment that executes the second step, due to a change in the positional relationship between the position of the person and the position of the article, the depth of the relationship between the person and the person, the person and the article, Furthermore, a group consisting of a plurality of people and articles can be estimated.
  • FIG. 20 is a block diagram showing the configuration of the positional information analysis system according to this embodiment.
  • the position information analysis system includes a data input unit 50, a profile analysis unit 500, an analysis data storage unit 501, and the like.
  • the data input unit 50 is used to input who has purchased what.
  • the profile analysis unit 500 includes an attribute information storage unit 201, an interest profile storage unit 203 that holds the result obtained in the first step, and a relationship profile storage unit 402 that holds the result obtained in the second step. Analyze based on the information obtained.
  • the analysis data storage unit 501 holds the analysis result.
  • the data input unit 50 is used to input who bought what. For example, in the case of a retail store, the POS register corresponds, and regarding who bought what, the data input unit 50 acquires an identifier 1 indicating a person (purchaser etc.) and an identifier 2 indicating what was purchased. And output.
  • the profile analysis unit 500 and the analysis data storage unit 501 are executed by a computer such as a server device, for example.
  • the computer includes a CPU, a memory, an input / output I / F, a display unit, a network connection unit, a storage unit, and the like.
  • the analysis data storage unit 501 includes a storage medium such as an HDD (Hard Disk Drive) and a flash memory, and a recording / reproducing device, for example.
  • the profile analysis unit 500 acquires the identifier 1 of another person who is closely related to the identifier 1 obtained from the data input unit 50 from the relationship profile storage unit 402.
  • the profile analysis unit 500 generates an identifier 1 list including the identifier 1 obtained from the data input unit 50 and the identifier 1 of another person who is closely related.
  • the profile analysis unit 500 uses the identifier 2 obtained from the data input unit 50 and acquires the attribute of the identifier 2 from the attribute information storage unit 201.
  • the process is performed for each identifier 1 included in the identifier 1 list.
  • (1) It is investigated whether or not the analysis unit and attribute related to the attribute information storage unit 201 are included in the interest profile storage unit 203.
  • the degree of interest is calculated based on the attribute value and the distribution of the degree of interest held in the interest profile.
  • the degree of interest in the object of identifier 2 can be calculated for each person in the identifier 1 list.
  • the person with the identifier 1 who has the highest degree of interest can be estimated as the person who instructed the operator to purchase the identifier 2.
  • (2) not only the direct attribute of the article but also the attribute such as the size of the living room that is suitable for use can be considered and analyzed. Furthermore, according to the present embodiment, (3) it is possible to analyze the transition of changes in interest in the time axis direction in attribute units. Further, according to the present embodiment, (4) it is possible to identify an attribute that affects interest and a range that the attribute affects. According to the present embodiment, (5) only attributes that affect interest can be stored as a profile.
  • a purchase form of a product there is a case where a person who has decided to purchase a product does not directly purchase the product by himself, instructs other related parties, and purchases the product through the related parties.
  • a customer who actually purchased a product takes a purchase action that is different from a purchase tendency based on his own interest. Therefore, the conventional location information analysis system cannot distinguish between a customer who actually purchased a product and a customer who has given a purchase instruction. For this reason, in the conventional location information analysis system, neither the analysis for the customer who actually purchased the product nor the analysis for the customer who made the purchase instruction has been able to obtain correct results.
  • a person who has decided to purchase a product may not directly purchase the product himself, but may instruct other parties and purchase the product via the party. For example, when purchasing white goods such as a refrigerator, a behavior in which a wife makes a purchase decision and a husband makes a purchase on a daily basis can occur.
  • the customer who actually purchased the product takes a purchasing action different from the purchasing tendency based on his own interest.
  • the conventional location information analysis system cannot distinguish between a customer who actually purchased a product and a customer who has given a purchase instruction. For this reason, the conventional position information analysis system cannot obtain a correct result for the analysis of the customer who actually purchased the product.
  • analysis for a customer who has given a purchase instruction has not been performed.
  • the product category for which the wife has made a purchase decision does not cause the problem of actively carrying out sales promotion activities to her husband.
  • the sales promotion activities can be carried out effectively.
  • the relationship between a customer and a product in retail and the relationship between customers have been described.
  • the present invention is not limited to such an example.
  • the present embodiment can be applied to a manufacturing industry such as a factory, a construction industry such as a construction site, a medical treatment such as a hospital, and a logistics industry.
  • a manufacturing industry such as a factory
  • a construction industry such as a construction site
  • a medical treatment such as a hospital
  • a logistics industry for example, it is possible to estimate which instruction the employee has worked on from the relationship between a person and an article and the relationship between a person and another person.
  • this embodiment can estimate whether an employee has moved based on his own decisions or the decisions of his immediate supervisor.
  • this embodiment it is possible to estimate the case where an employee performs work according to an instruction other than his direct supervisor, or the case where work is performed such that there are a plurality of support systems. In this way, this embodiment can estimate which work has acted on the basis of who's instruction and clarify who is responsible. In addition, according to this embodiment, even when an accident or failure occurs, it is possible to quickly communicate the situation to an appropriate decision maker, and it is possible to take immediate measures.
  • the measurement of the degree of interest is based on the detected positional relationship, but the present invention is not limited to such an example.
  • the measurement of the degree of interest may be based on, for example, the number of contacts using a contact sensor or human body communication, or the contact time.
  • the interest level may be measured based on the time in the vicinity with a sensor that detects that the mobile phone has entered a nearby range, such as a passive RFID, an active RFID that only indicates presence, or an infrared beacon.
  • the degree of interest may be measured based on the time obtained from the system in which the operator himself / herself declares the work start, work end, and absence.
  • the color, price, function, capacity, brand, size, etc. are listed as the product attributes.
  • the present invention is not limited to such an example.
  • the location attribute may be area, shape, altitude, event name, event content, scheduled attendees, number of seats, number of customers, entrance fee, installation, usage, cleanliness, date and time, etc.
  • the analysis of the degree of interest is not limited to the analysis of the article alone or the analysis of the place alone.
  • both articles and locations may be analyzed together.

Landscapes

  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 本発明は、人の測定対象に対する関心を算出すると共に、人が関心を持った測定対象の属性を推測することが可能な情報処理装置及び情報処理方法を提供する。人と1又は複数の測定対象との位置関係と、位置関係の時間変化とに基づいて、人の測定対象に対する関心度を測定対象毎に算出する関心度算出部と、測定対象に関する1又は複数の属性と、属性が有する属性値を記憶する属性記憶部と、測定対象に対する関心度を、測定対象に関する1又は複数の属性の関心度として扱い、属性間の関係性、又は属性と1若しくは複数の属性の関心度の相関を算出する相関算出部とを備えることを特徴とする。

Description

情報処理装置及び情報処理方法
 本発明は、情報処理装置及び情報処理方法に関する。
 従来、顧客などの人や商品等のアイテムなどの移動可能な物体の位置情報や動線を検知し、分析する技術がある。
 例えば、特開2003-016243号公報では、顧客が店舗内に入場してから退場するまでの間の行動を、集計、分析することのできる顧客の購買行動分析システムが開示されている。このシステムでは、顧客は非接触ICカードを持つ。そして、店内各所と清算箇所に設置された非接触ICカードリーダにより、店舗内の購買前行動(位置・動線・滞留時間)、及び何を購入したかを取得する。精算後、顧客の購買前行動と購買結果を比較分析する。これにより、大量の顧客の購買行動データを収集でき、どのような経路を通ってどのような商品に関心を持ち、最終的に何を買い、何を(関心はあるが)買わなかったのかを、顧客ごとに分析できる。
 また、特開平8-137916号公報では、顧客が無線受信装置を持ち、棚に設置された無線発信装置から発信される情報を受信すると、該当する棚近辺に顧客がいるということを検知する技術が開示されている。同一無線発信装置の情報を長時間受信していると、顧客は棚の前に滞留しているとみなし、棚にある商品に関心を持っていると判定される。また、清算時の購買情報と照合することで、実際に購入したのかどうかを判断することができ、購買行動を分析できる。
 ところで、上述のような、従来の位置情報分析システムは、顧客の関心を判断する場合、分析対象とする商品毎の関心しか判断できなかった。
 例えば、100個の商品「商品001」~「商品100」があり、それぞれの商品の前で顧客が滞留した場合、それぞれの商品について、商品前の滞留時間から商品毎の顧客の関心を推測できた。しかし、顧客が商品のどのような属性に関心を持っているかまでは判定できなかった。すなわち、顧客が商品の価格、機能、サイズ、色、又は、ブランド、に関心を持ったのか、といった内容に踏み込んで判定することはできなかった。
 そこで、本発明は、人の測定対象に対する関心を算出すると共に、人が関心を持った測定対象の属性を推測することが可能な、新規かつ改良された情報処理装置及び情報処理方法を提供する。
 本発明の一態様によれば、人と1又は複数の測定対象との位置関係と、位置関係の時間変化とに基づいて、人の測定対象に対する関心度を測定対象毎に算出する関心度算出部と、測定対象に関する1又は複数の属性と、属性が有する属性値を記憶する属性記憶部と、測定対象に対する関心度を、測定対象に関する1又は複数の属性の関心度として扱い、属性間の関係性、又は属性と1若しくは複数の属性の関心度の相関を算出する相関算出部とを備える情報処理装置が提供される。
 本発明の一態様は、上記相関算出部で算出された相関に基づいて、人の任意の測定対象に関する任意の属性の関心度を、任意の属性が有する属性値から予測する関心度予測部を更に備えてもよい。
 上記属性は、複数の属性の一部の集合である属性グループであってもよい。
 上記関心度算出部は、人と1つの測定対象の距離が所定の閾値を満たしている1又は複数回の期間の時間を計測し線形若しくは非線形変換等を用いて関心度を算出してもよい。
 上記関心度算出部は、人と1つの測定対象の距離が所定の閾値を満たしている1又は複数回の期間の回数を計測し線形若しくは非線形変換等を用いて関心度を算出してもよい。
 上記測定対象は、所定のアイテム、人物又は領域であってもよい。
 また、本発明の別の態様によれば、人と1つの所定領域との位置関係と、位置関係の時間変化とに基づいて、人の1つの所定領域に対する関心度を算出する関心度算出部と、所定領域に関する1又は複数の属性と、属性が有する属性値を記憶する属性記憶部と、複数の所定領域についてのそれぞれの関心度と属性値との相関を算出する相関算出部とを備える情報処理装置が提供される。
 また、本発明の別の態様によれば、人と1又は複数の測定対象の距離が所定の閾値を満たしている時間を同伴時間として計測する同伴時間計測部と、所定領域内に人と測定対象が同時に存在している時間を同時存在時間として計測する同時存在時間計測部と、同伴時間と同時存在時間との関係に基づいて、人と測定対象の間の関係度を算出する関係度算出部とを備える情報処理装置が提供される。
 本発明の別の態様は、上記人及び測定対象のうち少なくともいずれかが複数であるとき、人と測定対象との関係度に基づいて、人と測定対象を複数のグループに分類する分類部を更に備えてもよい。
 上記属性は、数量で直接比較できない性質を有し、測定対象の色、機能、ブランドなどであってもよい。
 上記属性は、数量で直接比較できる性質を有し、測定対象の容量、価格、サイズ、重量、消費電力、値引率などであってもよい。
 また、本発明の別の態様によれば、第1の顧客と、第1の顧客と異なる1又は複数の第2の顧客の距離が所定の閾値を満たしている時間を同伴時間として計測する同伴時間計測部と、所定領域内に第1の顧客と第2の顧客が同時に存在している時間を同時存在時間として計測する同時存在時間計測部と、同伴時間と同時存在時間との関係に基づいて、第1の顧客と第2の顧客の間の関係度を算出する関係度算出部とを備える情報処理装置が提供される。
 本発明の別の態様は、上記第1の顧客及び第2の顧客と、1又は複数のアイテムとの位置関係と、位置関係の時間変化とに基づいて、第1の顧客及び第2の顧客のアイテムに対する関心度をアイテム毎に算出する関心度算出部と、アイテムに関する1又は複数の属性と、属性が有する属性値を記憶する属性記憶部と、アイテムに対する関心度を、アイテムに関する1又は複数の属性の関心度として扱い、属性間の関係性、又は属性と1若しくは複数の属性の関心度の相関を第1の顧客又は第2の顧客毎に算出する相関算出部と、第1の顧客又は第2の顧客毎の相関に基づいて、任意のアイテムと第1の顧客又は第2の顧客の関心度との関係を算出し、第1の顧客又は第2の顧客のうち最も関心度の高い第1の顧客又は第2の顧客を抽出する顧客アイテム関係算出部とを備えてもよい。
 また、本発明の別の態様によれば、関心度算出部が、人と1又は複数の測定対象との位置関係と、位置関係の時間変化とに基づいて、人の測定対象に対する関心度を測定対象毎に算出するステップと、属性記憶部が、測定対象に関する1又は複数の属性と、属性が有する属性値を記憶するステップと、相関算出部が、測定対象に対する関心度を、測定対象に関する1又は複数の属性の関心度として扱い、属性間の関係性、又は属性と1若しくは複数の属性の関心度の相関を算出するステップとを含む情報処理方法が提供される。
 また、本発明の別の態様によれば、同伴時間計測部が、人と1又は複数の測定対象の距離が所定の閾値を満たしている時間を同伴時間として計測するステップと、同時存在時間計測部が、所定領域内に人と測定対象が同時に存在している時間を同時存在時間として計測するステップと、関係度算出部が、同伴時間と同時存在時間との関係に基づいて、人と測定対象の間の関係度を算出するステップとを含む情報処理方法が提供される。
 本発明によれば、人の測定対象に対する関心を算出すると共に、人が関心を持った測定対象の属性を推測できる。
本発明の実施形態に係る位置情報分析システムの構成を示すブロック図である。 本実施形態の位置検知部が出力する位置情報の例を示す説明図である。 本実施形態の周辺情報記憶部が記憶する情報を示す説明図である。 本実施形態の関心計測部による関心度の計算方法の例を示す説明図である。 本実施形態の関心計測部による関心度の計算方法の例を示す説明図である。 本実施形態の関心計測部が出力する情報の一例を示す説明図である。 本実施形態に係る属性情報記憶部が保持する情報の一例を示す説明図である。 本実施形態の属性変換部が出力する情報の一例を示す説明図である。 本実施形態に係る属性分類情報記憶部が保持する属性グループ情報の一例を示す説明図である。 本実施形態に係る属性分類情報記憶部が保持する複合属性情報の一例を示す説明図である。 カテゴリ2がカメラである場合の記録可能な容量と関心度の関係を示すグラフである。 カテゴリ2がカメラである場合のサイズと関心度の関係を示すグラフである。 カテゴリ2がカメラである場合の記録可能な容量と関心度の関係を示すグラフである。 本実施形態に係る関心プロファイル生成部が生成する情報の一例を示す説明図である。 本実施形態に係る位置情報分析システムの構成を示すブロック図である。 本実施形態の同伴計測部による同伴時間の計測方法の例を示す説明図である。 本実施形態の同伴計測部による同伴時間の計測方法の例を示す説明図である。 本実施形態に係る同伴計測部が出力する情報の一例を示す説明図である。 検知エリアにおける人Xと人Yの関係を示す平面図である。 本実施形態に係る同時存在計測部が出力する情報の一例を示す説明図である。 同伴時間と同時存在時間の関係を示すグラフである。 本実施形態に係る位置情報分析システムの構成を示すブロック図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 まず、本発明の実施形態に係る位置情報分析システムについて説明する。
 本実施形態の位置情報分析システムは、顧客などの人や商品等の物品などといった移動可能な物体の位置情報や動線を多量に検知・分析し、意図や意味を解析する。
 本実施形態では、(1)人の関心の対象となる物品(アイテム)、人物や場所(領域)等の測定対象を、属性(例えば、商品の色、価格、機能、容量、ブランド、サイズ、場所の広さ等)の集合と捉える。また、本実施形態では、(2)人が物品、人物や場所のどのような属性に関心を持ったのかを推定する。更に、本実施形態では、(3)複数人の関心と行動との関係から、人が誰の意思に基づいて行動したのかを推定できる。
 ここで、「アイテム」とは、スーパーマーケットなどで陳列された食品、雑貨などの有体物の商品、海外旅行ツアーなどの無体物の商品やサービス、更に店内に陳列、配置された商品を紹介するパンフレット、パネル、ビデオ画面などである。人は、関心を持ったアイテムの前に足をとめる。また、「人物」とは、商品やサービスの詳しい説明をする店員や販売員などである。更に、「領域」とは、商品が陳列された商品棚、店舗内の所定のコーナー、店員等が商品等の説明をするエリアなどである。人物や領域についても、アイテムと同様に、人は関心を持った人物の前や領域内に足をとめることになる。
 本実施形態を小売業に適用した例では、顧客が商品のどの属性に関心をもったのかを推定でき、更に、実際の購買者と実際の購買者の家族や友人関係の中で誰が購入決定を行ったのかを、実際の購買者とは切り離して推定できる。これにより、小売業者は、適切な人に適切な販促等のアプローチが可能となる。
 本実施形態の上記の推定のステップは、大きく分けて以下の3ステップを有する:
(1)人単位に商品の属性に対する関心を推定する第1のステップ;
(2)人のグループ構成(家族・友人など)を推定する第2のステップ;
(3)グループ内の購買決定者を推定する第3のステップ。
 そして、第1のステップは、以下の4ステップを有する:
(1-1)人の位置と商品又は場所の位置の位置関係の遷移により、商品単位に関心度を計測するステップ;
(1-2)商品又は場所単位の関心度を、商品又は場所の複数の属性からなる属性セット(商品:色、価格、機能、容量、ブランド、サイズなど、場所:イベント内容、紹介される商品など)に対する関心度に変換するステップ;
(1-3)属性セットに対する関心度から、属性単位の関心度を推定するステップ;
(1-4)属性単位の関心度から、個人の関心プロファイルを作成し保存するステップ。
 また、第2のステップは、以下の2ステップを有する:
(2-1)人の位置関係の遷移により、人間関係の距離を計測するステップ;
(2-2)人間関係の距離から、人のグループ構成(家族・友人など)を推定するステップ。
 更に、第3のステップは、以下の2ステップを有する:
(3-1)グループを構成するメンバの関心プロファイルと、商品の属性を比較するステップ;
(3-2)商品を購入するとしたら、だれが購入決定をするか推定するステップ。
 (第1のステップ)
 上記第1のステップを実行させる本実施形態の位置情報分析システムの構成について説明する。図1は、本実施形態に係る位置情報分析システムの構成を示すブロック図である。
 本実施形態に係る位置情報分析システムは、位置検知部10と、周辺情報記憶部200と、関心計測部100と、属性情報記憶部201と、属性変換部101と、属性分類情報記憶部202と、分析部102と、関心プロファイル生成部103と、関心プロファイル記憶部203などから構成される。
 位置検知部10は、人や物品(商品、カート、バスケットなど)の位置を、個体を識別して記録する。周辺情報記憶部200は、商品の配置等を記憶する。関心計測部100は、商品の配置と人や物品の位置に基づいて、商品単位の関心を人単位に計測する。属性情報記憶部201は、商品の属性セット(色、価格、機能、容量、ブランド、サイズ、等)を記憶する。属性変換部101は、商品の属性と商品毎の関心に基づいて、属性セットの関心へ変換を人毎に行う。属性分類情報記憶部202は、商品の属性間の関係性を記憶する。分析部102は、人毎に、複数の属性セットへの関心を分析し、属性単位への関心を推定する。関心プロファイル生成部103は、属性単位の関心推定結果を人毎に生成する。関心プロファイル記憶部203は、人毎の関心プロファイルを人毎に保存する。
 次に、本実施形態に係る位置情報分析システムの各構成要件について詳しく説明する。 位置検知部10は、人や物品の位置情報を検知する。位置検知部10が検出するのは、人や物品の座標と、人や物品に付随する識別子1である。位置検知部10は、図2に示すように、識別子毎に位置を検出した時刻と合わせて、座標、識別子1、時刻の組み合わせを位置情報として出力する。図2は、本実施形態の位置検知部10が出力する位置情報の例を示す説明図である。
 位置検知部10による位置検知の方法として、例えば人がデバイスを所持し、デバイスの位置及び識別子を人の位置及び識別子として検知する技術を用いることができる。上記デバイスとしては、超音波タグ(古河機械金属株式会社によるZPS(zone positioning system)技術など)や、インパルス無線型のUWB(ultra wideband)タグ、Wi-Fiタグ、Wi-Fi搭載の携帯電話、パッシブRFID(radio-frequency identification)などがある。
 位置検知部10による位置検知のその他の方法として、監視カメラ等による人物・物体認識とトラッキングの組み合わせによって、人を特定する識別子と位置を検知する技術を用いてもよい。また、カーペット等に埋め込まれた感圧センサと個人認証装置をと組み合わせた、感圧センサによる匿名のトラッキングや、各所に配置した個人認証装置の認証結果に基づいて、人別の位置を推定する技術、などを用いてもよい。
 位置検知対象である人の種類としては、顧客や店舗の店員、従業者などがある。また、位置検知対象である物品としては、商品、可搬設備・器具、小売店舗内であれば特にカートやショッピングバスケットなどがある。
 カートやショッピングバスケットの位置は、それを運搬する人の位置とみなしてもよい。例えばカート等に位置検知デバイスを取り付ける場合は、そこに個人を特定するための仕組み(カードリーダ、各種個人認証装置など)を入れることで、カート等の位置を人の位置として扱うこともできる。この場合、カートの識別子は人の識別子と異なるが、各種個人認証装置によってカートの識別子と人の識別子とを変換する変換テーブルを構築することで、変換可能である。
 また、座標は、(緯度・経度・高度)といった地球上で一意に定まる座標系を用いてもよいし、特定の箇所を原点とした相対座標系を用いてもよい。また、識別子1は、人か物品を判別するフラグなどを含んでもよい。更に、識別子1は、データベースなどを用いて、人や物品、そしてそれらの属性が予め記録されていてもよい。
 周辺情報記憶部200と、関心計測部100と、属性情報記憶部201と、属性変換部101と、属性分類情報記憶部202と、分析部102と、関心プロファイル生成部103と、関心プロファイル記憶部203とは、例えばサーバ装置などのコンピュータで実行される。コンピュータは、CPU、メモリ、入出力I/F、表示部、ネットワーク接続部、記憶部などからなる。周辺情報記憶部200と、属性情報記憶部201と、属性分類情報記憶部202と、関心プロファイル記憶部203とは、例えば、HDD(ハードディスクドライブ)、フラッシュメモリなどの記憶媒体や記録再生装置で構成される。
 周辺情報記憶部200は、商品の配置などの環境情報を記憶する。環境情報としては、図3に示すように、少なくとも環境中の物品や場所を識別する識別子2と、物品の位置や場所の範囲を表わす座標が記憶される。図3は、本実施形態の周辺情報記憶部200が記憶する情報を示す説明図である。
 環境情報は、例えば小売店舗内に配置されている商品棚に置かれる商品を示す識別子2と、その商品が置かれる商品棚の座標とすることができる。小売店の他の例では、パンコーナーや鮮魚コーナー、試食コーナー、イベントコーナー、喫煙コーナー、トイレ、ロッカーコーナーなどといった場所を示す識別子2と、場所の範囲の座標とすることもできる。座標は、一個の座標、又は複数個の座標とする場合もあるし、範囲を示す値により矩形や円形、曲線などで囲まれた任意形状のエリアを示す場合もある。また、場所とは、店舗における店員や販売員などが商品又はサービスを説明するエリアであってもよい。
 関心計測部100は、位置検知部10で検知した物品の位置、又は周辺情報記憶部200に保持している物品や場所の位置を、位置検知部10で検知した人の位置と比較し、人単位に物品や場所毎の関心度を計測する。関心計測部100は、関心度算出部の一例である。
 物品の位置を位置検知部10で検知した場合は、位置検知部10で検知した人の位置と、位置検知部10で検知した物品の位置と、を比較することができる。また、物品や場所の位置が周辺情報記憶部200に保持されている場合は、位置検知部10で検知した人の位置と、周辺情報記憶部200に保持されている物品や場所の位置を比較することができる。
 関心度は、例えば人と、物品や場所の距離が一定の閾値以下である時間を計測して、計測された時間に基づいて算出できる。
 例えば、人Aの時刻tにおける座標を(xtA,ytA,ztA)とし、場所Bの座標を(x,y,z)とすると、時刻tにおける人Aと場所Bの距離をD(t,A,B)と定義したとき、距離Dは、下の式で表わすことができる。
 
 D(t,A,B)=((xtA-x+(ytA-y+(ztA-z1/2
 
 例えば、距離の閾値は50cm、関心度は滞在秒数に対応する場合について説明する。図4Bに示すように、人Aが場所Bに向かって移動したとき、場所Bから距離50cmの範囲内に入った時刻を図4Aに示すように開始時刻とし、その後、場所Bから距離50cmの範囲外に出た時刻を終了時刻とする。そして、終了時刻から開始時刻を引いた時間を滞在時間として算出する。滞在時刻が30秒の場合、人Aが場所Bに対する関心度を例えば30とすることができる。図4A及び図4Bは、本実施形態の関心計測部100による関心度の計算方法の例を示す説明図である。図4Aは、距離Dと時間tAの関係を示し、図4Bは、人Aと場所Bの関係を示す平面図である。
 また、関心度は、1日あたりの滞在秒数と訪問回数の2次元で表すこともできる。例えば、人が10秒、20秒、20秒の計3回訪問した場合は、関心度は(50,3)と表すことができる。図5は、本実施形態の関心計測部100が出力する情報の一例を示す説明図である。関心度は、識別子1毎に、識別子2別に集計され、出力される。出力される時刻は、滞在開始時間でもよいし、滞在終了時間でもよい。
 また、1週間や1ヶ月、1年単位での訪問回数や時間を用い、更に高い多次元で表現してもよい。計測される関心度は、リアルタイムに計算されて出力されてもよいし、位置情報を蓄積した上で、まとめて計算され出力されてもよい。また、リアルタイムに計算された結果が蓄積され、結果がまとめて出力されてもよい。
 属性情報記憶部201は、属性記憶部の一例であり、物品や場所の1又は複数の属性(カテゴリ、色、価格、機能、容量、ブランド、サイズ等)を保持する。図6は、本実施形態に係る属性情報記憶部201が保持する情報の一例を示す説明図である。
 例えば、商品Aの属性として、カテゴリ1(商品Aでは「商品」)があり、カテゴリ1に特化した属性として、カテゴリ2(商品Aでは「カメラ」)、色(商品Aでは「黒」)、価格(商品Aでは「20,000円」)などがあり、カテゴリ2に特化した属性として、機能(商品Aでは「ストロボ付」)、容量(商品Aでは「128Mバイト」)、サイズ(商品Aでは「50cc」)などがある。
 カテゴリ1に含まれる分類は、商品(物品)のほかに、例えば設備品(物品)、イベント(場所)、飲食店(場所)、販売コーナー(場所)、インフォメーションコーナー(場所)などがある。商品のカテゴリ2に含まれる分類は、カメラのほかに、例えば冷蔵庫、テレビなどが挙げられる。
 属性群は、商品や場所を示す識別子2を指定することによって、一意に定まるようにすることができる。また、属性の値(属性値)は、固定の物品や時間とともに変化するものもある。例えば、カテゴリ1が飲食店(場所)の場合の予想待ち時間は、例えば1分毎に更新されてもよい。また、商品(物品)の価格や値引率も、時間によって変化してもよい。
 属性変換部101は、商品毎の関心度を、属性への関心度へ変換し出力する。図7は、本実施形態の属性変換部101が出力する情報の一例を示す説明図である。属性変換部101は、誰(識別子1)が、どの属性セット(属性群)にどの程度の関心度を持っているのかをまとめて出力する。
 属性情報記憶部201で記憶されている属性が、時間とともに変化する値である場合、属性の属性値は、関心度の基準となる距離が閾値以下になった時刻(開始時刻)の値を利用してもよいし、距離が閾値以上になった時刻(終了時刻)の値を利用してもよい。また、属性値は、平均値を利用してもよいし、時間的に中間のときの値を利用してもよい。例えば、属性値は、属性が商品の価格や値引率の場合は、終了時刻での値とし、属性が場所の待ち時間の場合は、開始時刻での値とするなど、カテゴリ1,2に依存したポリシーを定義し、ポリシーに従って、計算されてもよい。計測された属性と関心度の関係は、リアルタイムに計算されて出力されてもよいし、一定時間まとめたデータに対して計算されて出力されてもよい。また、リアルタイムに計算された結果を蓄積し、まとめて出力されてもよい。
 属性分類情報記憶部202は、商品の複数の属性の一部の集合であり、商品の属性間の関係を示す属性グループを保持する。属性グループは、分析部102で分析を行う際に使用される分類である。
 例えば、カテゴリ1が商品(物品)の場合、カテゴリ2の属性間の関係として、「白物家電」という属性グループを定義できる。「白物家電」に関係のあるカテゴリ2は、例えば電子レンジ(識別子3:0100)や、冷蔵庫(識別子3:0101)、食器洗い機(識別子3:0102)などが挙げられる。また、カテゴリ2の属性間の関係として、「デジタル家電」という属性グループを定義できる。「デジタル家電」に関係のあるカテゴリ2は、例えばテレビ(0021)、カメラ(0010)、録画再生機(0022)などが挙げられる。
 更に、図8に示すように、カテゴリ2の属性間の関係として、「一人暮らし生活製品」という属性グループを定義できる。図8は、本実施形態に係る属性分類情報記憶部202が保持する属性グループ情報の一例を示す説明図である。「一人暮らし生活製品」に関係のあるカテゴリ2は、例えば電子レンジ、冷蔵庫、掃除機などが挙げられ、かつ、それぞれの属性として容量やサイズが小型の商品が指定される。また、「IP(Internet Protocol)接続対応」という属性グループを定義した場合は、例えばテレビや録画再生機などで、かつIP接続機能を有する商品が挙げられる。また、図8に示すように、「リビング用品」という属性グループを定義した場合は、例えばテレビ、テレビラック、ソファー、テーブルなどの商品が挙げられる。
 また、属性グループは、動的に構成されてもよい。例えば、特定の人が関心度の高い商品群のカテゴリをグループとしてもよい。さらに、属性グループは、関心度の高い商品群の構成が近い人たち同士の商品群の分布の平均をとり、その平均的な商品群を新たなグループとしてもよい。
 また、属性分類情報記憶部202に記憶される属性は、属性値が持つ指標(例えば単位など)が互いに異なるため、互いに統一的な指標で比較できない属性がある。この場合、統一的な尺度として複合属性が定義される。複合属性は、個々の属性の値から複合属性の値を算出するため、図9に示すような変換式や変換テーブルなどを予め定義しておく。図9は、本実施形態に係る属性分類情報記憶部202が保持する複合属性情報の一例を示す説明図である。
 そして、カテゴリ1,2単位に複合属性の値が算出される。変換式又は変換テーブルは、単数の属性の値を単数の複合属性の値に変換する式やテーブルでもよいし、また、複数の属性の値を単数の複合属性の値に変換する式やテーブルでもよい。
 例えば商品の「色」であれば、カテゴリ2の商品が異なっていても統一的な尺度で比較できるが、例えば「テレビの画面サイズ」と「ソファーの幅」の場合は、従来であれば、統一的な尺度で比較できない。この場合、例えば「リビングのサイズ」という複合属性を定義したとき、両者を統一的な尺度で比較することが可能になる。例えばテレビであれば画面サイズ28インチ未満は8.7mが適していると考えられるため「8.7m」に変換し、同様にソファーであれば幅100cm未満は「8.7m」に変換する。このように、部屋の広さなどを尺度とする統一的な尺度に換算することで、属性値が持つ指標が異なる商品を、同一の属性(複合属性)に含めることができる。その結果、属性と関心度の分析の範囲を従来に比べて広げることができる。
 分析部102は、人(識別子1)単位に、分析部102に入力された属性セット単位の関心度を、カテゴリ1、2などのカテゴリで同じ値を取る物品別や、属性分類情報記憶部202に保持されている属性グループ別に分析する。この単位を分析単位と定義する。なお、分析単位は、カテゴリの値や属性グループだけでなく、例えば属性値による分類を分析単位としてもよい。例えば、メーカー属性値による分類をして分析することによって、A社製の商品について、関心度に寄与する他の属性を見つけるといった分析をすることができる。分析部102は、相関算出部の一例である。
 また、属性分類情報記憶部202に記憶されている属性グループ情報(図8)を用いて分類される属性グループを分析単位としてもよい。属性グループ情報には、カテゴリやその他の属性などの値に基づいて、同一の属性グループとして扱う条件が定義されている。従って、同一の属性グループの条件に合致した対象を、同一の分析単位として扱ってもよい。例えば、図8の例では、「リビング用品」という属性グループとして扱われる対象は、カテゴリ1の値が「商品」、かつカテゴリ2の値が「テレビ」、「テレビラック」、「ソファー」又は「テーブル」のいずれかであればよい。「一人暮らし生活用品」という属性グループとして扱われる対象は、カテゴリ1の値が「商品」、かつカテゴリ2の値が「電子レンジ」の場合は容量の値が10リットル以下、または、カテゴリ2の値が「冷蔵庫」の場合は容量の値が40リットル以下などのいずれかであればよい。
 また、属性分類情報記憶部202に記憶されている複合属性情報(図9)の複合属性を分析対象としてもよい。属性から複合属性への変換は、カテゴリ1の内容が異なることによって属性が異なる場合や、カテゴリ1の内容が同じでも、カテゴリ2などの属性値に依存して属性の有無が異なる場合に行われる。これにより、個々の属性値を、統一的な尺度で利用できる属性に変換することができる。ここでは、複合属性は分析部102で計算されるが、属性変換部101で計算されてもよい。これにより、分析の都度計算する必要はなくなる。
 分析単位での分析により、属性単位や複合属性単位での属性値と関心度との関係や、関心度の変化に寄与する属性の寄与度を算出し出力できる。また、時間的な遷移による属性の寄与度の変化や、関心度と属性値の関係の時間的な変化も出力できる。
 分析の対象データの範囲は、人(識別子1)単位のデータであり、なおかつ、分析単位のデータで独立して分析を行う。例えば、カテゴリ1が商品(物品)であって、商品の色(R,G,B)という属性の関心を分析する場合、R,G,B値の分布を調べ、例えばR,G,B値の分布の平均と分散を計算する。そして、分散がある程度小さい場合は、平均値を色の好みとすることができる。また、カテゴリ2や属性グループ単位を分析単位として、色の分布を見ると、それら分析単位ごとに色の好みを知ることができる。例えば、リビング用品は白に統一したい、といった場合、属性グループ「リビング用品」において白の出現率が最も多くなり、白が好みだと推定できる。この情報を用いれば、例えばまだ購入していない商品の色の好みについて、店舗側で推測できる。これは、値引率や価格、メーカー名(ブランド)などについても同様のことが言える。
 特定のカテゴリ1、カテゴリ2の場合、カテゴリ固有の属性のみを用いることで、どのような属性に対して関心が集中しているのかを分析できる。例えば、回帰分析を行うことで、関心度と正または負の相関があり、相関係数の高い属性が分かり、物品のどの属性が関心度と相関があるのかを判別できる。
 以下に、図10及び図11を参照して説明する。図10は、カテゴリ2がカメラである場合、記録可能な容量と関心度の関係を示すグラフである。図11は、カテゴリ2がカメラである場合、サイズと関心度の関係を示すグラフである。容量と関心度の関係は、正の相関があり、相関係数が0.8で高い相関があると考えられる。すなわち、容量が大きいほど関心度が高いと推定できる。サイズと関心度の関係は、相関係数が0.2で、人はサイズの違いには容量より関心を示さないということが推定できる。
 重回帰分析を行うと、関心度とサイズ、容量を複合的に分析できる。数値として表せない属性については、ロジスティック回帰分析を行うことで分析できる。また、回帰直線だけでなく、図12に示すように、カルホーン相関係数(参考文献:「幾何学的厚みに基づく相関係数」(電子情報通信学会論文誌,A,Vol.J85-A,No.4,pp.490-494)といった2次曲線などさまざまな曲線への当てはまり具合を計算してもよい。図12は、カテゴリ2がカメラである場合の記録可能な容量と関心度の関係を示すグラフである。その結果、相関の高い分布形状と、例えば関心度が高い範囲やどの容量(属性)が最も関心度が高そうかを推定することが可能となる。また、アソシエーション分析という手法を用いることで、関心度の高い属性間の関連性が、相関の強さを示す信頼度(コンフィデンス、確信度とも言う)と全体の中での出現割合を示す支持度(サポート)で得ることもできる。
 他にも、例えば複合属性を用いることで、異なるカテゴリで異なる属性の場合も、属性値を同列に扱うことができる。この場合、テレビやソファーのカテゴリ別の属性から、図9の条件に従いリビングのサイズの属性に変換し、その後、平均や分散などの分布を得ることで、関心度の推定が可能となる。
 相関係数が低い属性は、人の関心に影響を及ぼす要因とは考えにくく、属性の値が変化しても、関心度に与える影響は軽微と推定できる。このような場合、どのような回帰直線や曲線に当てはめているのかはあまり重要ではなく、当てはめた直線や曲線は、実際の分布からかけ離れており精度が悪い。一方、相関が高い属性の場合は、人の関心を左右する要因と言える。このため、どのような分布の曲線に相関が高く、その曲線がどのような部分で関心度が高くなっているのかを調べると、人の好みを推定できる。また、このような場合は、単純に属性値の平均値や分散を求めるだけでも、関心を持っている値の範囲が特定できる。
 なお、回帰曲線は、相対的な関心度を示す0~1の間の値を取るように変換してもよい。例えば、回帰曲線は、分析単位内の各属性での関心度最大値の比率を最大とした分布としてもよい。また、関心度と容量といった1次の関係でなく、重回帰を用いることで多数の属性に対する関心度を推定できる。
 ある属性値が関心度を左右する要因であると判断できた場合、その時間的な推移を分析できる。例えば、色の好みは時間軸方向に一定的であり、あまり変化がなく定常的に重要な属性の場合がある。
 また、商品(物品)のカテゴリ2の関心度を時系列に分析すれば、今関心のある商品又は場所が分かり、なおかつその関心が盛り上がってきている(注目されてきている)のかどうかが推定できる。すなわち、関心度の秒数や回数が増加傾向であれば、関心が盛り上がってきていると推定できる。
 また、秒数は長いが回数が少ない場合は、購入を迷っていると推定できる。一方、秒数も回数も長く、同一カテゴリで属性のある程度近い商品にも同様な関心度を示している場合は、それらで比較して迷っていると判断できる。例えば、上記の場合を、店舗側が分かれば、比較している商品のうち、利益率の高い商品や売りたい商品の販売へ、価格などを調整して誘導することも可能である。このように、時間軸上での増加傾向・減少傾向といった勾配情報を算出し、用いることができる。
 また、関心度の高い複数の属性値の分布が、クラスタを形成している場合がある。このような場合は、k-means法などのクラスタリング手法を用いることで、関心のある属性値の範囲の集合を特定できる。
 以上のような分析を行うことで、カテゴリ1・2別、属性グループ別などの分析単位それぞれにおいて、どの属性や複合属性における値の違いが属性セットへの関心度の変化に寄与するのかを示す寄与度として、相関係数を用いることができる。また、関心度と属性値との分布を近似する関数が得られる。更に、時間軸での寄与度の変化を勾配として用いることができ、関心度と属性値の分布を近似する関数は、時間軸を加えた曲面として得ることができる(この曲面を、関心曲面という)。
 関心プロファイル生成部103は、分析部102で出力される分析単位で、属性や複合属性の関心度への寄与度、および関心度と属性値の関係を選別する。また、関心プロファイル生成部103は、図13に示すように、関心プロファイル記憶部203に保存する人毎(識別子1の値毎)のプロファイルを生成する。図13は、本実施形態に係る関心プロファイル生成部103が生成する情報の一例を示す説明図である。
 選別の基準は、例えば、分析単位で、属性や複合属性別に、関心度への寄与度の高い物品のみを選別するとする。例えば、寄与度0.5以上の物品のみを選別する方法や、寄与度の高い順に3つの属性や複合属性を選別する方法がある。また、寄与度が急激に向上している物品、又は、関心曲面の時間方向の勾配の急峻な物品は、人の関心の変化として捉えることができる。このため、重要な物品として選別されてもよい。
 分析単位内でのすべての属性の寄与度が閾値よりも低い場合、該当する分析単位によるプロファイルは、存在しなくてもよい。プロファイルのある分析単位は、関心度に関係するということが判別できる。例えば、カテゴリ2が「冷蔵庫」の分析単位で分析を行ったが、該当するプロファイルが存在しない場合、冷蔵庫に関心がないと推定できる。以上の選別を行うことで、関心度に影響する属性を特定でき、更にその属性がどの範囲で影響するのかということが、分析単位として得られる。
 以上のとおり、第1のステップを実行させる本実施形態の位置情報分析システムによれば、以下のような効果が得られる。
(1)人の位置と物品の位置の位置関係の変化により、物品単位の関心度だけでなく、物品のどの属性にどのように関心を持つのか、関心に影響しない属性はどれなのかを検出できる。また、属性単位に、その属性が関心に影響するかどうかを検出できる。
(2)物品の直接的な属性だけでなく、例えばリビングの広さといった、どういった利用に適しているかといった属性も勘案し、分析できる。
(3)属性単位で、時間軸方向での関心の変化の推移を分析できる。
(4)関心に影響ある属性と、その属性が影響する範囲を特定できる。
(5)関心に影響ある属性のみを、プロファイルとして記憶できる。
 (第2のステップ)
 上記第2のステップを実行させる本実施形態の位置情報分析システムの構成について説明する。図14は、本実施形態に係る位置情報分析システムの構成を示すブロック図である。
 本実施形態に係る位置情報分析システムは、位置検知部10と、同伴計測部300と、同時存在計測部301と、関係情報記憶部401と、関係分析部302と、関係プロファイル記憶部402などからなる。
 位置検知部10は、人や物品(商品、カート、バスケットなど)の位置を、個体を識別して記録する。位置検知部10は、上述した位置検出部10と同様であり、詳細な説明は省略する。
 同伴計測部300と、同時存在計測部301と、関係情報記憶部401と、関係分析部302と、関係プロファイル記憶部402は、例えばサーバ装置などのコンピュータで実行される。コンピュータは、CPU、メモリ、入出力I/F、表示部、ネットワーク接続部、記憶部などからなる。関係情報記憶部401と、関係プロファイル記憶部402は、例えば、HDD(ハードディスクドライブ)、フラッシュメモリなどの記憶媒体や記録再生装置で構成される。
 同伴計測部300は、人や物品の同伴時間を計測する。同時存在計測部301は、人や物品がある範囲内で同時に存在する時間を計測する。関係情報記憶部401は、同伴計測部300と同時存在計測部301の測定値を保存する。関係分析部302は、関係情報記憶部401の保持するデータを用いて人や物品の関係性を分析する。関係プロファイル記憶部402は、分析結果を保存する。
 次に、本実施形態に係る位置情報分析システムの各構成要件について詳しく説明する。 同伴計測部300は、人や物品の同伴時間を計測する。測定は、1時間単位としてもよいし、1日や1週間単位でもよい。計測は、位置検知部10から得られる2つの識別子1の位置の距離を測定し、それが閾値以下である時間を同伴時間として計測する。図15A及び図15Bは、本実施形態の同伴計測部300による同伴時間の計測方法の例を示す説明図である。図15Aは、距離Dと時間tの関係を示し、図15Bは、人Xと人Yの関係を示す平面図である。
 図16は、本実施形態に係る同伴計測部300が出力する情報の一例を示す説明図である。図16は、識別子1が0001の人と識別子1が0002の人は、2008/3/4の16:15:10に5100秒間同伴し、それ以外の時刻で2100秒同伴していなかったという例を示している。また、図16は、識別子1が0001の人と識別子1が0003の人は、2008/3/4の19:30:10に2520秒間同伴し、それ以外の時刻で4680秒同伴しなかった、という例を示している。時刻は、同伴開始時刻でもし、同伴終了時刻でもよい。
 また、位置検知部10は、特定のエリア内(店舗内など)で同伴の有無を検知してもよい。また、同伴計測部300は、特定のエリア内(店舗内など)での同伴時間と非同伴時間を計測してもよい。このとき、計測する非同伴時間は、特定のエリア内(店舗内など)に存在するが、同伴でない時間でもよい。
 同時存在計測部301は、特定エリア内で、人や物品が同時に存在する時間を計測する。図17は、検知エリアにおける人Xと人Yの関係を示す平面図である。
 図18は、本実施形態に係る同時存在計測部301が出力する情報の一例を示す説明図である。同時存在計測部301が出力する情報は、同伴計測部の出力する情報と同様の構成である。ただし、同時存在計測部301が、すべての人と物品の組み合わせで同時に存在する時間を計測した場合、非常に処理量が多くなる。このため、同時存在計測部301は、例えば、同伴計測部300で過去に同伴関係が検知された物品だけを用いるなどしてもよい。
 関係情報記憶部401は、同伴計測部300と同時存在計測部301とが出力した結果を保存する。関係情報記憶部401は、関係分析部302から結果を受けて、同伴時間の値が閾値よりも短く、同時存在時間の値も閾値よりも低い場合、該当するデータを削除できる。
 関係分析部302は、関係情報記憶部401が保持している同伴計測部300の結果と同時存在計測部301の結果である同伴時間、同時存在時間に基づいて、人や物品の関係性を推測する。なお、同伴時間の代わりに同伴時間と非同伴時間の比を使用してもよい。また、同時存在時間の代わりに、同時存在時間と非同時存在時間の比を用いてもよい。
 図19は、同伴時間と同時存在時間の関係を示すグラフである。同伴時間と同時存在時間に基づいて、人や物品の関係性は、例えば図19のように分類できる。図19の分類1は、常に一緒に来訪するが同伴はしないケースである。また、分類2は、常に同伴し来訪するケースである。まら、分類3は一緒に来訪もしないし同伴もしないケースである。さらに、分類4は一緒に来訪する場合は同伴しているが、別々に来訪する場合も多いケースである。人と人の関係では、分類1は、例えば親子や家族のような関係と推定でき、分類2は、恋人や夫婦などの仲の良い関係と推定できる。分類3は、他人であり無関係と推定でき、分類4は、1,2と同様であるが、近所に居住するなど個別に訪れる機会が多いと推定できる。人と物品の関係では、分類1は、自分の物品ではなく、家族などの物品と推定できる。また、分類2は、お気に入りで肌身離さず持っている物品と推定できる。また、分類3は、他人の物品と推定できる。さらに、分類4は、たまに持って行く物品と推定できる。
 以上のような分析を行い、人と人であれば、分類1,2,4を関係者同士、分類3を赤の他人と判断できる。分類3のデータは、関係情報記憶部401から削除してもよい。関係性の深さは、同時存在時間、同伴時間の長さとして記録してもよい、又は、非同時存在時間、非同伴時間の比として記録してもよい。
 更に、関係分析部302は、相互に共通に関係性のある複数人を検出し、関係グループを定義する。ある識別子1の値A,B,C,D,E,Fの複数人が検出された場合、について説明する。例えば、ある識別子1の値Aの人と関係があると判断された複数の識別子1であるB,C,D,Eの人がいる場合、(A,B,C,D,E)が1つのグループと推定できる。更に、値Bの人と関係があると判断された複数の識別子1であるA,C,D,Fの人がいる場合、(A,B,C,D,F)が1つのグループと推定できる。
 同様に、C,D,E,Fの各人に対して関係があると判断される複数の識別子1を比較する。そして、例えば、全ての人を含む最大の関係グループを仮定し、その中で、全ての人の60%以上と関係がある人のみを残す、といった方法で、関係グループを構成する人を特定することができる。
 関係プロファイル記憶部402は、関係分析部302から出力される関係性の深さのデータを保持する。
 以上のとおり、第2のステップを実行させる本実施形態の位置情報分析システムによれば、人の位置と物品の位置の位置関係の変化により、人と人、人と物品の関係の深さ、更に複数の人や物品からなるグループを推定できる。
 (第3のステップ)
 上記第3のステップを実行させる本実施形態の位置情報分析システムの構成について説明する。図20は、本実施形態に係る位置情報分析システムの構成を示すブロック図である。
 本実施形態に係る位置情報分析システムは、データ入力部50と、プロファイル分析部500と、分析データ記憶部501などからなる。
 データ入力部50は、誰が何を購入したかが入力される。プロファイル分析部500は、属性情報記憶部201、第1のステップで得られた結果を保持する関心プロファイル記憶部203、第2のステップで得られた結果を保持する関係プロファイル記憶部402のそれぞれから得られる情報をもとに分析する。分析データ記憶部501は、分析結果を保持する。
 データ入力部50は、誰が何を買ったのかが入力される。例えば小売店の場合は、POSレジが該当し、誰が何を買ったのかについて、データ入力部50は、人(購入者等)を示す識別子1と、何を買ったのかを示す識別子2を取得し、出力する。
 プロファイル分析部500と、分析データ記憶部501は、例えばサーバ装置などのコンピュータで実行される。コンピュータは、CPU、メモリ、入出力I/F、表示部、ネットワーク接続部、記憶部などからなる。分析データ記憶部501は、例えば、HDD(ハードディスクドライブ)、フラッシュメモリなどの記憶媒体や記録再生装置で構成される。
 プロファイル分析部500は、データ入力部50から得られる識別子1と関係性の深い別の人の識別子1を、関係プロファイル記憶部402から取得する。プロファイル分析部500は、データ入力部50から得られる識別子1と関係性の深い別の人の識別子1とから構成される識別子1リストを生成する。プロファイル分析部500は、データ入力部50から得られる識別子2を用い、識別子2の属性を属性情報記憶部201から取得する。
 以降は、識別子1リストに含まれる識別子1それぞれに対して行う。
(1)属性情報記憶部201と関連のある分析単位と属性が、関心プロファイル記憶部203に含まれているかどうかか調査される。
(2)属性情報記憶部201と関連のある分析単位と属性が含まれている場合、属性値と、関心プロファイルに保持されている関心度の分布に基づいて、関心度が算出される。
(3)関心度は複数取りえるので、例えば2乗平均をとるなどの方法で、識別子1毎の識別子2の対象に対する関心度を算出する。
 以上により、識別子1リストの人毎に、識別子2の対象に対する関心度が算出できる。その中で最大の関心度をとる識別子1の人を、作業者に識別子2の購入を指示した人と推定できる。
 以上のとおり、第3のステップを実行させる本実施形態の位置情報分析システムによれば、購入を実際に行った人ではなく、誰が購入の意思決定を行ったのかが判別できる。
 従来、人や物品など移動体の個体を識別し、なおかつ位置の遷移を動線として検出し、商品棚前の滞留時間に基づいて、商品への関心を推定するといった動線からの単純な意味解析をベースとした顧客動線分析技術は数多く開示されてきた。
 例えば、100個の商品「商品001」~「商品100」があるとして、それぞれの商品の前で顧客が滞留した場合、それぞれの商品について、商品前の滞留時間から商品毎の顧客の関心を推定できた。しかし、顧客が商品のどのような属性に関心を持っているかまでは判定できなかった。すなわち、顧客が商品の価格に関心を持ったのか、機能に関心を持ったのか、それともサイズや色、ブランドに関心を持ったのか、といった内容に踏み込んで判定できなかった。
 一方、本実施形態によれば、(1)人の位置と物品の位置の位置関係の変化により、物品単位の関心度だけでなく、物品のどの属性にどのように関心を持つのか、関心に影響しない属性はどれなのかを検出できる。また、本実施形態は、属性単位に、その属性が関心に影響するかどうかを検出できる。
 また、本実施形態によれば、(2)物品の直接的な属性だけでなく、例えばリビングの広さといった、どういった利用に適しているかといった属性も勘案し、分析できる。更に、本実施形態によれば、(3)属性単位で、時間軸方向での関心の変化の推移を分析できる。また、本実施形態によれば、(4)関心に影響ある属性と、その属性が影響する範囲を特定できる。そして、本実施形態によれば、(5)関心に影響ある属性のみを、プロファイルとして記憶できる。
 更に、商品の購買形態として、商品の購入を決定した人物が、自分自身では商品を直接購入せず、他の関係者に指示し、その関係者を介して商品を購入する場合がある。この購買形態では、商品購入を実際に行った顧客は、自分自身の関心に基づく購買傾向とは異なる購買行動をとる。従って、従来の位置情報分析システムでは、実際に商品を購入した顧客と、購入指示をした顧客を区別できなかった。そのため、従来の位置情報分析システムでは、実際に商品を購入した顧客に対する分析と、購入指示をした顧客に対する分析の両方とも正しい結果が得られなかった。
 また、商品の購買形態として、商品の購入を決定した人物が、自分自身では商品を直接購入せず、他の関係者に指示し、その関係者を介して商品を購入する場合がある。例えば、冷蔵庫などの白物家電の購入の際、夫婦のうち妻が購入決定を行い、夫が購入を行うといった行動は、日常的に発生し得る。
 この購買形態では、商品購入を実際に行った顧客は、自分自身の関心に基づく購買傾向とは異なる購買行動をとる。ところが、従来の位置情報分析システムでは、実際に商品を購入した顧客と、購入指示をした顧客を区別できなかった。そのため、従来の位置情報分析システムでは、実際に商品を購入した顧客に対する分析について正しい結果が得られなかった。その上、従来の位置情報分析システムでは、購入指示をした顧客に対する分析は、行われていなかった。
 一方、本実施形態によれば、人の位置と物品の位置の位置関係の変化により、人と人、人と物品の関係の深さ、更に複数の人や物品からなるグループを推定できる。更に、本実施形態によれば、購入を実際に行った人ではなく、誰が購入の意思決定を行ったのかが判別できる。
 例えば冷蔵庫などの白物家電の購入を考えると、夫婦のうち妻が購入決定を行い、夫が購入を行うといった行動は、日常的に発生し得る。従来の技術では、夫の関心を分析する目的では、妻が購入決定を行った商品はノイズとなった。一方、本実施形態は、妻が購入決定を行ったと判断できる。従って、誰が商品の購入決定を行ったかという情報を用いれば、本実施形態は、夫自身や妻自身の関心をそれぞれ精度良く分析できる。
 その結果、例えば、測定対象の夫婦に販促活動を行う場合、妻が購入決定を行った商品カテゴリについて、夫に積極的に販促活動を実施してしまうという問題が発生せず、購入をしていないが購入決定を行った妻に販促活動を実施できるため、販促活動を効果的に行うことができる。このように、購入意思決定者と購買者が同じ人物とは限らないという前提にたち、より確からしい購入決定者を推定することは、事業的な観点からも重要性が高い。したがって、本発明は、上記観点からも有用性がある。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明した。しかしながら、本発明は、かかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属する物品と了解される。
 例えば、上記実施形態では、小売における顧客と商品の関係、顧客同士の関係について説明した。しかしながら、本発明は、かかる例に限定されない。例えば、本実施形態を、工場等の製造業や、工事現場等の建設業、病院等の医療、物流業などにも適用することができる。この実施形態によれば、例えば、人と物品の関係、人とその他の人の関係から、従業者が、誰の指示で作業したのかを推定できる。例えば、この実施形態は、従業者が、自分自身の意思決定や直属の上司の意思決定に基づいて動いたかを推定できる。更に、この実施形態は、従業者が、直属の上司以外の指示により作業を行う場合や、支持系統が複数あるといった業務が作業した場合を推定できる。このように、この実施形態は、どの作業が誰の指示に基づいて行動したのかを推定し、誰の責任で行動しているのかが明らかにできる。また、この実施形態によれば、事故や障害が発生した際にも、適切な意思決定者に状況を素早く連絡することが可能となり、早急な対策をとることが可能となる。
 また、上記実施形態では、関心度の計測は、検出された位置関係に基づくとしたが、本発明はかかる例に限定されない。関心度の計測は、例えば、接触センサや人体通信などを用いた接触数や、接触時間に基づいてもよい。また、パッシブRFIDや、存在を示すだけのアクティブRFID、赤外線ビーコンなど、近傍の範囲内に入ったことを検知するセンサで、近傍にいる時間に基づいて関心度を計測してもよい。また、関心度の計測は、作業開始と作業終了、離席を作業者自らが申告するシステムから得られる時間に基づいてもよい。
 更に、上記実施形態では、関心度は時間を尺度として決定されるとした。しかしながら、本発明はかかる例に限定されない。例えば、沖電気工業株式会社のFSE(Face Sensing Engine)技術などの顔検出、表情検出などの技術を用いて、スマイル度合いで関心度を計測したり、顔色の高揚度合いで関心度を計測したりしてもよい。また、関心度は、店員などの第三者が目視で顧客の商品への関心度を判断し、その第三者によって手動で関心度が入力されてもよい。
 上記実施形態では、商品の属性として、色、価格、機能、容量、ブランド、サイズ、等を挙げた。しかしながら、本発明はかかる例に限定されない。物品の属性としては、ブランド、製品名、価格、色、重量、サイズ、形状、使われている素材、機能、消費電力、製品分野、用途、設置場所、値引率、販売エリア、販売店、支払い期日、特典、洗いやすさ、製品寿命、他の人の評判、発売日からの経過日数、新製品かどうか、在庫量、競合製品の有無、制限事項、設置工事の有無などでもよい。また、場所の属性としては、面積、形状、高度、イベント名称、イベント内容、出席予定者、座席数、集客人数、入場料、設置物、用途、清潔さ、開催日時などでもよい。
 また、関心度の分析は、物品単独での分析や、場所単独での分析に限定されない。例えば、物品と場所両方を一緒に分析してもよい。

Claims (20)

  1.  人と1又は複数の測定対象との位置関係と、前記位置関係の時間変化とに基づいて、前記人の前記測定対象に対する関心度を前記測定対象毎に算出する関心度算出部と、
     前記測定対象に関する1又は複数の属性と、前記属性が有する属性値を記憶する属性記憶部と、
     前記測定対象に対する関心度を、前記測定対象に関する前記1又は複数の属性の関心度として扱い、前記属性間の関係性、又は前記属性と前記1若しくは複数の属性の関心度の相関を算出する相関算出部と、
     を備える、情報処理装置。
  2.  前記相関算出部で算出された前記相関に基づいて、前記人の任意の測定対象に関する任意の属性の関心度を、前記任意の属性が有する属性値から予測する関心度予測部を更に備える、請求項1に記載の情報処理装置。
  3.  前記属性は、前記複数の属性の一部の集合である属性グループである、請求項1に記載の情報処理装置。
  4.  前記関心度算出部は、前記人と前記1つの測定対象の距離が所定の閾値を満たしている1又は複数回の期間の時間を計測して前記関心度を算出する、請求項1に記載の情報処理装置。
  5.  前記関心度算出部は、前記人と前記1つの測定対象の距離が所定の閾値を満たしている1又は複数回の期間の回数を計測して前記関心度を算出する、請求項1に記載の情報処理装置。
  6.  前記測定対象は、所定のアイテム、人物又は領域である、請求項1に記載の情報処理装置。
  7.  前記属性は、数量で直接比較できない性質を有する、請求項1のいずれかに記載の情報処理装置。
  8.  前記属性は、前記測定対象の色、機能、ブランドである、請求項7に記載の情報処理装置。
  9.  前記属性は、数量で直接比較できる性質を有する、請求項1のいずれかに記載の情報処理装置。
  10.  前記属性は、前記測定対象の容量、価格、サイズ、重量、消費電力、値引率である、請求項9に記載の情報処理装置。
  11.  人と1又は複数の測定対象の距離が所定の閾値を満たしている時間を同伴時間として計測する同伴時間計測部と、
     所定領域内に前記人と前記測定対象が同時に存在している時間を同時存在時間として計測する同時存在時間計測部と、
     前記同伴時間と前記同時存在時間との関係に基づいて、前記人と前記測定対象の間の関係度を算出する関係度算出部と、
     を備える、情報処理装置。
  12.  前記人及び前記測定対象のうち少なくともいずれかが複数であるとき、前記人と前記測定対象との関係度に基づいて、前記人と前記測定対象を複数のグループに分類する分類部を更に備える、請求項11に記載の情報処理装置。
  13.  前記属性は、数量で直接比較できない性質を有する、請求項11のいずれかに記載の情報処理装置。
  14.  前記属性は、前記測定対象の色、機能、ブランドである、請求項13に記載の情報処理装置。
  15.  前記属性は、数量で直接比較できる性質を有する、請求項11のいずれかに記載の情報処理装置。
  16.  前記属性は、前記測定対象の容量、価格、サイズ、重量、消費電力、値引率である、請求項15に記載の情報処理装置。
  17.  第1の顧客と、前記第1の顧客と異なる1又は複数の第2の顧客の距離が所定の閾値を満たしている時間を同伴時間として計測する同伴時間計測部と、
     所定領域内に前記第1の顧客と前記第2の顧客が同時に存在している時間を同時存在時間として計測する同時存在時間計測部と、
     前記同伴時間と前記同時存在時間との関係に基づいて、前記第1の顧客と前記第2の顧客の間の関係度を算出する関係度算出部と、
     を備える、情報処理装置。
  18.  前記第1の顧客及び前記第2の顧客と、1又は複数のアイテムとの位置関係と、前記位置関係の時間変化とに基づいて、前記第1の顧客及び前記第2の顧客の前記アイテムに対する関心度を前記アイテム毎に算出する関心度算出部と、
     前記アイテムに関する1又は複数の属性と、前記属性が有する属性値を記憶する属性記憶部と、
     前記アイテムに対する関心度を、前記アイテムに関する前記1又は複数の属性の関心度として扱い、前記属性間の関係性、又は前記属性と前記1若しくは複数の属性の関心度の相関を前記第1の顧客又は前記第2の顧客毎に算出する相関算出部と、
     前記第1の顧客又は前記第2の顧客毎の前記相関に基づいて、任意の前記アイテムと前記第1の顧客又は前記第2の顧客の関心度との関係を算出し、前記第1の顧客又は前記第2の顧客のうち最も関心度の高い前記第1の顧客又は前記第2の顧客を抽出する顧客アイテム関係算出部と、
     を備える、請求項17に記載の情報処理装置。
  19.  関心度算出部が、人と1又は複数の測定対象との位置関係と、前記位置関係の時間変化とに基づいて、前記人の前記測定対象に対する関心度を前記測定対象毎に算出するステップと、
     属性記憶部が、前記測定対象に関する1又は複数の属性と、前記属性が有する属性値を記憶するステップと、
     相関算出部が、前記測定対象に対する関心度を、前記測定対象に関する前記1又は複数の属性の関心度として扱い、前記属性間の関係性、又は前記属性と前記1若しくは複数の属性の関心度の相関を算出するステップと、
     を含む、情報処理方法。
  20.  同伴時間計測部が、人と1又は複数の測定対象の距離が所定の閾値を満たしている時間を同伴時間として計測するステップと、
     同時存在時間計測部が、所定領域内に前記人と前記測定対象が同時に存在している時間を同時存在時間として計測するステップと、
     関係度算出部が、前記同伴時間と前記同時存在時間との関係に基づいて、前記人と前記測定対象の間の関係度を算出するステップと、
     を含む、情報処理方法。
     
PCT/JP2009/061136 2008-07-14 2009-06-18 情報処理装置及び情報処理方法 WO2010007854A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-183057 2008-07-14
JP2008183057A JP2010020718A (ja) 2008-07-14 2008-07-14 情報処理装置及び情報処理方法

Publications (1)

Publication Number Publication Date
WO2010007854A1 true WO2010007854A1 (ja) 2010-01-21

Family

ID=41550262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061136 WO2010007854A1 (ja) 2008-07-14 2009-06-18 情報処理装置及び情報処理方法

Country Status (2)

Country Link
JP (1) JP2010020718A (ja)
WO (1) WO2010007854A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514632A (ja) * 2011-03-07 2014-06-19 ケービーエー2,インコーポレイティド イベント又は地理的場所における画像プロバイダからの分析データ収集のためのシステム及び方法
JP2018073012A (ja) * 2016-10-26 2018-05-10 株式会社東芝 管理システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8521680B2 (en) * 2009-07-31 2013-08-27 Microsoft Corporation Inferring user-specific location semantics from user data
JP5969584B2 (ja) * 2014-12-24 2016-08-17 ソフトバンク株式会社 属性決定装置、情報抽出システム、情報配信システム、及びプログラム
WO2017065316A1 (ja) * 2015-10-15 2017-04-20 ダイキン工業株式会社 評価装置、マーケット調査装置、及び学習評価装置
JP2017174222A (ja) * 2016-03-24 2017-09-28 カシオ計算機株式会社 案内出力装置、案内出力方法及びプログラム
JP6866741B2 (ja) * 2017-04-14 2021-04-28 富士通株式会社 ユーザ関係抽出装置、ユーザ関係抽出方法及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132618A (ja) * 1998-10-23 2000-05-12 Hitachi Ltd 顧客選好推定支援方法およびシステム
JP2005228154A (ja) * 2004-02-13 2005-08-25 Nippon Telegr & Teleph Corp <Ntt> コンテキスト生成システムおよびそのプログラム
JP2005327156A (ja) * 2004-05-17 2005-11-24 Advanced Telecommunication Research Institute International 関係検知システム
JP2006099547A (ja) * 2004-09-30 2006-04-13 Fukuda Gakuen 友人関係分析システム
JP2006133903A (ja) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology 統合情報サービスシステム
JP2006133915A (ja) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology ユーザ興味度解析システムならびにユーザ興味度解析方法、ユーザ興味度解析プログラムおよびその記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132618A (ja) * 1998-10-23 2000-05-12 Hitachi Ltd 顧客選好推定支援方法およびシステム
JP2005228154A (ja) * 2004-02-13 2005-08-25 Nippon Telegr & Teleph Corp <Ntt> コンテキスト生成システムおよびそのプログラム
JP2005327156A (ja) * 2004-05-17 2005-11-24 Advanced Telecommunication Research Institute International 関係検知システム
JP2006099547A (ja) * 2004-09-30 2006-04-13 Fukuda Gakuen 友人関係分析システム
JP2006133903A (ja) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology 統合情報サービスシステム
JP2006133915A (ja) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology ユーザ興味度解析システムならびにユーザ興味度解析方法、ユーザ興味度解析プログラムおよびその記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514632A (ja) * 2011-03-07 2014-06-19 ケービーエー2,インコーポレイティド イベント又は地理的場所における画像プロバイダからの分析データ収集のためのシステム及び方法
JP2018073012A (ja) * 2016-10-26 2018-05-10 株式会社東芝 管理システム

Also Published As

Publication number Publication date
JP2010020718A (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
US11749072B2 (en) Varied detail levels of shopping data for frictionless shoppers
JP6424225B2 (ja) 小売施設内で消費者の位置を予測するシステム及び方法
Seiler et al. Estimating search benefits from path-tracking data: measurement and determinants
US10592959B2 (en) Systems and methods for facilitating shopping in a physical retail facility
Kalwani et al. A price expectations model of customer brand choice
WO2010007854A1 (ja) 情報処理装置及び情報処理方法
CA2556778C (en) System for individualized customer interaction
KR100859179B1 (ko) 정보 단말 장치, 정보 단말 장치의 제어 방법, 정보 단말프로그램 및 정보 출력 시스템
EP1573459A2 (en) Shopping environment analysis system and method with normalization
CA3036975A1 (en) Returned product detection
US20160358195A1 (en) Method To Generate A Consumer Interest Spatial Map, Based On Data Collected From The Movements Of Multiple Devices In A Defined Location
JP2016167172A (ja) 情報処理方法、情報処理システム、情報処理装置、およびそのプログラム
TW202109420A (zh) 實體消費環境與網路消費環境之整合系統及其控制方法
Badi et al. SCAR: Smart Cart based on ARM algorithm and RFID technology
Ramadevi et al. Factors influencing perception and satisfaction level among shoppers and their purchasing outcomes in malls
JP2022066758A (ja) 受容性情報取得システム、管理装置及び受容性情報取得方法
TW201102950A (en) Intelligence gathering systemt and method by use of RFID technology in shopping environment
CN112446719A (zh) 实体消费环境与网络消费环境的整合系统及其控制方法
KR20160007969A (ko) 매장 관리 방법, 시스템 및 컴퓨터 판독 가능한 기록 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797782

Country of ref document: EP

Kind code of ref document: A1