WO2010001910A1 - 極低温格納容器及び極低温装置 - Google Patents

極低温格納容器及び極低温装置 Download PDF

Info

Publication number
WO2010001910A1
WO2010001910A1 PCT/JP2009/062002 JP2009062002W WO2010001910A1 WO 2010001910 A1 WO2010001910 A1 WO 2010001910A1 JP 2009062002 W JP2009062002 W JP 2009062002W WO 2010001910 A1 WO2010001910 A1 WO 2010001910A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant tank
solid
liquid refrigerant
heat
solid refrigerant
Prior art date
Application number
PCT/JP2009/062002
Other languages
English (en)
French (fr)
Inventor
功 萩谷
弘之 田中
武夫 根本
典英 佐保
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2010001910A1 publication Critical patent/WO2010001910A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the present invention relates to a cryogenic storage container for storing a predetermined refrigerant below its melting point and a cryogenic apparatus equipped with this cryogenic storage container.
  • a device utilizing a superconducting phenomenon for example, a nuclear magnetic resonance analysis (NMR) device using a superconducting magnet (coil, bulk), a magnetic resonance imaging (MRI) device, a superconductivity
  • NMR nuclear magnetic resonance analysis
  • MRI magnetic resonance imaging
  • SQUID Superconducting Quantum Interference Device
  • a cooling structure for a high-temperature superconducting magnet a cooling structure that directly cools a high-temperature superconducting magnet by a refrigerator and generates a solid refrigerant using cold heat from the refrigerator has been proposed (for example, a patent) Reference 1).
  • the generated solid refrigerant is arranged around the high-temperature superconducting magnet, and the solid refrigerant is used as a heat sink, so that the operation of the refrigerator is stopped due to a power failure or the like, and electromagnetic generation due to the operation of the refrigerator is generated. Even when the operation of the refrigerator is intentionally stopped in order to prevent vibration and vibration, the temperature rise of the high-temperature superconducting magnet is suppressed.
  • the present invention has been made in view of such circumstances, and a cryogenic storage container as a cooling structure capable of maintaining a cryogenic temperature for a long time even when the operation of the refrigerator is stopped, and the cryogenic storage container.
  • An object of the present invention is to provide a cryogenic device equipped with
  • a cryogenic storage container includes a solid refrigerant tank that stores solid refrigerant cooled by a refrigerator, and a liquid refrigerant tank that is disposed so as to surround the outer periphery of the solid refrigerant tank with a predetermined interval.
  • a solid refrigerant tank that stores solid refrigerant cooled by a refrigerator
  • a liquid refrigerant tank that is disposed so as to surround the outer periphery of the solid refrigerant tank with a predetermined interval.
  • the cryogenic temperature can be maintained for a long time even when the operation of the refrigerator is stopped.
  • cryogenic storage container which concerns on 1st Embodiment of this invention. It is a figure explaining the heat path of the conventional cryogenic containment vessel. It is a figure explaining the heat path of the cryogenic containment vessel concerning a 1st embodiment. It is a schematic sectional drawing of the cryogenic storage container which concerns on 2nd Embodiment of this invention. It is a schematic sectional drawing of the cryogenic storage container which concerns on 3rd Embodiment of this invention. It is a schematic sectional drawing of the cryogenic storage container which concerns on 4th Embodiment of this invention. They are the vertical sectional view (a) and horizontal sectional view (b) which show schematic structure of the cryogenic containment vessel concerning a 5th embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an MRI apparatus using a cryogenic storage container according to the present invention. It is a schematic sectional drawing of the SQUID apparatus using the cryogenic storage container which concerns on this invention. It is a schematic sectional drawing of the electron beam source apparatus using the cryogenic containment container concerning this invention.
  • FIG. 1 is a schematic sectional view of a cryogenic storage container according to the first embodiment of the present invention.
  • the cryogenic storage container 10A is roughly composed of a vacuum container 11 whose inside is kept in a vacuum, a solid refrigerant tank 12 that is housed in the vacuum container 11 and stores a solid refrigerant, and a refrigerator 25 that generates cold heat.
  • the refrigeration stage 26 used as the first heat conducting member for conducting the cold heat generated in the refrigerator 25 to the solid refrigerant tank 12 and the solid stored in the solid refrigerant tank 12 by the heat conduction from the refrigeration stage 26
  • a double-cylindrical liquid refrigerant tank 21 disposed so as to surround the outer periphery of the solid refrigerant tank 12 with a certain interval, and the object to be cooled 5 is the solid refrigerant tank 12. Outside the bottom plate 16 It has an attached structure (lower surface side).
  • the cooled object 5 is, for example, a magnetic device that generates magnetism (magnetic field) like a superconducting magnet or detects magnetism like SQUID.
  • the components of the cryogenic containment vessel 10A are selected so that the characteristics are exhibited on the premise that the cooled object 5 is a magnetic device.
  • the object 5 to be cooled is covered with a heat conducting member 7.
  • the heat conducting member 7 is made of a nonmagnetic metal material having a high heat conductivity such as copper (Cu) or aluminum (Al).
  • Cu copper
  • Al aluminum
  • the wall surface temperature (outer peripheral temperature) of the object to be cooled 5 can be made uniform. Stabilize. Further, by using a material having a low thermal emissivity such as Cu or Al, it is possible to suppress the intrusion heat from the periphery of the cooled object 5 to the cooled object 5.
  • the to-be-cooled body 5 may be in physical contact with the solid refrigerant tank 12 so that the to-be-cooled body 5 may be in physical contact with the solid refrigerant tank 12, the to-be-cooled body 5 is with respect to the solid refrigerant tank 12. And need only be in thermal contact, and not necessarily in physical contact. “Thermal contact” means a state in which heat can be transferred between the cooled object 5 and the solid refrigerant tank 12.
  • the vacuum vessel 11 is made of a non-magnetic material that does not affect the magnetism (magnetic field) between the cooled object 5 and the object.
  • a metal material such as stainless steel or a non-metal material such as fiber reinforced plastic (FRP).
  • the vacuum vessel 11 is provided with piping and an open / close valve (not shown) for evacuating the vacuum vessel 11 and maintaining the vacuum.
  • a heat insulating material 18 is disposed inside the vacuum vessel 11. In FIG. 1, the heat insulating material 18 is illustrated only on the inside upper part of the vacuum vessel 11, but the heat insulating material 18 is provided on the entire inner peripheral surface of the vacuum vessel 11. The heat insulating material 18 can also be disposed between the bottom plate of the vacuum vessel 11 and the body 5 to be cooled.
  • As the heat insulating material 18, a laminated heat insulating material in which Al deposited films and heat insulating spacers are alternately stacked is preferably used.
  • a hole 11a is formed in the upper surface plate of the vacuum vessel 11, and the refrigerator 25 is fixed to the upper surface plate of the vacuum vessel 11 above the hole 11a.
  • various cryogenic refrigerators such as a Stirling type refrigerator, a pulse tube type refrigerator, a Gifford-McMahon type refrigerator, and the like can be used.
  • the freezing point (melting point) of the refrigerant may be taken into consideration.
  • the refrigerator 25 has a refrigeration stage 26 that protrudes downward (solid refrigerant tank 12 side).
  • the refrigeration stage 26 extends into the vacuum vessel 11 through the hole 11a so that the cold heat generated in the refrigerator 25 can be conducted to the solid refrigerant tank 12 without conducting heat to the vacuum vessel 11.
  • the lower end surface is attached to the upper surface of the solid refrigerant tank 12. Also here, the freezing stage 26 should just be in thermal contact with the solid refrigerant tank 12.
  • Solid refrigerant tank 12 and surrounding structure As the constituent material of the solid refrigerant tank 12, a metal material such as stainless steel, Cu, or Al, or a non-metal material such as glass fiber reinforced plastic (GFRP) is used.
  • GFRP glass fiber reinforced plastic
  • the to-be-cooled body 5 is SQUID, if an eddy current generate
  • GFRP is preferably used.
  • the solid refrigerant stored in the solid refrigerant tank 12 hydrogen (H 2 ), neon (Ne), nitrogen (N 2 ), argon (Ar), xenon (Xe), or the like is used.
  • the selection of the solid refrigerant can be determined based on the cost of the solid refrigerant, the freezing point (melting point), and the like.
  • a liquid refrigerant can be injected into the solid refrigerant tank 12 from the outside through the refrigerant pipe 33.
  • the solid refrigerant stored in the solid refrigerant tank 12 is obtained by solidifying the liquid refrigerant injected into the solid refrigerant tank 12 using cold heat generated by the refrigerator 25. Therefore, in the state where the refrigerator 25 is operating normally, the solid refrigerant tank 12 is filled with the solid refrigerant from the vicinity of the initial liquid level of the injected liquid refrigerant.
  • the solid refrigerant once stored in the entire solid refrigerant tank 12 is partially dissolved by intrusion heat from the vacuum vessel 11 and the like when the operation of the refrigerator 25 is stopped, Further, a state where a certain amount of liquid refrigerant has evaporated from the liquid refrigerant tank 21 is shown.
  • a check valve 34 is attached to the refrigerant pipe 33.
  • the check valve 34 can be removed when liquid refrigerant is injected into the solid refrigerant tank 12.
  • the check valve 34 opens when the pressure in the solid refrigerant tank 12 is positive with respect to the external air pressure, and is kept closed in the opposite case. That is, since the check valve 34 is closed when the temperature in the solid refrigerant tank 12 is lowered and the pressure is lowered, the evaporated gas of the refrigerant discharged from the inside of the solid refrigerant tank 12 to the outside of the vacuum vessel 11 is passed. However, the penetration of air from the outside of the vacuum vessel 11 to the inside of the solid refrigerant tank 12 is prevented. Thus, heat can be prevented from entering the solid refrigerant tank 12 by air at room temperature.
  • the bottom plate 16 is made of a material having excellent thermal conductivity from the viewpoint of increasing the cooling efficiency of the body 5 to be cooled. It is preferable.
  • An upper heat conduction member 15 is attached to the flange 13 which is an upper surface plate of the solid refrigerant tank 12 so as to extend below the solid refrigerant tank 12.
  • the solid refrigerant is held in the solid refrigerant tank 12 by the cold heat transferred from the refrigeration stage 26 to the upper heat conducting member 15 via the flange 13.
  • the flange 13 is preferably made of a metal such as Cu or Al having a high thermal conductivity.
  • the upper heat conducting member 15 is also made of a metal such as Cu or Al having a high thermal conductivity.
  • the flange 13 and the upper heat conductive member 15 may be integrated.
  • a lower heat conductive member 17 having a cylindrical shape is erected on the bottom plate 16 of the solid refrigerant tank 12 so as to surround the upper heat conductive member 15 with a predetermined gap.
  • the lower heat conducting member 17 has a number of openings (holes) (not shown) so that the liquid refrigerant can pass between the inner side and the outer side.
  • the lower heat conducting member 17 is made of a metal such as Cu or Al having a high thermal conductivity, like the upper heat conducting member 15.
  • the solidification time of the liquid refrigerant when the refrigerator 25 is operated can be shortened. That is, when the operation of the refrigerator 25 is started in a state where the liquid refrigerant is stored in the solid refrigerant tank 12, the solidification of the liquid refrigerant starts around the upper heat conduction member 15, and the generated solid refrigerant becomes the lower heat conduction member. 17 is contacted. Since the heat conductivity of the lower heat conductive member 17 is larger than the heat conductivity of the solid refrigerant, the cold heat quickly moves from the generated solid refrigerant to the outer periphery of the lower heat conductive member 17 and the lower heat conductive member 17 Solidification of the liquid refrigerant begins immediately from the outer periphery.
  • Providing the lower heat conductive member 17 is particularly effective when the thermal conductivity of the constituent material of the solid refrigerant tank 12 is smaller than the thermal conductivity of the constituent material of the upper heat conductive member 15 and the lower heat conductive member 17. It is valid.
  • the outer periphery of the lower heat conductive member 17 with fins made of a metal having a thermal conductivity higher than that of the solid refrigerant so as to be orthogonal to the standing direction of the lower heat conductive member 17, the liquid The solidification time of the refrigerant can be shortened.
  • the liquid refrigerant tank 21 is an annular container, and the liquid refrigerant tank 21 stores liquid refrigerant. Since the body 5 to be cooled is a magnetic device, the material constituting the liquid refrigerant tank 21 is a nonmagnetic metal material such as stainless steel, Al, or Cu, or a nonmagnetic / nonmetal material such as FRP.
  • the liquid refrigerant can be injected into the liquid refrigerant tank 21 from the outside through the refrigerant pipe 31.
  • a check valve 32 is attached to the refrigerant pipe 31, and the check valve 32 can be removed when liquid refrigerant is injected into the liquid refrigerant tank 21.
  • the check valve 32 has the same function as the check valve 34. That is, the check valve 32 is opened when the pressure in the liquid refrigerant tank 21 is positive with respect to the external atmospheric pressure, and is kept closed in the opposite case, and the vacuum container 11 is maintained from the inside of the liquid refrigerant tank 12.
  • the refrigerant evaporating gas discharged to the outside is passed, but air is prevented from entering the liquid refrigerant tank 21 from the outside of the vacuum vessel 11. In this way, entry of heat into the liquid refrigerant tank 21 by air at room temperature is prevented.
  • the liquid refrigerant tank 21 and the solid refrigerant tank 12 are communicated with each other by a communication pipe 22 provided in the vicinity of the lower ends thereof, and the liquid refrigerant can move through the communication pipe 22.
  • the communication pipe 22 also plays a role of supporting the liquid refrigerant tank 21 on the solid refrigerant tank 12. If the liquid refrigerant tank 21 and the solid refrigerant tank 12 are both empty and the liquid refrigerant is injected into the liquid refrigerant tank 21, the liquid refrigerant moves to the solid refrigerant tank 12 through the connection pipe 22, and the liquid refrigerant tank 21 and the solid refrigerant tank 21 are solid. In the refrigerant tank 12, the liquid level of the liquid refrigerant is kept the same. The same applies when liquid refrigerant is injected into the solid refrigerant tank 12.
  • connection pipe 22 As the material of the connection pipe 22, a material having low thermal conductivity (for example, stainless steel, FRP, etc.) is preferably used. This is because when the operation of the refrigerator 25 is stopped, the vacuum container 11 is at the temperature of the use environment (generally the atmospheric environment) of the cryogenic storage container 10 ⁇ / b> A. This is because it is preferable to reduce the intrusion heat from the liquid refrigerant tank 21 to the solid refrigerant tank 12 through the connecting pipe 22 because the radiation intrusion heat enters from the above. Although not shown, in order to reduce the intrusion heat from the liquid refrigerant tank 21 to the solid refrigerant tank 12 through the communication pipe 22, it is also effective to put a throttle in the communication pipe 22.
  • a material having low thermal conductivity for example, stainless steel, FRP, etc.
  • the support 23 is made of a metal such as Cu or Al having high thermal conductivity, and is connected to the flange 13 on the solid refrigerant tank 12 side.
  • the same effect can be obtained by attaching the support 23 to the refrigeration stage 26 instead of the flange 13.
  • a gap is provided between the liquid refrigerant tank 21 and the solid refrigerant tank 12, and the liquid refrigerant tank 21 is located in a portion other than the communication pipe 22 and the support body 23.
  • liquid refrigerant level in the liquid refrigerant tank 21 and the solid refrigerant tank 12 is the same.
  • liquid refrigerant may be injected from the refrigerant pipe 33 on the solid refrigerant tank 12 side.
  • the cooled object 5 is cooled to a temperature in the vicinity of the boiling point of the liquid refrigerant as the cold heat is conducted from the liquid refrigerant.
  • the refrigerator 25 is operated. Thereby, the cold heat generated in the refrigerator 25 is transmitted to the refrigeration stage 26 by heat conduction, and further transmitted to the upper heat conduction member 15 via the flange 13, and the liquid refrigerant in contact with the upper heat conduction member 15 starts to solidify.
  • the form in which the liquid refrigerant actually solidifies in the solid refrigerant tank 12 depends on the ease of movement of the cold heat in the solid refrigerant tank 12 including the constituent materials of the solid refrigerant tank 12, the magnitude of the intrusion heat from the outside, and the like. .
  • the liquid refrigerant injected into the solid refrigerant tank 12 is solidified, and the solid refrigerant is held at a predetermined temperature below its freezing point.
  • the cooled object 5 is cooled toward the holding temperature of the solid refrigerant and held at a predetermined temperature.
  • liquid refrigerant stored in the liquid refrigerant tank 21 is solidified to become a solid refrigerant depends on the refrigeration capacity of the refrigerator 25, the magnitude of cold heat entering through the support 23, and the solid refrigerant through the connection pipe 22. It depends on the magnitude of the cold heat entering from the solid refrigerant in the tank 12, the magnitude of the radiation intrusion heat from the outside, and the like.
  • the liquid refrigerant injected into the liquid refrigerant tank 21 may be solidified or may not be solidified.
  • the solid refrigerant is stored in the solid refrigerant tank 12
  • the liquid refrigerant is stored in the liquid refrigerant tank 21, and the liquid refrigerant and the solid refrigerant coexist in the communication pipe 22.
  • the refrigerator 25 stops operation.
  • the liquid refrigerant tank 21 has a structure surrounding the outer periphery of the solid refrigerant tank 12
  • the radiation intrusion heat from the outside is consumed as latent heat of evaporation of the liquid refrigerant stored in the liquid refrigerant tank 21,
  • the temperature rise of the liquid refrigerant tank 21 is suppressed, and the heat entering the solid refrigerant tank 12 is suppressed to a small level.
  • melting of the solid refrigerant stored in the solid refrigerant tank 12 can be suppressed, and the retention time of the solid refrigerant can be extended.
  • the refrigerator 25 since the refrigerator 25 is arranged in a room temperature environment, the refrigerator 25 serves as a heat intrusion source to the solid refrigerant tank 12, the refrigeration stage 26 connected to the refrigerator 25, the flange 13, and the upper heat conducting member. 15 is a heat penetration path. Therefore, melting starts from the portion of the solid refrigerant that contacts the upper heat conductive member 15. As long as the communication pipe 22 is not blocked by the solid refrigerant, the liquid refrigerant generated in the solid refrigerant tank 12 flows out to the liquid refrigerant tank 21 through the communication pipe 22, and radiates heat from the outside in the liquid refrigerant tank 21. It consumes as evaporation latent heat and evaporates. In this way, the temperature rise of the liquid refrigerant tank 21 is suppressed, and the effect of suppressing the heat of entry into the solid refrigerant tank 12 is sustained.
  • the solid refrigerant can be held for a long time in the solid refrigerant tank 12, and the object 5 to be cooled has a desired temperature during that period. In this way, continuous use is possible.
  • FIG. 2 is a schematic diagram showing a heat path of a conventional cryogenic storage container
  • FIG. 3 is a schematic diagram showing a heat path of the cryogenic storage container 10A.
  • the solid refrigerant is solid nitrogen and the liquid refrigerant is liquid nitrogen
  • the melting rate at this time is represented by the following formula (1).
  • “vol” is the volume of solid nitrogen [m3]
  • “hsl” is the latent heat of fusion of solid nitrogen [J / kg]
  • ⁇ ” is the density of solid nitrogen [kg / m3].
  • liquid nitrogen generated by melting solid nitrogen moves from the solid refrigerant tank 12 to the liquid refrigerant tank 21 through the connection pipe 22,
  • the side radiation intrusion heat Qrad from the periphery of the liquid refrigerant tank 21 is taken and evaporated in the liquid refrigerant tank 21.
  • the side surface radiation intrusion heat Qrad from the liquid refrigerant tank 21 to the solid refrigerant tank 12 is blocked, and the melting rate of the solid nitrogen in the solid refrigerant tank 12 is slowed.
  • the melting rate of solid nitrogen in the cryogenic storage container 10A is expressed by the above formula (2), and at this time, the retention time t [s] of solid nitrogen that is prolonged is expressed by the above formula (3). Furthermore, the intrusion heat Qsl [W] from the liquid refrigerant tank 21 to the solid refrigerant tank 12 is expressed by the above formula (4).
  • Equation (4) “A” is the cross-sectional area [m 3 ], “ ⁇ ” is the thermal conductivity [W / (m ⁇ K)], and “ ⁇ 1” is the emissivity of the components of the liquid refrigerant tank [ “Dimensionless”, “ ⁇ 2” is the emissivity of the components of the solid refrigerant tank [Dimensionless], “L” is the length of the connecting pipe 22 [m], the subscript “pipe” is the connecting pipe 22, “LN2” Indicates liquid nitrogen, “side” indicates a side surface of the solid refrigerant tank, and “l” indicates a connection pipe.
  • 77 means the boiling point temperature of liquid nitrogen (77K)
  • 63 means the melting point of liquid nitrogen (63K)
  • 5.67 ⁇ 10 ⁇ 8 is the Stefan-Boltzmann constant [W / (M 2 ⁇ K 4 )].
  • the retention time t of solid nitrogen is 1 liter of solid nitrogen
  • the side radiation penetration heat Qrad is 0.5 W
  • the bottom radiation penetration heat Qrad ′ and the heat conduction penetration heat.
  • the holding time t is about 2 hours. That is, in the cryogenic storage container 10A, it can be seen that the continuous operation time can be extended by about 2 hours even if the operation of the refrigerator 25 is stopped.
  • FIG. 4 is a schematic sectional view of a cryogenic storage container according to the second embodiment of the present invention.
  • the cryogenic storage container 10 ⁇ / b> B is different from the cryogenic storage container 10 ⁇ / b> A according to the first embodiment in that a capillary (capillary tube) 41 is attached to the inner surface of the liquid refrigerant tank 21. Since the other components of the cryogenic storage container 10B are the same as the components of the cryogenic storage container 10A, description thereof is omitted here.
  • the capillary 41 is made of, for example, glass, and the inner surface (of the liquid refrigerant tank 21 is arranged so that one end thereof is positioned in the vicinity of the bottom surface of the liquid refrigerant tank 21 and the longitudinal direction thereof is parallel to the vertical direction. (Both sides on the inner diameter side and outer diameter side) are attached with almost no gap. The merit of disposing the capillary 41 is remarkably obtained when the liquid refrigerant tank 21 is made of a material having a low thermal conductivity such as FRP.
  • the metal shields the magnetic field. Therefore, if the liquid refrigerant tank 21 is formed of metal, the liquid refrigerant tank 21 is affected by the magnetic field generated by the superconducting bulk magnet. A magnetic field gradient may occur. Thus, when an eddy current is generated in the liquid refrigerant tank 21, the liquid refrigerant tank 21 generates heat. Since this heat generation is used for the evaporation of the liquid refrigerant in the liquid refrigerant tank 21, the ability to block the intrusion heat from the outside (particularly the side surface radiation intrusion heat Qrad) is reduced.
  • a nonmagnetic insulating material such as FRP as a constituent material of the liquid refrigerant tank 21.
  • FRP is a material having a lower thermal conductivity than a general metal material, a temperature gradient is generated between a portion in contact with the liquid refrigerant and a portion not in the liquid refrigerant tank 21.
  • the capillary 41 when the capillary 41 is arranged on the inner surface of the liquid refrigerant tank 21, the liquid refrigerant rises in the capillary 41 until the weight and the surface tension of the liquid refrigerant are balanced by the capillary force of the capillary 41.
  • the capillary 41 By making the capillary 41 thinner, the liquid level of the liquid refrigerant can be raised to a higher position.
  • the area of the portion in contact with the liquid refrigerant is increased in the height direction of the liquid refrigerant tank 21.
  • the temperature rise of the liquid refrigerant tank 21 can be suppressed, and the intrusion heat from the liquid refrigerant tank 21 to the solid refrigerant tank 12 can be suppressed small.
  • the solid refrigerant can be held in the solid refrigerant tank 12 for a long time.
  • FIG. 5 is a schematic sectional view of a cryogenic storage container according to the third embodiment of the present invention.
  • the cryogenic storage container 10C is different from the cryogenic storage container 10A according to the first embodiment in that a meandering pipe 42 having a meandering structure is used as a solid refrigerant instead of the connecting pipe 22 provided in the cryogenic storage container 10A.
  • This is a point configured to be used for the circulation of the liquid refrigerant between the tank 12 and the liquid refrigerant tank 21. Since the other components of the cryogenic storage container 10C are the same as the components of the cryogenic storage container 10A, description thereof is omitted here.
  • the total length (pipe distance) between the liquid refrigerant tank 21 and the solid refrigerant tank 12 is longer than the linear distance from one end of the meandering pipe 42 to the other end. If the piping distance is increased, the heat transfer distance from the evaporation surface of the liquid refrigerant (for example, 77K liquid nitrogen) to the surface of the solid refrigerant (for example, 63K solid nitrogen) is increased. Since the heat flux from the liquid refrigerant tank 21 to the solid refrigerant tank 12 is inversely proportional to the heat transfer distance, the heat flow rate is reduced by using the meandering pipe 42, and the liquid refrigerant tank 21 enters the solid refrigerant tank 12 by heat conduction. The magnitude of heat can be reduced.
  • the “meandering” of the meandering pipe 42 means that the length of the line connecting one end and the other end is longer than the linear distance (shortest distance) connecting these two points. The form is not limited.
  • cryogenic storage container 10 ⁇ / b> C intrusion heat from the liquid refrigerant tank 21 to the solid refrigerant tank 12 due to the meandering pipe 42 can be suppressed to a small value, thereby increasing the retention time of the solid refrigerant in the solid refrigerant tank 12.
  • FIG. 6 shows a schematic cross-sectional view of a cryogenic storage container according to the fourth embodiment of the present invention.
  • This cryogenic storage container 10D is different from the cryogenic storage container 10A according to the first embodiment in that the liquid refrigerant tank 21 provided in the cryogenic storage container 10A includes an annular tank portion 43 at the lower end thereof. It is a point. Since the other components of the cryogenic storage container 10D are the same as the components of the cryogenic storage container 10A, description thereof is omitted here.
  • the tank part 43 is provided so as to protrude below the height of the bottom plate 16 of the solid refrigerant tank 12.
  • the tank part 43 is formed in the lower part of the liquid refrigerant tank 21 by forming a step at a predetermined position in the vertical direction so that the area of the bottom surface is larger than the area of the upper surface.
  • the tank portion 43 is not limited to such a shape, and may have a substantially trapezoidal cross section in which the side wall surface is inclined so that the area of the bottom surface is larger than the area of the upper surface.
  • the tank unit 43 is provided when the liquid refrigerant tank 21 is made of metal in order to make the temperature of the liquid refrigerant tank 21 uniform.
  • the flow of the liquid refrigerant from the solid refrigerant tank 12 to the tank unit 43 provided in the liquid refrigerant tank 21 is promoted, and the liquid refrigerant level in the solid refrigerant tank 12 is It falls below the case of the cryogenic containment vessel 10 ⁇ / b> A that does not include the tank portion 43, and the liquid refrigerant does not come into contact with the upper heat conducting member 15.
  • the liquid level of the liquid refrigerant tank 21 is reduced by providing the tank portion 43, the liquid refrigerant tank 21 is made of metal, so that the temperature gradient in the height direction is large. It is hard to fall.
  • the large amount of liquid refrigerant stored in the tank unit 43 enhances the function of the liquid refrigerant tank 21 to consume the radiation intrusion heat from the outside when the liquid refrigerant evaporates. Therefore, the increase of the radiation penetration
  • FIG. 7A shows a vertical sectional view showing a schematic structure of a cryogenic storage container according to the fifth embodiment of the present invention
  • FIG. 7B shows a horizontal sectional view.
  • This cryogenic storage container 10E is different from the cryogenic storage container 10A according to the first embodiment in that instead of the annular liquid refrigerant tank 21 which is a radiation intrusion heat blocking means provided in the cryogenic storage container 10A, It is a point provided with a radiation intrusion heat blocking means having a shield plate 45 and a bottomed cylindrical liquid refrigerant tank 46. Since the other components of the cryogenic storage container 10E are the same as the components of the cryogenic storage container 10A, description thereof is omitted here.
  • the shield plate 45 has a cylindrical shape, and surrounds the outer periphery of the solid refrigerant tank 12 with a certain interval in a space formed between the outer periphery of the solid refrigerant tank 12 and the inner periphery of the vacuum vessel 11. It is arranged like this. Here, the shield plate 45 is held at a fixed position by being connected to the liquid refrigerant tank 46 connected to the solid refrigerant tank 12. The shield plate 45 is provided to conduct heat from the outside to the liquid refrigerant tank 46. Therefore, the shield plate 45 is preferably made of a material having a high thermal conductivity such as Al or Cu.
  • the liquid refrigerant tank 46 has a bottomed cylindrical shape, and is disposed inside the shield plate 45 to hold the shield plate 45 connected thereto.
  • the number of liquid refrigerant tanks 46 is four, but the number of liquid refrigerant tanks 46 depends on the size of one liquid refrigerant tank 46 (the amount of liquid refrigerant that can be stored) and the like. There may be one or more than four.
  • the operation of the refrigerator 25 can be performed.
  • the liquid refrigerant generated in the solid refrigerant tank 12 flows out to the liquid refrigerant tank 46.
  • Intrusion heat from the outside is conducted to the liquid refrigerant tank 46 through the shield plate 45 and is consumed as latent heat of evaporation when the liquid refrigerant stored in the liquid refrigerant tank 46 evaporates. In this way, the temperature rise of the shield plate 45 is suppressed, the intrusion heat into the solid refrigerant tank 12 is suppressed, and the time for holding the solid refrigerant in the solid refrigerant tank 12 can be lengthened.
  • the cryogenic storage container 10E similarly to the cryogenic storage containers 10A to 10D, by using the intrusion heat from the vacuum container 11 as the latent heat of vaporization of the liquid refrigerant, the radiation intrusion heat from the vacuum container 11 is reduced.
  • the effect of being kept small can be obtained, and the cryogenic storage container 10E has an advantage that the weight can be reduced by using the shield plate 45.
  • FIG. 8A shows a vertical sectional view showing a schematic structure of a cryogenic storage container according to the sixth embodiment of the present invention
  • FIG. 8B shows a horizontal sectional view.
  • the cryogenic storage container 10F is different from the cryogenic storage container 10E according to the fifth embodiment in that the shielding plate 45 is disposed outside the bottomed cylindrical liquid refrigerant tank 46 in the cryogenic storage container 10E.
  • the shield plate 45 is arranged inside the bottomed cylindrical liquid refrigerant tank 46.
  • the cryogenic storage container 10F has an advantage that the weight can be further reduced as compared with the cryogenic storage container 10E.
  • cryogenic storage container 10F the other components of the cryogenic storage container 10F are the same as the components of the cryogenic storage container 10E, and a description thereof will be omitted here.
  • the cryogenic storage containers 10A to 10F according to the first to sixth embodiments described above are used in, for example, a magnetic induction type DDS (drug delivery system).
  • a magnetic induction type DDS drug delivery system
  • a magnetic drug in which a drug is added to a magnetic fine particle is injected into a patient's body, and the magnetic drug is guided to the affected area by using magnetic force, so that the drug concentration in the affected area can be increased and the therapeutic effect is obtained. Is expected to be enhanced.
  • a superconducting magnet that generates a high magnetic field or a high magnetic gradient is required, and the superconducting magnet is held in a state where the superconducting magnet can perform its function by the cryogenic containment vessels 10A to 10F. .
  • cryogenic containment vessel is suitably used for a nuclear magnetic resonance diagnosis (MRI) apparatus, a nuclear magnetic resonance analysis (NMR) apparatus, a SQUID apparatus, an electron beam source apparatus, and the like. Therefore, the case where the present invention is applied to an MRI apparatus, a SQUID apparatus, and an electron beam source apparatus will be specifically described below.
  • MRI nuclear magnetic resonance diagnosis
  • NMR nuclear magnetic resonance analysis
  • SQUID SQUID
  • electron beam source apparatus an electron beam source apparatus
  • FIG. 9 is a vertical sectional view showing a schematic structure of the MRI apparatus.
  • an object to be inspected for example, a patient or the like
  • a space 100c formed at the center thereof, and an upper side and a lower side of the space 100c are formed in order to form a predetermined magnetic field in the space 100c.
  • superconducting magnets 51a, 51b, 52a, 52b, 53a, 53b (hereinafter referred to as “superconducting magnet 51a etc.”, which will be described later) are arranged symmetrically with respect to the space 100c.
  • the MRI apparatus 100 includes a vacuum vessel 11 having an outer wall 11b and an inner wall 11c, and a solid having an outer wall 12a and an inner wall 12b.
  • a refrigerant tank 12 is disposed in the vacuum vessel 11. The inside of the vacuum vessel 11 is maintained in a vacuum atmosphere, and the solid refrigerant is stored in the solid refrigerant tank 12.
  • a refrigerator 25 that cools the solid refrigerant tank 12 is attached to the upper surface of the outer wall 11 b of the vacuum container 11, and the refrigeration stage 26 penetrates the outer wall 11 b of the vacuum container 11 to the outer wall 12 a of the solid refrigerant tank 12. It is attached.
  • the refrigeration stage 26 cools the solid refrigerant tank 12 by conducting heat from the refrigerator 25 to the solid refrigerant tank 12.
  • Heat insulating materials 60a and 60b are disposed on the inside of the outer wall 11b of the vacuum vessel 11 and on the outside of the inner wall 11c of the vacuum vessel 11, respectively.
  • a heat conductive member 70 a is disposed outside the heat insulating material 60 b, and a heat conductive member 70 b is disposed inside the outer wall 12 a of the solid refrigerant tank 12.
  • the liquid refrigerant tank 21 is provided in the space between the heat insulating material 60 a and the outer wall 12 a of the solid refrigerant tank 12.
  • the liquid refrigerant tank 21 and the solid refrigerant tank 12 communicate with each other through a communication pipe 22.
  • a disk-shaped superconducting magnet 51a is arranged above the space 100c where the object to be inspected is placed, and the superconducting magnet 52a is arranged above the superconducting magnet 51a.
  • a disc-shaped superconducting magnet 51b is disposed below the space 100c, and a superconducting magnet 52b is disposed below the superconducting magnet 51b.
  • ring-shaped superconducting magnets 53a and 53b are respectively arranged above and below the heat conducting member 70b. The superconducting magnets 53a and 53b adjust the uniformity of the magnetic field and prevent the magnetic field from leaking to the outside. Note that a high-temperature superconducting bulk magnet can be used as the superconducting magnet 51a and the like.
  • the superconducting magnets 51 a and 51 b and the superconducting magnets 52 a and 52 b are in thermal contact with the solid refrigerant in the solid refrigerant tank 12.
  • Superconducting magnets 53a and 53b are in thermal contact with the solid refrigerant through heat conduction member 70b.
  • the structure and arrangement position of the superconducting magnet 51a and the like are determined so that the magnetic field strength at the center position of the space 100c, the magnetic field uniformity in the space 100c, the leakage magnetic field strength outside the MRI apparatus 100, and the like satisfy predetermined values.
  • the solid refrigerant stored in the solid refrigerant tank 12 can be cooled and held at a constant temperature.
  • electromagnetic waves that disturb the resolution of the MRI image are generated.
  • the temporary stop of the machine 25 is effective in preventing such disturbance of the MRI image due to electromagnetics.
  • the refrigerator 25 stops in an emergency such as a power failure.
  • the solid refrigerant in the solid refrigerant tank 12 begins to rise in temperature due to the intrusion heat from the outside and melts when it reaches the melting point. Begins.
  • the liquid refrigerant thus generated flows into the liquid refrigerant tank 21 through the communication pipe 22 and evaporates, thereby depriving the heat entering the liquid refrigerant tank 21 from the outside, and suppressing the heat entering the solid refrigerant tank 12 to be small.
  • the NMR apparatus Since the NMR apparatus has almost the same configuration as the MRI apparatus, in the case of the NMR apparatus, an NMR signal waveform with less disturbance is obtained by operating the refrigerator 25 in a stopped state. be able to.
  • FIG. 10 is a vertical sectional view showing a schematic structure of the SQUID apparatus.
  • the SQUID apparatus 200 includes a vacuum container 11 in which the inside is maintained in a vacuum, a solid refrigerant tank 12 that is housed in the vacuum container 11 and stores solid refrigerant, a refrigerator 25 that generates cold heat, and a refrigerator 25.
  • a refrigeration stage 26 that conducts the generated cold heat to the solid refrigerant tank 12, an upper heat conduction member 15 that cools the solid refrigerant stored in the solid refrigerant tank 12 by heat conduction from the refrigeration stage 26, and a liquid refrigerant are stored.
  • a liquid refrigerant tank 21 disposed so as to surround the outer periphery of the solid refrigerant tank 12 with a certain interval in a space formed between the outer periphery of the solid refrigerant tank 12 and the inner periphery of the vacuum vessel 11.
  • the SQUID 20 as a body to be cooled has a structure in which a plurality (four in this case) of SQUIDs 20 are disposed on the inner bottom surface side of the solid refrigerant tank 12.
  • a nonmagnetic / nonmetallic material such as GFRP is used from the viewpoint of preventing the generation of eddy current and improving the detection accuracy of the SQUID 20.
  • the upper heat conducting member 15 is also close to the SQUID 20, the upper heat conducting member 15 is made of a nonmagnetic / nonmetallic material that does not generate eddy current due to a magnetic field and has a relatively high thermal conductivity. Sapphire (Al2O3), aluminum nitride (AlN), or the like is used.
  • the flange 13 which is the upper surface plate of the solid refrigerant tank 12 is the same as the upper heat conduction member 15.
  • the upper heat conductive member 15 is made of metal, even if an eddy current is generated in the upper heat conductive member 15 itself, the eddy current generated in the refrigerator 25 flows to the upper heat conductive member 15.
  • the height that does not decrease the detection accuracy of the SQUID 20 may be set as the lower limit position.
  • the upper heat conducting member 15 is made of Al2O3, AlN, etc., which has a higher thermal conductivity than the solid refrigerant, and is nonmagnetic and nonmetal. Fins may be provided.
  • the SQUID 20 is a SQUID main body including a superconducting magnet ring and surrounding wiring.
  • Each of the stop valves 32 is the same as that used for the cryogenic storage container 10A (see FIG. 1), and thus the description thereof is omitted here.
  • GFRP is also used for the communication pipe 22.
  • the refrigerator 25 Even in the SQUID apparatus 200, during the operation of the refrigerator 25, electromagnetic force is generated in the refrigerator 25, and this electromagnetic field becomes a disturbance of magnetic measurement by the SQUID 20. Therefore, stopping the refrigerator 25 is an effective means for improving detection accuracy.
  • the retention time of the solid refrigerant in the solid refrigerant tank 12 in the SQUID device 200 when the operation of the refrigerator 25 is stopped is substantially the same as that of the cryogenic storage container 10A (see FIG. 1). Therefore, the movable time of the SQUID apparatus 200 when the operation of the refrigerator 25 is stopped is prolonged, and the SQUID signal can be measured with a good resolution.
  • FIG. 11 is a vertical sectional view showing a schematic structure of the electron beam source device.
  • This electron beam source apparatus 300 is basically configured using a cryogenic storage container 10A (see FIG. 1).
  • the object 5 to be cooled is attached to the bottom plate 16 of the solid refrigerant tank 12 and cooled, but in the electron beam source device 300, the bottom plate 16 of the solid refrigerant tank 12 is plate-shaped.
  • a heat conducting member 91 is attached, and an electron beam oscillator 90 as a body to be cooled is installed on the heat conducting member 91 at a position away from the solid refrigerant tank 12.
  • the electric characteristics of the electron beam oscillator 90 improve as the cooling temperature decreases.
  • a compressor unit (not shown) of the refrigerator 25 vibrates. Therefore, when the electron beam oscillator 90 is directly attached to the solid refrigerant tank 12 and cooled, vibration generated in the refrigerator 25 is transmitted to the electron beam oscillator 90, and the position control accuracy of the electron beam oscillator 90 is lowered.
  • the heat conduction member 91 is used to conduct heat from the solid refrigerant tank 12 to the electron beam oscillator 90, thereby vibrating the electron beam generated in the refrigerator 25.
  • a structure for cooling the electron beam oscillator 90 while suppressing transmission to the oscillator 90 is employed. Thereby, even during the operation of the refrigerator 25, the position control of the electron beam oscillator 90 can be accurately performed.
  • the refrigerator 25 is intentionally stopped in order to suppress vibration transmitted through the heat conducting member 91, or due to a power failure or the like.
  • the solid refrigerant in the solid refrigerant tank 12 starts to rise in temperature due to intrusion heat from the outside, and starts to melt after reaching the melting point.
  • the liquid refrigerant thus generated flows into the liquid refrigerant tank 21 through the communication pipe 22 and evaporates, thereby depriving the heat entering the liquid refrigerant tank 21 from the outside, and suppressing the heat entering the solid refrigerant tank 12 to be small.
  • the liquid refrigerant tank 21 is provided so as to surround the outer periphery (side surface) of the solid refrigerant tank 12, but the liquid refrigerant is interposed between the vacuum container 11 and the bottom plate 16 of the solid refrigerant tank 12.
  • the liquid refrigerant tank 21 may be extended below the bottom plate 16.
  • the shield plate 45 may extend below the bottom plate 16.
  • the shield plate 45 is provided on the bottom surface of the solid refrigerant tank 12 in order to block the radiation intrusion heat from the vacuum container 11 to the bottom plate 16 and the flange 13 of the solid refrigerant tank 12. Or may be provided so as to cover the upper surface.
  • a check valve may be provided in the communication pipe 22.
  • the check valve By providing the check valve, it is possible to prevent the liquid refrigerant from flowing from the liquid refrigerant tank 21 (52) into the solid refrigerant tank 12 when the cryogenic storage containers 10A to 10F are inclined. According to this configuration, it is possible to suppress the melting of the solid refrigerant from proceeding due to heat conduction from the liquid refrigerant to the solid refrigerant.
  • Cooled object 7 Heat conduction member 10A, 10B, 10C, 10D, 10E, 10F Cryogenic containment vessel 11 Vacuum vessel 12 Solid refrigerant tank 15 Upper heat conduction member (second heat conduction member) 17 Lower heat conduction member 21 Liquid refrigerant tank 22 Connection pipe 23 Support body 25 Refrigerator 26 Refrigeration stage (first heat conduction member) 31, 33 Refrigerant piping 32, 34 Check valve 41 Capillary 42 Meandering piping 43 Tank part 45 Shield plate 46 Liquid refrigerant tank 51a, 51b, 52a, 52b Superconducting magnet 100 MRI apparatus 200 SQUID apparatus 300 Electron beam source apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

 冷凍機の運転が停止した際にも長時間にわたって極低温を保持することができる極低温格納容器(10A)は、冷凍機(25)によって冷却される固体冷媒を貯蔵する固体冷媒槽(12)と、液体冷媒を貯留し固体冷媒槽(12)の外周を一定の間隔を設けて囲むように配置される液体冷媒槽(21)とを真空容器(11)の内部に収容された構造を有し、さらに、冷凍機(25)が停止した際に固体冷媒の融解によって固体冷媒槽(12)で生じる液体冷媒が液体冷媒槽(21)へ自然に流れ込み、真空容器(11)からの輻射侵入熱が液体冷媒槽(21)での液体冷媒の蒸発潜熱として消費されるように構成されている。

Description

極低温格納容器及び極低温装置
 本発明は、所定の冷媒をその融点以下に保持して格納する極低温格納容器及びこの極低温格納容器を備えた極低温装置に関する。
 近時、超電導現象を利用した装置として、例えば、超電導磁石(コイル、バルク)を用いた核磁気共鳴分析(NMR:Nuclear Magnetic Resonance)装置や磁気共鳴画像診断(MRI:Magnetic Resonance Imaging)装置、超電導量子干渉素子(SQUID:Superconducting Quantum Interference Device)を用いた微弱磁気検査装置等が開発されている。これらの装置に用いられる超電導磁石やSQUIDを動作させるためには、その動作温度である極低温を実現するための冷却構造物が必要とされる。
 そのため、例えば、高温超電導磁石の冷却構造物として、冷凍機によって高温超電導磁石を直接冷却するとともに、冷凍機による冷熱を利用して固体冷媒を生成させる冷却構造物が提案されている(例えば、特許文献1参照)。この冷却構造物では、生成した固体冷媒を高温超電導磁石の周囲に配置し、固体冷媒をヒートシンクとして利用することにより、冷凍機の運転が停電等により停止したり、冷凍機の運転による電磁気の発生や振動を防止するために意図的に冷凍機の運転を停止したりした際にも、高温超電導磁石の温度上昇が抑制される構造となっている。
特開2002-208512号公報
 しかしながら、特許文献1に開示された冷却構造物では、冷却構造物の外壁と冷却構造物内の極低温部との温度差が大きいため、冷却構造物からその内部の極低温部への輻射侵入熱が大きい。そのため、冷凍機の運転停止時には、この輻射侵入熱によって固体冷媒の融解速度が速くなる。また、運転を停止した冷凍機から直接に熱伝導により超電導磁石の温度が上昇しやすい。そのため、超電導磁石を超電導臨界温度以下の極低温を保持することが可能な時間が短くなる。こうして、この冷却構造物を備えた超電導装置では、冷凍機の運転停止時に、連続して使用が可能な時間が短くなってしまう。
 本発明はかかる事情に鑑みてなされたものであり、冷凍機の運転が停止した際にも長時間にわたって極低温を保持することができる冷却構造物としての極低温格納容器及びこの極低温格納容器を備えた極低温装置を提供することを目的とする。
 本発明に係る極低温格納容器は、冷凍機によって冷却される固体冷媒を貯蔵する固体冷媒槽と、前記固体冷媒槽の外周を所定の間隔を設けて囲むように配置される液体冷媒槽とを真空容器の内部に収容すると共に、前記冷凍機が停止した際に固体冷媒の融解によって前記固体冷媒槽で生じる液体冷媒が前記液体冷媒槽へ流れ込んで、前記真空容器からの輻射侵入熱が前記液体冷媒槽での液体冷媒の蒸発潜熱として消費されるように構成されており、こうして、前記液体冷媒槽の温度上昇を抑制し、ひいては前記固体冷媒槽への侵入熱を小さくして固体冷媒の保持時間を長時間化させるものである。
 本発明によれば、冷凍機の運転が停止した際にも、長時間にわたって極低温を保持することができる。
本発明の第1実施形態に係る極低温格納容器の概略断面図である。 従来の極低温格納容器の熱経路を説明する図である。 第1実施形態に係る極低温格納容器の熱経路を説明する図である。 本発明の第2実施形態に係る極低温格納容器の概略断面図である。 本発明の第3実施形態に係る極低温格納容器の概略断面図である。 本発明の第4実施形態に係る極低温格納容器の概略断面図である。 本発明の第5実施形態に係る極低温格納容器の概略構造を示す鉛直断面図(a)と水平断面図(b)である。 本発明の第6実施形態に係る極低温格納容器の概略構造を示す鉛直断面図(a)と水平断面図(b)である。 本発明に係る極低温格納容器を用いたMRI装置の概略断面図である。 本発明に係る極低温格納容器を用いたSQUID装置の概略断面図である。 本発明に係る極低温格納容器を用いた電子ビーム源装置の概略断面図である。
 以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
 《第1実施形態》
 図1に本発明の第1実施形態に係る極低温格納容器の概略断面図を示す。この極低温格納容器10Aは、概略、内部が真空に保持される真空容器11と、真空容器11の内部に収容され、固体冷媒を貯蔵する固体冷媒槽12と、冷熱を発生させる冷凍機25と、冷凍機25で発生させた冷熱を固体冷媒槽12に熱伝導するための第1熱伝導部材として用いられる冷凍ステージ26と、冷凍ステージ26からの熱伝導によって固体冷媒槽12に貯蔵された固体冷媒(又は液体冷媒)を冷却する第2熱伝導部材として用いられる上側熱伝導部材15と、液体冷媒を貯留するために固体冷媒槽12の外周(側面)と真空容器11の内周との間に形成された空間に固体冷媒槽12の外周を一定の間隔を設けて囲むように配設された二重円筒状の液体冷媒槽21とを備えており、被冷却体5が固体冷媒槽12の底面板16の外側(下面側)に取り付けられた構造を有している。
 [被冷却体5とその周辺構造]
 被冷却体5は、例えば、超電導磁石のように磁気(磁場)を発生し、又は、SQUIDのように磁気を検出する磁気デバイスである。極低温格納容器10Aの構成部品は、被冷却体5が磁気デバイスであることを前提としてその特性が発揮されるように、選定されているものとする。
 被冷却体5は熱伝導部材7によって被覆されている。熱伝導部材7には、銅(Cu)やアルミニウム(Al)等の熱伝導率の大きい非磁性金属材料が用いられる。被冷却体5を熱伝導率の大きい熱伝導部材7で被覆することにより、被冷却体5の壁面温度(外周温度)を均一にすることができ、これにより被冷却体5の磁気的特性が安定する。また、CuやAl等の熱放射率の低い材料を用いることで、被冷却体5の周囲からの被冷却体5への侵入熱を小さく抑えることができる。
 なお、ここでは、被冷却体5が固体冷媒槽12に対して物理的に接触するように固体冷媒槽12に取り付けられている形態としているが、被冷却体5は、固体冷媒槽12に対して熱的に接触していればよく、必ずしも物理的に接触していなくともよい。「熱的に接触している」とは、被冷却体5と固体冷媒槽12との間で熱の伝導が可能な状態をいう。
 [真空容器11とその周辺構造]
 真空容器11の底面板は被冷却体5と対向しており、被冷却体5が磁気を与え又は磁気を検出する対象物は、真空容器11の底面板を挟んで被冷却体5の位置とは反対側の真空容器11外側(下面側)に配置されるため、真空容器11は、被冷却体5と前記対象物との間で磁気(磁場)に影響を与えない非磁性材料で構成され、例えば、ステンレス等の金属材料や繊維強化プラスチック(FRP;Fiber Reinforced Plastics)等の非金属材料で構成されていることが好ましい。
 真空容器11には、真空容器11内を真空引きして真空に保持するための配管と開閉バルブ(図示せず)が設けられている。真空容器11の内側には断熱材18が配置されている。図1では、断熱材18を真空容器11の内側上部にのみ図示しているが、断熱材18は、真空容器11の内周面全体に設けられている。断熱材18は、真空容器11の底面板と被冷却体5との間にも、配置することができる。断熱材18としては、Al蒸着したフィルムと断熱スペーサとを交互に積層した積層断熱材が好適に用いられる。
 [冷凍機25とその周辺構造]
 真空容器11の上面板には穴11aが形成されており、冷凍機25は、この穴11aの上側において真空容器11の上面板に固定されている。冷凍機25としては、スターリング型冷凍機やパルス管型冷凍機、ギフォード・マクマホン型冷凍機等の各種の極低温冷凍機を用いることができ、その選定にあたっては、その冷却性能と固体冷媒(液体冷媒)の凝固点(融点)を考慮すればよい。
 冷凍機25は、下方向(固体冷媒槽12側)に突出する冷凍ステージ26を有している。冷凍機25で発生させた冷熱を真空容器11に熱伝導させることなく固体冷媒槽12へ熱伝導することができるように、冷凍ステージ26は、穴11aを通って真空容器11内に延びており、その下端面が固体冷媒槽12の上面に取り付けられている。ここでも、冷凍ステージ26は固体冷媒槽12と熱的に接触していればよい。
 [固体冷媒槽12とその周辺構造]
 固体冷媒槽12の構成材料には、ステンレスやCu、Al等の金属材料、ガラス繊維強化プラスチック(GFRP;Grass Fiber Reinforced Plastics)等の非金属材料が用いられる。なお、被冷却体5がSQUIDである場合には、被冷却体5が取り付けられている固体冷媒槽12の底面板16で渦電流が発生すると、検出精度が低下することから、絶縁材料であるGFRPが好適に用いられる。
 固体冷媒槽12に貯蔵される固体冷媒としては、水素(H)、ネオン(Ne)、窒素(N)、アルゴン(Ar)、キセノン(Xe)等が用いられる。固体冷媒(液体冷媒は同じ物質)の選択は、固体冷媒のコストや凝固点(融点)等に基づいて決定することができる。固体冷媒槽12へは、冷媒配管33を通して外部から液体冷媒を注入することができるようになっている。
 固体冷媒槽12に貯蔵される固体冷媒は、固体冷媒槽12に注入された液体冷媒を冷凍機25で発生させた冷熱を利用して凝固させたものである。したがって、冷凍機25が正常に運転されている状態では、固体冷媒槽12内は、注入された液体冷媒の当初の液面近傍から下側が固体冷媒で充填された形態となっている。なお、図1には、後記するように、一旦、固体冷媒槽12全体に貯蔵された固体冷媒が、冷凍機25の運転が停止して真空容器11等からの侵入熱によって一部溶解し、さらに液体冷媒槽21から一定量の液体冷媒が蒸発した状態が示されている。
 冷媒配管33には、逆止弁34が取り付けられている。逆止弁34は、液体冷媒を固体冷媒槽12に注入する際には、取り外すことができる。逆止弁34は、固体冷媒槽12内の圧力が外気圧に対して正圧のときに開き、逆の場合には閉じた状態に維持される。つまり、逆止弁34は、固体冷媒槽12内の温度が低くなって圧力が下がったときに閉じるため、固体冷媒槽12の内部から真空容器11の外部へ放出される冷媒の蒸発ガスは通すが、真空容器11の外部から固体冷媒槽12の内部への空気の侵入を阻止する。こうして、室温の空気による固体冷媒槽12内への熱の侵入を防止することができる。
 被冷却体5は固体冷媒槽12の底面板16の外側に取り付けられているため、この底面板16は、被冷却体5の冷却効率を高める観点から、熱伝導性に優れた材料で構成されていることが好ましい。
 固体冷媒槽12の上面板であるフランジ13には、固体冷媒槽12の下方に伸びるように上側熱伝導部材15が取り付けられている。フランジ13を介して冷凍ステージ26から上側熱伝導部材15に伝えられた冷熱により、固体冷媒槽12内に固体冷媒が保持される。フランジ13は、冷凍機25の運転時に冷凍ステージ26とフランジ13の下部との温度差を小さくするために、熱伝導率の大きいCuやAl等の金属で構成されることが好ましい。上側熱伝導部材15にも、また、熱伝導率の大きいCuやAl等の金属が用いられる。フランジ13と上側熱伝導部材15とは一体であってもよい。
 固体冷媒槽12の底面板16には、上側熱伝導部材15の周囲を所定の隙間を設けて囲むように、筒状の形状を有する下側熱伝導部材17が立設されている。下側熱伝導部材17は、その内側と外側との間で液体冷媒が通過することができるように、多数の図示しない開口部(孔部)を有している。下側熱伝導部材17は、上側熱伝導部材15と同様に、熱伝導率の大きいCuやAl等の金属で構成される。
 下側熱伝導部材17を配置することにより、冷凍機25を運転させた際の液体冷媒の凝固時間を短縮することができる。すなわち、固体冷媒槽12に液体冷媒が貯蔵されている状態で冷凍機25の運転を開始すると、上側熱伝導部材15の周囲から液体冷媒の凝固が始まり、生成した固体冷媒が下側熱伝導部材17と接触する。下側熱伝導部材17の熱伝導率は固体冷媒の熱伝導率よりも大きいため、生成した固体冷媒から下側熱伝導部材17の外周に速やかに冷熱が移動して下側熱伝導部材17の外周から速やかに液体冷媒の凝固が始まる。
 下側熱伝導部材17を設けることは、固体冷媒槽12の構成材料の熱伝導率が、上側熱伝導部材15及び下側熱伝導部材17の構成材料の熱伝導率よりも小さい場合に、特に有効である。なお、下側熱伝導部材17の外周に、下側熱伝導部材17の立設方向と直交するように、固体冷媒よりも熱伝導率が大きい金属で構成されるフィンを設けることで、さらに液体冷媒の凝固時間を短縮させることができる。
 [液体冷媒槽21とその周辺構造]
 液体冷媒槽21は円環状容器であり、液体冷媒槽21には液体冷媒が貯留される。被冷却体5は磁気デバイスであるため、液体冷媒槽21を構成する材料は、ステンレスやAl、Cu等の非磁性金属材料や、FRP等の非磁性・非金属材料が用いられる。
 液体冷媒槽21へは、冷媒配管31を通して外部から液体冷媒を注入することができるようになっている。冷媒配管31には逆止弁32が取り付けられており、逆止弁32は、液体冷媒を液体冷媒槽21に注入する際には、取り外すことができる。逆止弁32は、逆止弁34と同じ機能を有する。すなわち、逆止弁32は、液体冷媒槽21内の圧力が外気圧に対して正圧のときに開き、逆の場合には閉じた状態で維持され、液体冷媒槽12の内部から真空容器11の外部へ放出される冷媒の蒸発ガスを通すが、真空容器11の外部から液体冷媒槽21の内部への空気の侵入を阻止する。こうして、室温の空気による液体冷媒槽21内への熱の侵入が防止される。
 液体冷媒槽21と固体冷媒槽12とは、これらの下端近傍に設けられた連絡配管22によって連通しており、連絡配管22を通して液体冷媒が移動可能となっている。なお、連絡配管22は、液体冷媒槽21を固体冷媒槽12に支持させる役割をも担っている。液体冷媒槽21と固体冷媒槽12の両方が空の状態で、液体冷媒槽21に液体冷媒を注入すれば、液体冷媒は連絡配管22を通して固体冷媒槽12へ移動し、液体冷媒槽21と固体冷媒槽12とでは、液体冷媒の液面の高さが同じに維持される。固体冷媒槽12へ液体冷媒を注入した場合も同様である。
 連絡配管22の材質として、熱伝導率の小さい材料(例えば、ステンレス、FRP等)が好適に用いられる。これは、冷凍機25の運転停止時には、真空容器11は極低温格納容器10Aの使用環境(一般的に大気環境)の温度となっていることから、液体冷媒槽21へは外部(真空容器11)から輻射侵入熱が侵入するため、液体冷媒槽21から固体冷媒槽12への連絡配管22を介した侵入熱を低減することが好ましいからである。図示はしないが、連絡配管22を介した液体冷媒槽21から固体冷媒槽12への侵入熱を低減するために、連絡配管22に絞りを入れることも有効である。
 液体冷媒槽21と固体冷媒槽12の上端近傍にこれらを連結する支持体23が設けられている。この支持体23は、熱伝導率の高いCuやAl等の金属で構成されており、固体冷媒槽12側ではフランジ13に接続されている。冷凍機25の運転停止時には、室温の冷凍機25からフランジ13へ熱が侵入する。フランジ13と固体冷媒とは上側熱伝導部材15を介して熱的に接触するため、冷凍機25からの侵入熱はフランジ13から固体冷媒へと熱伝導するが、支持体23をフランジ13に接続することにより、冷凍機25からの侵入熱の一部がフランジ13から支持体23を経由して液体冷媒槽21へ伝えられるようになり、これにより、フランジ13から上側熱伝導部材15へ伝えられる侵入熱が低減され、固体冷媒の融解を抑制することができる。
 なお、支持体23を、フランジ13に代えて冷凍ステージ26に取り付けても、同様の効果が得られる。このように、極低温格納容器10Aでは、液体冷媒槽21と固体冷媒槽12との間には間隙が設けられ、液体冷媒槽21は連絡配管22及び支持体23以外の部位で固体冷媒槽12とは接していない構造とすることで、液体冷媒槽21から固体冷媒槽12への侵入熱が小さく抑えられている。
 [極低温格納容器10Aの使用形態]
 次に、極低温格納容器10Aの使用形態について説明する。極低温格納容器10Aの最初の運転開始時には、固体冷媒槽12と液体冷媒槽21のいずれにも冷媒は貯蔵されていないため、例えば、冷媒配管31を通して一定量の液体冷媒を液体冷媒槽21に注入する。液体冷媒槽21に注入された液体冷媒は、連絡配管22を通じて固体冷媒槽12へ流入し、固体冷媒槽12内では下側熱伝導部材17の開口部(図示せず)を通じて流通する。こうして、液体冷媒槽21と固体冷媒槽12における液体冷媒の液面の高さは同じとなる。なお、固体冷媒槽12側の冷媒配管33から液体冷媒を注入してもよい。この時点で、被冷却体5は液体冷媒から冷熱が熱伝導されることにより、液体冷媒の沸点近傍の温度に冷却される。
 続いて、冷凍機25を運転させる。これにより、冷凍機25で発生した冷熱が熱伝導により冷凍ステージ26へ伝えられ、さらにフランジ13を介して上側熱伝導部材15に伝えられ、上側熱伝導部材15に接触した液体冷媒が凝固を始める。固体冷媒槽12において実際に液体冷媒が凝固する形態は、固体冷媒槽12の構成材料を含めた固体冷媒槽12での冷熱の移動のしやすさと外部からの侵入熱の大きさ等に依存する。最終的に、冷凍機25の運転により、固体冷媒槽12に注入された液体冷媒を凝固させ、固体冷媒はその凝固点以下の所定温度で保持される。被冷却体5は固体冷媒の保持温度に向けて冷却され、所定温度で保持される。
 なお、液体冷媒槽21に貯蔵された液体冷媒が凝固して固体冷媒となるか否かは、冷凍機25の冷凍能力や、支持体23を通じて侵入する冷熱の大きさ、連絡配管22を通じて固体冷媒槽12内の固体冷媒から侵入する冷熱の大きさ、外部からの輻射侵入熱の大きさ等に依存する。液体冷媒槽21に注入された液体冷媒は、凝固させてもよいし、凝固させなくともよい。ここでは、冷凍機25の運転中は、固体冷媒槽12内には固体冷媒が貯蔵され、液体冷媒槽21には液体冷媒が貯留され、連絡配管22内において、液体冷媒と固体冷媒とが共存しているものとする。
 停電等により冷凍機25への電力供給が停止すると、冷凍機25は運転を停止する。このとき、液体冷媒槽21が固体冷媒槽12の外周を囲んだ構造となっているため、外部からの輻射侵入熱は、液体冷媒槽21に貯留された液体冷媒の蒸発潜熱として消費され、これにより液体冷媒槽21の温度上昇が抑制されて、固体冷媒槽12への侵入熱が小さく抑えられる。こうして、固体冷媒槽12に貯蔵されている固体冷媒の融解を抑制することができ、固体冷媒の保持時間を長時間化することができる。
 また、冷凍機25は室温環境下に配置されているため、冷凍機25が固体冷媒槽12への熱侵入源となり、冷凍機25に接続されている冷凍ステージ26、フランジ13、上側熱伝導部材15が熱侵入経路となる。そのため、固体冷媒において上側熱伝導部材15に接触した部分から融解が始まる。連絡配管22が固体冷媒によって閉塞されていない限り、固体冷媒槽12で生成した液体冷媒は、連絡配管22を通って液体冷媒槽21へと流れ出し、液体冷媒槽21において外部からの輻射侵入熱を蒸発潜熱として消費して蒸発する。こうして、液体冷媒槽21の温度上昇が抑制されて、固体冷媒槽12への侵入熱が小さく抑えられる効果が持続する。
 このように極低温格納容器10Aでは、冷凍機25の運転が停止しても、固体冷媒槽12においては、長時間にわたって固体冷媒を保持することができ、その間は被冷却体5が所望の温度に保持されるので、連続使用が可能になる。
 [極低温格納容器10Aにおける熱経路]
 前記説明の通り、極低温格納容器10Aでは、冷凍機25の運転が停止しても、固体冷媒槽12に長時間にわたって固体冷媒を保持することができる。この効果について、図1~3を参照して説明する。図2は従来の極低温格納容器の熱経路を示す模式図であり、図3は極低温格納容器10Aの熱経路を示す模式図である。
 極低温格納容器10Aにおいて、冷凍機25の運転が停止した際の外部から真空容器11内部への侵入熱(侵入熱量)[W]は、図1に示されているように、『侵入熱[W]=熱伝導侵入熱Qλ[W]+側面輻射侵入熱Qrad[W]+底面輻射侵入熱Qrad′[W]』となる。固体冷媒が固体窒素であり、液体冷媒が液体窒素であるとすると、凝固点〔=63K(融点と同じとする)〕以下にあった固体窒素の温度は凝固点まで上昇し、その後、融解して液体窒素となる。このときの融解速度は、下記式(1)で表される。ここで、『vol』は固体窒素の容積[m3]、『hsl』は固体窒素の融解潜熱[J/kg]、『ρ』は固体窒素の密度[kg/m3]である。
Figure JPOXMLDOC01-appb-M000001
 
 従来の極低温格納容器(例えば、背景技術の説明の際に取り上げた特許文献1に開示された冷却構造物)の熱経路では、図2に示されるように、侵入熱(Qλ+Qrad+Qrad′)は、固体窒素の融解に使用されるため、式(1)で表される融解速度で固体窒素は融解し続ける。
 これに対して、本発明の第1実施形態に係る極低温格納容器10Aでは、固体窒素の融解により生成した液体窒素が連絡配管22を通って固体冷媒槽12から液体冷媒槽21へ移動し、液体冷媒槽21内において液体冷媒槽21の周囲からの側面輻射侵入熱Qradを奪って、液体冷媒槽21内で蒸発する。こうして、図3に示されるように、液体冷媒槽21から固体冷媒槽12への側面輻射侵入熱Qradが遮断され、固体冷媒槽12内の固体窒素の融解速度が遅くなる。極低温格納容器10Aでの固体窒素の融解速度は上記式(2)で表され、このとき、長時間化される固体窒素の保持時間t[s]は上記式(3)で表される。さらに、液体冷媒槽21から固体冷媒槽12への侵入熱Qsl[W]は上記式(4)で表される。
 なお、式(4)において、『A』は断面積[m]、『λ』は熱伝導率[W/(m・K)]、『ε1』は液体冷媒槽の構成部材の放射率[無次元]、『ε2』は固体冷媒槽の構成部材の放射率[無次元]、『L』は連絡配管22の長さ[m]、添え字の『pipe』は連絡配管22、『LN2』は液体窒素、『side』は固体冷媒槽側面、『l』は連絡配管、をそれぞれ示している。式(4)中の『77』は液体窒素の沸点温度(77K)を、『63』は液体窒素の融点(63K)を意味し、5.67×10-8は、ステファン-ボルツマン定数[W/(m・K)]である。
 式(3)に基づいて、極低温格納容器10Aについて、固体窒素の保持時間tを、固体窒素が1リットル、側面輻射侵入熱Qradが0.5W、底面輻射侵入熱Qrad′と熱伝導侵入熱Qλの合計が1Wであった場合について求めると、保持時間tは約2時間となる。つまり、極低温格納容器10Aでは、冷凍機25の運転が停止しても、連続運転時間を約2時間引き延ばすことができることがわかる。なお、ここでの計算では、hsl=25750[J/kg]、ρ=950[kg/m]を使用した。
 《第2実施形態》
 図4に本発明の第2実施形態に係る極低温格納容器の概略断面図を示す。この極低温格納容器10Bが、第1実施形態に係る極低温格納容器10Aと異なる点は、液体冷媒槽21の内面にキャピラリ(毛細管)41が取り付けられている点である。極低温格納容器10Bの他の構成要素は、極低温格納容器10Aの構成要素と同じであるため、ここでの説明は省略する。
 キャピラリ41は、例えば、ガラスで作られており、その一端が液体冷媒槽21の底面近傍に位置するようにして、その長手方向が鉛直方向と平行となるように、液体冷媒槽21の内面(内径側と外径側の両面)にほぼ隙間無く、取り付けられている。キャピラリ41を配設するメリットは、液体冷媒槽21がFRP等の熱伝導率の小さい材料で構成されている場合に顕著に得られる。
 例えば、被冷却体5が超電導バルク磁石である場合、金属は磁場を遮蔽するため、液体冷媒槽21が金属で形成されていると、超電導バルク磁石が発生する磁場の影響により液体冷媒槽21に磁場勾配が生じるおそれがある。こうして液体冷媒槽21に渦電流が発生すると、液体冷媒槽21は発熱する。この発熱は、液体冷媒槽21での液体冷媒の蒸発に用いられるため、外部からの侵入熱(特に側面輻射侵入熱Qrad)を遮断する能力を低下させる。
 そこで、液体冷媒槽21での渦電流の発生を回避するために、液体冷媒槽21の構成材料として、FRP等の非磁性絶縁材料を用いることが好ましいと考えられる。しかしながら、FRPは一般的な金属材料と比較して熱伝導率が小さい材料であるため、液体冷媒槽21において液体冷媒に接している部分とそうでない部分との間に温度勾配が発生する。こうして液体冷媒槽21に温度勾配が生じると、液体冷媒槽21において液体冷媒に接していない部分は液体冷媒の沸点よりも高温となるため、この部分から固体冷媒槽12への輻射侵入熱が大きくなる。
 そこで、液体冷媒槽21内面にキャピラリ41を配置すると、キャピラリ41の毛細管力により、液体冷媒の重量と表面張力とが釣り合うまで、液体冷媒がキャピラリ41内を上昇する。キャピラリ41を細くすることにより、液体冷媒の液面をより高い位置まで上昇させることができる。キャピラリ41内で液体冷媒が吸い上げられることによって、液体冷媒槽21の高さ方向において、液体冷媒に接している部分の面積が広くなる。こうして、液体冷媒槽21において液体冷媒に接していない部分を少なくすることにより、液体冷媒槽21から固体冷媒槽12への侵入熱を小さく抑えることができる。
 このように、極低温格納容器10Bでも、液体冷媒槽21の温度上昇を抑制し、液体冷媒槽21から固体冷媒槽12へ侵入熱を小さく抑えることができる。これにより、冷凍機25の運転が停止した際にも、長時間にわたって固体冷媒槽12において固体冷媒を保持することができる。
 《第3実施形態》
 図5に本発明の第3実施形態に係る極低温格納容器の概略断面図を示す。この極低温格納容器10Cが、第1実施形態に係る極低温格納容器10Aと異なる点は、極低温格納容器10Aが具備する連絡配管22に代えて、蛇行構造を有する蛇行配管42を、固体冷媒槽12と液体冷媒槽21との間での液体冷媒の流通に用いるように構成した点である。極低温格納容器10Cのその他の構成要素は、極低温格納容器10Aの構成要素と同じであるため、ここでの説明は省略する。
 蛇行配管42を用いた場合、液体冷媒槽21と固体冷媒槽12の間の全長(配管距離)が、蛇行配管42の一端から他端までの直線距離よりも長くなる。配管距離が長くなれば、液体冷媒(例えば、77Kの液体窒素)の蒸発面から固体冷媒(例えば、63Kの固体窒素)の表面までの伝熱距離が長くなる。液体冷媒槽21から固体冷媒槽12への熱流束は伝熱距離に反比例するため、蛇行配管42を用いることによって熱流速が小さくなり、液体冷媒槽21から固体冷媒槽12への熱伝導による侵入熱の大きさを小さくすることができる。なお、蛇行配管42の「蛇行」とは、一端と他端とを結ぶ線の長さが、これら2点を結ぶ直線距離(最短距離)よりも長くなっていることをいい、折り返しや旋回等、その形態に限定はない。
 極低温格納容器10Cによれば、蛇行配管42に起因する液体冷媒槽21から固体冷媒槽12への侵入熱を小さく抑えることができ、これにより固体冷媒槽12における固体冷媒の保持時間を長時間化することができる。
 《第4実施形態》
 図6に本発明の第4実施形態に係る極低温格納容器の概略断面図を示す。この極低温格納容器10Dが、第1実施形態に係る極低温格納容器10Aと異なる点は、極低温格納容器10Aが具備する液体冷媒槽21が、その下端部に環状のタンク部43を備えている点である。極低温格納容器10Dのその他の構成要素は、極低温格納容器10Aの構成要素と同じであるため、ここでの説明は省略する。
 タンク部43は、固体冷媒槽12の底面板16の高さよりも下側に突出するように設けられている。ここでは、液体冷媒槽21の下部に、その底面の面積が上面の面積よりも広くなるように鉛直方向の所定位置に段差を形成することで、タンク部43を形成している。タンク部43は、このような形状に限定されず、底面の面積が上面の面積よりも広くなるように、側壁面を傾斜させた断面略台形状のものであってもよい。
 タンク部43は、液体冷媒槽21の温度を均一にするために液体冷媒槽21を金属で構成した場合に設けられる。冷凍機25の運転の停止時には、固体冷媒槽12から液体冷媒槽21に設けられたタンク部43への液体冷媒の流入が促され、固体冷媒槽12における液体冷媒の液面の高さが、タンク部43を備えていない極低温格納容器10Aの場合よりも下がって、液体冷媒が上側熱伝導部材15と接触しなくなる。これにより、固体冷媒槽12において、上側熱伝導部材15から液体冷媒への熱伝導による侵入熱が小さくなるため、固体冷媒の融解が抑制されて固体冷媒の保持時間を長時間化させることができる。
 なお、タンク部43を設けることで、液体冷媒槽21の液面の高さは低くなるが、液体冷媒槽21は金属で構成されているために、高さ方向での温度勾配は大きなものにはなりにくい。また、タンク部43に貯留された多量の液体冷媒により、液体冷媒槽21が液体冷媒の蒸発の際に外部からの輻射侵入熱を消費する機能が高められる。よって、固体冷媒槽12への輻射侵入熱の増大は小さく抑えられる。
 《第5実施形態》
 図7(a)に本発明の第5実施形態に係る極低温格納容器の概略構造を表した垂直断面図を示し、(b)に水平断面図を示す。この極低温格納容器10Eが、第1実施形態に係る極低温格納容器10Aと異なる点は、極低温格納容器10Aが具備する輻射侵入熱遮断手段である円環状の液体冷媒槽21に代えて、シールド板45と有底筒状の液体冷媒槽46とを有する輻射侵入熱遮断手段を備えている点である。極低温格納容器10Eのその他の構成要素は、極低温格納容器10Aの構成要素と同じであるため、ここでの説明は省略する。
 [シールド板45]
 シールド板45は、筒状の形状を有し、固体冷媒槽12の外周と真空容器11の内周との間に形成された空間に、固体冷媒槽12の外周を一定の間隔を設けて囲むように配設されている。ここでは、シールド板45は、固体冷媒槽12に接続された液体冷媒槽46に接続されることによって、一定位置で保持されている。シールド板45は、外部からの輻射侵入熱を、液体冷媒槽46へ熱伝導するために設けられる。そのため、シールド板45は、好ましくはAlやCu等の熱伝導率の大きな材料で構成される。
 [液体冷媒槽46]
 液体冷媒槽46は、有底筒状の形状を有し、シールド板45の内側に配置されて、シールド板45を接続保持している。極低温格納容器10Eでは、液体冷媒槽46の配設数を4本としているが、液体冷媒槽46の数は、1本の液体冷媒槽46の大きさ(貯留可能な液体冷媒量)等によって、1本でもよく4本以外の複数本でもよい。
 液体冷媒槽46は連絡配管22によって固体冷媒槽12と連通しており、液体冷媒槽46と固体冷媒槽12との間で液体冷媒の流通が可能となっているため、冷凍機25の運転が停止すると、固体冷媒槽12で生成した液体冷媒が液体冷媒槽46へと流れ出る。外部からの侵入熱は、シールド板45を熱伝導して液体冷媒槽46へと伝えられ、液体冷媒槽46に貯留された液体冷媒が蒸発する際の蒸発潜熱として消費される。こうして、シールド板45の温度上昇が抑制されて固体冷媒槽12への侵入熱が小さく抑えられ、固体冷媒槽12において固体冷媒を保持する時間を長時間化することができる。
 このように、極低温格納容器10Eによれば、極低温格納容器10A~10Dと同様に、真空容器11からの侵入熱を液体冷媒の蒸発潜熱として用いることにより真空容器11からの輻射侵入熱が小さく抑えられるという効果が得られ、さらに、極低温格納容器10Eでは、シールド板45を用いることによる軽量化が可能であるという利点がある。
 《第6実施形態》
 図8(a)に本発明の第6実施形態に係る極低温格納容器の概略構造を表した垂直断面図を示し、(b)に水平断面図を示す。この極低温格納容器10Fが、第5実施形態に係る極低温格納容器10Eと異なる点は、極低温格納容器10Eでは、有底筒状の液体冷媒槽46の外側にシールド板45が配置されているのに対し、極低温格納容器10Fでは、有底筒状の液体冷媒槽46の内側にシールド板45が配置されている点である。
 液体冷媒槽46の内側にシールド板45を配置することにより、真空容器11とシールド板45との距離が長くなると共に、シールド板45の外周面積が小さくなるために、真空容器11からシールド板45への輻射侵入熱が減少する。これにより、輻射侵入熱を消費するために必要な液体冷媒の量を低減することができる。また、シールド板45自体の重さが軽くなるため、極低温格納容器10Fは、極低温格納容器10Eと比べて、さらに軽量化が可能になるという利点がある。
 なお、極低温格納容器10Fのその他の構成要素は、極低温格納容器10Eの構成要素と同じであるため、ここでの説明は省略する。
 《極低温格納容器を備えた装置の具体例》
 以上に説明した第1~6実施形態に係る極低温格納容器10A~10Fは、例えば、磁気誘導式DDS(ドラッグデリバリーシステム)に用いられる。磁気誘導式DDSでは、患者の体内に磁性微粒子に薬剤を付加した磁性薬剤を注入し、磁気力を利用して、磁性薬剤を患部に誘導することにより、患部における薬剤濃度を高められて治療効果が高められることが期待される。このような磁性薬剤の誘導には、高磁場又は高磁気勾配を発生する超電導磁石が必要であり、極低温格納容器10A~10Fにより超電導磁石がその機能を発揮することができる状態に保持される。
 これに限られず、本発明に係る極低温格納容器は、核磁気共鳴診断(MRI)装置や核磁気共鳴分析(NMR)装置、SQUID装置、電子ビーム源装置等の好適に用いられる。そこで、以下、MRI装置、SQUID装置及び電子ビーム源装置にそれぞれ適用した場合について、具体的に説明する。
 <MRI装置>
 図9にMRI装置の概略構造を表した垂直断面図を示す。MRI装置100では、その中心部に形成されている空間100cに被検査体(例えば、患者等)が載置され、この空
間100cに所定の磁場を形成するために、空間100cの上側と下側に、超電導磁石51a,51b,52a,52b,53a,53b(以下「超電導磁石51a等」といい、これらについては後に説明する)が、空間100cに対して左右対称に配置されている。
 超電導磁石51a等を所定温度に冷却して保持するために、MRI装置100は、外側壁11bと内側壁11cとを有する真空容器11を備えており、外側壁12aと内側壁12bとを有する固体冷媒槽12が、真空容器11内に配置されている。真空容器11内は真空雰囲気に保持され、固体冷媒槽12内に固体冷媒が貯蔵される。真空容器11の外側壁11bの上面には、固体冷媒槽12を冷却する冷凍機25が取り付けられ、冷凍ステージ26が真空容器11の外側壁11bを貫通して固体冷媒槽12の外側壁12aに取り付けられている。冷凍ステージ26は、冷凍機25からの冷熱を固体冷媒槽12に熱伝導して、固体冷媒槽12を冷却する。
 真空容器11の外側壁11bの内側と、真空容器11の内側壁11cの外側にはそれぞれ、断熱材60a,60bが配設されている。この断熱材60bの外側に熱伝導部材70aが配置され、固体冷媒槽12の外側壁12aの内側に熱伝導部材70bが配置されている。断熱材60aと固体冷媒槽12の外側壁12aとの間の空間に液体冷媒槽21が設けられている。液体冷媒槽21と固体冷媒槽12とは、連絡配管22を通して連通している。
 被検査体が載置される空間100cの上側に円盤状の超電導磁石51aが配置されており、この超電導磁石51aの上側に超電導磁石52aが配置されている。また、空間100cの下側に円盤状の超電導磁石51bが配置されており、この超電導磁石51bの下側に超電導磁石52bが配置されている。さらに、熱伝導部材70bの内側の上下にそれぞれ、リング状の超電導磁石53a,53bが配置されている。超電導磁石53a,53bは、磁場の均一度を調整し、磁場が外部に漏洩することを防止する。なお、超電導磁石51a等としては、高温超電導バルク磁石を用いることができる。
 超電導磁石51a,51bと超電導磁石52a,52bは、固体冷媒槽12内の固体冷媒と熱的に接触している。超電導磁石53a,53bは、熱伝導部材70bを介して固体冷媒と熱的に接触している。こうして、超電導磁石51a等は、所望される磁気的特性を発揮することができる状態に保持されている。超電導磁石51a等の構造及び配置位置は、空間100cの中心位置における磁場強度、空間100cにおける磁場均一度、MRI装置100の外側の漏洩磁場強度等が所定値を満足するように決定される。
 冷凍機25を運転することによって、固体冷媒槽12に貯蔵された固体冷媒を一定温度に冷却して保持することができるが、冷凍機25ではMRI画像の解像度を乱す電磁気が発生するため、冷凍機25を一時的に停止することは、このような電磁気によるMRI画像の外乱を防止することに有効である。また、停電などの緊急時にも冷凍機25は停止する。
 冷凍機25の運転を意図的に停止させ、又は、停電等により停止したとき、固体冷媒槽12内の固体冷媒は、外部からの侵入熱により温度上昇が始まり、融点に達したときからは融解が始まる。こうして生成した液体冷媒は、連絡配管22を通じて液体冷媒槽21に流入し、蒸発することで外部から液体冷媒槽21への侵入熱を奪い、固体冷媒槽12への侵入熱を小さく抑える。こうして、固体冷媒の融解を抑制して、固体冷媒の保持時間を長時間化することで、冷凍機25の運転停止時におけるMRI装置の可動可能時間を長時間化し、また、良好な解像度でMRI画像を取得することができるようになる。
 なお、NMR装置は、MRI装置とほぼ同じ構成を有しているため、NMR装置の場合には、冷凍機25の運転を停止させた状態で稼働させることにより、外乱の少ないNMR信号波形を得ることができる。
 <SQUID装置>
 図10にSQUID装置の概略構造を表した垂直断面図を示す。SQUID装置200は、内部が真空に保持される真空容器11と、真空容器11の内部に収容され、固体冷媒を貯蔵する固体冷媒槽12と、冷熱を発生させる冷凍機25と、冷凍機25で発生させた冷熱を固体冷媒槽12に熱伝導する冷凍ステージ26と、冷凍ステージ26からの熱伝導によって固体冷媒槽12に貯蔵された固体冷媒を冷却する上側熱伝導部材15と、液体冷媒を貯留するために固体冷媒槽12の外周と真空容器11の内周との間に形成された空間に固体冷媒槽12の外周を一定の間隔を設けて囲むように配設された液体冷媒槽21とを備えており、被冷却体としてのSQUID20が固体冷媒槽12の内部底面側に複数(ここでは、4つ)配設された構造を有している。
 真空容器11、固体冷媒槽12及び液体冷媒槽21には、渦電流の発生を防止して、SQUID20の検出精度を高める観点から、GFRP等の非磁性・非金属材料が用いられる。上側熱伝導部材15もまたSQUID20に近接するため、上側熱伝導部材15は、磁場によって渦電流を発生せず、熱伝導率が比較的大きい非磁性・非金属材料で構成され、具体的には、サファイア(Al2O3)や窒化アルミニウム(AlN)等が用いられる。固体冷媒槽12の上面板であるフランジ13についても、上側熱伝導部材15と同様である。
 なお、上側熱伝導部材15を金属で構成する場合には、上側熱伝導部材15自体に渦電流が発生しても、また、冷凍機25で発生した渦電流が上側熱伝導部材15に流れても、SQUID20の検出精度を低下させることのない高さを下限位置とすればよい。また、固体冷媒を生成するための時間を短時間化するために、上側熱伝導部材15の周囲に、固体冷媒よりも熱伝導率が大きく、非磁性かつ非金属であるAl2O3やAlN等で構成されるフィンを設けてもよい。
 SQUID20を固体冷媒槽12の内部に配置することにより、SQUID20を所望する極低温に安定して保持することができる。SQUID20は、超電導磁石の輪や周囲の配線を含むSQUID本体部である。
 冷凍機25、冷凍ステージ26、固体冷媒槽12と液体冷媒槽21とを連通させる連絡配管22、液体冷媒槽21を固体冷媒槽12に支持させるための支持体23、真空容器11の内側に設けられた断熱材18、固体冷媒槽12に取り付けられた冷媒配管33、冷媒配管33に取り付けられた逆止弁34、液体冷媒槽21に取り付けられた冷媒配管31、冷媒配管31に取り付けられた逆止弁32はそれぞれ、極低温格納容器10A(図1参照)に用いられているものと同じであるので、ここでの説明は省略する。なお、連絡配管22にもGFRPが用いられている。
 SQUID装置200でも、冷凍機25の運転中には、冷凍機25で電磁気が発生し、この電磁気がSQUID20による磁気計測の外乱となる。そのため、冷凍機25を停止することは、検出精度を高める有効な手段となる。冷凍機25の運転を停止した際のSQUID装置200における固体冷媒槽12での固体冷媒の保持時間は、極低温格納容器10A(図1参照)とほぼ同じである。したがって、冷凍機25の運転停止時におけるSQUID装置200の可動可能時間が長時間化され、また、良好な解像度でSQUID信号を測定することができる。
 <電子ビーム源装置>
 図11に電子ビーム源装置の概略構造を表した垂直断面図を示す。この電子ビーム源装置300は、基本的に、極低温格納容器10A(図1参照)を用いて構成されている。極低温格納容器10Aでは、被冷却体5を固体冷媒槽12の底面板16に取り付けて冷却する構造となっているが、電子ビーム源装置300では、固体冷媒槽12の底面板16に板状の熱伝導部材91を取り付け、この熱伝導部材91に被冷却体としての電子ビーム発振器90を固体冷媒槽12から離れた位置に設置しており、この点で異なっている。
 被冷却体である電子ビーム発振器90は、冷却温度が低温になるにしたがって電気特性が向上する。しかし、冷凍機25の運転時には、冷凍機25のコンプレッサ部(図示せず)が振動する。そのため、電子ビーム発振器90を直接に固体冷媒槽12に取り付けて冷却すると、冷凍機25で発生した振動が電子ビーム発振器90に伝わり、電子ビーム発振器90の位置制御の精度が低下する。この問題を回避するために、電子ビーム源装置300では、熱伝導部材91を用いて固体冷媒槽12から電子ビーム発振器90へ冷熱を熱伝導させることにより、冷凍機25で発生する振動の電子ビーム発振器90への伝達を抑制しながら、電子ビーム発振器90を冷却する構造を採用している。これにより、冷凍機25の運転中でも、電子ビーム発振器90の位置制御を精度よく行うことができる。
 極低温格納容器10Aを応用した電子ビーム源装置300では、さらに熱伝導部材91を介して伝わる振動を抑えるために冷凍機25の運転を意図的に停止させた場合、又は、停電等により冷凍機25が停止したときには、固体冷媒槽12内の固体冷媒は、外部からの侵入熱により温度上昇し始め、融点に達したときからは融解が始まる。こうして生成した液体冷媒は、連絡配管22を通じて液体冷媒槽21に流入し、蒸発することで外部から液体冷媒槽21への侵入熱を奪い、固体冷媒槽12への侵入熱を小さく抑える。こうして、固体冷媒の融解を抑制して、固体冷媒の保持時間を長時間化することで、冷凍機25の運転停止時における電子ビーム源装置300の可動可能時間を長時間化し、また、電子ビームの照射位置精度を高めることができる。
 以上、本発明の実施の形態について説明したが、本発明は前記した実施形態に限定されるものではない。例えば、極低温格納容器10A~10Dでは、固体冷媒槽12の外周(側面)を囲むように液体冷媒槽21を設けたが、真空容器11と固体冷媒槽12の底面板16の間に液体冷媒槽を設ける空間を有する場合(例えば、電子ビーム源装置300の場合)には、液体冷媒槽21を底面板16の下側に延在させてもよい。同様に、シールド板45を底面板16の下側に延在させてもよい。
 これと同様に、極低温格納容器10E,10Fでは、真空容器11から固体冷媒槽12の底面板16やフランジ13への輻射侵入熱を遮断するために、シールド板45が固体冷媒槽12の底面や上面を覆うように設けられていてもよい。
 また、連絡配管22に逆止弁を設けてもよい。逆止弁を設けることで、極低温格納容器10A~10Fが傾いた際に、液体冷媒槽21(52)から液体冷媒が固体冷媒槽12へと流れ込むことを防止することができる。この構成によれば、液体冷媒から固体冷媒への熱伝導により固体冷媒の融解が進むのを抑制することができる。
  5    被冷却体
  7    熱伝導部材
  10A,10B,10C,10D,10E,10F   極低温格納容器
  11   真空容器
  12   固体冷媒槽
  15   上側熱伝導部材(第2熱伝導部材)
  17   下側熱伝導部材
  21   液体冷媒槽
  22   連絡配管
  23   支持体
  25   冷凍機
  26   冷凍ステージ(第1熱伝導部材)
  31,33   冷媒配管
  32,34   逆止弁
  41   キャピラリ
  42   蛇行配管
  43   タンク部
  45   シールド板
  46   液体冷媒槽
  51a,51b,52a,52b   超電導磁石
  100  MRI装置
  200  SQUID装置
  300  電子ビーム源装置

Claims (8)

  1.  冷熱を発生させる冷凍機と、
     所定の固体冷媒を貯蔵し、所定の被冷却体を冷却する固体冷媒槽と、
     前記冷凍機で発生させた冷熱を前記固体冷媒槽に熱伝導する第1熱伝導部材と、
     前記固体冷媒槽に収容され、前記固体冷媒槽に収容された固体冷媒を前記第1熱伝導部材からの熱伝導によって冷却する第2熱伝導部材と、
     前記固体冷媒槽を収容する真空容器と、
     前記固体冷媒槽の外周と前記真空容器の内周との間に形成された空間に前記固体冷媒槽の外周を所定の間隔を設けて囲むように配設され、前記固体冷媒槽に貯蔵された固体冷媒の融解により生成する液体冷媒を貯留し、この貯留した液体冷媒が蒸発する際の蒸発潜熱として前記真空容器からの侵入熱を消費することにより前記固体冷媒槽への侵入熱を小さく抑える液体冷媒槽と、
     前記固体冷媒槽と前記液体冷媒槽との間での液体冷媒の移動を可能にする連絡配管と、を具備することを特徴とする極低温格納容器。
  2.  前記液体冷媒槽を前記固体冷媒槽に接続して支持する支持体をさらに具備し、
     前記支持体は、前記固体冷媒槽側において、前記第1熱伝導部材に、又は、前記固体冷媒槽において前記第1熱伝導部材が取り付けられている部位に、取り付けられていることを特徴とする請求の範囲第1項に記載の極低温格納容器。
  3.  長さ方向が鉛直方向と略平行となるように前記液体冷媒槽の内面に配設されたキャピラリをさらに具備することを特徴とする請求の範囲第1項に記載の極低温格納容器。
  4.  前記連絡配管は、その両端間の直線距離よりも全長が長い蛇行配管であることを特徴とする請求の範囲第1項に記載の極低温格納容器。
  5.  前記液体冷媒槽はその底部に、底面の面積が上面の面積よりも広くなるように鉛直方向の所定位置に形成された段差により形成されたタンク部を有することを特徴とする請求の範囲第1項に記載の極低温格納容器。
  6.  冷熱を発生させる冷凍機と、
     所定の固体冷媒を貯蔵し、所定の被冷却体を冷却する固体冷媒槽と、
     前記冷凍機で発生させた冷熱を前記固体冷媒槽に熱伝導する第1熱伝導部材と、前記固体冷媒槽に収容され、前記固体冷媒槽に収容された固体冷媒を前記第1熱伝導部材からの熱伝導によって冷却する第2熱伝導部材と、
     前記固体冷媒槽を収容する真空容器と、
     前記固体冷媒槽の外周と前記真空容器の内周との間に形成された空間に前記固体冷媒槽の外周を所定の間隔を設けて囲むように配設されたシールド板と、
     有底筒状の形状を有し、前記シールド板と接触するように前記シールド板の内側又は外側に1本又は複数本配設され、前記固体冷媒槽に貯蔵された固体冷媒の融解により生成する液体冷媒を貯留し、この貯留した液体冷媒が蒸発する際の蒸発潜熱として前記シールド板の熱を消費することにより前記シールド板の温度上昇を抑制して前記固体冷媒槽への侵入熱を小さく抑える液体冷媒槽と、
     前記固体冷媒槽と前記液体冷媒槽との間での液体冷媒の移動を可能にする連絡配管と、を具備することを特徴とする極低温格納容器。
  7.  前記連絡配管は、ステンレス製又は非金属製であることを特徴とする請求の範囲第1項1から請求の範囲第6項のいずれか1項に記載の極低温格納容器。
  8.  請求の範囲第1項から請求の範囲第6項のいずれか1項に記載の極低温格納容器を備え、 前記極低温格納容器が具備する固体冷媒槽によって冷却される被冷却体が、超電導磁石、SQUID及び電子ビーム発振器のいずれか1種であることを特徴とする極低温装置。
PCT/JP2009/062002 2008-07-02 2009-06-30 極低温格納容器及び極低温装置 WO2010001910A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008173190A JP5086920B2 (ja) 2008-07-02 2008-07-02 極低温格納容器及び極低温装置
JP2008-173190 2008-07-02

Publications (1)

Publication Number Publication Date
WO2010001910A1 true WO2010001910A1 (ja) 2010-01-07

Family

ID=41466002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062002 WO2010001910A1 (ja) 2008-07-02 2009-06-30 極低温格納容器及び極低温装置

Country Status (2)

Country Link
JP (1) JP5086920B2 (ja)
WO (1) WO2010001910A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054217A (ja) * 2013-09-13 2015-03-23 株式会社東芝 磁気共鳴イメージング装置及び冷凍機監視装置
CN105627610A (zh) * 2016-03-15 2016-06-01 北京美尔斯通科技发展股份有限公司 一种基于固氮的高温超导制冷设备
EP3809445A1 (en) * 2019-10-15 2021-04-21 Jeol Ltd. Cooling apparatus for charged particle beam device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201504706VA (en) 2012-12-14 2015-07-30 Ihi Corp Magnetic substance and magnetic substance manufacturing method
CN108028117B (zh) 2015-09-15 2019-10-25 三菱电机株式会社 超导磁体装置
GB2566024B (en) * 2017-08-30 2020-08-12 Siemens Healthcare Ltd A Fault-Tolerant Cryogenically Cooled System
JP7120303B2 (ja) * 2018-05-23 2022-08-17 日本製鉄株式会社 磁場発生装置及び磁場発生装置の着磁方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159066A (ja) * 1985-01-07 1986-07-18 株式会社日立製作所 クライオスタツト
JPS6428905A (en) * 1987-07-24 1989-01-31 Toshiba Corp Superconducting magnet
JPH01205576A (ja) * 1988-02-12 1989-08-17 Toshiba Corp クライオスタット
JPH10335137A (ja) * 1996-07-19 1998-12-18 Sumitomo Electric Ind Ltd 超電導体の冷却方法および通電方法
JPH11233839A (ja) * 1998-02-16 1999-08-27 Hitachi Ltd 低温恒温装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159066A (ja) * 1985-01-07 1986-07-18 株式会社日立製作所 クライオスタツト
JPS6428905A (en) * 1987-07-24 1989-01-31 Toshiba Corp Superconducting magnet
JPH01205576A (ja) * 1988-02-12 1989-08-17 Toshiba Corp クライオスタット
JPH10335137A (ja) * 1996-07-19 1998-12-18 Sumitomo Electric Ind Ltd 超電導体の冷却方法および通電方法
JPH11233839A (ja) * 1998-02-16 1999-08-27 Hitachi Ltd 低温恒温装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054217A (ja) * 2013-09-13 2015-03-23 株式会社東芝 磁気共鳴イメージング装置及び冷凍機監視装置
CN105627610A (zh) * 2016-03-15 2016-06-01 北京美尔斯通科技发展股份有限公司 一种基于固氮的高温超导制冷设备
CN105627610B (zh) * 2016-03-15 2018-02-06 北京美尔斯通科技发展股份有限公司 一种基于固氮的高温超导制冷设备
EP3809445A1 (en) * 2019-10-15 2021-04-21 Jeol Ltd. Cooling apparatus for charged particle beam device
US11127561B2 (en) 2019-10-15 2021-09-21 Jeol Ltd. Cooling apparatus for charged particle beam device

Also Published As

Publication number Publication date
JP5086920B2 (ja) 2012-11-28
JP2010016081A (ja) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5086920B2 (ja) 極低温格納容器及び極低温装置
US7764153B2 (en) Magnetic field generator
JP5713671B2 (ja) 高度なmr技法向けに材料を過分極化するための方法及び装置
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
JP2010245524A (ja) 超伝導マグネットアセンブリを冷却するための装置及び方法
WO2015079921A1 (ja) 磁気共鳴イメージング装置
US5339650A (en) Cryostat
US20060225437A1 (en) Ultracryostat and frigidity supplying apparatus
US11573279B2 (en) Displacer in magnetic resonance imaging system
US10732239B2 (en) Cryogen-free magnet system comprising a magnetocaloric heat sink
WO2006003937A1 (ja) 磁気共鳴イメージング装置及びその保守方法
JP2008306060A (ja) 極低温格納容器冷却システム及びその運用方法
JP3537639B2 (ja) 超電導電磁石装置
JP2010035596A (ja) 生体磁場計測装置
JP3858269B2 (ja) 冷却管及びこれを用いた極低温クライオスタット
JP6158700B2 (ja) 超電導磁石装置及び超電導利用装置
CN111587464A (zh) 具有热电池的超导磁体
JP4519363B2 (ja) 極低温格納容器及びそれを用いた生体磁気計測装置
JP7131147B2 (ja) 冷却装置、及びセンサ装置
JP4906703B2 (ja) 超電導マグネット装置
JP2001066354A (ja) 超電導量子干渉デバイス格納用極低温容器
JP2007088146A (ja) クライオスタット
JP4360037B2 (ja) クライオスタット
JPH04263768A (ja) 超電導磁気シールド容器の冷却方法及びその装置
JP2002232029A (ja) 極低温格納容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773488

Country of ref document: EP

Kind code of ref document: A1