WO2010001716A1 - 駆動機構、駆動装置およびレンズ駆動装置 - Google Patents

駆動機構、駆動装置およびレンズ駆動装置 Download PDF

Info

Publication number
WO2010001716A1
WO2010001716A1 PCT/JP2009/060931 JP2009060931W WO2010001716A1 WO 2010001716 A1 WO2010001716 A1 WO 2010001716A1 JP 2009060931 W JP2009060931 W JP 2009060931W WO 2010001716 A1 WO2010001716 A1 WO 2010001716A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever member
displacement input
drive mechanism
lens
actuator
Prior art date
Application number
PCT/JP2009/060931
Other languages
English (en)
French (fr)
Inventor
篤広 野田
隆 松尾
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to US13/000,252 priority Critical patent/US8228618B2/en
Priority to JP2010518981A priority patent/JP5126362B2/ja
Priority to EP09773294A priority patent/EP2296026A1/en
Priority to CN2009801242679A priority patent/CN102077126B/zh
Publication of WO2010001716A1 publication Critical patent/WO2010001716A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer

Definitions

  • the present invention relates to a drive mechanism, a drive device, and a lens drive device.
  • the SMA actuator is an alloy that returns to a memorized shape due to a temperature change.
  • self-heating is generated by energizing the SMA actuator, and the force generated when trying to return to the memorized shape.
  • the lens is driven using it.
  • the force generated by the SMA actuator is relatively large, and the lens driving device can be reduced in size and weight.
  • the force generated by the SMA actuator is transmitted in the lens driving direction using a lever mechanism.
  • the SMA actuator undergoes phase transformation and generates stress in a high temperature environment, if the drive device using the SMA actuator is left in the high temperature environment for a long time, the force generated by the SMA actuator continues to be applied to the lever mechanism during that time. become. Therefore, for example, when the portion that receives the force generated by the SMA actuator is formed only of a resin material, such as the lever member of Patent Document 3, there is a possibility that deformation such as creep may occur. Due to this deformation, the drive device cannot be controlled with high accuracy and cannot be driven.
  • the present invention has been made in view of the above problems, and provides a small, lightweight and low-cost drive mechanism, drive device, and lens drive device in which drive performance does not deteriorate even when left in a high temperature environment for a long time. With the goal.
  • the object of the present invention can be achieved by the following configuration.
  • a drive mechanism for driving a driven object A fixed support member; A displacement input portion that receives a moving force from the outside, and a bearing portion that contacts the support member, and is engaged with the driven object and is centered by the input of the moving force to the displacement input portion
  • a lever member that swings relative to the support member to move the driven object in a predetermined first axis direction;
  • a shape memory alloy actuator that applies the moving force to the displacement input unit, The lever mechanism is provided with a displacement input member having the displacement input portion and a bearing member having the bearing portion.
  • the lever member is made of a metal material, and the displacement input member and the bearing member are made of a resin material.
  • the lever member is 2. It is insert-molded in the intermediate part.
  • a linear actuator is provided as the shape memory alloy actuator, and the actuator is stretched over the displacement input portion in a state of being bent in a V shape.
  • the shape memory alloy actuator is provided so as to input a moving force in the second axial direction to the displacement input section as the moving force.
  • a linear actuator is provided as the shape memory alloy actuator, and the actuator is disposed in a plane orthogonal to the first axial direction.
  • the lever member is swingably supported at the tip portion of the support member by the bearing portion, and the shape memory alloy actuator is provided so as to abut the lever member against a driven object in the non-operating state. 5. It is characterized by having The drive mechanism described in 1.
  • a driven object and the driven object are moved in a predetermined first axis direction.
  • a drive device comprising the drive mechanism described in 1.
  • a lens unit as a driven object and a driving mechanism for moving the lens unit in the optical axis direction.
  • a lens driving device comprising the driving mechanism described in 1.
  • the displacement input portion and the bearing portion formed separately are provided on the surface of the lever member, the driving performance is not deteriorated even if left in a high temperature environment for a long time.
  • a driving mechanism, a driving device, and a lens driving device can be provided.
  • 1 is a plan view schematically showing main components of a lens driving device 100 according to a first embodiment of the present invention.
  • 1 is a side view schematically showing main components of a lens driving device 100 according to a first embodiment of the present invention.
  • FIG. 1 is a plan view schematically showing main components of a lens driving device 100 according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of the lens driving device 100 according to the first embodiment of the present invention. It is the side view which showed the main component parts schematically.
  • FIG. 3 is an explanatory diagram of the lever member 2 according to the first embodiment of the present invention.
  • the lens driving device 100 mainly includes a lens unit 1 (driven object), a lever member 2 that moves the lens unit 1 in the optical axis AX direction (first axis direction), an SMA actuator 3, a base member 4, and a top plate. 5, the parallel plate springs 6a and 6b, the bias spring 7, and the like, and the lens unit 1 and the like are assembled to the base member 4. The top plate 5, the parallel plate springs 6a and 6b, and the bias spring are omitted in FIG. 1 for convenience.
  • the base member 4 is fixed to a member to be attached to the lens driving device 100 (for example, a frame of a mobile phone, a mount substrate, etc.), and is a non-moving member constituting the bottom side of the lens driving device 100.
  • the base member 4 is formed in a quadrangular plate shape in plan view, and is entirely made of a resin material or the like.
  • the lens unit 1 has a cylindrical shape and includes an imaging lens 10 and a lens driving frame 12 that holds the imaging lens 10.
  • the imaging lens 10 includes an objective lens, a focus lens, a zoom lens, and the like, and constitutes an imaging optical system for a subject image with respect to an imaging element (not shown).
  • the lens driving frame 12 is a so-called ball frame, and moves in the optical axis AX direction together with the imaging lens 10.
  • a pair of support portions 16 project from the outer peripheral edge portion of the lens drive frame 12 at the distal end on the object side with an angular difference of 180 ° in the circumferential direction.
  • the lens unit 1 is disposed on the base member 4 in a state of being inserted into an opening formed in the top plate 5.
  • the pair of support portions 16 are arranged so as to be positioned in the vicinity of the pair of diagonals of the base member 4 (see FIG. 1).
  • Parallel plate springs 6a and 6b are fixed to the base member 4 and the top plate 5, respectively, and the lens unit 1 is fixed to these parallel plate springs 6a and 6b.
  • the lens unit 1 is supported so as to be displaceable with respect to the base member 4 and the like, and the degree of freedom of displacement is restricted in the direction along the optical axis AX.
  • the top plate 5 may be fixed to the base member 4 via a support column (not shown), or may be integrated with the base member 4, and is a non-moving member like the base 4.
  • the lever member 2 applies a driving force in the direction of the optical axis AX to the lens unit 1 by engaging with the lens unit 1 via the support portion 16.
  • the lever member 2 is located on the side of the lens unit 1, specifically on one corner of the base member 4 other than the corner where the support 16 of the lens unit 1 is located. Is installed.
  • the lever member 2 in order to reduce the size of the lens driving device 100, is formed of a plate material made of a metal material, and is arranged in a gap between the lens unit 1 and the square side of the base portion 4 as shown in FIG. Has been.
  • FIG. 3A is a plan view of the lever member 2
  • FIG. 3B is a side view of the lever member 2
  • FIG. 3C is a front view of the lever member 2 viewed from the first extending portion 22 side. .
  • a first extending portion 22 and a second extending portion 23 made of a resin material are attached to the surface of the lever member 2 by adhesion or the like.
  • 2a is a displacement input section
  • 2b is a displacement output section
  • 2c is a bearing section.
  • the first extending portion 22 is a part for bridging the SMA wire 3 to the lever member 2, and the displacement input portion 2 a that comes into contact with the SMA wire 3 has a plurality of displacement input portions 2 a so as to reduce friction at the portion that comes into contact with the SMA wire 3. It has a complicated shape formed from the radius of curvature.
  • the first extending portion 22 is a displacement input member of the present invention.
  • the lever member 2 is supported so as to be swingable around an axis that is orthogonal to the optical axis AX and extends in the direction in which the pair of support portions 16 are arranged (the vertical direction in FIG. 1).
  • the second extending portion 23 is a component that comes into contact with the support leg 8 and serves as a fulcrum for swinging the lever member 2, and a bearing portion 2 c that comes into contact with the tip of the support leg 8 (hereinafter referred to as lever support portion 8 a)
  • the bent surface has a complicated shape so that friction with the lever support portion 8a is reduced.
  • the 2nd extension part 23 is a bearing member of this invention.
  • the first extending portion 22 and the second extending portion 23 need to be small and have a complicated shape, and in this embodiment, the first extending portion 22 and the second extending portion 23 are formed by molding a resin material such as a mold.
  • the material which forms the 1st extension part 22 and the 2nd extension part 23 is not limited to a resin material, For example, you may produce by casting a metal material.
  • the lever member 2 has an inverted L shape in a side view, and the bearing portion 2 c of the second extending portion 23 is erected on the base member 4. It is supported on the base member 4 by being supported at the tip of the support leg 8.
  • the shape of the lever support portion 8a is a substantially cylindrical shape extending in a direction orthogonal to the optical axis AX direction (a direction orthogonal to the paper surface of FIG. 2A).
  • the lever member 2 is supported so as to be swingable about an axis orthogonal to the optical axis AX direction with the lever support portion 8a as a fulcrum.
  • the lever member 2 is divided into two forks on both sides of the lens unit 1 from the second extending portion 23, and extends evenly in the vicinity of the outer peripheral surface of the lens unit 1. It is formed so as to surround one half of each. Displacement output portions 2b at the front ends (both ends) of the lever member 2 reach the positions of the support portions 16 of the lens unit 1, respectively.
  • a SMA actuator 3 to be described later is bridged over a first extending portion 22 provided on the surface of the lever member 2, and a direction (second axis) is perpendicular to the optical axis AX direction at a displacement input portion 2a which is the bridging position.
  • the lever member 2 swings. With this swing, the tip of the lever member 2 is displaced in the optical axis AX direction, the displacement output portion 2b is engaged with each support portion 16, and a driving force in the optical axis AX direction is applied to the lens unit 1. Become.
  • the moving force F1 is input to the lever member 2 made of a metal material via the displacement input portion 2a, and the optical axis is applied to the lens unit 1 with the bearing portion 2c provided on the lever member 2 as a fulcrum.
  • a driving force in the AX direction is applied.
  • the thickness and metal material of the metal plate used for the lever member 2 are selected so as to have a strength that does not deform due to an external force applied to the lever member when the lens unit 1 is driven.
  • the metal material for example, various metal materials such as iron, brass, and aluminum can be used.
  • the SMA actuator 3 applies the moving force F1 to the lever member 2, and is a linear actuator made of a shape memory alloy (SMA) wire (linear body) such as a Ni—Ti alloy, for example.
  • SMA shape memory alloy
  • the SMA actuator 3 expands when given a predetermined tension in a state where the elastic modulus is low (martensite phase) at a low temperature. When heat is applied in this extended state, the SMA actuator 3 undergoes phase transformation and has a high elastic modulus (austenite). Phase (matrix) and return to its original length (recover shape) from the stretched state.
  • the structure which performs the above-mentioned phase transformation by energizing and heating the SMA actuator 3 is employ
  • the SMA actuator 3 is a conductor having a predetermined resistance value, Joule heat is generated by energizing the SMA actuator 3 itself, and transformation from the martensite phase to the austenite phase is performed by self-heating based on the Joule heat. It is supposed to be configured. For this reason, the first electrode 30 a and the second electrode 30 b for energization heating are fixed to both ends of the SMA actuator 3. These electrodes 30 a and 30 b are fixed to predetermined electrode fixing portions provided on the base member 4.
  • the SMA actuator 3 is stretched over the displacement input portion 2 a of the lever member 2 so as to be folded back in a V shape.
  • the SMA actuator 3 is energized and heated via the electrodes 30a and 30b and is actuated (shrinks), a moving force F1 is applied to the lever member 2, and the lever member 2 swings due to the moving force F1. It will be.
  • the electrodes 30a and 30b are disposed in the vicinity of the support portion 16 of the lens unit 1 in the base member 4, respectively.
  • the lengths of the SMA actuator 3 from the electrodes 30a and 30b to the turn-back point are set equal to each other, so that the expansion and contraction amounts of the SMA actuators 3 on both sides of the displacement input portion 2a become equal, and the SMA actuator 3 is activated. Rubbing between the lever member 2 and the SMA actuator 3 is prevented.
  • the displacement input portion 2a is formed in a V-groove shape, and the SMA actuator 3 is stably suspended from the lever member 2 when the SMA actuator 3 is suspended so as to be fitted into the displacement input portion 2a. ing.
  • the bias spring 7 biases the lens unit 1 in the direction of the optical axis AX in the direction opposite to the direction in which the displacement output portion 2b of the lever member 2 moves by the operation (contraction) of the SMA actuator 3.
  • the bias spring 7 is formed of a compression coil spring having a diameter substantially matching the peripheral size of the lens drive frame 12, and one end side (lower end side) is in contact with the top surface of the lens drive frame 12. Note that the other end side (upper end side) of the bias spring 7 is brought into contact with a non-moving portion N such as an inner surface of a housing of a mobile phone.
  • the amount of force of the bias spring 7 is weaker than the moving force F1 applied to the lever member 2, so that when the SMA actuator 3 is not operating, the lens unit 1 is directed toward the base member 4 side.
  • the bias spring 7 gives the lens unit 1 a bias load for returning the lens unit 1 to the home position when the SMA actuator 3 is not energized and heated.
  • the line length is set so that the SMA actuator 3 is tensioned by receiving the pressing force of the bias spring 7 acting via the lens unit 1 (support portion 16) and the lever member 2.
  • the line length is set so that the displacement output portion 2b of the lever member 2 is always brought into contact (pressure contact) with the lens unit 1 (support portion 16) regardless of the operation state.
  • the lens moving device 100 when the SMA actuator 3 that is not energized and heated is stopped (expanded), the lens unit 1 is pressed toward the base member 4 by the pressing force of the bias spring 7, whereby the lens unit 1 is moved to the home position. (See FIG. 2A).
  • the SMA actuator 3 when the SMA actuator 3 is actuated (contracted), the actuating force applies a moving force F1 to the displacement input portion 2a of the lever member 2 to cause the lever member 2 to oscillate, and this oscillation causes the displacement output portion 2b to move to the optical axis. It moves in the AX direction (see FIG. 2B).
  • a driving force toward the objective side is applied to the lens unit 1, and the lens unit 1 moves against the pressing force of the bias spring 7.
  • the amount of displacement of the lens unit 1 is adjusted by controlling the energizing current to the SMA actuator 3 and adjusting the amount of the moving force F1.
  • the moving force F1 disappears, and the pressing force of the bias spring 7
  • the lens unit 1 returns to the home position along the optical axis AX direction. In this way, the lens unit 1 can be displaced along the optical axis AX direction by turning on and off the SMA actuator 3, and the moving force F1 can be controlled by controlling the current supplied to the SMA actuators 3a and 3b.
  • the amount of displacement of the lens unit 1 can be adjusted by adjusting the amount of force.
  • the lens unit 1 can be favorably moved along the optical axis AX direction in accordance with the operation of the SMA actuator 3. Furthermore, even if the lens driving device 100 is left in a high temperature environment for a long time, the creep phenomenon does not occur because the lever member 2 is made of a metal material. Therefore, even if left in a high temperature environment for a long time, the lever member 2 is not deformed by the force generated by the SMA actuator, and the driving performance does not deteriorate. Further, since the lever member 2 is formed by processing a metal plate, the lens driving device 100 can be configured to be small and inexpensive.
  • the intermediate portion 24 in which the displacement input portion 2a and the bearing portion 2c are integrally formed is used, and the lever member 2 and the intermediate portion 24 are integrated into a drive mechanism as shown in FIG. Yes.
  • FIG. 4 (a) and 4 (c) are perspective views of the lever member 2
  • FIG. 4 (a) is a perspective view seen from the displacement input portion 2a side
  • FIG. 4 (c) is a perspective view seen from the bearing portion 2c side
  • FIG. 4 (b) and 4 (d) are perspective views of the intermediate portion 24,
  • FIG. 4 (b) is a perspective view seen from the displacement input portion 2a side
  • FIG. 4 (d) is a perspective view seen from the bearing portion 2c side.
  • FIG. FIG. 5 is a perspective view of the lever member 2 and the intermediate portion 24 in an integrated state.
  • the lever member 2 of the second embodiment is formed by processing a metal plate or the like as in the first embodiment. 4 and 5, the shape of the lever member 2 shown in FIGS. 1 to 3 is slightly different, but the lever member 2 of the second embodiment also has the same function as that of the first embodiment.
  • the intermediate part 24 is made of a resin material and has a displacement input part 2a, a bearing part 2c, and a groove part 24a.
  • the lever member 2 When the lever member 2 is moved in the direction indicated by the arrow in the drawing and press-fitted into the groove 24a, the lever member 2 and the intermediate portion 24 are integrated as shown in FIG. Then, the displacement input part 2a and the bearing part 2c which were formed with the resin material are provided in the surface of the lever member 2 similarly to 1st Embodiment.
  • the lever member 2 of the second embodiment is also incorporated in the lens driving device 100 described with reference to FIGS. 1 and 2 if the shape and position of the displacement input portion 2a and the bearing portion 2c are the same as those of the first embodiment.
  • the lens unit 1 can be driven as well.
  • the operation of the lens driving device 100 is the same as in the first embodiment, and a description thereof is omitted.
  • the first extending portion 22 and the second extending portion 23 are attached to the lever member 2, whereas in the present embodiment, only the intermediate portion 24 may be attached, so that the number of parts and the number of assembly steps are reduced. can do. Furthermore, if the lever member 2 is manufactured by insert molding in the intermediate portion 24, the assembly process can be simplified and can be manufactured at low cost.
  • Lens unit (driven object) Lever member 2a Displacement input portion 2b Displacement output portion 2c Bearing portion 3 SMA actuator 4 Base portion 5 Top plate 6 Plate spring 7 Bias spring 8 Support leg 10 Lens 12 Lens drive frame 16 Support portion 21 Arm portion 22 First extension portion 23 Second extending portion 24 Intermediate portion 24a Groove portion 30 Electrode 40 Extending portion 100 Lens drive device

Abstract

 固定の支持部材と、外部からの移動力を受ける変位入力部と前記支持部材に当接する軸受部とを具備し、前記被駆動物に係合して前記変位入力部への前記移動力の入力により前記軸受部を中心に前記支持部材に対して相対的に揺動して前記被駆動物を所定の第1軸方向に移動させるレバー部材と、前記変位入力部に前記移動力を与える形状記憶合金アクチュエータと、を有し、前記レバー部材には、前記変位入力部を備えた変位入力部材と前記軸受部を備えた軸受部材とが、前記レバー部材とは異なる材料で形成され、設けられていることを特徴とする駆動機構。

Description

駆動機構、駆動装置およびレンズ駆動装置
 本発明は、駆動機構、駆動装置およびレンズ駆動装置に関する。
 近年、カメラ付き携帯電話機等に小型の携帯端末に搭載される撮像素子の画素数が飛躍的に増大し、消費者からデジタルカメラ並の画像と機能が期待されている。そのため、携帯端末に用いるレンズにも画像撮影という基本機能に加えて、フォーカス機能やズーム機能を付加することが求められている。
 このような機能を付加するためには、レンズを光軸方向に移動させるレンズ駆動装置が必要であるが、一般的なモータやアクチュエータを用いるとレンズ駆動装置が大型化するという問題がある。
 これに対し、形状記憶合金(Shape Memory Alloy、以下SMAと記す。)アクチュエータを用いて小型、軽量化を図ったレンズ駆動装置が開示されている(例えば特許文献1~3参照)。
 SMAアクチュエータは、温度変化により記憶された形状に戻る合金をいい、特許文献1~3ではSMAアクチュエータに通電することにより自己発熱を生じさせ、記憶された形状に戻ろうとするときに発生する力を利用してレンズを駆動している。このときにSMAアクチュエータの発生する力は比較的大きく、レンズ駆動装置を小型、軽量化することができる。特許文献1~3に開示されているレンズ駆動装置では、SMAアクチュエータの発生する力をレバー機構を用いてレンズの駆動方向に伝達している。
特開2007-58075号公報 特開2007-58076号公報 特開2007-60530号公報
 しかしながら、SMAアクチュエータは高温環境下では相変態して応力を発生するため、SMAアクチュエータを用いた駆動装置を高温環境下に長時間放置すると、その間SMAアクチュエータの発生する力がレバー機構に加わり続けることになる。そのため、例えば特許文献3のレバー部材のように、SMAアクチュエータの発生する力を受ける部分が樹脂材料だけで形成されている場合は、クリープ等の変形を生じる可能性がある。この変形により、駆動装置は精度良く制御できなくなり、さらには駆動できなくなってしまう。
 本発明は、上記課題に鑑みてなされたものであって、高温環境下に長時間放置しても駆動性能が劣化しない小型軽量で低コストな駆動機構、駆動装置およびレンズ駆動装置を提供することを目的とする。
 本発明の目的は、下記構成により達成することができる。
 1.被駆動物を駆動するための駆動機構であって、
固定の支持部材と、
外部からの移動力を受ける変位入力部と前記支持部材に当接する軸受部とを具備し、前記被駆動物に係合して前記変位入力部への前記移動力の入力により前記軸受部を中心に前記支持部材に対して相対的に揺動して前記被駆動物を所定の第1軸方向に移動させるレバー部材と、
前記変位入力部に前記移動力を与える形状記憶合金アクチュエータと、を有し、
前記レバー部材には、前記変位入力部を備えた変位入力部材と前記軸受部を備えた軸受部材とが設けられていることを特徴とする駆動機構。
 2.前記レバー部材は金属材料で形成され、前記変位入力部材と前記軸受部材とは樹脂材料で形成されていることを特徴とする1.に記載の駆動機構。
 3.前記変位入力部材と前記軸受部材とは中間部として一体に形成されていることを特徴とする1.に記載の駆動機構。
 4.前記レバー部材は、
前記中間部にインサート成形されていることを特徴とする3.に記載の駆動機構。
 5.前記形状記憶合金アクチュエータとして線状のアクチュエータが設けられ、当該アクチュエータがV字状に屈曲する状態で前記変位入力部に架け渡されていることを特徴とする1.に記載の駆動機構。
 6.前記形状記憶合金アクチュエータは、前記移動力として第2軸方向の移動力を前記変位入力部に入力するように設けられていることを特徴とする1.に記載の駆動機構。
 7.前記形状記憶合金アクチュエータとして線状のアクチュエータを備えるものであり、当該アクチュエータが前記第1軸方向と直交する面内に配置されていることを特徴とする6.に記載の駆動機構。
 8.前記レバー部材は、前記軸受部で前記支持部材の先端部分に揺動可能に支持され、前記形状記憶合金アクチュエータは、その非作動状態において前記レバー部材を被駆動物に当接させるように設けられていることを特徴とする6.に記載の駆動機構。
 9.被駆動物と、この被駆動物を所定の第1軸方向に移動させる1.に記載の駆動機構を備えていることを特徴とする駆動装置。
 10.被駆動物としてのレンズユニットと、このレンズユニットをその光軸方向に移動させる駆動機構として1.に記載の駆動機構を備えていることを特徴とするレンズ駆動装置。
 本発明によれば、前記レバー部材の表面に、別体として形成された変位入力部と軸受部とを設けるので、高温環境下に長時間放置しても駆動性能が劣化しない小型軽量で低コストな駆動機構、駆動装置およびレンズ駆動装置を提供することができる。
本発明の第1の実施形態に係るレンズ駆動装置100の主要構成部分を概略的に示した平面図である。 本発明の第1の実施形態に係るレンズ駆動装置100の主要構成部分を概略的に示した側面図である。 本発明の第1の実施形態に係るレバー部材2の説明図である。 本発明の第2の実施形態に係るレバー部材2と中間部24の斜視図である。 本発明の第2の実施形態に係るレバー部材2と中間部24とを一体化した状態の斜視図である。
 以下、図面に基づき本発明の実施形態を説明する。
 図1は、本発明の第1の実施形態に係るレンズ駆動装置100の主要構成部分を概略的に示した平面図、図2は、本発明の第1の実施形態に係るレンズ駆動装置100の主要構成部分を概略的に示した側面図である。図3は、本発明の第1の実施形態に係るレバー部材2の説明図である。
 レンズ駆動装置100は、主に、レンズユニット1(被駆動物)、このレンズユニット1を光軸AX方向(第1軸方向)に移動させるレバー部材2、SMAアクチュエータ3、ベース部材4、天板5、平行板バネ6a、6b及びバイアスバネ7等からなり、前記ベース部材4に対してレンズユニット1等が組み付けられた構成となっている。天板5及び平行板バネ6a,6b、バイアスバネは、便宜上、図1では省略している。
 ベース部材4は、レンズ駆動装置100の取り付け対象となる部材(例えば携帯電話機のフレームやマウント基板等)に固定されるものであり、レンズ駆動装置100の底辺を構成する不動の部材である。このベース部材4は、平面視では四辺形の板状に形成され、全体が樹脂材料等により構成されている。
 レンズユニット1は円筒形を有し、撮像レンズ10と、この撮像レンズ10を保持するレンズ駆動枠12とから構成されている。撮像レンズ10は、対物レンズ、フォーカスレンズ、ズームレンズ等を有し、図外の撮像素子に対する被写体像の結像光学系を構成している。レンズ駆動枠12は、所謂玉枠であって、撮像レンズ10と共に光軸AX方向に移動する。レンズ駆動枠12の対物側先端の外周縁部には、周方向に180°の角度差を有して一対の支持部16が突設されている。
 レンズユニット1は、天板5に形成される開口部分に挿入された状態でベース部材4上に配置されている。詳しくは、一対の前記支持部16が丁度ベース部材4の一対の対角の近傍に位置するように配置されている(図1参照)。ベース部材4及び天板5には、それぞれ平行板バネ6a,6bが固定されており、これら平行板バネ6a、6bにレンズユニット1が固定されている。これによってレンズユニット1がベース部材4等に対して変位可能に支持されると共に、その変位自由度が、光軸AXに沿った方向に規制されている。なお、天板5は、前記ベース部材4に対して図外の支柱等を介して固定してもよいし、ベース部材4と一体となる構造でもよく、ベース4と同様不動の部材である。
 レバー部材2は、支持部16を介してレンズユニット1に係合することによって前記レンズユニット1に光軸AX方向の駆動力を付与するものである。
 レバー部材2は、図1のようにレンズユニット1の側方、具体的には、ベース部材4の角部であってレンズユニット1の前記支持部16が位置する角部以外の一方の角部に設置されている。本実施形態ではレンズ駆動装置100の小型化を図るため、レバー部材2は金属材料からなる板材から形成され、図1のようにレンズユニット1とベース部4の四角形の辺の間の隙間に配置されている。
 レバー部材2について、図3を用いて説明する。図3(a)はレバー部材2の平面図、図3(b)はレバー部材2の側面図、図3(c)は第1延設部22側から見たレバー部材2の正面図である。
 図3に示すように、レバー部材2の表面には樹脂材料で形成された第1延設部22と第2延設部23とが接着等により取り付けられている。図中、2aは変位入力部、2bは変位出力部、2cは軸受部である。
 第1延設部22は、レバー部材2にSMAワイヤ3を架け渡すための部品であり、SMAワイヤ3と接触する部分の摩擦が少なくなるようSMAワイヤ3と接触する変位入力部2aは複数の曲率半径から形成される複雑な形状になっている。第1延設部22は、本発明の変位入力部材である。
 レバー部材2は、光軸AXと直交し、かつ前記一対の支持部16の並び方向(図1では上下方向)に延びる軸線回りに揺動可能に支持されている。第2延設部23は、支持脚8と接触し、レバー部材2の揺動の支点となる部品であり、支持脚8の先端(以下、レバー支持部8aという)と接触する軸受部2cはレバー支持部8aとの摩擦が少なくなるよう屈曲面が複雑な形状になっている。第2延設部23は、本発明の軸受け部材である。
 このように、第1延設部22と第2延設部23とは小型で複雑な形状にする必要があり、本実施形態ではモールド等樹脂材料を成形して作製する。なお、第1延設部22と第2延設部23を形成する材料は樹脂材料に限定されるものではなく、例えば、金属材料を鋳造して作製しても良い。
 図2(a)に示すように、レバー部材2は、側面視では逆L字型の形状を有しており、第2延設部23の軸受部2cが、ベース部材4に立設された支持脚8の先端で支持されることによってベース部材4上に支持されている。レバー支持部8aの形状は、光軸AX方向と直交する方向(図2(a)の紙面と直交する方向)に延びる略円柱形状とされている。これにより、レバー部材2が、当該レバー支持部8aを支点として光軸AX方向と直交する軸線回りに揺動可能に支持されている。
 レバー部材2は、図1に示すように、第2延設部23からレンズユニット1の両側に二股に分かれて当該レンズユニット1の外周面に近接してそれぞれ均等に延び、全体としてレンズユニット1の片側半分を包囲するように形成されている。レバー部材2の先端(両端)の変位出力部2bは、それぞれレンズユニット1の各支持部16の位置に達している。そして、レバー部材2の表面に設けられた第1延設部22に後記SMAアクチュエータ3が架け渡され、この架け渡し位置である変位入力部2aに光軸AX方向と直交する方向(第2軸方向;図2(a)の左右方向)の移動力F1が入力されることにより、レバー部材2が揺動する。この揺動に伴いレバー部材2の先端が光軸AX方向に変位し、変位出力部2bが各支持部16に係合してレンズユニット1に光軸AX方向の駆動力が付与されることとなる。
 このように、本実施形態では金属材料からなるレバー部材2に変位入力部2aを介して移動力F1が入力され、レバー部材2に設けられた軸受部2cを支点として、レンズユニット1に光軸AX方向の駆動力を付与している。
 なお、レバー部材2に用いる金属板は、レンズユニット1の駆動時にレバー部材に加わる外力により変形しない強度になるよう厚みと金属材料を選択する。金属材料は、例えば、鉄、真鍮、アルミなど各種金属材料を用いることができる。
 SMAアクチュエータ3は、レバー部材2に対して前記移動力F1を付与するもので、例えばNi-Ti合金等の形状記憶合金(SMA)ワイヤ(線状体)からなる線状アクチュエータである。このSMAアクチュエータ3は、低温で弾性係数が低い状態(マルテンサイト相)において所定の張力を与えられることで伸長し、この伸長状態において熱が与えられると相変態して弾性係数が高い状態(オーステナイト相;母相)に移行し、伸長状態から元の長さに戻る(形状回復する)という性質を有している。当実施形態では、SMAアクチュエータ3を通電加熱することで、上述の相変態を行わせる構成が採用されている。すなわち、SMAアクチュエータ3は所定の抵抗値を有する導体であることから、当該SMAアクチュエータ3自身に通電することでジュール熱を発生させ、該ジュール熱に基づく自己発熱によりマルテンサイト相からオーステナイト相へ変態させる構成とされている。このため、SMAアクチュエータ3の両端には、通電加熱用の第1電極30a及び第2電極30bが固着されている。これら電極30a、30bはベース部材4に設けられる所定の電極固定部に固定されている。
 SMAアクチュエータ3は、図1に示すように、レバー部材2の変位入力部2aに対してV字状に折り返すように架け渡されている。かかる構成により、SMAアクチュエータ3が電極30a、30bを介して通電加熱され、作動(収縮)すると、レバー部材2に対して移動力F1が付与され、この移動力F1によりレバー部材2が揺動することとなる。
 なお、電極30a、30bは、ベース部材4のうちレンズユニット1の支持部16の近傍にそれぞれ配置されている。SMAアクチュエータ3のうち各電極30a、30bから折り返し地点までのそれぞれの長さは等しく設定されており、これによって変位入力部2a両側のSMAアクチュエータ3の伸縮量が等しくなってSMAアクチュエータ3作動時のレバー部材2とSMAアクチュエータ3との擦れが防止される。
 また、変位入力部2aはV溝状に形成されており、変位入力部2aに嵌り込むようにSMAアクチュエータ3が架け渡されることにより、レバー部材2に対してSMAアクチュエータ3が安定的に懸架されている。
 バイアスバネ7は、SMAアクチュエータ3の作動(収縮)によりレバー部材2の変位出力部2bが移動する向きとは逆向きに、レンズユニット1を光軸AX方向に付勢するものである。このバイアスバネ7は、レンズ駆動枠12の周縁サイズと略合致した径の圧縮コイルバネからなり、レンズ駆動枠12の頂面に一端側(下端側)が当接している。なお、バイアスバネ7の他端側(上端側)は、例えば携帯電話機のハウジング内面等、不動部Nに当接される。
 バイアスバネ7の力量は、レバー部材2に付与される前記移動力F1よりも弱いものとされ、これにより、SMAアクチュエータ3が作動していないときは、レンズユニット1がベース部材4側に向けて押圧される一方、SMAアクチュエータ3が作動すると、バイアスバネ7の押圧力に抗してレンズユニット1が反対方向(対物側)に移動する。つまり、バイアスバネ7は、SMAアクチュエータ3に通電加熱が行われていない時に、レンズユニット1をホームポジションに復帰させるバイアス荷重をレンズユニット1に与えるものである。
 なお、前記SMAアクチュエータ3は、作動していない状態では、レンズユニット1(支持部16)及びレバー部材2を介して作用するバイアスバネ7の押圧力を受けて緊張するようにその線長が設定されている。つまり、その作動状態に拘わらず、常に前記レバー部材2の変位出力部2bをレンズユニット1(支持部16)に当接(圧接)させるようにその線長が設定されている。この構成により、本実施形態では、支持脚8とレバー部材2とを直接連結することなく支持脚8の先端にレバー部材2を揺動可能に支持しており、また、SMAアクチュエータ3の作動時には、その変位を速やかに伝えて当該レバー部材2を揺動させる構成となっている。
 レンズ移動装置100では、通電加熱が行われていないSMAアクチュエータ3の停止(伸長)時には、バイアスバネ7の押圧力によりレンズユニット1がベース部材4側に押圧され、これによってレンズユニット1がホームポジションに保持される(図2(a)参照)。一方、SMAアクチュエータ3が作動(収縮)すると、この作動によりレバー部材2の変位入力部2aに移動力F1が付与されてレバー部材2が揺動し、この揺動により変位出力部2bが光軸AX方向に移動することとなる(図2(b)参照)。その結果、レンズユニット1に対物側への駆動力が付与され、レンズユニット1がバイアスバネ7の押圧力に抗して移動する。この際、SMAアクチュエータ3への通電電流が制御されて移動力F1の力量が調整されることで、レンズユニット1の変位量が調整されることとなる。
 そして、SMAアクチュエータ3への通電が停止(若しくは電圧が所定値まで低下)され、SMAアクチュエータ3が冷却されてマルテンサイト相に復帰すると、前記移動力F1が消失し、バイアスバネ7の押圧力により、レンズユニット1が光軸AX方向に沿ってホームポジションに復帰する。このように、SMAアクチュエータ3への通電ON-OFFによって、レンズユニット1を光軸AX方向に沿って変位させることができ、また、SMAアクチュエータ3a、3bへの通電電流を制御して移動力F1の力量を調整することで、レンズユニット1の変位量を調整できるようになる。
 このように、本発明の駆動機構を用いたレンズ駆動装置100では、SMAアクチュエータ3の作動に応じ、レンズユニット1を光軸AX方向に沿って良好に移動させることができる。さらに、レンズ駆動装置100を高温環境下に長時間放置したとしても、レバー部材2が金属材料で形成されているのでクリープ現象は発生しない。したがって、高温環境下に長時間放置してもSMAアクチュエータの発生する力によってレバー部材2は変形せず、駆動性能は劣化しない。また、レバー部材2を金属板を加工して形成するのでレンズ駆動装置100を小型で安価に構成することができる。
 次に、本発明の第2の実施形態の駆動機構について図4、図5を用いて説明する。
 第2の実施形態では、変位入力部2aと軸受部2cとが一体に形成された中間部24を用い、レバー部材2と中間部24とを図5のように一体にして駆動機構に用いている。
 図4(a)、(c)はレバー部材2の斜視図であり、図4(a)は変位入力部2a側から見た斜視図、図4(c)は軸受部2c側から見た斜視図である。図4(b)、(d)は中間部24の斜視図であり、図4(b)は変位入力部2a側から見た斜視図、図4(d)は軸受部2c側から見た斜視図である。図5は、レバー部材2と中間部24とを一体化した状態の斜視図である。
 第2の実施形態のレバー部材2は、第1の実施形態と同様に金属板等を加工して形成されている。図4、図5では図1乃至3に図示するレバー部材2と若干形状は異なるが、第2の実施形態のレバー部材2も第1の実施形態と同じ機能を有している。
 中間部24は、樹脂材料により形成され、変位入力部2a、軸受部2c、溝部24aを有している。レバー部材2を図中矢印で示す方向に移動させ溝部24aに圧入すると、図5に示すようにレバー部材2と中間部24が一体化される。すると、第1の実施形態と同様にレバー部材2の表面に樹脂材料で形成された変位入力部2a、軸受部2cとが設けられる。
 第2の実施形態のレバー部材2は、変位入力部2a、軸受部2cの形状や位置を第1の実施形態と同等にすれば、図1、図2で説明したレンズ駆動装置100にも組み込み可能であり同様にレンズユニット1を駆動できる。レンズ駆動装置100の動作は第1の実施形態と同様であり説明を省略する。
 第1の実施形態ではレバー部材2に第1延設部22と第2延設部23とを取り付けるのに対し、本実施形態では中間部24だけを取り付ければ良いので部品点数と組立工数を削減することができる。さらに、レバー部材2を中間部24にインサート成形して作製すれば、組立工程を簡略化することができ、安価に作製することができる。
 また、本実施形態では変位入力部2a、軸受部2cの相対的な位置精度が向上するので、移動力F1に対するレンズユニット1の変位量の変化のばらつきが少なくなり、駆動装置の制御が容易になる。
 以上このように本発明によれば、高温環境下に長時間放置しても駆動性能が劣化しない小型軽量で低コストな駆動機構、駆動装置およびレンズ駆動装置を提供することができる。
 1 レンズユニット(被駆動物)
 2 レバー部材
 2a 変位入力部
 2b 変位出力部
 2c 軸受部
 3 SMAアクチュエータ
 4 ベース部
 5 天板
 6 板バネ
 7 バイアスバネ
 8 支持脚
 10 レンズ
 12 レンズ駆動枠
 16 支持部
 21 アーム部
 22 第1延設部
 23 第2延設部
 24 中間部
 24a 溝部
 30 電極
 40 延設部 
 100 レンズ駆動装置

Claims (10)

  1. 被駆動物を駆動するための駆動機構であって、
    固定の支持部材と、
    外部からの移動力を受ける変位入力部と前記支持部材に当接する軸受部とを具備し、前記被駆動物に係合して前記変位入力部への前記移動力の入力により前記軸受部を中心に前記支持部材に対して相対的に揺動して前記被駆動物を所定の第1軸方向に移動させるレバー部材と、
    前記変位入力部に前記移動力を与える形状記憶合金アクチュエータと、を有し、
    前記レバー部材には、前記変位入力部を備えた変位入力部材と前記軸受部を備えた軸受部材とが設けられていることを特徴とする駆動機構。
  2. 前記レバー部材は金属材料で形成され、前記変位入力部材と前記軸受部材とは樹脂材料で形成されていることを特徴とする請求項1に記載の駆動機構。
  3. 前記変位入力部材と前記軸受部材とは中間部として一体に形成されていることを特徴とする請求項1に記載の駆動機構。
  4. 前記レバー部材は、
    前記中間部にインサート成形されていることを特徴とする請求項3に記載の駆動機構。
  5. 前記形状記憶合金アクチュエータとして線状のアクチュエータが設けられ、当該アクチュエータがV字状に屈曲する状態で前記変位入力部に架け渡されていることを特徴とする請求項1に記載の駆動機構。
  6. 前記形状記憶合金アクチュエータは、前記移動力として第2軸方向の移動力を前記変位入力部に入力するように設けられていることを特徴とする請求項1に記載の駆動機構。
  7. 前記形状記憶合金アクチュエータとして線状のアクチュエータを備えるものであり、当該アクチュエータが前記第1軸方向と直交する面内に配置されていることを特徴とする請求項6に記載の駆動機構。
  8. 前記レバー部材は、前記軸受部で前記支持部材の先端部分に揺動可能に支持され、前記形状記憶合金アクチュエータは、その非作動状態において前記レバー部材を被駆動物に当接させるように設けられていることを特徴とする請求項6に記載の駆動機構。
  9. 被駆動物と、この被駆動物を所定の第1軸方向に移動させる請求項1に記載の駆動機構を備えていることを特徴とする駆動装置。
  10. 被駆動物としてのレンズユニットと、このレンズユニットをその光軸方向に移動させる駆動機構として請求項1に記載の駆動機構を備えていることを特徴とするレンズ駆動装置。
PCT/JP2009/060931 2008-07-01 2009-06-16 駆動機構、駆動装置およびレンズ駆動装置 WO2010001716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/000,252 US8228618B2 (en) 2008-07-01 2009-06-16 Drive mechanism, drive device, and lens drive device
JP2010518981A JP5126362B2 (ja) 2008-07-01 2009-06-16 レンズ駆動装置
EP09773294A EP2296026A1 (en) 2008-07-01 2009-06-16 Drive mechanism, drive device, and lens drive device
CN2009801242679A CN102077126B (zh) 2008-07-01 2009-06-16 驱动机构、驱动装置及透镜驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-172226 2008-07-01
JP2008172226 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001716A1 true WO2010001716A1 (ja) 2010-01-07

Family

ID=41465819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060931 WO2010001716A1 (ja) 2008-07-01 2009-06-16 駆動機構、駆動装置およびレンズ駆動装置

Country Status (5)

Country Link
US (1) US8228618B2 (ja)
EP (1) EP2296026A1 (ja)
JP (1) JP5126362B2 (ja)
CN (1) CN102077126B (ja)
WO (1) WO2010001716A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8228618B2 (en) 2008-07-01 2012-07-24 Konica Minolta Opto, Inc. Drive mechanism, drive device, and lens drive device
US10274017B2 (en) * 2016-10-21 2019-04-30 General Electric Company Method and system for elastic bearing support
US11105223B2 (en) 2019-08-08 2021-08-31 General Electric Company Shape memory alloy reinforced casing
US11274557B2 (en) 2019-11-27 2022-03-15 General Electric Company Damper assemblies for rotating drum rotors of gas turbine engines
US11280219B2 (en) 2019-11-27 2022-03-22 General Electric Company Rotor support structures for rotating drum rotors of gas turbine engines
US11420755B2 (en) 2019-08-08 2022-08-23 General Electric Company Shape memory alloy isolator for a gas turbine engine
US11828235B2 (en) 2020-12-08 2023-11-28 General Electric Company Gearbox for a gas turbine engine utilizing shape memory alloy dampers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506057A4 (en) * 2009-11-24 2013-10-16 Konica Minolta Advanced Layers TRAINING DEVICE
CN103309166B (zh) * 2012-03-09 2016-03-30 上海微电子装备有限公司 可动镜片调整装置及应用其的可调式光学系统
JP6741339B2 (ja) * 2016-04-12 2020-08-19 東洋電装株式会社 衝撃フィードバック操作装置
US10901171B2 (en) 2016-11-14 2021-01-26 Tdk Taiwan Corp. Lens driving mechanism
CN107608050B (zh) * 2017-10-03 2024-02-02 惠州萨至德光电科技有限公司 一种透镜驱动装置
DE102019100694B4 (de) * 2019-01-11 2021-05-20 Chr. Mayr Gmbh + Co. Kg Formgedächtnisaktuatoranordnung und Montageverfahren
JP2021107904A (ja) * 2019-12-27 2021-07-29 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド レンズ駆動装置、カメラ及び携帯電子機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167596A (ja) * 1989-11-13 1990-06-27 Yamaha Corp 電子楽器の鍵盤装置
JPH0855402A (ja) * 1994-08-17 1996-02-27 Teac Corp ディスク装置
JPH1068979A (ja) * 1996-08-29 1998-03-10 Copal Co Ltd カメラ用絞り機構
JP2001153715A (ja) * 1999-11-30 2001-06-08 Misaki:Kk 電子式体重計
JP2007058076A (ja) 2005-08-26 2007-03-08 Konica Minolta Opto Inc アクチュエータ
JP2007060530A (ja) 2005-08-26 2007-03-08 Konica Minolta Opto Inc 駆動機構
JP2007058075A (ja) 2005-08-26 2007-03-08 Konica Minolta Opto Inc 撮影レンズユニット
JP2008040193A (ja) * 2006-08-08 2008-02-21 Nidec Copal Electronics Corp カメラレンズ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177322A (ja) * 2004-12-24 2006-07-06 Walbro Japan Inc スロットルバルブ操作装置
US20110031924A1 (en) * 2007-11-30 2011-02-10 Konica Minolta Opto, Inc. Shape memory alloy driver
JP5126362B2 (ja) 2008-07-01 2013-01-23 コニカミノルタアドバンストレイヤー株式会社 レンズ駆動装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167596A (ja) * 1989-11-13 1990-06-27 Yamaha Corp 電子楽器の鍵盤装置
JPH0855402A (ja) * 1994-08-17 1996-02-27 Teac Corp ディスク装置
JPH1068979A (ja) * 1996-08-29 1998-03-10 Copal Co Ltd カメラ用絞り機構
JP2001153715A (ja) * 1999-11-30 2001-06-08 Misaki:Kk 電子式体重計
JP2007058076A (ja) 2005-08-26 2007-03-08 Konica Minolta Opto Inc アクチュエータ
JP2007060530A (ja) 2005-08-26 2007-03-08 Konica Minolta Opto Inc 駆動機構
JP2007058075A (ja) 2005-08-26 2007-03-08 Konica Minolta Opto Inc 撮影レンズユニット
JP2008040193A (ja) * 2006-08-08 2008-02-21 Nidec Copal Electronics Corp カメラレンズ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8228618B2 (en) 2008-07-01 2012-07-24 Konica Minolta Opto, Inc. Drive mechanism, drive device, and lens drive device
US10274017B2 (en) * 2016-10-21 2019-04-30 General Electric Company Method and system for elastic bearing support
US10823228B2 (en) 2016-10-21 2020-11-03 General Electric Company Method and system for elastic bearing support
US11105223B2 (en) 2019-08-08 2021-08-31 General Electric Company Shape memory alloy reinforced casing
US11420755B2 (en) 2019-08-08 2022-08-23 General Electric Company Shape memory alloy isolator for a gas turbine engine
US11591932B2 (en) 2019-08-08 2023-02-28 General Electric Company Shape memory alloy reinforced casing
US11274557B2 (en) 2019-11-27 2022-03-15 General Electric Company Damper assemblies for rotating drum rotors of gas turbine engines
US11280219B2 (en) 2019-11-27 2022-03-22 General Electric Company Rotor support structures for rotating drum rotors of gas turbine engines
US11828235B2 (en) 2020-12-08 2023-11-28 General Electric Company Gearbox for a gas turbine engine utilizing shape memory alloy dampers

Also Published As

Publication number Publication date
CN102077126B (zh) 2013-11-13
EP2296026A1 (en) 2011-03-16
JPWO2010001716A1 (ja) 2011-12-15
US20110102917A1 (en) 2011-05-05
CN102077126A (zh) 2011-05-25
JP5126362B2 (ja) 2013-01-23
US8228618B2 (en) 2012-07-24

Similar Documents

Publication Publication Date Title
JP5126362B2 (ja) レンズ駆動装置
JP5194622B2 (ja) 駆動機構、駆動装置およびレンズ駆動装置
JP4832373B2 (ja) 形状記憶合金アクチュエータ
US7869150B2 (en) Actuator, method of controlling the same, and camera module including the actuator
US20100293940A1 (en) Drive mechanism and drive device
JP2009229781A (ja) 駆動機構および駆動装置
WO2014091399A2 (en) Auto-focus device with shape memory actuator
EP2546690A1 (en) Driving mechanism, driving device, and method of manufacturing driving device
US20120230665A1 (en) Drive device
JP5035192B2 (ja) 駆動機構、駆動装置
JP2009174360A (ja) 駆動機構および駆動装置
JP5067496B2 (ja) 駆動機構および駆動装置
JP5151572B2 (ja) 位置制御装置、駆動装置および撮像装置
WO2011145463A1 (ja) アクチュエータの駆動装置および駆動方法
WO2012093567A1 (ja) 形状記憶合金アクチュエータ制御装置および光学部品駆動ユニット
JP2013242426A (ja) 駆動機構およびレンズ移動機構
JP2013120375A (ja) 駆動装置
JP5403916B2 (ja) 駆動機構および駆動装置
JP2013114028A (ja) 駆動装置
JP2013097357A (ja) 駆動装置
JP2012227998A (ja) 製造方法、および製造装置
JP2009142121A (ja) 圧電アクチュエータ
KR100638722B1 (ko) 렌즈 이송장치
JP2007181260A (ja) 駆動ユニット及びカメラモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124267.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518981

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13000252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009773294

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE