WO2010007706A1 - 真空断熱材 - Google Patents

真空断熱材 Download PDF

Info

Publication number
WO2010007706A1
WO2010007706A1 PCT/JP2009/000213 JP2009000213W WO2010007706A1 WO 2010007706 A1 WO2010007706 A1 WO 2010007706A1 JP 2009000213 W JP2009000213 W JP 2009000213W WO 2010007706 A1 WO2010007706 A1 WO 2010007706A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
fiber
core material
Prior art date
Application number
PCT/JP2009/000213
Other languages
English (en)
French (fr)
Inventor
井関崇
越後屋恒
荒木邦成
鶴賀俊光
嘉本大五郎
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to KR1020117001021A priority Critical patent/KR101277389B1/ko
Priority to CN2009801274379A priority patent/CN102089563A/zh
Publication of WO2010007706A1 publication Critical patent/WO2010007706A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present invention relates to a vacuum heat insulating material and a refrigerator, a heat insulating box, and a heat insulating structure using the same.
  • a heat insulator in which a foam heat insulating material such as polyurethane foam is filled between an outer box and an inner box is widely used.
  • a foam heat insulating material such as polyurethane foam
  • the foam heat insulating material can be filled. It was difficult to increase the space.
  • the vacuum heat insulating material used here is a heat insulating material in which a core material serving as a spacer is inserted into an outer packaging material having a gas barrier property, the inside of the outer packaging material is decompressed, and the peripheral portion of the outer packaging material is sealed. .
  • Patent Document 1 JP-A-9-138058
  • Patent Document 2 JP-A-9-138058
  • glass wool is in high demand due to its heat insulation performance and price, but glass has poor recyclability and has a problem in disposal.
  • a fiber made of a polymer resin is considered as a fiber that emphasizes recyclability.
  • a vacuum heat insulating material using a polyethylene terephthalate resin fiber as a core material is proposed in Japanese Patent Laid-Open No. 2007-239964 (Patent Document 3). Yes.
  • refrigerators are products with high power consumption among home appliances.
  • the core material of the vacuum heat insulating material currently used for general purposes is mostly an inorganic fiber aggregate such as glass wool.
  • glass wool has poor recyclability, and its disposal method becomes a problem at the time of disposal.
  • regeneration processing at a high temperature is necessary, and it is the end of the end if a large heat load is applied to the environment due to the vacuum heat insulating material introduced for global warming countermeasures.
  • glass wool As an alternative to glass wool, one obtained by fiberizing a polymer resin is considered, and polyethylene terephthalate resin fibers and the like have been proposed.
  • polystyrene resin has a low glass transition temperature, and it was difficult to apply the vacuum heat insulating material to the core material from the viewpoint of heat resistance.
  • the vacuum heat insulating material when installing a vacuum heat insulating material in the heat insulating space of the refrigerator box, when the foamed urethane foam flows around the vacuum heat insulating material, the polystyrene resin fibers near the surface partially melt due to the heat of foaming, Adhesion between fibers is observed, leading to deterioration of heat insulation performance.
  • an object of the present invention is to obtain a vacuum heat insulating material that improves recyclability, reduces the environmental load, and reduces material costs.
  • the vacuum heat insulating material of the present invention is characterized in that in the vacuum heat insulating material having a jacket material and a core material, the core material is composed of a laminate of fibers obtained by spinning a polymer resin.
  • the core material is characterized by being composed of a laminate of fibers obtained by spinning a polymer resin having a flexural modulus of 3000 MPa or more.
  • the fiber obtained by spinning the polymer resin contains 80% or more of polystyrene fiber.
  • the core material is composed of one or more kinds of polymer resin fibers, and a fiber laminated body obtained by spinning a polymer resin having a glass transition temperature higher than that of the polystyrene fibers other than the polystyrene fibers.
  • a vacuum heat insulating material having a jacket material and a core material is disposed in a foam heat insulating material filled between the outer box and the inner box, and the core material of the vacuum heat insulating material is a polymer. It is characterized by comprising a laminated body of fibers spun from resin.
  • the heat insulation box of this invention was equipped with one of the said vacuum heat insulating materials.
  • the heat insulation structure of this invention was equipped with one of the said vacuum heat insulating materials.
  • FIG. 1 is a cross-sectional view of a vacuum heat insulating material 1 according to an embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view of a main part in FIG.
  • the vacuum heat insulating material 1 seals the inside of the jacket 11 having gas barrier properties and the inside of the inner bag 12 that stores the compressed core material 20 under a reduced pressure to a predetermined degree of vacuum, thereby providing heat insulation as vacuum heat insulation. It is configured to have performance.
  • the core material 20 is made of, for example, an aggregate of fibers 21 having an outer diameter of several ⁇ m to several tens of ⁇ m manufactured using a fiber material such as polypropylene resin or polystyrene resin.
  • fiber technology of these resins publicly known technology can be applied.
  • a spunbond method and a meltblown method used at the time of manufacturing a nonwoven fabric can be used.
  • Resin fibers whose fiber diameter is adjusted within a range of 3 to 30 ⁇ m by adjusting the discharge amount, air volume, and collector speed are used.
  • the resin used is in the form of a pellet or direct molding from a pulverized product.
  • recycled resin from waste home appliances can be used.
  • a polymer additive may be used in combination for improving physical properties.
  • a lubricant such as liquid paraffin may be used in combination.
  • this core material 20 is kept for a long time at a high vacuum level of, for example, 20 Pa or less, even if a pressing load is applied when it is stuck to a skin plate of a refrigerator or the like with a pressure sensitive adhesive, or
  • the bending elastic modulus is set to 3000 MPa or more so that the core material 20 and the fibers 21 to be described later are not crushed even when exposed to a compression load or the like applied when foaming urethane is filled in the heat insulating material.
  • the bending elasticity of the core material 20 is set so that the predetermined porosity of the aggregate of the fibers 21 can be maintained as set for a long time so that the vacuum heat insulating material 10 can maintain high heat insulating performance for a long time.
  • the rate is set to 3000 MPa or more.
  • an inner bag 12 may be used. Since the inner bag 12 is compressed and housed while degassing the core material 20, it has a gas barrier property and is formed of a heat-weld synthetic resin film such as a high-density polyethylene resin. Moisture and gas components from the outside do not enter the inner bag 12.
  • the core material 20 made of the aggregate of fibers 21 is configured to be sealed with an inner bag having gas barrier properties so as not to adsorb moisture and gas components contained in the atmosphere.
  • the inner bag 12 has a structure that can be detached from the outer cover material 11 together with the inner bag 12 including the core material 20 in the event of a component failure such as a vacuum failure that has occurred during handling in the manufacturing process. It is.
  • the vacuum heat insulating material 10 of the conventional example shown in Table 1 is manufactured and configured as follows.
  • the core material 20 a polymer of fibers 21 having an average fiber diameter of about 4 ⁇ m made of glass wool not containing a binder and having a solid and no hollow portion is used.
  • the polymer of the fibers 21 is cut into a predetermined shape, the polymer is inserted into the inner bag 12 made of a high-density polyethylene film, compressed, degassed, and sealed.
  • a four-layer laminate film in which the surface protective layer is a polyamide film, the polyethylene terephthalate film on which the first gas barrier layer is vapor-deposited aluminum, the second gas barrier layer is an aluminum foil, and the heat welding layer is a high-density polyethylene film.
  • the inside of the jacket material 11 is evacuated to a degree of vacuum of 2.2 Pa and sealed.
  • the core material density is set to about 250 kg / m 3 which is generally used in a conventional refrigerator.
  • the heat conductivity in the vacuum heat insulating material 10 of this conventional example is set to 100 and compared with the heat conductivity of the vacuum heat insulating materials in the following comparative examples and examples.
  • Comparative Example 1 The vacuum heat insulating material 10 of Comparative Example 1 in Table 1 is different from the conventional example in that the core material is polypropylene fiber, and the flexural modulus of the polypropylene fiber is 1880 MPa. Same as example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Comparative Example 1 was significantly higher than 250 (in the direction of poor heat insulation performance) compared to the conventional example.
  • Comparative Example 2 The vacuum heat insulating material 10 of Comparative Example 2 in Table 1 is different from the conventional example in that the core material is polycarbonate fiber, and the bending elastic modulus of the polycarbonate fiber is 2800 MPa. Same as example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Comparative Example 2 was 190 compared to the conventional example, which was not as high as that of Comparative Example 1, but greatly exceeded (in the direction of poor heat insulating performance).
  • Comparative Example 3 The vacuum heat insulating material 10 of Comparative Example 3 in Table 1 is that the core material is a mixed component of 70% polystyrene fiber and 30% polypropylene fiber, and the average fiber bending elastic modulus is 2874 MPa. Unlike the conventional example, the other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Comparative Example 3 was 175, which was smaller than that of Comparative Example 1 and Comparative Example 2, but was higher than that of the conventional example.
  • the vacuum heat insulating material 10 of the comparative example 4 of Table 1 is that the core material is a mixed component of 70% polystyrene fiber and 30% polycarbonate fiber, and the average fiber bending elastic modulus is 2915 MPa. Unlike the conventional example, the other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Comparative Example 4 was 160, which was smaller than that of Comparative Examples 1 to 3, but exceeded the value of the conventional example.
  • Example 1 The vacuum heat insulating material 10 of Example 1 in Table 1 is different from the conventional example in that the core material is polystyrene fiber, and the flexural modulus of the polystyrene fiber is 3300 MPa. Same as example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Example 1 was 85 as compared with the conventional example, and the heat insulating performance was improved.
  • Example 2 In the vacuum heat insulating material 10 of Example 2 in Table 1, the core material is a mixed component of 90% polystyrene fiber and 10% polypropylene fiber, and the average fiber bending elastic modulus is 3158 MPa, Unlike the conventional example, the other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Example 2 was 90 with respect to the conventional example, and although not as much as Example 1, the heat insulating performance was improved.
  • Example 3 The vacuum heat insulating material 10 of Example 3 in Table 1 has a core material made of a mixed component of 80% polystyrene fiber and 20% polypropylene fiber, and an average fiber bending elastic modulus of 3010 MPa. Unlike the conventional example, the other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Example 3 was 95 compared to the conventional example, which resulted in improved heat insulation performance compared to the conventional example.
  • Example 4 The vacuum heat insulating material 10 of Example 4 in Table 1 is that the core material is a mixed component of 90% polystyrene fiber and 10% polycarbonate fiber, and the average fiber bending elastic modulus is 3145 MPa. Unlike the conventional example, the other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Example 4 was 91 compared to the conventional example, which resulted in improved heat insulating performance compared to the conventional example.
  • Example 5 The vacuum heat insulating material 10 of Example 5 in Table 1 is a so-called recycled polystyrene fiber made of polystyrene collected from waste home appliances as a core material, and has an average fiber bending elastic modulus of 3120 MPa. Thus, it is different from the conventional example, and the other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Example 5 was 88 compared to the conventional example, which resulted in a significant improvement in the heat insulating performance.
  • Example 6 The vacuum heat insulating material 10 of Example 6 of Table 1 is produced from 90% of so-called recycled polystyrene fibers produced from polystyrene collected from waste home appliances as a core material and polypropylene taken from waste home appliances. This is different from the conventional example in that it is a mixed component with 10% recycled polypropylene fiber, so-called recycled polypropylene fiber, and the average fiber bending elastic modulus is 3080 MPa, and the other points are the same as the conventional example.
  • the heat conductivity ratio of the vacuum heat insulating material 10 of Example 6 was 92 as compared with the conventional example, and the heat insulating performance was greatly improved.
  • Example 7 The vacuum heat insulating material 10 of Example 7 of Table 1 is produced from polystyrene fibers produced from polystyrene collected from waste home appliances, so-called recycled polystyrene fibers 80%, and polypropylene collected from waste home appliances. This is different from the conventional example in that it is a mixed component with 20% of recycled polypropylene fiber, so-called recycled polypropylene fiber, and the average fiber bending elastic modulus is 3015 MPa, and the other points are the same as the conventional example.
  • the heat conductivity ratio of the vacuum heat insulating material 10 of Example 7 was 97 as compared with the conventional example, and the heat insulating performance was greatly improved.
  • Example 8 The vacuum heat insulating material 10 of Example 8 in Table 1 was collected from a laminated body in which polystyrene fibers produced from polystyrene collected from waste home appliances, so-called recycled polystyrene fibers, and waste home appliances were collected. It is constructed by laminating polypropylene fibers made from polypropylene, so-called recycled polypropylene fibers, and the distribution is 10% recycled polypropylene fibers from the surface, then 80% recycled polystyrene fibers, and recycled polypropylene. It is different from the conventional example in that the fiber is 10% and the average fiber bending elastic modulus is 3018 MPa, and other points are the same as the conventional example.
  • the thermal conductivity ratio of the vacuum heat insulating material 10 of Example 8 was 98 with respect to the conventional example, and the heat insulating performance was greatly improved.
  • FIG. 3 is a longitudinal sectional view of the refrigerator-freezer according to the embodiment of the present invention.
  • the refrigerator box 30 is configured by providing a foam heat insulating material 31 such as urethane and vacuum heat insulating materials 32 and 33 in a heat insulating wall 30c composed of an outer box 30a and an inner box 30b.
  • the box 30 is partitioned into a refrigerator compartment 34, a vegetable compartment 35, an ice making compartment 36, and a freezer compartment 37 in order from the top.
  • a refrigerator compartment door 34a, a vegetable compartment door 35a, an ice making compartment door 36a, and a freezer compartment door 37a are provided so that the front openings of the compartments 34 to 37 can be opened and closed.
  • the vacuum heat insulating material 10 is arranged in the refrigerator wall and the periphery thereof is covered with the foam heat insulating material 31, the surface of the vacuum heat insulating material is exposed to the foaming heat and foaming pressure of the foam heat insulating material.
  • general-purpose polystyrene has a low heat-resistant temperature, when it is installed in a thick wall, the influence of deformation shrinkage or the like due to foaming heat can be considered.
  • Example 8 by placing polypropylene resin fibers having a higher heat resistance temperature than polystyrene resin on the side in contact with the foamed heat insulating material, it is possible to suppress the influence of heat of foaming. Can also be expected.
  • a foam heat insulating material 31 and a vacuum heat insulating material 32 are provided to reduce the amount of external heat leakage and to increase the height of the center of gravity position of the refrigerator. It is the structure which aims at weight reduction of the heat insulation wall located above a height.
  • the vacuum heat insulating material 33 provided in the heat insulation wall located below the height of the gravity center position of the refrigerator may use a conventional vacuum heat insulating material, in order to reduce the weight of the entire refrigerator, the embodiment May be used.
  • the refrigerator-freezer can reduce the weight of the refrigerator itself, and can provide a refrigerator with a lighter upper part.
  • the heat insulating box is a box that requires heat insulation, such as a device for cooling or heating, a device for heat insulation, a container for heat insulation, a vending machine, an electric water heater, a water heater, or the like.
  • the heat insulating structure is a structure that requires heat insulation, such as a railway vehicle, an automobile, a building material for housing, and the like. Thereby, while the heat insulation performance of a heat insulation structure improves, weight reduction and size reduction can be performed.
  • the core material is made of a resin virgin material or waste that is commonly used on a daily basis in home appliances such as polystyrene, polypropylene, and polycarbonate.
  • Recycled resin material that has been collected and refined consists of a collection of fibers, and by making the bending elastic modulus of the fibers 3000 MPa or more, the core material has a strength that can withstand a high degree of vacuum for a long time and a relatively lightweight vacuum. Insulation can be provided.
  • the fiber itself is lightweight and has the strength to withstand a high degree of vacuum for a long period of time.
  • the pressure is less than 3000 MPa, the fiber tends to be crushed by the atmospheric pressure, and both the core material density and the heat transfer area of the solid heat conducting part are increased, and the heat insulating performance is significantly deteriorated.
  • the vacuum heat insulating material has good handling properties and has a waist strength and bending strength that are easy to use as a fiber laminated state or vacuum heat insulating material. Can provide.
  • the fibers constituting the core material are made of an organic fiber material, it is possible to provide a vacuum heat insulating material that can be easily manufactured in any shape and size. Moreover, since it is an organic fiber material, the vacuum heat insulating material which improves the recyclability at the time of disposal can be provided.
  • the recycled resin derived from waste home appliances can be used as the fiber constituting the core material, closed recycling is possible, and the total energy required for the manufacturing process and the amount of carbon dioxide emissions are small compared to glass wool. Can provide vacuum insulation material that is friendly to the global environment.
  • the inner bag containing the core material can be stored and work in progress can be stored during the manufacturing process, the degree of freedom in the work process is increased, and a vacuum heat insulating material that can increase the overall efficiency can be provided.
  • the vacuum exhaust time when making the inside of the core material high vacuum can be shortened. Can be provided.
  • the inner bag Since the inner bag is detachable from the jacket material together with the core material, the inner bag containing the core material in the case of a component failure such as a vacuum failure that has occurred during handling in the manufacturing process. Since it can be taken out and reused, it is possible to provide a vacuum heat insulating material that improves the recycling rate of raw materials.

Abstract

 真空断熱材は、芯材を構成する繊維として、曲げ弾性率3000MPa以上の高分子樹脂を紡糸した繊維を用いて、その材質として、ポリスチレン繊維が80%以上含有させている。これによって、リサイクル性を向上して環境負荷を軽減し、かつ材料費を低減する真空断熱材とすることができる。

Description

真空断熱材
 本発明は、真空断熱材並びにそれを用いた冷蔵庫、断熱箱体、及び断熱構造物に関する。
 近年、地球温暖化防止の観点から省エネルギーが強く望まれており、家庭用電化製品についても省エネルギー化は緊急の課題となっている。特に、冷蔵庫では熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材が求められている。
 冷蔵庫の一般的な断熱体としては、外箱と内箱との間にポリウレタンフォームなどの発泡断熱材を充填した断熱体が広く用いられている。かかる断熱体において断熱能力を増大するためには、発泡断熱材の厚さを増すことが必要であるが、冷蔵庫では省スペースや空間の有効利用が強く求められており、発泡断熱材を充填できる空間を増大することが困難であった。
 そこで、高性能な断熱材である真空断熱材と発泡断熱材とを併用して断熱体とすることが提案されている。ここで用いられる真空断熱材は、スペーサの役割を持つ芯材を、ガスバリア性を有する外包材中に挿入し、外包材の内部を減圧すると共に外包材の周縁部を封止した断熱材である。
 近年の真空断熱材においては、熱伝導率を大幅に低減すべく、繊維系を極細にしたグラスウール等の無機繊維集合体を用いることが主流となっている。例えば、特開平9-138058号公報(特許文献1)に開示されたものがある。また、芯材同士を固着するバインダーを用いずにグラスウールを積層した真空断熱材の成形方法も特開2006-112438号公報(特許文献2)で提案されている。
 このように、断熱性能と価格から需要が高いグラスウールであるが、ガラスはリサイクル性に乏しく、廃棄に問題がある。
 リサイクル性を重視した繊維としては高分子樹脂を繊維化したものが考えられ、例えばポリエチレンテレフタレート樹脂繊維を芯材とした真空断熱材が特開2007-239764号公報(特許文献3)で提案されている。
特開平9-138058号公報 特開2006-112438号公報 特開2007-239764号公報
 近年、地球温暖化に対する観点から、家電品の消費電力量削減が望まれており、特に冷蔵庫は家電品の中で消費電力量の多い製品であることから、冷蔵庫の断熱箱体中に真空断熱材を積極的に採用し、断熱箱体の熱漏洩量低減を試みている。
 しかし、現在汎用的に用いられている真空断熱材の芯材は、グラスウール等の無機繊維集合体がほとんどである。しかし、グラスウールはリサイクル性に乏しく、廃棄時にその廃棄方法が問題となる。グラスウールを再度ガラスに戻すには高温化での再生加工が必要となり、地球温暖化対策のために投入した真空断熱材が原因で、環境に対して多大に熱負荷を与えるのでは本末転倒である。
 グラスウール代替材としては、高分子樹脂を繊維化したものが考えられ、ポリエチレンテレフタレート樹脂繊維等が提案されている。
 しかしながら、ポリエチレンテレフタレート樹脂繊維を積層し芯材とした真空断熱材の断熱性能はグラスウールを芯材とした真空断熱材並みには及ばないことが分かった。これらの樹脂繊維では真空排気後大気圧が掛かった際に繊維自体の強度が不足しているため、繊維同士が密着している面積が大きくなり、熱流通が多くなることが影響していると考えられる。これらの樹脂繊維を芯材とする場合、空隙率の確保が課題となることが分かった。
 高分子樹脂といえば、冷蔵庫・エアコン・テレビ・洗濯機等の家電品では、ポリプロピレンやポリスチレン等の汎用的な樹脂が多く使われている。これらの樹脂は再利用可能であり、環境負荷軽減のためにも同一製品に再び戻すクローズドリサイクルが注目されていることからも、これらの汎用リサイクル樹脂を用いて繊維化し芯材を得ることが望まれる。
 特に昨今は原油価格の高騰からこれらの樹脂のバージン材料の価格も上昇しており、リサイクル材の適用によりコストダウンが見込みやすい状況にあるためなおさらである。
 しかし、例えばポリスチレン樹脂はガラス転移温度が低く、耐熱性の観点から真空断熱材の芯材への適用は困難であった。例えば、冷蔵庫箱体の断熱空間内に真空断熱材を設置する場合、発泡ウレタンフォームが真空断熱材周辺を流動する際に、その発泡熱による影響で表面付近のポリスチレン樹脂繊維が一部溶融し、繊維同士の固着が見られ、断熱性能の悪化に繋がる。
 また、ポリプロピレン樹脂では、先述のポリエチレンテレフタレート樹脂繊維同様に、繊維自体の強度が小さいことから繊維同士が潰れてお互いに接触する面積が増加し、断熱性能の悪化に繋がるという問題があった。
 上記従来の課題を解決する為に、本発明の目的は、リサイクル性を向上して環境負荷を軽減し、かつ材料費を低減する真空断熱材を得ることである。
 上記課題を解決するために、本発明の真空断熱材は、外被材と芯材を有する真空断熱材において、前記芯材は高分子樹脂を紡糸した繊維の積層体で構成されることを特徴とする。
 また、前記芯材は曲げ弾性率が3000MPa以上の高分子樹脂を紡糸した繊維の積層体で構成されることを特徴とする。
 また、前記高分子樹脂を紡糸した繊維はポリスチレン繊維を80%以上含有することを特徴とする。
 また、前記芯材は1種類以上3種類以下の高分子樹脂繊維で構成され、前記ポリスチレン繊維以外は該ポリスチレン繊維よりもガラス転移温度が高い高分子樹脂を紡糸した繊維積層体であることを特徴とする。
 また、本発明の冷凍冷蔵庫は、外箱と内箱間に充填された発泡断熱材中に外被材と芯材を有する真空断熱材を配設し、該真空断熱材の芯材が高分子樹脂を紡糸した繊維の積層体で構成されることを特徴とする。
  また、本発明の断熱箱体は、上記いずれかの真空断熱材を備えたことを特徴とする。
  また、本発明の断熱構造物は、上記いずれかの真空断熱材を備えたことを特徴とする。
 本発明によれば、リサイクル性を向上して環境負荷を軽減し、かつ材料費を低減する真空断熱材を得ることができる。
 本実施形態の真空断熱材を図1及び図2を参照しながら説明する。図1は本発明の実施形態に係る真空断熱材1の断面図であり、図2は図1における要部の拡大断面図である。
 真空断熱材1は、ガスバリヤ性を有する外被材11の内部と、芯材20を圧縮して収納した内袋12の内部とを所定の真空度に減圧封止して、真空断熱としての断熱性能を具備するように構成されている。
 芯材20は例えば、ポリプロピレン樹脂やポリスチレン樹脂等の繊維材料を使用して作製された、数μmから数十μmの外径を有する繊維21の集合体からなっている。
 これらの樹脂の繊維化技術としては、世の中に公知な技術を応用できる。例えば不織布製造時に用いられるスパンボンド方式やメルトブローン方式が挙げられ、吐出量や風量,コレクター速度を調整して、3~30μmの範囲内で繊維径を調整した樹脂繊維を使用する。
 使用する樹脂は、ペレット形状でも粉砕品からのダイレクト成形でも問題は無い。また、廃家電等からのリサイクル樹脂も使用できる。リサイクル樹脂を使用する際は、物性改善のために高分子添加剤を併用しても良い。また、メルトフローレートを向上させるために、流動パラフィン等の滑剤を併用することもある。
 この芯材20は、その内部応力が例えば20Pa以下の高真空度に長時間保持されても、冷蔵庫等の外板等に感圧性接着剤等によって貼付した場合に押付け荷重が加わっても、或いは発泡ウレタン等を断熱材中に充填する場合に加わる圧縮荷重等に長時間晒されても、芯材20及び後述する繊維21が潰れないように、その曲げ弾性率を3000MPa以上としてある。
 換言すれば、真空断熱材10が高断熱性能を長時間保持できるように、繊維21の集合体が有する所定の空隙率が、長時間、設定通りに保持できるように、芯材20の曲げ弾性率を3000MPa以上としてある。
 なお、実験によると、上記密度が3000MPa未満の場合は、高真空度にした場合に芯材20の潰れによる変形が大きくなり、断熱性能が不十分となった。
 また、図に示すように内袋12を使用しても良い。内袋12は、芯材20を脱気しながら圧縮して収納してあり、ガスバリヤ性を有し、且つ、熱溶着可能な合成樹脂フィルム、例えば高密度ポリエチレン樹脂等で形成されているので、内袋12内には、外部よりの水分やガス成分が侵入しない。換言すれば、繊維21の集合体からなる芯材20は、大気中に含まれる水分やガス成分を吸着しないように、ガスバリヤ性を有する内袋で封止する構成にしてある。
 また、内袋12は、製造工程上のハンドリング時に、万一発生した真空度不良等の部品不良の場合、芯材20を内包した内袋12ごと外被材11より離脱可能な構造に構成してある。
 次に、芯材材質,曲げ弾性率、及び構成比率を変化させた各種実験例の真空断熱材における熱伝導率について、表1を参照しながら説明する。
Figure JPOXMLDOC01-appb-T000001
 (従来例)表1の従来例の真空断熱材10は、次のように製作されて構成されている。芯材20として、バインダーを含まないグラスウールからなる平均繊維径約4μm、中実で中空部が無い繊維21の重合体を用いる。この繊維21の重合体を所定の形状に切断した後、高密度ポリエチレンフィルムからなる内袋12内に挿入し、圧縮して内部を脱気して密封する。この状態のものを、表面保護層がポリアミドフィルム,第一のガスバリヤ層をアルミ蒸着したポリエチレンテレフタレートフィルム,第二のガスバリヤ層をアルミ箔、熱溶着層を高密度ポリエチレンフィルムとした4層ラミネートフィルムからなる外被材11に入れ、内袋12の一端を開放して密封を解除した後、外被材11内部を真空度2.2Paとなるように真空引きして密封する。この真空断熱材10では、芯材密度を従来の冷蔵庫に一般的に用いられている約250kg/m3となるようにしている。
 この従来例の真空断熱材10における熱伝導率を100と設定し、以下の比較例ならびに実施例における真空断熱材の熱伝導率と比較する。
 (比較例1)表1の比較例1の真空断熱材10は、芯材材質をポリプロピレン繊維とし、ポリプロピレン繊維の曲げ弾性率を1880MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この比較例1の真空断熱材10の熱伝導率比率は従来例に対して250と大幅に上回る(断熱性能が劣る方向)結果となった。
 (比較例2)表1の比較例2の真空断熱材10は、芯材材質をポリカーボネート繊維とし、ポリカーボネート繊維の曲げ弾性率を2800MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この比較例2の真空断熱材10の熱伝導率比率は従来例に対して190となり、比較例1ほどではないが大きく上回る(断熱性能が劣る方向)結果となった。
 (比較例3)表1の比較例3の真空断熱材10は、芯材材質をポリスチレン繊維が70%とポリプロピレン繊維が30%の混合成分とし、平均繊維曲げ弾性率を2874MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この比較例3の真空断熱材10の熱伝導率比率は従来例に対して175と、比較例1や比較例2よりは小さくなったが、従来例より値が上回る結果となった。
 (比較例4)表1の比較例4の真空断熱材10は、芯材材質をポリスチレン繊維が70%とポリカーボネート繊維が30%の混合成分とし、平均繊維曲げ弾性率を2915MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この比較例4の真空断熱材10の熱伝導率比率は従来例に対して160と、比較例1~比較例3よりは小さくなったが、従来例より値が上回る結果となった。
 (実施例1)表1の実施例1の真空断熱材10は、芯材材質をポリスチレン繊維とし、ポリスチレン繊維の曲げ弾性率を3300MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例1の真空断熱材10の熱伝導率比率は従来例に対して85となり、断熱性能が向上する結果となった。
 (実施例2)表1の実施例2の真空断熱材10は、芯材材質をポリスチレン繊維が90%とポリプロピレン繊維が10%の混合成分とし、平均繊維曲げ弾性率を3158MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例2の真空断熱材10の熱伝導率比率は従来例に対して90となり、実施例1ほどではないが、断熱性能が向上する結果となった。
 (実施例3)表1の実施例3の真空断熱材10は、芯材材質をポリスチレン繊維が80%とポリプロピレン繊維が20%の混合成分とし、平均繊維曲げ弾性率を3010MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例3の真空断熱材10の熱伝導率比率は従来例に対して95となり、従来例に対して、断熱性能が向上する結果となった。
 (実施例4)表1の実施例4の真空断熱材10は、芯材材質をポリスチレン繊維が90%とポリカーボネート繊維が10%の混合成分とし、平均繊維曲げ弾性率を3145MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例4の真空断熱材10の熱伝導率比率は従来例に対して91となり、従来例に対して、断熱性能が向上する結果となった。
 (実施例5)表1の実施例5の真空断熱材10は、芯材材質を廃家電から採取したポリスチレンから作製したポリスチレン繊維、所謂リサイクルポリスチレン繊維とし、平均繊維曲げ弾性率を3120MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例5の真空断熱材10の熱伝導率比率は従来例に対して88となり、断熱性能が大きく向上する結果となった。
 (実施例6)表1の実施例6の真空断熱材10は、芯材材質を廃家電から採取したポリスチレンから作製したポリスチレン繊維、所謂リサイクルポリスチレン繊維90%と、廃家電から採取したポリプロピレンから作製したポリプロピレン繊維、所謂リサイクルポリプロピレン繊維10%との混合成分とし、平均繊維曲げ弾性率を3080MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例6の真空断熱材10の熱伝導率比率は従来例に対して92となり、断熱性能が大きく向上する結果となった。
 (実施例7)表1の実施例7の真空断熱材10は、芯材材質を廃家電から採取したポリスチレンから作製したポリスチレン繊維、所謂リサイクルポリスチレン繊維80%と、廃家電から採取したポリプロピレンから作製したポリプロピレン繊維、所謂リサイクルポリプロピレン繊維20%との混合成分とし、平均繊維曲げ弾性率を3015MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例7の真空断熱材10の熱伝導率比率は従来例に対して97となり、断熱性能が大きく向上する結果となった。
 (実施例8)表1の実施例8の真空断熱材10は、芯材材質を廃家電から採取したポリスチレンから作製したポリスチレン繊維、所謂リサイクルポリスチレン繊維を積層した積層体と、廃家電から採取したポリプロピレンから作製したポリプロピレン繊維、所謂リサイクルポリプロピレン繊維を積層した積層体とを積層させて構成したものであり、それぞれの配分を表面からリサイクルポリプロピレン繊維10%、次にリサイクルポリスチレン繊維80%、そしてリサイクルポリプロピレン繊維10%とし、平均繊維曲げ弾性率を3018MPaとした点で、従来例と相違し、その他の点は従来例と同じである。
 この実施例8の真空断熱材10の熱伝導率比率は従来例に対して98となり、断熱性能が大きく向上する結果となった。
 なお、本発明による真空断熱材を冷凍冷蔵庫に搭載する場合について、それに係る冷蔵庫を図3を参照しながら説明する。図3は本発明の実施形態に係る冷凍冷蔵庫の縦断面図である。
 冷蔵庫の箱体30は、その外箱30aと内箱30bとからなる断熱壁30c内にウレタン等の発泡断熱材31と真空断熱材32,33とを設けて構成されている。箱体30内は、上から順に、冷蔵室34,野菜室35,製氷室36,冷凍室37にそれぞれ区画形成されている。各室34~37の前面開口を開閉可能に閉塞するように、冷蔵室扉34a,野菜室扉35a,製氷室扉36a,冷凍室扉37aがそれぞれ設けられている。
 上述の通り、真空断熱材10は、冷蔵庫壁内に配置し、その周囲を発泡断熱材31で覆うため、真空断熱材表面は発泡断熱材の発泡熱や発泡圧に晒されることになる。とりわけ、汎用的なポリスチレンは耐熱温度が低いため、厚い壁中に設置する際は、発泡熱による変形収縮等の影響も考えられる。
 しかし、実施例8のように、ポリスチレン樹脂よりは耐熱温度の高いポリプロピレン樹脂繊維を発泡断熱材と接する側に配置することにより、発泡熱の影響を抑制することが可能となるような副次的な効果も期待できる。
 そして、冷蔵庫の重心位置の高さより上方に位置する断熱壁内には、発泡断熱材31と、真空断熱材32とを設けて、外部の熱漏洩量を低減すると共に、冷蔵庫の重心位置の高さより上に位置する断熱壁の軽量化を図る構成である。
 なお、上記冷蔵庫の重心位置の高さより下方に位置する断熱壁内に設ける真空断熱材33は、従来方式の真空断熱材を使用しても良いが、冷蔵庫全体の軽量化のために、実施例に記載の真空断熱材を使用してもよい。
 以上の構成としたことにより、本発明の実施形態の冷凍冷蔵庫は、冷蔵庫自体の軽量化が可能であると共に、上部が軽い冷蔵庫を提供できるので、万一、地震や運搬時に横揺れが発生しても転倒し難い冷凍冷蔵庫を提供できる効果もある。
  また、上述した実施例1乃至7の真空断熱材を、断熱箱体に用いる構成とする。断熱箱体とは、冷熱用機器又は温熱用機器、保温用容器、自動販売機、電機湯沸かし器、給湯機その他の断熱を要する箱体である。これにより、断熱箱体の断熱性能が向上するとともに、軽量化や小型化ができる。
  また、上述した実施例1乃至7の真空断熱材を、断熱構造物に用いる構成とする。断熱構造物とは、鉄道車両、自動車、住宅用建材その他の断熱の要する構造物である。これにより、断熱構造物の断熱性能が向上するとともに、軽量化や小型化ができる。
 上述した実施形態の真空断熱材における構成と効果を纏めると、次の通りである。
 (1)少なくとも外被材と芯材とからなる真空断熱材において、芯材がポリスチレン,ポリプロピレン,ポリカーボネート等の家電製品等で日常的に汎用的に使われている樹脂のバージン材料或いは廃棄物から採取・精製されたリサイクル樹脂材料を繊維化ものの集合体からなり、前記繊維の曲げ弾性率を3000MPa以上とすることで、芯材が高真空度に長時間耐える強度を有すると共に比較的軽量な真空断熱材を提供できる。
 (2)芯材の曲げ弾性率が3000MPa以上を確保することにより、繊維自体が軽量で且つ高真空度に長期間耐える強度を有する。逆に3000MPa未満の場合、大気圧により繊維が潰れる傾向になり、芯材密度と固体熱伝導部の熱移動面積が共に大きくなり、断熱性能が著しく悪化してしまう。
 (3)芯材を構成する繊維の曲げ弾性率を3000MPa以上とすることにより、繊維積層状態あるいは真空断熱材としての使いやすい腰の強さと曲げ強さを有し、ハンドリング性の良い真空断熱材を提供できる。
 (4)芯材を構成する繊維が、有機繊維材料からなるので、形状や大きさを任意に製造し易い真空断熱材を提供できる。また、有機繊維材料なので、廃棄時のリサイクル性が向上する真空断熱材を提供できる。
 (5)芯材を構成する繊維として、廃家電由来のリサイクル樹脂を使用できるので、クローズドリサイクルが可能となり、またグラスウールと比較してもその製造工程に要する総エネルギー量ならびに炭酸ガス排出量が小さく、地球環境にやさしい真空断熱材が提供できる。
 (6)真空断熱材を、ポリスチレンやポリカーボネート等の有機繊維且つ曲げ弾性率が3000MPa以上の繊維からなる芯材を脱気圧縮して収納する内袋と、前記内袋を離脱可能に被覆する外被材とから構成し、前記内袋を、熱溶着可能で、且つ、大気中の水分やガス成分が透過しない合成樹脂フィルムで形成したので、前記芯材に、外部よりの水分やガス成分が付着し難い真空断熱材を提供できる。
 また、芯材を内包した内袋ごと保管でき,製造工程中の仕掛品の保管ができるので、作業工程上の自由度が上がり、全体としての効率アップができる真空断熱材を提供できる。また、前記芯材に、外部よりの水分やガス成分が微量しか付着しないため、該芯材内を高真空度にするときの真空排気時間を短くできるので、製造コスト上有利な真空断熱材を提供できる。
 (7)前記内袋が芯材と共に、外被材より離脱可能にしたので、製造工程上のハンドリング時に、万一発生した真空度不良等の部品不良の場合、芯材を内包した内袋ごと取り出して、再利用できるので、原材料のリサイクル率が向上する真空断熱材を提供できる。
 以上のように、芯材に高分子樹脂繊維を用いることにより廃棄時に外被材や内袋、吸着剤と同時に破砕可能となり、再生可能となり、またリサイクル樹脂を用いて繊維を成形することも可能となり、環境負荷を大幅に軽減することが可能で且つ、材料費も低減可能な真空断熱材を提供できる。
本発明の第1実施形態に係る真空断熱材10の断面図である。 図1における要部の拡大断面図である。 本発明の実施形態に係る冷蔵庫の縦断面図である。
符号の説明
10,32 真空断熱材
11 外被材
12 内袋
20 芯材
21 繊維
30 箱体
30a 外箱
30b 内箱
30c 断熱壁
31 発泡断熱材
34a 冷蔵室扉
35a 野菜室扉
37a 冷凍室扉。

Claims (7)

  1.  外被材と芯材を有する真空断熱材において、前記芯材は高分子樹脂を紡糸した繊維の積層体で構成されることを特徴とする真空断熱材。
  2.  請求項1において、前記芯材は曲げ弾性率が3000MPa以上の高分子樹脂を紡糸した繊維の積層体で構成されることを特徴とする真空断熱材。
  3.  請求項1において、前記高分子樹脂を紡糸した繊維はポリスチレン繊維を80%以上含有することを特徴とする真空断熱材。
  4.  請求項3において、前記芯材は1種類以上3種類以下の高分子樹脂繊維で構成され、前記ポリスチレン繊維以外は該ポリスチレン繊維よりもガラス転移温度が高い高分子樹脂を紡糸した繊維積層体であることを特徴とする真空断熱材。
  5.  外箱と内箱間に充填された発泡断熱材中に外被材と芯材を有する真空断熱材を配設し、該真空断熱材の芯材が高分子樹脂を紡糸した繊維の積層体で構成されることを特徴とする冷凍冷蔵庫。
  6.  請求項1乃至4のいずれかに記載の真空断熱材を備えた断熱箱体。
  7.  請求項1乃至4のいずれかに記載の真空断熱材を備えた断熱構造物。
PCT/JP2009/000213 2008-07-17 2009-01-21 真空断熱材 WO2010007706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117001021A KR101277389B1 (ko) 2008-07-17 2009-01-21 진공 단열재
CN2009801274379A CN102089563A (zh) 2008-07-17 2009-01-21 真空绝热材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008185465A JP5193713B2 (ja) 2008-07-17 2008-07-17 冷凍冷蔵庫
JP2008-185465 2008-07-17

Publications (1)

Publication Number Publication Date
WO2010007706A1 true WO2010007706A1 (ja) 2010-01-21

Family

ID=41550120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000213 WO2010007706A1 (ja) 2008-07-17 2009-01-21 真空断熱材

Country Status (4)

Country Link
JP (1) JP5193713B2 (ja)
KR (1) KR101277389B1 (ja)
CN (1) CN102089563A (ja)
WO (1) WO2010007706A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353170A (zh) * 2013-07-08 2013-10-16 钱伟 一种电热水器的防腐内胆
JP2014020473A (ja) * 2012-07-19 2014-02-03 Mitsubishi Electric Corp 真空断熱材およびその製造方法、並びに保温体
CN112848560A (zh) * 2021-01-14 2021-05-28 云南智仁节能环保工程有限公司 一种可重复利用再生复合耐高温保温毡及其制备方法
EP4316768A1 (en) * 2022-08-05 2024-02-07 Whirlpool Corporation Vacuum insulated structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574701B2 (en) * 2013-04-05 2017-02-21 Mitsubishi Electric Corporation Vacuum heat insulator, heat retaining tank including same, heat retaining structure, and heat pump water heater
WO2015137700A1 (ko) * 2014-03-11 2015-09-17 삼성전자주식회사 진공단열재 및 이를 포함하는 냉장고
JP2016173150A (ja) * 2015-03-17 2016-09-29 株式会社東芝 冷蔵庫の真空断熱パネル、および冷蔵庫のリサイクル方法
KR102072453B1 (ko) * 2015-03-10 2020-02-03 도시바 라이프스타일 가부시키가이샤 진공단열패널, 코어재, 냉장고
CN105058949A (zh) * 2015-08-13 2015-11-18 苏州市君悦新材料科技股份有限公司 一种真空绝热板的制备方法
JP7233070B2 (ja) * 2018-04-16 2023-03-06 アクア株式会社 真空断熱材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188791A (ja) * 2000-12-21 2002-07-05 Matsushita Refrig Co Ltd 真空断熱材、真空断熱体、断熱箱体の処理方法、真空断熱材および真空断熱体の製造方法、および冷蔵庫
JP2006029505A (ja) * 2004-07-20 2006-02-02 Kurabo Ind Ltd 真空断熱材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391934B2 (ja) * 1995-04-05 2003-03-31 日本バイリーン株式会社 分割性繊維及びこれを用いた繊維シート状物
JP4012903B2 (ja) * 2004-11-30 2007-11-28 倉敷紡績株式会社 真空断熱材
JP5239134B2 (ja) * 2005-08-10 2013-07-17 東レ株式会社 繊維分散体からなるスポンジ状構造体およびその製造方法
JP4580843B2 (ja) * 2005-08-24 2010-11-17 日立アプライアンス株式会社 真空断熱材及びそれを用いた冷蔵庫

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188791A (ja) * 2000-12-21 2002-07-05 Matsushita Refrig Co Ltd 真空断熱材、真空断熱体、断熱箱体の処理方法、真空断熱材および真空断熱体の製造方法、および冷蔵庫
JP2006029505A (ja) * 2004-07-20 2006-02-02 Kurabo Ind Ltd 真空断熱材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020473A (ja) * 2012-07-19 2014-02-03 Mitsubishi Electric Corp 真空断熱材およびその製造方法、並びに保温体
CN103353170A (zh) * 2013-07-08 2013-10-16 钱伟 一种电热水器的防腐内胆
CN112848560A (zh) * 2021-01-14 2021-05-28 云南智仁节能环保工程有限公司 一种可重复利用再生复合耐高温保温毡及其制备方法
EP4316768A1 (en) * 2022-08-05 2024-02-07 Whirlpool Corporation Vacuum insulated structure

Also Published As

Publication number Publication date
CN102089563A (zh) 2011-06-08
JP2010025182A (ja) 2010-02-04
KR20110033203A (ko) 2011-03-30
KR101277389B1 (ko) 2013-06-20
JP5193713B2 (ja) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5193713B2 (ja) 冷凍冷蔵庫
JP4183657B2 (ja) 冷蔵庫
JP3544653B2 (ja) 冷蔵庫
EP3388729A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
JP4814684B2 (ja) 真空断熱材及びこれを用いた冷蔵庫並びに車両
JP5388603B2 (ja) 真空断熱材及びこれを備えた断熱箱
WO2001081817A1 (fr) Materiau isolant pour le vide et dispositif utilisant ce materiau
JP4778996B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
JP2008185220A (ja) 真空断熱材
JP2007238141A (ja) 真空容器
JP5899395B2 (ja) 断熱箱体
JP5111331B2 (ja) 真空断熱材およびこの真空断熱材を用いた断熱箱
JP2012047211A (ja) 真空断熱材及びこれを用いた冷蔵庫
JP2014119230A (ja) 冷蔵庫
JP5548025B2 (ja) 真空断熱材およびこれを用いた冷蔵庫
JP5106319B2 (ja) 真空断熱材
JP5414569B2 (ja) 真空断熱材およびそれを用いた機器
JP5124214B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
JP2007239905A (ja) 真空断熱箱体
JP3488229B2 (ja) 断熱箱体および冷蔵庫
JP2009018826A (ja) 真空断熱箱体
JP5216510B2 (ja) 真空断熱材およびそれを用いた機器
JP2008111493A (ja) 真空容器
JP4969555B2 (ja) 真空断熱材及び断熱箱
JP4017713B2 (ja) 真空断熱体、冷蔵庫、断熱パネル、及び真空断熱体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127437.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117001021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797636

Country of ref document: EP

Kind code of ref document: A1