WO2010001948A1 - 脱水装置 - Google Patents

脱水装置 Download PDF

Info

Publication number
WO2010001948A1
WO2010001948A1 PCT/JP2009/062088 JP2009062088W WO2010001948A1 WO 2010001948 A1 WO2010001948 A1 WO 2010001948A1 JP 2009062088 W JP2009062088 W JP 2009062088W WO 2010001948 A1 WO2010001948 A1 WO 2010001948A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
separator
dewatered
external force
bellows
Prior art date
Application number
PCT/JP2009/062088
Other languages
English (en)
French (fr)
Inventor
オーケ スティーゲブラント
Original Assignee
日本インカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0801611A external-priority patent/SE532481C2/sv
Application filed by 日本インカ株式会社 filed Critical 日本インカ株式会社
Priority to JP2010519099A priority Critical patent/JP4811837B2/ja
Publication of WO2010001948A1 publication Critical patent/WO2010001948A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/128Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using batch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/23Supported filter elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/80Handling the filter cake in the filter for purposes other than for regenerating for drying
    • B01D29/82Handling the filter cake in the filter for purposes other than for regenerating for drying by compression
    • B01D29/822Handling the filter cake in the filter for purposes other than for regenerating for drying by compression using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/94Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging the filter cake, e.g. chutes
    • B01D29/945Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging the filter cake, e.g. chutes for continuously discharging concentrated liquid

Definitions

  • the present invention relates to a dehydrating apparatus in which a separator having a large number of separation holes in a side wall is concentrically arranged inside a cylindrical body having a closed structure and an openable bottom hatch at the lower end.
  • a dehydrating apparatus in which a separator having a large number of separation holes in a side wall is concentrically arranged inside a cylindrical body having a closed structure and an openable bottom hatch at the lower end.
  • the sludge filled in the separator is separated into liquid and dewatered sludge, and the dewatered sludge is discharged downward while opening the bottom hatch.
  • the present invention also relates to a method for separating liquid from sludge, for example, sludge containing a large amount of particles, by the dehydrator.
  • the residue In the water purification process, the residue is generated in the form of particles, and most of it becomes a final product called a sludge with a high water content.
  • the properties of the sludge vary greatly depending on the substance separated in the cleaning process and the cleaning process. For example, food waste from a cleaning process in the food industry may become a protein that is an essential nutrient for animals. On the other hand, many wastes from industry, mining, etc. become harmful substances that require appropriate treatment.
  • the generated waste that is, sludge has a small capacity and is lightweight. This is accomplished by removing as much water as possible from the sludge and condensing the residue.
  • a separator having a large number of separation holes on a side wall is concentrically arranged inside a cylindrical body having a closed structure and an openable bottom hatch at the lower end, and the sludge filled in the separator is liquid.
  • the purpose of the present invention is to effectively exhibit the dewatering function for various sludges in the above-described dewatering apparatus, and to effectively remove the dewatered sludge as a residue without adhering to the separator. .
  • a separator having a large number of separation holes on the side wall is concentrically arranged inside a cylindrical body having a closed structure and an openable bottom hatch at the lower end, and the sludge filled in the separator is liquid.
  • a valve mechanism for controlling the pressure inside the expression bellows and the bottom hatch when the bottom hatch is opened, the separator faces downward from the separator.
  • an external force supply means for supplying a downward force to the upper side of the dewatered sludge is provided.
  • the valve mechanism controls the pressure inside the compressed bellows according to the type of the sludge.
  • the pressure inside the compressed bellows is increased in advance, and the pressure is maintained while the sludge is filled; After filling the sludge into the separator, the pressure inside the compressed bellows is further increased, and the compressed bellows is expanded to compress the sludge and separate the liquid from the sludge. This is a dehydrating device.
  • the invention according to claim 2 The dehydrating apparatus according to claim 1, wherein the inner wall surface of the side wall of the separator and / or the separation hole is subjected to a smoothing process.
  • the invention described in claim 3 The external force supply means instantaneously applies a downward force evenly to the upper surface of the dewatered sludge when the bottom hatch is opened and the dewatered sludge is discharged downward.
  • the invention according to claim 5 The external force supply means is a tubular body having an annular flexibility, and when the force is uniformly applied to the upper surface of the dewatered sludge in a downward direction instantaneously, the fluid is rapidly put into the tubular body.
  • the dewatering function can be effectively exerted on various sludges, and the dewatered sludge as a residue can be effectively removed without adhering to the separator. Can do.
  • FIG. 1 Sectional drawing explaining the internal structure of an example of the dehydration apparatus of this invention.
  • FIG. 1 Front sectional view of a state where pre-pressurization is performed before sludge filling, (b) Front sectional view during sludge filling.
  • FIG. 1 Front sectional view of a state where sludge is compressed and liquid is separated,
  • FIG. 1 Front sectional view of a state where the compressed bellows is contracted after liquid separation.
  • the dehydrating apparatus of the present invention has a separator having a concentric circle with a large number of separation holes in a side wall inside a cylindrical body having a closed structure and an openable bottom hatch at the lower end.
  • the sludge filled in is separated into liquid and dehydrated sludge, and the dehydrated sludge is discharged downward by opening the bottom hatch.
  • the present invention provides an external force supply means for supplying a downward force to the upper side of the dewatered sludge in order to discharge the dehydrated sludge downward from the separator having the bottom hatch opened in such a dewatering apparatus. It has the first feature in that it is provided.
  • the present invention has succeeded in reducing the amount of deposits deposited on the side walls in the separator during dehydration.
  • Dehydrated sludge is in the form of a solid with little moisture.
  • the downward external force applied to the dewatered sludge does not need to be applied for a long time, and it is sufficient to apply it instantaneously.
  • the dewatered sludge tends to fall under its own weight. Therefore, no large energy is required to generate a downward external force applied to the dewatered sludge.
  • by placing a container for transporting dewatered sludge under the separator and dropping the dewatered sludge into the container it is possible to easily transport the dewatered sludge discharged from the separator.
  • the external force supply means instantaneously applies a downward force evenly to the upper surface of the dewatered sludge when the bottom hatch is opened and the dewatered sludge is discharged downward.
  • the second feature of the present invention is that it is disposed inside the separator, and the fluid is supplied to the center of the separator to compress sludge in the direction of the side wall of the separator.
  • the pressure bellows are separated into liquid and dehydrated sludge, and a valve mechanism for controlling the pressure inside the pressure bellows by controlling the supply and discharge of the fluid to the center of the separator.
  • valve mechanism When the sludge to be dehydrated is filled into the separator by controlling the pressure in the compressed bellows, the valve mechanism increases the pressure in the compressed bellows in advance and adjusts the pressure while the sludge is filled. Act to maintain.
  • valve mechanism further increases the pressure inside the compressed bellows according to the type of sludge, compresses the sludge by expanding the compressed bellows, and separates the liquid from the sludge. To function.
  • sludge whose volume does not become too small even after compression is sludge having a small compression rate.
  • sludge containing a large amount of inorganic substances has a low compression rate.
  • valve mechanism functions as described above, the problem of accumulation of sludge in the separator can be minimized even when a large amount of sludge having a small compression rate is contained. became.
  • the separator having a large number of separation holes on the side wall is concentrically disposed inside the cylindrical body, and the compressed bellows is disposed on the inside of the separator. Yes.
  • the aforementioned external force supply means is annular.
  • an external force supply means having an annular disk shape can be employed.
  • the vertical downward direction is uniform with respect to the upper surface of the dewatered sludge by air pressure, hydraulic pressure, electricity, manual operation or other power from the external force generation means via the external force transmission means.
  • the power to go to is given instantaneously.
  • the external force supply means can be an annular flexible tubular body.
  • fluid is rapidly supplied from the external force generating means to the tubular body via the external force transmitting means, and the tubular body is instantaneously expanded. This instantaneously applies a downward force uniformly to the upper surface of the dewatered sludge.
  • a flexible tube such as a rubber tube
  • a flexible tube has the advantage that the structure is simple and the force can be supplied equally to the entire tube.
  • the third feature of the present invention is that the inner wall surface of the side wall of the separator and / or the separation hole is smoothed. As a result, the adhesion between the separator and the dewatered sludge is weakened, and the dewatered sludge can be easily discharged from the separator.
  • the smoothing treatment applied to the inner wall surface of the side wall of the separator and / or the separation hole metal surface processing such as buffing for smoothing the inner wall surface of the separator can be employed.
  • a fluororesin coating can also be applied to the inner wall surface and / or the separation hole of the separator.
  • the dehydrating process is performed as follows.
  • the compressed bellows is expanded so as to apply pressure to the sludge toward the side wall in the separator.
  • the expansion of the compressed bellows is possible by controlling the valve mechanism.
  • liquid is discharged from the separator through a separation hole provided in the side wall of the separator. Such filling and discharging of the liquid are performed once or a plurality of times until the concentration and dewatering of the sludge reaches a sufficient level.
  • a downward force that is, an external force
  • the dewatered sludge falls and is discharged from the separator.
  • FIG. 1 is a cross-sectional view illustrating the internal structure of an example of the dehydrating apparatus of the present invention.
  • the dehydrating apparatus 1 is configured such that the separator 2 is concentrically disposed inside a cylindrical body 19 having a closed structure and an openable bottom hatch 8 at the lower end.
  • a pressing bellows 6 and a vent pipe 16 are coaxially installed inside the separator 2.
  • Separator 2 has a side wall 10.
  • the shape of the side wall 10 is a conical shape as shown in FIG.
  • the side wall 10 is provided with a large number of separation holes 11 for separating liquid from sludge.
  • the number and shape of the separation holes 11 are determined according to the type of sludge to be dehydrated.
  • the side wall 10 gradually increases in diameter from the upper end side toward the lower end side.
  • the maximum diameter of the side wall 10 is slightly smaller than the inner diameter of the body 19.
  • the lower end of the side wall 10 is connected to the bottom plate inside the body 19 as shown in FIG.
  • a drainage water collection space 13 is provided between the side wall 10 and the inside of the body 19, for storing a liquid separated from sludge.
  • the pressing bellows 6 is concentrically arranged in the separator 2 and is made of a material that expands like rubber when a fluid such as gas or liquid is supplied into the pressing bellows 6.
  • the pressing bellows 6 can be formed of a flexible member.
  • the vent pipe 16 is located in the center of the inner pressure bellows 6.
  • a vent hole 18 exists in the vent pipe 16. Fluid is supplied from the vent pipe 16 into the compressed bellows 6 through the vent hole 18, and conversely, is discharged from the press bellows 6 into the vent pipe 16. Thus, the fluid can freely pass through the vent hole 18 from the inside of the vent pipe 16 into the squeezing bellows 6, and conversely, from within the squeezing bellows 6 into the vent pipe 16.
  • the ventilation pipe 16 penetrates the inside of the pressing bellows 6 as shown in the drawing, and the lower end thereof is connected to the lower surface of the pressing bellows 6.
  • the vent hole 18 is provided over the entire side wall of the vent pipe 16. The total area of the vent holes 18 is larger than the cross-sectional area of the vent pipe 16.
  • the vent pipe 16 is provided with a valve mechanism 7 above, and the valve mechanism 7 controls the flow of fluid into and out of the compressed bellows 6.
  • the valve mechanism 7 is used to control and maintain the pressure of the fluid inside the expression bellows 6.
  • the shape of the valve mechanism 7 is a butterfly type valve in the present embodiment. Any type of valve can be used as long as it can perform an operation required for the valve mechanism 7 described later.
  • the dewatering apparatus 1 is provided with a sludge inflow pipe 12 for taking in the sludge 20. Sludge is introduced from the sludge inflow pipe 12 into a space separated by the side wall 10 and the compressed bellows 6 (FIG. 2B) and filled.
  • a drain pipe 14 is attached below the outer periphery of the body 19 in order to discharge the liquid separated by the dehydrator 1.
  • a sensor 15 for transmitting a signal that reacts to completion of the sludge filling is attached above the separator 2.
  • the bottom of the body 19 is configured with a flange that can handle the contact pressure with the bottom hatch 8.
  • the bottom hatch 8 can be mechanically actuated by a close switch 9.
  • the bottom hatch 8 covers the entire body 19 and the bottom of the separator 2. When the bottom hatch 8 is in the open position as shown in FIG. 4, the lower part of the dehydrator 1 is completely opened.
  • an external force supply means 5 is provided. After the dehydration process is completed, the external force supply means 5 directly applies a force from the upper side of the dewatered sludge to the lower side in order to empty the inside of the separator 2 in the dewatering apparatus 1.
  • the external force supply means 5 is connected to the external force generation means 4 via the external force transmission means 3.
  • the main purpose of the external force supply means 5 is to make the inside of the separator 2 empty without the dewatered sludge adhering to the side wall 10 when the sludge is dehydrated and the bottom hatch 8 is opened.
  • the separator 2 preferably has the shape and structure shown in the figure. That is, the separator 2 has a short cone shape. Also, as shown in FIGS. 2 to 4, the area of the upper surface is smaller than the area of the lower surface.
  • the external force supply means 5 uniformly applies a downward force to the upper surface of the dewatered sludge.
  • the dehydrating apparatus 1 is constituted by a cylindrical body 19, and a conical separator 2 is installed concentrically inside the body 19.
  • a pressing bellows 6 and a vent pipe 16 are coaxially installed inside the separator 2. Therefore, it is desirable that the external force supply means 5 has an annular shape in order to uniformly apply a force directed downward in the vertical direction to the upper surface of the dewatered sludge.
  • annular external force supply means 5 an annular disk shape or an annular plate shape can be adopted.
  • An annular disk-like or plate-like external force supply means 5 is brought into contact with the upper surface of the dewatered sludge, and a downward force is applied uniformly to the upper surface of the dewatered sludge.
  • the external force generating means 4 for supplying an external force to the external force supplying means 5 via the external force transmitting means 3 may supply the external force by pneumatic pressure, hydraulic pressure, electricity, manual operation or any other power.
  • the external force generation means 4 supplies necessary external force to the external force supply means 5 via the external force transmission means 3 so that the external force supply means 5 uniformly applies a downward force to the upper surface of the dewatered sludge. Anything is possible.
  • the downward force applied from the external force supply means 5 to the upper surface of the dewatered sludge is instantaneous, works in a short time, and has an appropriate strength.
  • the moderate strength of the external force means that the strength exceeds the adhesion force of the dewatered sludge to the separation holes 11 and the side wall 10, and the dewatered sludge is discharged from the side wall 10 by peeling off and falling. Is.
  • the energy supplied from the external force generating means 4 to the external force supplying means 5 via the external force transmitting means 3 may be small in order to generate the appropriate external force.
  • an annular flexible tubular body can be adopted.
  • a flexible annular tube such as a rubber tube can be used as the external force supply means 5.
  • a fluid such as a gas is rapidly supplied from the external force generation means 4 through the external force transmission means 3 into the tubular body.
  • the fluid rapidly supplied into the tubular body expands the tubular body at once.
  • a downward force is uniformly applied to the upper surface of the dewatered sludge and works instantaneously, in a short time, and with an appropriate strength.
  • the external force transmission means 3 can also be a flexible tubular body.
  • the inner wall of the separator 2 that is, the inner wall surface of the side wall 10 and / or the separation hole 11 can be smoothened, so that the dewatered sludge can be more easily separated from the separator 2.
  • metal surface processing such as buffing is performed on the inner wall surface of the side wall 10.
  • fluororesin coating is applied to the inner wall surface of the side wall 10 and / or the separation hole 11.
  • the valve mechanism 7 controls the flow of fluid into and out of the compressed bellows 6, and when the sludge 20 to be dehydrated is filled into the separator 2, the pressure inside the compressed bellows 6 is increased and the sludge 20 is filled. It functions to maintain that pressure for as long as possible.
  • valve mechanism 7 controls the flow of the fluid into and out of the compressed bellows 6, and after filling the sludge, the pressure inside the compressed bellows 6 is further increased according to the type of sludge, and the compressed bellows 6 is expanded and separated.
  • the sludge 20 is compressed toward the side wall 10 of the vessel 2. In this way, the liquid is separated from the sludge 20 through the separation hole 11 provided in the side wall 10.
  • valve mechanism 7 controls the flow of the fluid into and out of the compressed bellows 6, maintains the expanded shape of the compressed bellows 6, and the pressure in the horizontal direction (left and right direction in FIG. 2A) by the sludge 20. Therefore, the compressed bellows 6 is prevented from being compressed toward the inner central side of the separator 2.
  • the valve mechanism 7 controls the flow of the fluid into the compressed bellows 6 and maintains the expanded shape of the compressed bellows 6. Further, the valve mechanism 7 controls the flow of the fluid into and out of the pressing bellows 6, and the pressing bellows with the pressure in the horizontal direction (left and right in FIG. 2A) toward the inner center of the separator 2 by the sludge 20. 6 is prevented from being compressed.
  • the compressed bellows 6 applies pressure uniformly, and the dehydration process becomes efficient. Therefore, the dewatering device is not damaged in the sludge 20 filling process.
  • the dewatering function can be made to work more effectively on sludge with a low compression rate. Furthermore, the problem that sludge accumulates in the separator 2 can be minimized even when a large amount of sludge with a low compression rate is contained.
  • a washing nozzle (not shown) is provided inside the dehydrating apparatus 1, and after the interior of the separator 2 is emptied, the inside of the separator 2 is washed.
  • FIG. 2 (a) shows a state in which the inside of the compressed bellows 6 is preliminarily pressurized with a fluid through the ventilation pipe 16 disposed in the center of the inside of the compressed bellows 6.
  • FIG. 2 (a) shows a state in which the inside of the compressed bellows 6 is preliminarily pressurized with a fluid through the ventilation pipe 16 disposed in the center of the inside of the compressed bellows 6.
  • the amount of fluid injected into the squeezing bellows 6 and the pressure in the squeezing bellows 6 correspond to the sludge 20 to be dehydrated and depend on physical quantities such as the density of the sludge 20 before dewatering. Calculated.
  • FIG. 2B shows a process of filling the separator 2 with the sludge 20.
  • the introduction of the sludge 20 into the separator 2 through the sludge inflow pipe 12 is detected by the sensor 15 when the required filling level is reached, and the filling is interrupted.
  • the liquid flowing out from the separation hole 11 in the side wall 10 of the separator 2 flows out into the drainage water collecting space 13 which is separated between the body 19 and the separator 2 and is further discharged from the drain pipe 14 to the outside.
  • the sludge 20 is filled again until the filling level is reached.
  • the sludge 20 is filled and the filling is interrupted a predetermined number of times (for example, once or a plurality of times) depending on the concentration of the sludge 20 until the liquid flowing out decreases.
  • the sludge 20 moves to a squeezing dehydration process by expanding the squeezing bellows 6.
  • FIG. 3 (a) shows the pressing and dehydrating process. Similar to the pre-pressurization performed in the filling step, the valve mechanism 7 controls the flow of fluid into the compressed bellows 6 and fills the compressed bellows 6 with the fluid via the vent pipe 16 and the vent hole 18. Thus, the compressed bellows 6 is expanded in the horizontal direction, that is, radially outward.
  • the expanded compressed bellows 6 presses the sludge 20 in the separator 2 toward the side wall 10 and applies pressure to the sludge 20 in the separator 2.
  • the liquid from the sludge 20 thus pressed flows out to the drainage water collection space 13 through the separation hole 11 of the side wall 10 and is further discharged from the drainage pipe 14 to the outside.
  • FIG. 3 (b) shows a pressing pressure release process. After the pressure dehydration process is completed, the fluid in the compressed bellows 6 is opened to the outside through the vent pipe 18 of the vent pipe 16 as indicated by an arrow in FIG. Thereby, the volume of the expression bellows 6 decreases.
  • air As the fluid used for pressurizing the inside of the compressed bellows 6, air can be adopted. This is because air is easier to handle than other fluids and requires no technical treatment.
  • Fig. 4 shows the dewatered sludge discharge process. After the necessary drainage is performed and the squeezing is completed, when the bottom hatch 8 is opened by the opening / closing device 9, the dewatered sludge tends to fall due to its own weight.
  • a fluid such as a gas is rapidly supplied from the external force generating means 4 to the external force supplying means 5 formed of a tubular body having an annular flexibility through the external force transmitting means 3.
  • a downward force is uniformly applied to the upper surface of the dewatered sludge from the external force supply means 5 instantaneously.
  • the external force acts instantaneously, and the dewatered sludge is peeled off from the side wall 10 of the separator 2, and the dewatered sludge falls due to the external force and gravity and is discharged to the outside.
  • the separator 2 is emptied.
  • the compression bellows may not be compressed in the compression dehydration process.
  • the external force supply means 5 may be unnecessary.
  • the external force supply means 5 it is possible to speed up the dewatered sludge discharge step, and the dehydrated sludge can be more easily separated from the separator 2. Therefore, the utility value of the external force supply means 5 is high.
  • the dehydrator of the present invention is suitable for separating a liquid from a sludge containing a large amount of particles by a batch method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

 密閉構造で下端に開閉式の底部ハッチを有する円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置され、分離器内に充填した汚泥を液体と脱水汚泥とに分離し、脱水汚泥を底部ハッチを開けて下方向に排出する脱水装置。様々な汚泥に対して脱水機能を効果的に発揮させ、脱水汚泥を分離器に付着させずに除去する。  脱水装置は、脱水処理する汚泥が分離器の内部に充填される際、予め圧搾ベロー内部の圧力を高め、汚泥が充填される間その圧力を維持する機能と、汚泥の分離器内部への充填後、圧搾ベロー内部の圧力を更に高め、圧搾ベローを拡張させて汚泥を圧縮し、汚泥から液体を分離させる機能を有する弁機構と、底部ハッチが開けられた時に分離器から下方向に向けて脱水汚泥を排出するため、脱水汚泥の上側に対して下方向に向かう力を供給する外力供給手段とを備えている。

Description

脱水装置
 本発明は、密閉構造で下端に開閉式の底部ハッチを有する円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置されている脱水装置に関する。この脱水装置では、前記分離器内に充填した汚泥を液体と脱水汚泥とに分離し、当該脱水汚泥を前記底部ハッチを開けて下方向に向けて排出する。
 また、本発明は、前記脱水装置により汚泥、例えば、粒子を多く含む汚泥から液体を分離する方法に関する。
 浄水の工程において、残留物は粒子形状で生成され、そのほとんどは、水分含有量の多い、いわゆる汚泥と呼ばれる最終物になる。前記汚泥の性質は、洗浄工程で分離された物質及び洗浄工程によって大きく異なる。例えば、食品産業での洗浄工程から発する食物廃棄物は、動物に欠かせない栄養素であるたんぱく質になるかもしれない。一方、工業や鉱業等から発する廃棄物は適切な処理が必要な有害物質になるものが多い。
 一般的に、全ての工程において、発生した廃棄物すなわち汚泥は容量が少なく、軽量であることが望ましい。これは、汚泥からできるだけ水分を取り除き、残留物を凝縮することによって達成される。
 前記のような課題を解決するために様々な脱水装置に関する発明が存在する。中でも粒子を多く含んだ汚泥からバッチ式により流体を分離する脱水装置の発明が提案されている。しかし、数々の汚泥に対して脱水機能がすべて適切に働くとは限らないという問題点があった。
EP0883576公報
 密閉構造で下端に開閉式の底部ハッチを有する円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置され、該分離器内に充填した汚泥を液体と脱水汚泥とに分離し、該脱水汚泥を前記底部ハッチを開けて下方向に向けて排出する脱水装置には、従来、いくつかの問題点があった。
 例えば、様々な汚泥に対して脱水機能が効果的に働かないことがあるという問題点があった。また、脱水が行われたとしても残留物である脱水汚泥が分離器に付着し、効果的な除去ができないという問題点もあった。
 これらの問題点を解決するために、分離器及び分離器内の側壁に設けられている分離孔の設計の見直しがなされている。しかし、いまだ十分な解決には至っていない。
 本発明は、上述した脱水装置において、様々な汚泥に対して脱水機能を効果的に発揮させ、残留物である脱水汚泥を分離器に付着させずに効果的に除去することを目的にしている。
 請求項1記載の発明は、
 密閉構造で下端に開閉式の底部ハッチを有する円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置され、該分離器内に充填した汚泥を液体と脱水汚泥とに分離し、該脱水汚泥を前記底部ハッチを開けて下方向に向けて排出する脱水装置であって、
 前記分離器の内側に配置されていて、前記分離器の内部中央に流体が供給されることにより前記汚泥を前記側壁の方向に圧縮し、前記分離孔を介して液体と脱水汚泥とに分離させる圧搾ベローと、
 前記分離器の内部中央への前記流体の給排を制御することにより、前記圧搾ベロー内部の圧力を制御する弁機構と
 前記底部ハッチが開けられたときに前記分離器から下方向に向けて前記脱水汚泥を排出するために、前記脱水汚泥の上側に対して下方向に向かう力を供給する外力供給手段と
 を備え
 前記弁機構は、前記汚泥の種類に応じて、前記圧搾ベロー内部の圧力を制御することにより、
 脱水処理する汚泥が前記分離器の内部に充填される際に、あらかじめ前記圧搾ベロー内部の圧力を高め、前記汚泥が充填される間その圧力を維持する機能と、
 前記汚泥の前記分離器内部への充填後、前記圧搾ベロー内部の圧力をさらに高め、前記圧搾ベローを拡張させることで前記汚泥を圧縮し、前記汚泥から液体を分離させる機能と
 を有する
 ことを特徴とした脱水装置である。
 請求項2記載の発明は、
 前記分離器の側壁の内壁表面及び/又は分離孔に平滑処理が施されていることを特徴とする請求項1記載の脱水装置である。
 請求項3記載の発明は、
 前記外力供給手段は、前記底部ハッチを開けて前記脱水汚泥を下方向に向けて排出する際に、前記脱水汚泥の上部表面に対して均一に、下方向に向かう力を瞬間的に与えるものであることを特徴とした請求項1又は2記載の脱水装置である。
 請求項4記載の発明は、
 前記外力供給手段は環状ディスク型をしていることを特徴とした請求項3記載の脱水装置である。
 請求項5記載の発明は、
 前記外力供給手段は環状の可撓性を有する管状体であって、前記脱水汚泥の上部表面に対して均一に下方向に向かう力を瞬間的に与える際に、前記管状体内に急速に流体が供給され、前記管状体が瞬間的に膨張するものであることを特徴とした請求項3記載の脱水装置である。
 この発明によれば、上述した脱水装置において、様々な汚泥に対して脱水機能を効果的に発揮させることができ、残留物である脱水汚泥を分離器に付着させずに効果的に除去することができる。
本発明の脱水装置の一例の内部構造を説明する断面図。 (a)汚泥充填前の予備加圧が行われている状態の正面断面図、(b)汚泥充填中の正面断面図。 (a)汚泥を圧縮し液体を分離している状態の正面断面図、(b)液体分離後、圧搾ベローを収縮させている状態の正面断面図。 底部ハッチを開き脱水汚泥を排出している状態の正面断面図。
1 脱水装置
2 分離器
3 外力伝達手段
4 外力発生手段
5 外力供給手段
6 圧搾ベロー
7 弁機構
8 底部ハッチ
9 開閉装置
10 側壁
11 分離孔
12 汚泥流入管
13 排水集水スペース
14 排水管
15 センサー
16 通気管
18 通気孔
19 ボディ
20 汚泥
 本発明の脱水装置は、密閉構造で下端に開閉式の底部ハッチを有する円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置され、該分離器内に充填した汚泥を液体と脱水汚泥とに分離し、該脱水汚泥を前記底部ハッチを開けて下方向に向けて排出するものである。
 本発明は、このような脱水装置において、底部ハッチが開けられた分離器から下方向に脱水汚泥を排出するために、脱水汚泥の上側に対して下方向に向かう力を供給する外力供給手段を備えている点に第一の特徴を有する。
 分離器に脱水処理すべき汚泥を充填し、液体を汚泥から分離させる。その後、分離器下方の底部ハッチを開き、外力供給手段によって、分離器内に残留した脱水汚泥の上側に対して下方向に向かう力、すなわち外力を供給する。
 これによって、脱水汚泥はその自重と外力とにより落下する。こうして、本発明は、脱水時に分離器内の側壁に付着物が付着する量を減少させることに成功した。
 脱水汚泥は水分が少ない固形物の形態をしている。この脱水汚泥に加える下向きの外力は長時間作用させる必要はなく、瞬時に加えるだけで十分である。分離器下方の底部ハッチが開くことにより、脱水汚泥は自重によって落下しようとする。そこで、脱水汚泥に加える下向きの外力を生じさせるために大きなエネルギーを必要としない。また、分離器の下側に脱水汚泥運搬用のコンテナなどを配置しておき、その中に脱水汚泥を落下させることにより、分離器から排出した脱水汚泥の運搬を容易にできる。
 外力供給手段は、底部ハッチを開けて脱水汚泥を下方向に向けて排出する際に、脱水汚泥の上部表面に対して均一に、下方向に向かう力を、瞬間的に与えるものである。
 本発明の第二の特徴は、分離器の内側に配置されていて、分離器の内部中央に流体が供給されることにより汚泥を分離器の側壁の方向に圧縮し、前記側壁の分離孔を介して液体と脱水汚泥とに分離させる圧搾ベローと、分離器の内部中央への流体の給排を制御することにより、圧搾ベロー内部の圧力を制御する弁機構とを備えている点にある。
 前記弁機構は、圧搾ベロー内の圧力を制御することにより、脱水処理する汚泥が分離器の内部に充填される際に、あらかじめ圧搾ベロー内部の圧力を高め、汚泥が充填される間その圧力を維持するように機能する。
 また、弁機構は、汚泥の分離器内部への充填後、汚泥の種類に応じて、圧搾ベロー内部の圧力をさらに高め、圧搾ベローを拡張させることで汚泥を圧縮し、汚泥から液体を分離するように機能する。
 これによって、圧縮してもあまり容積が小さくならない汚泥に対しても脱水機能をより効果的に働かせることができるようになった。ここで、圧縮してもあまり容積が小さくならない汚泥は圧縮率が小さい汚泥である。一般的に、無機物を多く含む汚泥は圧縮率が小さい。
 また、弁機構が前記のように機能することにより、分離器内に汚泥が溜るという問題点を、たとえ圧縮率の小さい汚泥が多く含まれている場合でも、最小限に抑えることができるようになった。
 前述したように、本発明の脱水装置は、円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置され、圧搾ベローが分離器の内側に配置されている。
 そこで、前述した外力供給手段は環状であることが望ましい。たとえば、環状のディスク型をしている外力供給手段を採用できる。
 このような環状の外力供給手段に対して、外力発生手段から外力伝達手段を介して空圧、油圧、電気、手動若しくは他の動力により、脱水汚泥の上部表面に対して均一に、鉛直下方向に向かう力を、瞬間的に与える。
 外力供給手段は環状の可撓性を有する管状体にすることができる。この場合、外力伝達手段を介して外力発生手段から前記管状体内に急速に流体が供給され、前記管状体が瞬間的に膨張する。これによって、脱水汚泥の上部表面に対して均一に下方向に向かう力を瞬間的に与える。
 前記の環状の可撓性を有する管状体としては、柔軟性のあるチューブ、例えばゴムチューブを採用できる。このようなチューブは構造が単純で、チューブ全体に等しく力を供給できるという利点がある。
 なお、圧搾ベロー内の圧力制御に用いられる流体を前記チューブに分配すればより効率的である。
 本発明の第三の特徴は、前記分離器の側壁の内壁表面及び/又は分離孔に平滑処理が施されている点にある。これによって、分離器と脱水汚泥との付着力を弱め、脱水汚泥を分離器から容易に排出できる。分離器の側壁の内壁表面及び/又は分離孔に施される平滑処理としては、分離器の内壁表面を平滑にするバフ研磨などの金属表面加工を採用できる。また、分離器の内壁表面及び/又は分離孔にフッ素樹脂コーティングを施すこともできる。
 本発明の脱水装置によれば次のように脱水工程が行われる。
 初めに充填工程で分離器内に脱水処理する汚泥を必要とされるレベルまで供給し、充填する。なお、汚泥が分離器内に充填される際、あらかじめ圧搾ベロー内部の圧力を高め、汚泥が充填される間その圧力を維持する。
 汚泥供給後、分離工程では、分離器内の側壁に向かって汚泥に圧力を加えるように圧搾ベローを拡張させる。この圧搾ベローの拡張は、弁機構の制御により可能である。汚泥に圧力が加わることにより、分離器の側壁に設けられた分離孔を通して、分離器から液体を排出する。このような充填と液体の排出を、汚泥の濃縮脱水が十分なレベルに達するまで一回または複数回行う。
 次に分離器の下方に位置する底部ハッチを開く。開いたら脱水汚泥を分離器から排出するために、外力供給手段により、脱水汚泥の上部表面に対して均一に、下方向に向かう力(すなわち、外力)を、瞬間的に与える。この外力と脱水汚泥の自重によって脱水汚泥は落下し、分離器から排出される。
 以下、添付図面を参照して本発明の好ましい実施例を説明する。
 図1は本発明の脱水装置の一例の内部構造を説明する断面図である。
 脱水装置1は、密閉構造で下端に開閉式の底部ハッチ8を有する円筒形状のボディ19の内部に、分離器2が同心円状に配置されているものである。分離器2の内部には圧搾ベロー6及び通気管16が同軸上に設置されている。
 分離器2は側壁10を備えている。側壁10の形状は図2図示のように円錐型である。側壁10には汚泥から液体を分離させる分離孔11が多数設けられている。分離孔11は、脱水処理対象となる汚泥の種類によって、それぞれ最適な数及び形状が定められている。
 側壁10は図2図示のように、上端側から下端側に向かって次第に径が大きくなっている。側壁10の最大直径はボディ19の内径よりわずかに小さい。側壁10の下端は図4図示のようにボディ19の内側の底板に接続している。側壁10とボディ19の内側との間には汚泥から分離された液体を溜める排水集水スペース13が設けられている。
 圧搾ベロー6は分離器2内に同心円状に配置され、気体もしくは液体のような流体が圧搾ベロー6内部に供給されると、ゴムのように拡張する材質で構成されている。例えば、可撓性を有する部材で圧搾ベロー6を形成することができる。
 通気管16が圧搾ベロー6の内部中心に位置している。通気管16には通気孔18が存在している。通気孔18を通して流体が通気管16から圧搾ベロー6内へ供給され、逆に、圧搾ベロー6内から通気管16内に排出される。こうして、流体は通気孔18を介して、通気管16内から圧搾ベロー6内へ、逆に、圧搾ベロー6内から通気管16内へ自由に行き来できる。
 通気管16は、図示のように圧搾ベロー6内部を貫通し、その下端は圧搾ベロー6の下面に接続している。通気孔18は通気管16の側壁全体に亘り設けられる。通気孔18の総面積は、通気管16の断面積よりも大きい。
 通気管16には、その上方に弁機構7が設置され、弁機構7によって圧搾ベロー6内への流体の出入りが制御される。弁機構7は圧搾ベロー6内部の流体の圧力のコントロールと保持に使用される。弁機構7の形状は、本実施形態においては、バタフライ型の弁を使用している。後述する弁機構7に要求される動作を実行できるものであればどの種類の弁でも使用できる。
 脱水装置1には、汚泥20を取り込むために汚泥流入管12が取り付けられている。汚泥流入管12から汚泥が側壁10と圧搾ベロー6によって隔てられた空間に導かれ(図2(b))、充填される。
 ボディ19の外周下方には、脱水装置1によって分離した液体を排出するために排水管14が取り付けられている。また分離器2上方には汚泥の充填完了に反応する信号を発信するセンサー15が付設されている。
 ボディ19の底部は、底部ハッチ8との接触圧力に対応できるフランジで構成される。底部ハッチ8は近接されている開閉装置9により機械的に作動させることが可能である。また底部ハッチ8は、ボディ19及び分離器2の底部全体を覆う。底部ハッチ8が図4図示のように開放位置にあると、脱水装置1下方を完全に開放状態にする。
 本発明では外力供給手段5が設けられている。外力供給手段5は、脱水処理完了後、脱水装置1における分離器2の内部を空の状態にするため、脱水汚泥に対して、脱水汚泥の上側から下方向に向かう力を直接与える。
 図1において外力供給手段5は、外力伝達手段3を介して外力発生手段4に接続されている。
 外力供給手段5の主な目的は、汚泥が脱水され、底部ハッチ8が開放された時、脱水汚泥が側壁10に付着することなく分離器2の内部を空の状態にすることである。
 分離器2は図示の形状・構造をしていることが望ましい。すなわち、分離器2は短いコーン型の形状をしている。また、図2~図4図示のように、上部表面の面積は、下部表面の面積よりも小さい。
 外力供給手段5は、脱水汚泥の上部表面に対して均一に、下方向に向かう力を付与する。図示の実施形態では、脱水装置1は円筒形状のボディ19によって構成され、ボディ19の内部に円錐型の分離器2が同心円状に設置されている。そして、分離器2の内部に圧搾ベロー6及び通気管16が同軸上に設置されている。そこで、外力供給手段5は環状の形状をしていることが、脱水汚泥の上部表面に対して均一に、鉛直下方向に向かう力を付与する上で望ましい。
 環状の外力供給手段5としては、環状ディスク状や、環状で板状のものが採用できる。
 環状ディスク状や、環状で板状の外力供給手段5を脱水汚泥の上部表面に接触させ、脱水汚泥の上部表面に対して均一に、下方向に向かう力を付与する。
 外力供給手段5に対して外力伝達手段3を介して外力を供給する外力発生手段4は、空圧、油圧、電気、手動若しくは他のどんな動力によって外力を供給するものでもよい。
 外力発生手段4は、外力供給手段5が脱水汚泥の上部表面に対して均一に下方向に向かう力を付与するように、必要な外力を、外力伝達手段3を介して外力供給手段5に供給できるものであればよい。
 外力供給手段5から脱水汚泥の上部表面に対して付与される下方向に向かう力は、瞬間的で、短時間で働き、かつ適度の強さであることが望ましい。外力の適度の強さとは、その強さが、脱水汚泥の分離孔11及び側壁10への付着力を上回り、側壁10から脱水汚泥が剥離し、落下することにより脱水汚泥の排出を可能にするものである。
 なお、前述したように、底部ハッチ8が開くことにより、脱水汚泥は自重によって落下しようとする。そこで、前記の適度の強さの外力を発生させるために、外力発生手段4が外力伝達手段3を介して外力供給手段5に供給するエネルギーは小さなものでよい。
 外力供給手段5として環状の可撓性を有する管状体を採用できる。例えば、ゴムチューブのように、柔軟な環状のチューブを外力供給手段5として採用できる。
 外力供給手段5として環状の可撓性を有する管状体を採用する場合、外力発生手段4から外力伝達手段3を介して急速に気体などの流体を当該管状体内に供給する。管状体内に急速に供給された流体により、当該管状体が一気に膨張する。これによって、脱水汚泥の上部表面に対して均一に、下方向に向かう力が、瞬間的に、短時間で、かつ適度の強さで働く。
 なお、この場合、外力伝達手段3も可撓性を有する管状体にすることができる。
 分離器2の内壁即ち側壁10の内壁表面及び/又は分離孔11を平滑処理することで脱水汚泥を分離器2から一層容易に剥離させることができる。
 例えば、側壁10の内壁表面にバフ研磨などの金属表面加工を施す。あるいは、フッ素樹脂コーティングを側壁10の内壁表面及び/又は分離孔11に施す。これによって、脱水汚泥と分離器2の側壁10との間の付着力を弱め、脱水汚泥を分離器2から一層容易に排出することができる。
 弁機構7は、圧搾ベロー6内への流体の出入りを制御し、脱水処理する汚泥20が分離器2の内部に充填される際に、圧搾ベロー6内部の圧力を高め、汚泥20が充填される間その圧力を維持するように機能する。
 また、弁機構7は、圧搾ベロー6内への流体の出入りを制御し、汚泥の充填後、汚泥の種類に応じて、圧搾ベロー6内部の圧力をさらに高め、圧搾ベロー6を拡張させて分離器2の側壁10に向かって汚泥20を圧縮する。こうして、側壁10に設けられた分離孔11を通して汚泥20から液体を分離する。
 また、弁機構7は、圧搾ベロー6内への流体の出入りを制御し、圧搾ベロー6の膨張した形状を維持すると共に、汚泥20による水平方向(図2(a)中、左右方向)の圧力で圧搾ベロー6が分離器2の内部中央側に向けて圧縮されるのを防ぐ。
 仮に圧搾ベロー6が分離器2の内部中央側に向けて圧縮され、圧搾ベロー6の容積が減少すると、分離器2を空にする際に脱水汚泥が分離器2の開口部の直径を超えてしまい、分離器2を空にする際に困難が起こるおそれがある。
 従来は、圧縮率が小さい汚泥の場合、分離器2内に充填された汚泥20に対して圧搾ベロー6が均一に圧力を加えることが困難になることがあった。このようになると、脱水工程が非効率となってしまい、場合によっては、脱水装置の破損も引き起こすこともあった。
 本発明によれば、上述したように、弁機構7が、圧搾ベロー6内への流体の出入りを制御し、圧搾ベロー6の膨張した形状を維持する。また、弁機構7が、圧搾ベロー6内への流体の出入りを制御し、汚泥20による分離器2の内部中央側に向かう水平方向(図2(a)中、左右方向)の圧力で圧搾ベロー6が圧縮されるのを防止する。
 これによって、圧縮率が小さい汚泥であっても、圧搾ベロー6が均一に圧力を加え、脱水工程が効率的になる。そこで、汚泥20の充填工程で脱水装置が破損することはなくなる。
 また、圧縮率の小さい汚泥に対しても脱水機能をより効果的に働かせることができるようになる。更に、分離器2内に汚泥が溜るという問題点を、たとえ圧縮率の小さい汚泥が多く含まれている場合でも、最小限に抑えることができる。
 脱水装置1の内部には不図示の洗浄ノズルが設けられており、分離器2内部を空の状態にした後、分離器2内部を洗浄する。
 図2(a)で示すのは、圧搾ベロー6の内部中央に配置されている通気管16を通して、圧搾ベロー6内部を事前に流体で加圧している状態である。脱水装置の運転を最適化するため、圧搾ベロー6内に注入する流体の量及び圧搾ベロー6内の圧力は、脱水対象の汚泥20に対応させて、脱水前に汚泥20の密度等の物理量によって算出される。
 必要量の流体が、圧搾ベロー6内部に満たされ、加圧されたら弁機構7で圧搾ベロー6内を密閉する。汚泥20の充填工程の間この状態が維持される。
 図2(b)で示すのは、分離器2に汚泥20を充填する工程である。汚泥流入管12を通しての分離器2への汚泥20の投入は、必要な充填レベルまで達するとセンサー15によって検知され、充填が中断される。ここで分離器2の側壁10の分離孔11から流出した液体は、ボディ19と分離器2との間に隔てられた排水集水スペース13に流出し、さらに排水管14から外界へ排出される。すると液体の排出により、前もって決められた充填レベルから汚泥20の容積が減少するので、該充填レベルに達するまで再び汚泥20が充填される。流出する液体が少なくなる段階まで、汚泥20の充填と充填の中断が、汚泥20の濃縮度によって予め定められている回数(例えば、一回又は複数回)行われる。
 汚泥20の性状が圧搾される必要のあるものなら、汚泥20は圧搾ベロー6の拡張による圧搾脱水工程に移行する。
 図3(a)はその圧搾脱水工程を示す。前記充填工程で行われた予備加圧と同様に、弁機構7により圧搾ベロー6内への流体の出入りを制御し、通気管16及び通気孔18を介して圧搾ベロー6内を流体で満たす。こうして、圧搾ベロー6を水平方向に、すなわち、径方向外側に向けて、拡張させる。
 拡張した圧搾ベロー6は、分離器2内の汚泥20を側壁10に向かって押し付け、分離器2内の汚泥20に圧力を加える。これによって押圧された汚泥20から液体が、側壁10の分離孔11を通して、排水集水スペース13に流出し、さらに排水管14から外界へ排出される。
 図3(b)に示すのは、圧搾圧力の開放工程である。圧搾ベロー6内の流体は、圧搾脱水工程が完了した後、弁機構7を開き、通気管16の通気管18を通して、図3(b)に矢印で示すように、外部に放出される。これにより、圧搾ベロー6の容積が減少する。
 圧搾ベロー6内部を加圧するために使用される流体としては空気を採用できる。空気は、他の流体に比し、取扱が容易で、技術的処置を要しないからである。
 図4に示すのは、脱水汚泥の排出工程である。必要な排水がなされ、圧搾も完了した後、開閉装置9により底部ハッチ8を開くと、脱水汚泥は自重により落下しようとする。
 この際、外力発生手段4から外力伝達手段3を介して急速に気体などの流体を環状の可撓性を有する管状体からなる外力供給手段5に供給する。これにより、外力供給手段5から脱水汚泥の上部表面に対して均一に、下方向に向かう力が、瞬間的に与えられる。前記の外力は瞬間的に作用し、分離器2の側壁10から脱水汚泥を剥離させ、脱水汚泥は前記外力と重力により落下し、外界へ排出される。こうして分離器2が空になる。
 分離器2が空の状態になった後、底部ハッチ8を閉じると脱水装置1の内部は適度な時間、洗浄ノズルからの水で洗浄される。
 脱水装置1で脱水できる汚泥の種類は多いので、前記脱水工程のいくつかは汚泥の種類によって除外されることもある。
 例えば、圧搾ベロー6によって容易に圧搾される種類の汚泥(圧縮率の高い汚泥)に関しては、充填工程における圧搾ベロー6内の予備加圧をする必要がない。
 一方、圧縮率の低い物質の含有率が高い汚泥に関しては、圧搾脱水工程での圧搾ベローの圧搾をしないこともある。
 また、底部ハッチ8を開けることによって脱水汚泥が自重で落下する場合、外力供給手段5が不要になることもある。しかし、外力供給手段5を使用することによって脱水汚泥排出工程を迅速にすることが可能であり、脱水汚泥を分離器2から一層容易に分離させることができる。そこで、外力供給手段5の利用価値は高い。
 本発明の脱水装置は、粒子を多く含む汚泥から液体をバッチ式により分離するのに適している。

Claims (5)

  1.  密閉構造で下端に開閉式の底部ハッチを有する円筒形状のボディの内部に、側壁に多数の分離孔を備えている分離器が同心円状に配置され、該分離器内に充填した汚泥を液体と脱水汚泥とに分離し、該脱水汚泥を前記底部ハッチを開けて下方向に向けて排出する脱水装置であって、
     前記分離器の内側に配置されていて、前記分離器の内部中央に流体が供給されることにより前記汚泥を前記側壁の方向に圧縮し、前記分離孔を介して液体と脱水汚泥とに分離させる圧搾ベローと、
     前記分離器の内部中央への前記流体の給排を制御することにより、前記圧搾ベロー内部の圧力を制御する弁機構と
     前記底部ハッチが開けられたときに前記分離器から下方向に向けて前記脱水汚泥を排出するために、前記脱水汚泥の上側に対して下方向に向かう力を供給する外力供給手段と
     を備え
     前記弁機構は、前記汚泥の種類に応じて、前記圧搾ベロー内部の圧力を制御することにより、
     脱水処理する汚泥が前記分離器の内部に充填される際に、あらかじめ前記圧搾ベロー内部の圧力を高め、前記汚泥が充填される間その圧力を維持する機能と、
     前記汚泥の前記分離器内部への充填後、前記圧搾ベロー内部の圧力をさらに高め、前記圧搾ベローを拡張させることで前記汚泥を圧縮し、前記汚泥から液体を分離させる機能と
     を有する
     ことを特徴とした脱水装置。
  2.  前記分離器の側壁の内壁表面及び/又は分離孔に平滑処理が施されていることを特徴とする請求項1記載の脱水装置。
  3.  前記外力供給手段は、前記底部ハッチを開けて前記脱水汚泥を下方向に向けて排出する際に、前記脱水汚泥の上部表面に対して均一に、下方向に向かう力を瞬間的に与えるものであることを特徴とした請求項1又は2記載の脱水装置。
  4.  前記外力供給手段は環状ディスク型をしていることを特徴とした請求項3記載の脱水装置。
  5.  前記外力供給手段は環状の可撓性を有する管状体であって、前記脱水汚泥の上部表面に対して均一に下方向に向かう力を瞬間的に与える際に、前記管状体内に急速に流体が供給され、前記管状体が瞬間的に膨張するものであることを特徴とした請求項3記載の脱水装置。
PCT/JP2009/062088 2008-07-04 2009-07-02 脱水装置 WO2010001948A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519099A JP4811837B2 (ja) 2008-07-04 2009-07-02 脱水装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE0801611-5 2008-07-04
SE0801611A SE532481C2 (sv) 2008-07-04 2008-07-04 Förbättrad avvattningsanordning som har en bälg
SE0801612 2008-07-04
SE0801612-3 2008-07-04

Publications (1)

Publication Number Publication Date
WO2010001948A1 true WO2010001948A1 (ja) 2010-01-07

Family

ID=41466039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062088 WO2010001948A1 (ja) 2008-07-04 2009-07-02 脱水装置

Country Status (3)

Country Link
JP (1) JP4811837B2 (ja)
TW (1) TW201024229A (ja)
WO (1) WO2010001948A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606540A (zh) * 2020-06-08 2020-09-01 天津市丽碧朗环保科技有限公司 一种污泥高压脱水处理方法
JP2021531160A (ja) * 2018-07-23 2021-11-18 デー エル エム ドクトル ミュラー アクチェンゲゼルシャフトDRM Dr. Mueller AG 液体及び気体から固体材料を分離するための装置
CN115784541A (zh) * 2022-03-29 2023-03-14 江苏同萃和科技有限公司 一种含水黏性污泥物料水平挤出式杂质分离设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716600A (ja) * 1992-11-27 1995-01-20 Noda Kogyo Kk 泥状物の脱水機
JPH08117513A (ja) * 1994-10-20 1996-05-14 Ishigaki Mech Ind Co 下水処理汚泥等の加圧濾過脱水用濾布及びその濾布を用いたフィルタープレス
WO1997031867A1 (en) * 1996-02-29 1997-09-04 Stigebrandt Ake Particle dewatering device
JP2000042599A (ja) * 1998-07-30 2000-02-15 Hitachi Constr Mach Co Ltd 泥土固化処理装置
JP2001310102A (ja) * 2000-05-02 2001-11-06 Shin Gijutsu Koei Kk 脱水方法及び装置
JP2001314898A (ja) * 2000-05-12 2001-11-13 Kurita Water Ind Ltd 汚泥脱水処理装置
JP2002166296A (ja) * 2000-12-01 2002-06-11 Ngk Insulators Ltd 廃棄物の脱水装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716600A (ja) * 1992-11-27 1995-01-20 Noda Kogyo Kk 泥状物の脱水機
JPH08117513A (ja) * 1994-10-20 1996-05-14 Ishigaki Mech Ind Co 下水処理汚泥等の加圧濾過脱水用濾布及びその濾布を用いたフィルタープレス
WO1997031867A1 (en) * 1996-02-29 1997-09-04 Stigebrandt Ake Particle dewatering device
JP2000042599A (ja) * 1998-07-30 2000-02-15 Hitachi Constr Mach Co Ltd 泥土固化処理装置
JP2001310102A (ja) * 2000-05-02 2001-11-06 Shin Gijutsu Koei Kk 脱水方法及び装置
JP2001314898A (ja) * 2000-05-12 2001-11-13 Kurita Water Ind Ltd 汚泥脱水処理装置
JP2002166296A (ja) * 2000-12-01 2002-06-11 Ngk Insulators Ltd 廃棄物の脱水装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021531160A (ja) * 2018-07-23 2021-11-18 デー エル エム ドクトル ミュラー アクチェンゲゼルシャフトDRM Dr. Mueller AG 液体及び気体から固体材料を分離するための装置
JP7152809B2 (ja) 2018-07-23 2022-10-13 デー エル エム ドクトル ミュラー アクチェンゲゼルシャフト 液体及び気体から固体材料を分離するための装置
CN111606540A (zh) * 2020-06-08 2020-09-01 天津市丽碧朗环保科技有限公司 一种污泥高压脱水处理方法
CN115784541A (zh) * 2022-03-29 2023-03-14 江苏同萃和科技有限公司 一种含水黏性污泥物料水平挤出式杂质分离设备
CN115784541B (zh) * 2022-03-29 2023-12-22 江苏同萃和科技有限公司 一种含水黏性污泥物料水平挤出式杂质分离设备

Also Published As

Publication number Publication date
JPWO2010001948A1 (ja) 2011-12-22
TW201024229A (en) 2010-07-01
JP4811837B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
AU2021100854A4 (en) Separation system
US4664813A (en) Method and apparatus for drying sludge using movable plates
JP4811837B2 (ja) 脱水装置
JP2014151321A (ja) 脱水機
CN105536310A (zh) 一种便于除掉残留水的压滤方法及其压滤机
CN110371530B (zh) 一种智能型多功能厨余垃圾桶
CN104926063B (zh) 基于污水污泥二次深度脱水装置的脱水方法
JP2023546529A (ja) 脱水装置
KR20140109578A (ko) 음식물쓰레기 처리기
US3984320A (en) Vacuum filter leg for clarifying vessel
CN108188153A (zh) 一种市政园林垃圾处理系统
CN110131980B (zh) 餐饮垃圾原位脱水装置及其方法
US20110108497A1 (en) Dewatering device having a bladder
JP2012148367A (ja) スラッジ脱水装置
JPS6041586B2 (ja) 果実・蔬菜の真空型連続破砕搾汁装置
KR200255822Y1 (ko) 주방쓰레기의 탈수장치
CN114044577A (zh) 一种餐饮废水油水分离方法及其装置
JP2007136308A (ja) 生ゴミ破砕機
FR2563848A1 (fr) Procede et appareil d'essorage de pieces de linge lavees.
EP0883576B1 (en) Particle dewatering device
EP1722877A1 (en) Method of compacting a slurry by pressure filtration
KR100864447B1 (ko) 음식물쓰레기의 탈수 시스템
US1308918A (en) Planooraph co
CN210635876U (zh) 一种污泥脱水装置
CN219606723U (zh) 一种压油盘及具有压油盘的吸脂器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773526

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010519099

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773526

Country of ref document: EP

Kind code of ref document: A1