WO2010005013A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2010005013A1
WO2010005013A1 PCT/JP2009/062412 JP2009062412W WO2010005013A1 WO 2010005013 A1 WO2010005013 A1 WO 2010005013A1 JP 2009062412 W JP2009062412 W JP 2009062412W WO 2010005013 A1 WO2010005013 A1 WO 2010005013A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
wavelength
observation
test object
Prior art date
Application number
PCT/JP2009/062412
Other languages
English (en)
French (fr)
Inventor
仁 宇佐美
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2010519793A priority Critical patent/JP5424064B2/ja
Priority to EP09794457.3A priority patent/EP2309223A4/en
Publication of WO2010005013A1 publication Critical patent/WO2010005013A1/ja
Priority to US12/984,083 priority patent/US20110096159A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2509Color coding

Definitions

  • the present invention relates to a measuring apparatus, and more particularly to a measuring apparatus that measures a test object using measurement light.
  • an optical measuring device that measures the in-focus position, shape, etc. of a test object
  • measurement light such as laser light separately from observation light for observing the test object with eyes.
  • some optical measuring devices that measure using measurement light, when the measurement light is turned on, and the signal detected by the light receiving element when the measurement light is turned on, and the measurement light are turned off, to eliminate the influence of the observation light
  • measurement is performed using a signal obtained by taking a difference from the signal detected by the light receiving element (see, for example, Patent Document 1).
  • the light receiving element may be saturated or the S / N ratio may be reduced, which may reduce the measurement accuracy.
  • the present invention has been made in view of such circumstances, and is intended to improve the measurement accuracy of a test object using measurement light without reducing the visibility of the test object.
  • the measuring apparatus is a measuring apparatus for measuring the test object by detecting the measurement light illuminated by the test object by a light receiving sensor, each emitting light having different wavelength components, In the total spectral spectrum obtained by irradiating the test object with white light, it is perceived that white light is illuminated on the test object, and the spectral emission characteristics of the light having different wavelengths are combined,
  • a plurality of observation light sources for generating the observation light in which a weak wavelength range is present at which the light intensity is a predetermined threshold value or less in the visible wavelength range, and the measurement is a monochromatic light having a wavelength included in the weak wavelength range A measurement light source that emits light.
  • light having different wavelength components emitted from a plurality of observation light sources is combined and perceived as white light, and the light intensity is equal to or lower than a predetermined threshold in the visible wavelength range.
  • Observation light having a weak wavelength region is generated, and measurement light which is monochromatic light having a wavelength included in the weak wavelength region is emitted from the measurement light source.
  • the measurement accuracy of the test object using the measurement light can be improved without reducing the visibility of the test object.
  • FIG. 1 It is a block diagram which shows one Embodiment of the measuring apparatus to which this invention is applied. It is a figure for demonstrating the motion of the light of the measuring apparatus of FIG. It is a graph of a color matching function. It is a figure which shows embodiment of the optical apparatus using two types of measurement light from which a wavelength differs. It is a figure which shows the example of selection of the emission spectrum of each LED when the illuminating device for observation is comprised with LED of blue, green, and red, and the emission spectrum of measurement light.
  • FIG. 1 is a diagram showing an embodiment of a measuring apparatus to which the present invention is applied.
  • a measuring apparatus 1 in FIG. 1 is an optical measuring apparatus that measures the shape of a test object 2 placed on a stage 13 by a focusing method.
  • the measurement device 1 is provided with two types of illumination devices, an observation illumination device 12 and a measurement light source 31 of the measurement unit 11.
  • the observation illumination device 12 is an illumination device for irradiating the object 2 with observation light for observing the object 2 with the eyes.
  • the observation illumination device 12 includes an LED (Light Emitting Diode) 51 that emits red monochromatic light having a predetermined center wavelength (for example, 613 nm), an LED 52 that emits green monochromatic light having a predetermined center wavelength (for example, 520 nm), and There are provided three types of light sources of LEDs 53 that emit blue monochromatic light having a predetermined center wavelength (for example, 470 nm).
  • the user 71 observes the test object 2 illuminated by observation light with eyes.
  • individual lights combined to generate observation light are referred to as element light.
  • the measurement light source 31 is a light source that emits measurement light used for measuring the shape of the test object 2.
  • the measurement light source 31 includes a light source that emits near-infrared monochromatic laser light having a wavelength (for example, 630 nm) different from that of the LED 51.
  • Measurement light emitted from the measurement light source 31 is incident on a pupil stop 33 that gives an appropriate depth of focus via a condenser lens 32.
  • the measurement light that has passed through the pupil diaphragm 33 is collected by the relay lens 34 and is incident on the liquid crystal element 35 that is disposed at a position conjugate to the focal plane S set on the test object 2.
  • the liquid crystal element 35 is provided for projecting a predetermined pattern on the test object 2.
  • the measurement light that has passed through the liquid crystal element 35 and has become pattern light is converted into a parallel light beam by the relay lens 36 and is incident on the illumination objective lens 37.
  • the illumination objective lens 37 condenses the light from the liquid crystal element 35 on a predetermined focal plane S and projects a predetermined pattern image on the test object 2. That is, the measurement light whose pattern can be projected through the liquid crystal element 35 forms a pattern image on the focal plane S of the test object 2 by the relay lens 36 and the illumination objective lens 37.
  • the light reflected or confused on the surface of the test object 2 is collected by the imaging objective lens 38.
  • the light collected from the test object 2 by the imaging objective lens 38 includes reflection / confusion light of the observation light irradiated on the test object 2 by the observation illumination device 12. Accordingly, the observation light and the pattern light (measurement light) collected by the imaging objective lens 38 enter the optical filter 39.
  • the optical filter 39 is a filter that transmits light of a predetermined wavelength according to the spectral spectrum of the measurement light and blocks light in the wavelength region emitted from the observation illumination device 12. Therefore, as shown in FIG. 2, the light in the wavelength region emitted from the observation illumination device 12 among the light in the wavelength region in which the imaging element 41 of the light incident on the optical filter 39 from the test object 2 has sensitivity is detected. Only pattern light reflected by the measurement light reaches the image sensor 41. Then, the pattern light incident on the imaging lens 40 (not shown in FIG. 2) from the optical filter 39 enters the image sensor 41.
  • the image sensor 41 is a sensor having a CCD (Charge Coupled Device) and captures an image formed on the light receiving surface of the image sensor 41.
  • CCD Charge Coupled Device
  • the controller 14 changes the position of the stage 13 in the optical axis direction of the imaging objective lens 38 while changing the position of the stage 13 at each measurement position. ) To get. For example, the controller 14 calculates each position of the test object 2 on which the pattern is projected from the pattern image based on trigonometry, and measures the shape of the test object 2. The controller 14 outputs data indicating the shape of the measured object 2 to the outside.
  • the dynamic range of the image sensor 41 can be utilized to the maximum, the S / N ratio can be improved, and the measurement accuracy of the shape of the test object 2 can be improved.
  • the observation light is continuously irradiated onto the test object 2 during the measurement, the visibility of the test object 2 is not lowered, and the test object 2 can be observed in detail.
  • the observation light is light that is perceived as white light, it is gentle to the user's eyes and maintains good workability.
  • observation light is generated by combining the red, green, and blue element lights.
  • white light is generated by combining the element lights of other colors such as blue and yellow. Observation light that is perceived as may be generated.
  • the wavelength of the measurement light may be selected from wavelengths at which the intensity of the observation light is equal to or less than a predetermined threshold.
  • this threshold is determined by, for example, the performance of the image sensor 41 and the measurement accuracy required for the measurement apparatus 1. In view of the performance of the optical filter 39 and the like, it is desirable that the intensity of the observation light is set to be lower than the threshold even at a wavelength near the wavelength of the measurement light.
  • the wavelength of the measurement light it is more desirable to set the wavelength of the measurement light to a wavelength where human spectral sensitivity is weak. This is because even if a wavelength component with weak human spectral sensitivity is removed from the observation light, it hardly affects the human eye and it is easy to feel that white light is illuminated, while This is because the crosstalk due to the observation light source is small and the measurement is hardly affected.
  • FIG. 3 is a graph of color matching functions representing spectral sensitivity related to the human eye.
  • Lines 91 to 93 indicate the absolute values of the light reception sensitivities (stimulus values) with respect to light of each wavelength of three types of color receptors (color sensors) that are considered to be in the human eye and have different light reception sensitivities.
  • the wavelength of the measurement light is, for example, 410 nm or less in the visible wavelength range where humans can perceive the light (for example, 380 nm to 780 nm), near the boundary between the blue LED and green LED emission regions. It is considered that it is most appropriate to set a wavelength range of 660 nm or more, a wavelength range near the boundary between the green LED and the blue LED, or a wavelength of 660 nm or more.
  • FIG. 5 shows the emission spectrum of a blue LED, the emission spectrum of a green LED, and the emission spectrum of a red LED.
  • the hatched region is desirable as the wavelength region of the measurement light. Specifically, it is preferable to set the wavelength range of the measurement light to a wavelength range of 570 nm to 585 nm or a wavelength range of 660 nm or more.
  • the wavelength of the measurement light may be set in an infrared region or an ultraviolet region other than the visible wavelength region, but by setting the wavelength in the visible wavelength region so that the user can see the measurement position, the user can set the measurement position. You can actually confirm with your eyes.
  • optical filter 39 it is possible to omit the optical filter 39 by using a light receiving sensor that senses only the wavelength region of the measurement light instead of the image sensor 41.
  • the present invention can be applied to other optical devices that use observation light and measurement light and detect the measurement light with a light receiving sensor.
  • the present invention can be applied to a measuring device that measures other elements (for example, focal length, etc.) other than the shape of the test object 2 by using measurement light, or illumination light for observation and measurement light source for autofocus. It is possible to apply to a microscope provided with.
  • the present invention can be applied not only to an optical device that uses measurement light by reflecting it on a test object, but also to an optical device that uses measurement light that passes through the test object.
  • the relationship between the optical axis of the observation light, the measurement light, and the incident light incident on the light receiving sensor is not particularly limited.
  • the observation light and the measurement light may be emitted from substantially the same position as the light receiving sensor toward the test object, and the reflected light from the test object may be incident on the light receiving sensor via the optical filter.
  • the observation light source, the measurement light source, and the light receiving sensor are not necessarily provided separately, and two of the observation light source, the measurement light source, and the light reception sensor are provided as necessary.
  • the above may be incorporated into a common apparatus or optical system.
  • the observation illumination device 111 of the optical device 101 in FIG. 4 is illumination for irradiating the object 102 with observation light.
  • the observation illumination device 111 includes an LED 131 that emits red monochromatic light having a predetermined center wavelength (for example, 613 nm), an LED 132 that emits green monochromatic light having a predetermined center wavelength (for example, 525 nm), and a predetermined center wavelength (for example, 470 nm).
  • the measurement unit 112 and the measurement unit 113 measure, for example, the shape or focal length of the test object 102 using the measurement light.
  • the measurement unit 112 transmits only the light having the same wavelength as the light emitted from the measurement light source 141, the measurement light source 141 that emits red single-color laser light having the same center wavelength as the LED 134, and other wavelengths.
  • the optical filter 142 is configured to block the light and the light receiving sensor 143 that detects the measurement light transmitted through the optical filter 142.
  • the measurement unit 113 transmits only the light having the same wavelength as the light emitted from the measurement light source 151 and the measurement light source 151 that emits a single-color red laser beam having the same center wavelength as the LED 131, and transmits light of other wavelengths.
  • the optical filter 152 is configured to be blocked, and the light receiving sensor 153 is configured to detect the measurement light transmitted through the optical filter 152.
  • the observation illumination device 111 turns on the LEDs 131 to 133 and turns off the LED 134 that emits light having the same wavelength as the measurement light source 141.
  • the observation light that is perceived as white light by humans is generated using the three types of elemental light of red, green, and blue emitted by the LEDs 131 to 133 without using the elemental light emitted by the LED 134.
  • 102 is irradiated. In such a light emission state, the total spectral spectrum of the observation light shows a small amount of light in the central wavelength region of the light emitted from the measurement light source 141.
  • the measurement light emitted from the measurement light source 141 is irradiated on the test object 102.
  • the measurement light from the measurement light source 141 is transmitted through the optical filter 142, and the observation light from the observation illumination device 111 is blocked. Thereby, only the measurement light from the measurement light source 141 enters the light receiving sensor 143 and is detected.
  • the observation illumination device 111 turns on the LEDs 132 to 134 and turns off the LED 131 that emits light having the same wavelength as the measurement light source 151.
  • observation light that is perceived as white light by humans is generated using the three types of element light of green, blue, and red emitted by the LEDs 132 to 134 without using the element light emitted by the LED 131, and the test object 102 is irradiated.
  • the total spectral spectrum of the observation light shows a small amount of light in the central wavelength region of the light emitted from the measurement light source 151.
  • the measurement light emitted from the measurement light source 151 is irradiated to the test object 102.
  • the measurement light from the measurement light source 151 passes through the optical filter 152, and the observation light from the observation illumination device 111 is blocked. Thereby, only the measurement light from the measurement light source 151 enters the light receiving sensor 153 and is detected.
  • the dynamic range of the light receiving sensor 143 and the light receiving sensor 153 can be utilized to the maximum, the S / N ratio is improved, and the measurement light with two different wavelengths is used more accurately.
  • the specimen 102 can be measured.
  • the wavelengths of the LED 131 and the LED 134 are close, it is possible to prevent the user 103 from feeling that the observation light is switched between the case where the measurement is performed by the measurement unit 112 and the case where the measurement is performed by the measurement unit 113.
  • observation light may be generated by any combination of the LEDs 131 to 133 or the LEDs 132 to 134.
  • the method shown in FIG. 4 is effective when the colors (wavelengths) of element light and measurement light that can be used are limited to easily available colors for the purpose of reducing costs.
  • a plurality of wavelengths may be selected as the wavelengths of the measurement light from wavelengths at which the intensity of the observation light is a predetermined threshold value or less.
  • the embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the type of the light source used in the observation illumination device 12 is not limited to the LED, and pseudo white light may be formed by laser light having different emission wavelength ranges. Then, based on the total spectrum of the observation illumination device 12, a wavelength region with a small amount of light emission may be set as the wavelength region of the measurement light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明は、視認性を保ちつつ、被検物の形状測定を高精度化させる測定装置に関する。照明装置(12)は、赤色光を発するLED(51)、緑色光を発するLED(52)、青色光を発するLED(53)を備えている。各LED(51、52、53)から発せられた光は、被検物(2)に同時に照射され、白色光が照明されたと人が知覚する観察光となる。測定用光源(31)は、被検物(2)の形状測定に用いられ、各LED(51、52、53)から発せられた光の波長と異なる波長の可視光で構成されたレーザ光を発する。被検物(2)で反射した光のうち、測定用光源(31)から発せられた光のみが光学フィルタ(39)を透過し、撮像素子(41)の受光面で結像する。

Description

測定装置
 本発明は、測定装置に関し、特に、測定光を用いて被検物の測定を行う測定装置に関する。
 従来、被検物の合焦位置や形状などを測定する光学測定装置において、被検物を目で観察するための観察光とは別に、レーザ光などの測定光を用いて測定を行うものがある。また、測定光を用いて測定を行う光学測定装置の中には、観察光の影響を除去するために、測定光を点灯したときに受光素子により検出された信号と、測定光を消灯したときに受光素子により検出された信号との差分をとった信号を用いて測定を行うものがある(例えば、特許文献1参照)。
特開平11-264928号公報
 しかし、特許文献1に記載の発明の場合、測定光に比べて観察光が明るすぎると、受光素子の飽和やS/N比の低下が発生し、測定精度が低下してしまう恐れがあった。
 一方、それを避けるために、被検物の測定を行うときに観察光を消灯するようにした場合、暗すぎて測定中に被検物を観察するのが困難になる。
 本発明は、このような状況を鑑みてなされたものであり、被検物の視認性を低下させずに、測定光を用いた被検物の測定精度を向上させるようにするものである。
 本発明の一側面の測定装置は、被検物に照らされた測定光を受光センサにより検出して前記被検物の測定を行う測定装置であって、波長成分が異なる光をそれぞれ発し、それぞれの光を前記被検物に照射することにより、白色光が前記被検物に照明されたとして知覚されるとともに、前記波長が異なる光の分光発光特性を総合して得られる総合分光スペクトルにおいて、可視波長域で光の強度が所定の閾値以下となる波長である弱波長域が存在する前記観察光を生成する複数の観察光源と、前記弱波長域に含まれる波長の単色光である前記測定光を発する測定光源とを備える。
 本発明の一側面においては、複数の観察光源から発せられる波長成分がそれぞれ異なる光が合成され、白色光として知覚されるとともに、可視波長域で光の強度が所定の閾値以下となる波長である弱波長域が存在する観察光が生成され、測定光源から弱波長域に含まれる波長の単色光である測定光が発せられる。
 本発明によれば、被検物の視認性を低下させずに、測定光を用いた被検物の測定精度を向上させることができる。
本発明を適用した測定装置の一実施の形態を示すブロック図である。 図1の測定装置の光の動きを説明するための図である。 等色関数のグラフである。 波長が異なる2種類の測定光を用いる光学装置の実施の形態を示す図である。 青、緑および赤のLEDで観察用照明装置を構成したときのそれぞれのLEDの発光スペクトルと、測定光の発光スペクトルの選択例を示す図である。
 以下、図面を参照して本発明を適用した実施の形態について説明する。
 図1は、本発明を適用した測定装置の一実施の形態を示す図である。図1の測定装置1は、合焦点法によりステージ13上に設置された被検物2の形状を測定する光学測定装置である。
 測定装置1には、観察照明装置12と測定部11の測定光源31の2種類の照明装置が設けられている。
 観察照明装置12は、被検物2を目で観察するための観察光を被検物2に照射するための照明装置である。観察照明装置12は、所定の中心波長(例えば、613nm)の赤の単色光を発するLED(Light Emitting Diode)51、所定の中心波長(例えば、520nm)の緑の単色光を発するLED52、および、所定の中心波長(例えば、470nm)の青の単色光を発するLED53の3種類の光源を備えている。LED51乃至53から発せられる赤、緑、青の3種類の光は、同時又は短時間の間に同一対象物に照射することにより人に白色光が照明されたとして知覚される観察光となり、被検物2を照らす。そして、図2に示されるように、ユーザ71は、観察光により照らされた被検物2を目で観察する。なお、以下、観察光を生成するために合成される個々の光のことを要素光と称する。
 一方、測定光源31は、被検物2の形状の測定に用いる測定光を発する光源である。測定光源31は、LED51とは異なる波長(例えば、630nm)の近赤外の単色のレーザ光を発する光源により構成される。
 測定光源31から射出された測定光は、コンデンサレンズ32を介して、適切な焦点深度を与える瞳絞り33に入射する。瞳絞り33を通過した測定光は、リレーレンズ34により集光され、被検物2上に設定された焦点面Sと共役な関係位置に配置された、液晶素子35に入射する。
 液晶素子35は、被検物2上に所定のパターンを投影するために設けられる。液晶素子35を通過して、パターン光となった測定光は、リレーレンズ36により平行光束となり、照明用対物レンズ37に入射する。照明用対物レンズ37は、液晶素子35からの光を所定の焦点面Sに集光して、所定のパターン像を被検物2に投影する。すなわち、液晶素子35を経てパターンが投影できるようになった測定光は、リレーレンズ36、および照明用対物レンズ37によって、被検物2の焦点面Sにパターン像を結ぶ。
 そして、被検物2に投影されたパターン像を撮像素子41に結像するために、被検物2の表面において反射又は錯乱された光を、結像用対物レンズ38で集光する。なお、被検物2から結像用対物レンズ38によって集光される光には、観察照明装置12により被検物2に照射された観察光の反射・錯乱光も含まれる。従って、結像用対物レンズ38により集光された観察光およびパターン光(測定光)が、光学フィルタ39に入射する。
 光学フィルタ39は、測定光の分光スペクトルに応じて所定の波長の光を透過し、観察照明装置12から発光された波長域の光を遮断するフィルタである。従って、図2に示されるように、被検物2から光学フィルタ39に入射される光の撮像素子41が感度を有する波長域の光のうち、観察照明装置12で発光した波長域の光が反射され、測定光によるパターン光のみが撮像素子41に到達するようになっている。そして、光学フィルタ39から結像レンズ40(図2においては図示せず)に入射したパターン光は、撮像素子41に入射する。なお、この撮像素子41は、CCD(Charge Coupled Device)を具備するセンサであり、撮像素子41の受光面で結像した像を撮像する。
 コントローラ14は、結像用対物レンズ38の光軸方向におけるステージ13の位置を変化させながら、各測定位置において撮像素子41によりパターンが投影された被検物2の画像(以下、観察画像と称する)を取得する。コントローラ14は、例えば、パターンの像から三角法に基づいて、パターンが投影された被検物2のそれぞれの位置を算出し、被検物2の形状を測定する。コントローラ14は、測定した被検物2の形状を示すデータを外部に出力する。
 このように、測定装置1においては、被検物2に観察光を照射したままでも、撮像素子41には測定光によるパターン光のみが入射される。従って、撮像素子41のダイナミックレンジを最大限に利用することができ、S/N比も良好となり、被検物2の形状の測定精度を向上させることができる。また、測定中も被検物2に観察光が連続して照射されるので、被検物2の視認性が低下せず、被検物2を詳細に観察することができる。さらに、観察光は、白色光として知覚される光であるため、ユーザの目に優しく、作業性が良好に保たれる。
 なお、以上の説明では、赤、緑、青の要素光を合成することにより観察光を生成する例を示したが、例えば、青と黄色など、その他の色の要素光の組み合わせにより、白色光として知覚される観察光を生成するようにしてもよい。
 また、要素光は、必ずしも単色光である必要はない。具体的には、要素光を同一対象物に照明することにより、測定光の波長(=光学フィルタ39の透過波長)において光の強度が所定の閾値以下となり、かつ白色光として知覚される観察光になるように、各要素光の波長成分を設定すればよい。逆に言えば、測定光の波長は、観察光の強度が所定の閾値以下となる波長の中から選択するようにすればよい。
 なお、この閾値は、例えば、撮像素子41の性能や、測定装置1に要求される測定精度などにより決定される。また、光学フィルタ39の性能等を鑑みると、測定光の波長の近傍の波長においても、観察光の強度が閾値を下回るように設定することが望ましい。
 また、測定光の波長は、人の分光感度が弱い波長に設定するのがより望ましい。これは、人の分光感度が弱い波長成分が観察光から除去されても、ほとんど人の目には影響を与えず、白色光が照明されていると感じやすい一方、測定光の波長域への観察光源によるクロストークが少なく、測定に更に影響を与えにくくなるためである。
 図3は、人の目に関する分光感度を表す等色関数のグラフである。線91乃至93は、人の目にあると考えられている受光感度の異なる3種類の色受容器(色センサ)の、各波長の光に対する受光感度(刺激値)の絶対値を示している。この等色関数のグラフから、測定光の波長は、人が光を知覚できる可視波長域(例えば、380nm~780nm)において、例えば、410nm以下、青のLEDと緑のLEDの発光領域の境界近傍の波長域、緑のLEDと青のLEDの発光領域の境界近傍の波長域、または、660nm以上の波長に設定するのが最も適切であると考えられる。
 その一例として、図5に青のLEDの発光スペクトル、緑のLEDの発光スペクトル、赤のLEDの発光スペクトルを図示した。この図5に示す3色のLEDを観察照明装置12の光源に選択した場合には、ハッチングを施した領域が測定光の波長域として望ましい。具体的には、570nm~585nmの波長域や、660nm以上の波長域に測定光の波長域を設定するのが好ましい。
 なお、測定光の波長は、可視波長域以外の赤外域または紫外域に設定してもよいが、可視波長域に設定し、ユーザが見ることができるようにすることにより、ユーザが測定位置を目で実際に確認することができるようになる。
 また、撮像素子41の代わりに、測定光の波長域のみを感知する受光センサを用いることにより、光学フィルタ39を省略することも可能である。
 さらに、以上の説明では、ユーザが直接目で被検物2を観察する用途で観察光を用いる例を示したが、被検物2を撮影して観察するための用途など、観察光をその他の用途に使用することも可能である。
 また、本発明は、観察光と測定光を用いるとともに、測定光を受光センサにより検出する他の光学装置に適用することが可能である。例えば、本発明は、測定光を用いて被検物2の形状以外の他の要素(例えば、焦点距離など)を測定する測定装置に適用したり、観察用の照明とオートフォーカス用の測定光源を備える顕微鏡に適用したりすることが可能である。
 また、本発明は、測定光を被検物に反射させて用いる光学装置だけでなく、測定光を被検物を透過させて用いる光学装置にも適用することが可能である。
 さらに、本発明の実施の形態において、観察光、測定光、および、受光センサに入射する入射光の光軸の関係は特に限定されるものではない。例えば、観察光と測定光を受光センサとほぼ同じ位置から被検物に向けて射出し、被検物からの反射光を、光学フィルタを介して受光センサに入射させるようにしてもよい。
 また、本発明の実施の形態において、観察光源、測定光源、および、受光センサを必ずしもそれぞれ別個に設ける必要はなく、必要に応じて、観察光源、測定光源、および、受光センサのうちの2つ以上を共通の装置や光学系に組み込むようにしてもよい。
 次に、図4を参照して、波長が異なる2種類の測定光を用いる光学装置101に本発明を適用する場合について説明する。
 図4の光学装置101の観察照明装置111は、観察光を被検物102に照射するための照明である。観察照明装置111は、所定の中心波長(例えば、613nm)の赤の単色光を発するLED131、所定の中心波長(例えば、525nm)の緑の単色光を発するLED132、所定の中心波長(例えば、470nm)の青の単色光を発するLED133、および、LED131の発光中心波長の近傍に中心波長を持つ異なる中心波長(例えば、630nm)の赤の単色光を発するLED134が設けられている。
 測定部112および測定部113は、測定光を用いて、例えば、被検物102の形状または焦点距離などの測定を行う。
 具体的には、測定部112は、LED134と同じ中心波長の赤の単色のレーザ光を測定光として発する測定光源141、測定光源141から発する光と同じ波長の光のみを透過し、その他の波長の光を遮断する光学フィルタ142、および、光学フィルタ142を透過した測定光を検出する受光センサ143を含むように構成される。
 また、測定部113は、LED131と同じ中心波長の赤の単色のレーザ光を測定光として発する測定光源151、測定光源151から発する光と同じ波長の光のみを透過し、その他の波長の光を遮断する光学フィルタ152、および、光学フィルタ152を透過した測定光を検出する受光センサ153を含むように構成される。
 測定部112が被検物102の測定を行う場合、観察照明装置111は、LED131乃至133を点灯し、測定光源141と同じ波長の光を発するLED134を消灯する。これにより、LED134が発する要素光を用いずに、LED131乃至133が発する赤、緑、青の3種類の要素光を用いて、人にとって白色光として知覚される観察光が生成され、被検物102に照射される。このような発光状態では、観察光の総合分光スペクトルは、測定光源141から発する光の中心波長域において少なく光量を示している。また、測定光源141から発せられる測定光が被検物102に照射される。
 そして、被検物102により反射され、光学フィルタ142に入射する反射光のうち、測定光源141からの測定光のみが光学フィルタ142を透過し、観察照明装置111からの観察光は遮断される。これにより、測定光源141からの測定光のみが受光センサ143に入射し検出される。
 一方、測定部113が被検物102の測定を行う場合、観察照明装置111は、LED132乃至134を点灯し、測定光源151と同じ波長の光を発するLED131を消灯する。これにより、LED131が発する要素光を用いずに、LED132乃至134が発する緑、青、赤の3種類の要素光を用いて、人にとって白色光として知覚される観察光が生成され、被検物102に照射される。このような発光状態では、観察光の総合分光スペクトルは、測定光源151から発する光の中心波長域において少なく光量を示している。また、測定光源151から発せられる測定光が被検物102に照射される。
 そして、被検物102により反射され、光学フィルタ152に入射する反射光のうち、測定光源151からの測定光のみが光学フィルタ152を透過し、観察照明装置111からの観察光は遮断される。これにより、測定光源151からの測定光のみが受光センサ153に入射し検出される。
 以上のようにして、受光センサ143および受光センサ153のダイナミックレンジを最大限に利用することができ、S/N比も良好となり、2種類の異なる波長の測定光を用いて、より正確に被検物102の測定を行うことができる。また、LED131とLED134の波長が近いため、測定部112により測定する場合と測定部113により測定する場合とで観察光が切り替わったことを、ユーザ103に感じさせないようにすることができる。
 なお、光学装置101において測定光の波長の種類をさらに増やす場合、例えば、測定光源141および測定光源151の両方の波長と異なる波長の赤の単色のレーザ光を発する光源を追加する。そして、追加した光源を用いて測定する場合には、LED131乃至133、または、LED132乃至134のいずれかの組み合わせで観察光を生成するようにすればよい。
 なお、図4に示した方法は、コストを抑制するなどの目的で、使用できる要素光および測定光の色(波長)が、入手しやすい色に限定される場合に有効である。特に、測定光の波長を限定しなくてもよい場合には、観察光の強度が所定の閾値以下となる波長の中から複数の波長を測定光の波長として選択するようにすればよい。
 なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。例えば、観察照明装置12に用いられる光源の種類としては、LEDだけに限られず、それぞれ発光波長域の異なるレーザ光でもって、擬似的に白色光を形成するものでもよい。そして、観察照明装置12の総合スペクトルを基に、発光量が少ない波長域を測定光の波長域として設定すればよい。
 1 測定装置, 11 測定部, 12 観察照明装置, 31 測定光源, 39 光学フィルタ, 41 撮像素子, 51乃至53 LED, 111 観察照明装置, 112 測定部, 113 測定部, 131乃至134 LED, 141 測定光源, 142 光学フィルタ, 143 受光センサ, 151 測定光源, 152 光学フィルタ, 153 受光センサ 

Claims (3)

  1.  被検物に照らされた測定光を受光センサにより検出して前記被検物の測定を行う測定装置において、
     波長成分が異なる光をそれぞれ発し、それぞれの光を前記被検物に照射することにより、白色光が前記被検物に照明されたとして知覚されるとともに、前記波長成分が異なる光の分光発光特性を総合して得られる総合分光スペクトルにおいて、可視波長域で光の強度が所定の閾値以下となる波長である弱波長域が存在する前記観察光を生成する複数の観察光源と、
     前記弱波長域に含まれる波長の単色光である前記測定光を発する測定光源と
     を備えることを特徴とする測定装置。
  2.  前記被検物と前記受光センサとの間に設けられ、前記観察光と同じ波長域の光を阻止し、前記測定光と同じ波長の光を通過して前記受光センサに入射させる光学フィルタを
     さらに備えることを特徴とする請求項1に記載の測定装置。
  3.  第1の波長域の単色光を発する前記観察光源である第1の観察光源と、
     前記第1の波長域の近傍の前記第1の波長域とは異なる第2の波長域の単色光を発する第2の観察光源と、
     前記第1の波長域に中心波長を持ち、前記測定光である第1の測定光を発する前記測定光源である第1の測定光源と、
     前記第2の波長域に中心波長を持ち、前記測定光である第2の測定光を発する前記測定光源である第2の測定光源と
     を備え、
     前記第1の測定光を使用する場合、前記第1の単色光を用いずに前記第2の単色光を用いて前記観察光を生成し、前記第2の測定光を使用する場合、前記第2の単色光を用いずに前記第1の単色光を用いて前記観察光を生成する
     ことを特徴とする請求項1に記載の測定装置。
PCT/JP2009/062412 2008-07-09 2009-07-08 測定装置 WO2010005013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010519793A JP5424064B2 (ja) 2008-07-09 2009-07-08 測定装置
EP09794457.3A EP2309223A4 (en) 2008-07-09 2009-07-08 MEASURING DEVICE
US12/984,083 US20110096159A1 (en) 2008-07-09 2011-01-04 Measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008178667 2008-07-09
JP2008-178667 2008-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/984,083 Continuation US20110096159A1 (en) 2008-07-09 2011-01-04 Measurement apparatus

Publications (1)

Publication Number Publication Date
WO2010005013A1 true WO2010005013A1 (ja) 2010-01-14

Family

ID=41507126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062412 WO2010005013A1 (ja) 2008-07-09 2009-07-08 測定装置

Country Status (4)

Country Link
US (1) US20110096159A1 (ja)
EP (1) EP2309223A4 (ja)
JP (1) JP5424064B2 (ja)
WO (1) WO2010005013A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048480B2 (en) * 2011-01-07 2018-08-14 Zeta Instruments, Inc. 3D microscope including insertable components to provide multiple imaging and measurement capabilities
US20140191117A1 (en) * 2013-01-10 2014-07-10 Bio-Rad Laboratories, Inc. Chromatography System with LED-Based Light Source
CN104949632A (zh) * 2015-07-07 2015-09-30 北京博维恒信科技发展有限公司 物体表面形状三维扫描系统
CN105835552B (zh) * 2016-03-23 2018-07-20 深圳市科彩印务有限公司 一种适于可直接目测镭射材料印刷色差的pvc片基制作方法
CN110319790A (zh) * 2019-04-23 2019-10-11 首都师范大学 一种基于彩色散斑场的全彩色计算鬼成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264928A (ja) 1988-08-31 1990-03-05 Toshiba Corp 光ヘッド
JPH04130919U (ja) * 1991-05-24 1992-12-01 横河電機株式会社 共焦点レ−ザ顕微鏡
JPH06201353A (ja) * 1993-01-06 1994-07-19 Olympus Optical Co Ltd 光学的ニアフィールド顕微鏡
JPH07307599A (ja) * 1994-05-10 1995-11-21 Shigeki Kobayashi 検査装置及び製品製造方法
JP2007024510A (ja) * 2005-07-12 2007-02-01 Ckd Corp 基板の検査装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760269A (en) * 1986-05-20 1988-07-26 The Mitre Corporation Method and apparatus for measuring distance to an object
US5127726A (en) * 1989-05-19 1992-07-07 Eastman Kodak Company Method and apparatus for low angle, high resolution surface inspection
US5851063A (en) * 1996-10-28 1998-12-22 General Electric Company Light-emitting diode white light source
WO1999061948A1 (fr) * 1998-05-25 1999-12-02 Matsushita Electric Industrial Co., Ltd. Telemetre et appareil photographique
US6460997B1 (en) * 2000-05-08 2002-10-08 Alcon Universal Ltd. Apparatus and method for objective measurements of optical systems using wavefront analysis
JP3944377B2 (ja) * 2001-10-22 2007-07-11 オリンパス株式会社 焦点検出装置
JP2003139521A (ja) * 2001-11-06 2003-05-14 Minolta Co Ltd パターン投影型画像入力装置
US7720554B2 (en) * 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US9760214B2 (en) * 2005-02-23 2017-09-12 Zienon, Llc Method and apparatus for data entry input
US7375801B1 (en) * 2005-04-13 2008-05-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Video sensor with range measurement capability
US20070013978A1 (en) * 2005-07-13 2007-01-18 Sharp Kabushiki Kaisha Color information measuring device, print object information measuring device, printing device and electrronic equipment
US7414722B2 (en) * 2005-08-16 2008-08-19 Asml Netherlands B.V. Alignment measurement arrangement and alignment measurement method
US7477400B2 (en) * 2005-09-02 2009-01-13 Siimpel Corporation Range and speed finder
US20070167837A1 (en) * 2005-12-07 2007-07-19 Seaboard Engineering Corp. (A New Jersey Corporation) Method and apparatus for three dimensional scanning in a visibly lit environment using structured light
JP2007192750A (ja) * 2006-01-20 2007-08-02 Sumitomo Electric Ind Ltd 光計測装置及び広帯域光源装置
JP2007225789A (ja) * 2006-02-22 2007-09-06 Olympus Corp 測定顕微鏡
JP2007278849A (ja) * 2006-04-06 2007-10-25 Nidec-Read Corp 光学測定装置及び光学測定方法
JP2007286250A (ja) * 2006-04-14 2007-11-01 Olympus Corp 焦点検出制御システム、及びその焦点検出制御システムを備えた顕微鏡システム
JP5101867B2 (ja) * 2006-11-10 2012-12-19 オリンパス株式会社 焦点検出装置
JP5172204B2 (ja) * 2007-05-16 2013-03-27 大塚電子株式会社 光学特性測定装置およびフォーカス調整方法
NL2004216A (en) * 2009-03-26 2010-09-28 Asml Netherlands Bv Alignment measurement arrangement, alignment measurement method, device manufacturing method and lithographic apparatus.
JP5796275B2 (ja) * 2010-06-02 2015-10-21 セイコーエプソン株式会社 分光測定器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264928A (ja) 1988-08-31 1990-03-05 Toshiba Corp 光ヘッド
JPH04130919U (ja) * 1991-05-24 1992-12-01 横河電機株式会社 共焦点レ−ザ顕微鏡
JPH06201353A (ja) * 1993-01-06 1994-07-19 Olympus Optical Co Ltd 光学的ニアフィールド顕微鏡
JPH07307599A (ja) * 1994-05-10 1995-11-21 Shigeki Kobayashi 検査装置及び製品製造方法
JP2007024510A (ja) * 2005-07-12 2007-02-01 Ckd Corp 基板の検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2309223A4 *

Also Published As

Publication number Publication date
JPWO2010005013A1 (ja) 2012-01-05
EP2309223A4 (en) 2016-09-07
EP2309223A1 (en) 2011-04-13
JP5424064B2 (ja) 2014-02-26
US20110096159A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP6062405B2 (ja) 赤外蛍光を観察するための手術用顕微鏡、顕微鏡検査方法、および手術用顕微鏡の使用
US7746560B2 (en) Illumination optical system that uses a solid-state lighting element which generates white light, and an optical device equipped therewith
JP2016507752A (ja) 表面色を備えた表面トポグラフィ干渉計
JP2002535025A5 (ja)
JP5424064B2 (ja) 測定装置
TWI608248B (zh) Microscope device
JP2009025189A (ja) 計測器
JP6383370B2 (ja) 蛍光観察装置
US20130286396A1 (en) Inspection device
JP4333050B2 (ja) 測定用光学系及びこの光学系を備えた三刺激値型光電色彩計
JP2008116900A (ja) 干渉対物レンズと、その干渉対物レンズを備える干渉顕微鏡装置
JP2013002951A (ja) 測定装置
KR101236725B1 (ko) 칼라 관찰 광학계를 구비한 자동 검안기
US10918282B2 (en) Eye-examining apparatus in which visible-optical channel and infrared-optical channel are integrated
JP2009288150A (ja) 光学特性測定装置および光学特性測定方法
WO2014129522A1 (ja) 眼底撮像装置および網膜組織特徴量測定方法
KR101503891B1 (ko) 내시경 시스템 및 그것을 이용하는 피검체 관찰 방법
RU176795U1 (ru) Оптическое устройство для исследования глазного дна с целью выявления возрастной макулярной дистрофии сетчатки
RU2356016C1 (ru) Способ измерения цвета объектов и устройство для его осуществления
US20240085326A1 (en) Method, computer program and data processing unit for preparing observation of fluorescence intensity, method for observing fluorescence intensity, and optical observation system
RU2312314C2 (ru) Способ измерения цвета объектов (варианты) и устройство для его осуществления (варианты)
US20180128684A1 (en) Dye measurement device and dye measurement method
WO2010023983A1 (ja) 生体内観測装置
JP6737993B2 (ja) 眼科検査装置
JP6596970B2 (ja) 測色装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009794457

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009794457

Country of ref document: EP