WO2010001705A1 - ダイヤモンド半導体装置及びその製造方法 - Google Patents

ダイヤモンド半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010001705A1
WO2010001705A1 PCT/JP2009/060736 JP2009060736W WO2010001705A1 WO 2010001705 A1 WO2010001705 A1 WO 2010001705A1 JP 2009060736 W JP2009060736 W JP 2009060736W WO 2010001705 A1 WO2010001705 A1 WO 2010001705A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
substrate
plane
semiconductor device
diamond semiconductor
Prior art date
Application number
PCT/JP2009/060736
Other languages
English (en)
French (fr)
Inventor
宙光 加藤
俊晴 牧野
政彦 小倉
秀世 大串
聡 山崎
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2010518975A priority Critical patent/JP5419101B2/ja
Publication of WO2010001705A1 publication Critical patent/WO2010001705A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table

Definitions

  • the present invention relates to a diamond semiconductor device having a lateral pn junction and a manufacturing method thereof.
  • Diamond has a wide band gap, has the highest thermal conductivity among substances, and has high chemical stability, and is being applied to semiconductor devices.
  • a semiconductor device using diamond operates stably in a high-temperature environment and a space environment, and can withstand a high-speed and high-power operation, so the necessity is high.
  • Diamond has a large band gap of 5.47 eV at room temperature, and can emit deep ultraviolet light having a wavelength of 235 nm by free excitons even at a high temperature above room temperature.
  • p-type doping which is difficult for compound semiconductors such as AlGaN
  • n-type doping which has been considered difficult for diamond
  • semiconductor devices such as a pn junction type and a pin junction type have progressed, and those having good electrical characteristics with a rectification ratio of 6 digits or more have already been reported (see Non-Patent Documents 1 and 2). ).
  • a stacked (vertical) pn junction as shown in FIG. 1 is used as an implementation structure.
  • (10) represents a diamond substrate
  • (20) represents a p-type semiconductor region
  • (30) represents an n-type semiconductor region
  • (40) represents an electrode metal.
  • light due to current injection is strongly emitted only in the lateral direction, and upward light emission is hindered by the metal electrode, making it extremely difficult to obtain absolute illuminance. Yes.
  • FIG. 10 represents a diamond substrate
  • (20) represents a p-type semiconductor region
  • (30) represents an n-type semiconductor region
  • (40) represents an electrode metal.
  • An object of the present invention is to solve the above problems, simplify the manufacturing process of a diamond semiconductor device, and obtain a good pn junction interface.
  • the main surface of the diamond substrate is a ⁇ 100 ⁇ plane, the step-shaped side surface is a ⁇ 110 ⁇ plane, and the bottom surface is a ⁇ 100 ⁇ plane (1), The diamond semiconductor device according to (2) or (3).
  • a diamond substrate having a ⁇ 100 ⁇ plane, a p-type diamond layer formed on the substrate, a side surface ⁇ 110 ⁇ formed on the substrate, and a base angle of a step shape having a ⁇ 100 ⁇ plane on the bottom surface is grown as a starting point.
  • a separation region grown from the base angle of the step shape having the side face ⁇ 100 ⁇ and the bottom face ⁇ 100 ⁇ formed on the substrate A diamond semiconductor device comprising: (6) The diamond according to (5), wherein the diamond semiconductor region and the insulating isolation region are formed on the same substrate, with the mask direction for forming the n-type diamond layer and the mask direction for forming the insulating isolation region being different.
  • the selective growth technique of the semiconductor region is indispensable when manufacturing a semiconductor device, and the width of application of the semiconductor device varies greatly depending on the presence or absence thereof.
  • an impurity-doped diamond semiconductor can be grown in a selected region starting from the base angle of the step shape formed on the diamond substrate.
  • the pn junction interface is formed by epitaxial growth.
  • the light extraction direction can be changed upward, and improvement in light extraction efficiency can be expected.
  • the pn junction interface serving as a light receiving surface is not obstructed by a metal electrode or the like, so that the light receiving efficiency can be improved.
  • a structure that does not include a substrate (thickness of about 500 ⁇ m) in the current path can be manufactured, so a reduction in on-resistance can be expected.
  • the present invention relates to a diamond semiconductor device having an impurity-doped diamond region (30) grown on a diamond substrate (10) and (20) with a step-shaped base angle selectively formed as a starting point, and a method for manufacturing the same. It is.
  • a boron-doped p-type diamond semiconductor region (20) is first formed on a diamond ⁇ 100 ⁇ plane single crystal substrate (10). Thereafter, the diamond ⁇ 100 ⁇ plane single crystal substrate (10) including the p-type semiconductor layer (20) is processed to form a step shape.
  • a diamond semiconductor is grown in the ⁇ 111> direction from the bottom angle (50) of the formed step shape, and impurity doping is simultaneously performed, thereby forming a phosphorus-doped diamond region (30) having a triangular cross section.
  • the diamond substrate (10) is a non-doped, boron-doped, phosphorus-doped, nitrogen-doped, p-type, or n-type ⁇ 100 ⁇ plane substrate, or a ⁇ 100 ⁇ plane growth film.
  • the impurity-doped diamond region (30) to be selectively grown has a group V element typified by phosphorus and an impurity element capable of forming an n-type diamond semiconductor.
  • the method for producing a diamond semiconductor substrate according to the present invention includes a step of forming a step shape in which a side surface is sandwiched between ⁇ 110 ⁇ planes and a bottom surface is ⁇ 100 ⁇ planes in a specific region on a ⁇ 100 ⁇ plane diamond semiconductor, and doping impurities
  • the method includes a step of forming a lateral pn junction by epitaxially growing diamond in the ⁇ 111> direction.
  • the base angle (50) that intersects the ⁇ 100 ⁇ plane and the ⁇ 110 ⁇ plane is the starting point of the growth.
  • phosphorus is taken as an example of the doping impurity, but this incorporation efficiency strongly depends on the plane orientation of the substrate.
  • the phosphorus uptake efficiency is about 0.02%
  • the ⁇ 110 ⁇ plane substrate is used.
  • ⁇ 110 ⁇ plane growth growth in the ⁇ 110> direction
  • ⁇ 100 ⁇ plane growth using a ⁇ 100 ⁇ plane substrate growth in the ⁇ 100> direction
  • 0 Less than 0.0001% By utilizing the overwhelming difference in the capture efficiency with respect to the growth direction, an n-type semiconductor region can be selectively formed in a specific region on the ⁇ 100 ⁇ plane.
  • the phosphorus uptake efficiency is calculated by the following formula.
  • Phosphorus incorporation efficiency phosphorus atom concentration relative to carbon atoms in diamond ([P] / [C]) / phosphine concentration relative to methane in gas phase ([PH 3 ] / [CH 4 ])
  • the impurity-doped diamond semiconductor of the present invention is characterized in that it selectively grows starting from the base angle of the step shape formed on the ⁇ 100 ⁇ plane diamond single crystal substrate.
  • epitaxial growth is performed in the ⁇ 111> direction, so that the phosphorus incorporation efficiency is relatively high, and the phosphorus concentration is 10 16 cm ⁇ 3 to 10 20 cm ⁇ 3. Control is possible over a wide range of levels.
  • the surface orientation of the step-shaped side surface is set to ⁇ 100 ⁇ , epitaxial growth in the ⁇ 110> direction occurs, and a region (insulating layer) in which the phosphorus concentration is suppressed can be formed.
  • the ⁇ 100 ⁇ plane diamond single crystal substrate to be processed may be any of a ⁇ 100 ⁇ plane substrate formed by a high temperature and high pressure method, a substrate formed by a chemical vapor deposition (CVD) method, and a growth film, and doped with impurities. It may be a growth film on a conductive substrate.
  • CVD chemical vapor deposition
  • the identification of the impurity-doped diamond region that has been selectively grown can be easily confirmed by cleaving an appropriate region and measuring in-plane distribution using SIMS measurement or cathodoluminescence measurement. Further, since the step shape of the lateral pn junction or the cross-sectional structure of the phosphorus-doped n-type diamond semiconductor region is a triangle, the identification is easy.
  • FIGS. 6 to 15 the left figure is a plan view of the diamond semiconductor device, and the right figure is a cross-sectional view thereof.
  • FIG. 4 An optical micrograph of a diamond semiconductor device having a lateral pn junction actually produced is shown in FIG. 4, and a schematic diagram is shown in FIG.
  • This apparatus insulates between a p-type diamond region (20) formed on a diamond substrate (10), an n-type diamond region (30) grown from a step-shaped base angle (50), and a lateral pn diamond semiconductor element.
  • a grown separation region (31) for separation, a metal electrode (40), and a contact assist region (60) are formed.
  • the contact assist region is a p-type diamond semiconductor region formed to expand the n-type diamond semiconductor region and plays a role of supplying a starting point for growth. If the accuracy of the electrode formation process is improved, the contact assist region may be omitted.
  • a method for forming the n-type diamond region (30) grown from the base angle (50) of the step shape and a method for forming the grown isolation region (31) for insulating and separating the lateral pn diamond semiconductor elements are respectively described below
  • a diamond single crystal substrate (10) having a ⁇ 100 ⁇ surface as shown in FIG. 6 is prepared.
  • H 2 397 sccm, CH 4 : 1.2 sccm
  • B 2 H 6 / H 2 gas 100 ppm: 0.6 sccm
  • pressure 3.25 ⁇ 10 3 Pa
  • microwave power Boron-doped diamond was synthesized under conditions of 750 W
  • a boron-doped p-type diamond semiconductor (20) having a thickness of about 700 nm was formed. From the Hall effect measurement, stable p-type determination was obtained from room temperature to around 700 ° C, and the activation energy of 370 meV of boron acceptor was estimated from the gradient of temperature dependence, on a ⁇ 100 ⁇ plane diamond single crystal substrate It was confirmed that a boron-doped p-type diamond semiconductor was formed.
  • an Au / Ti thin film mask (Au 300 nm / Ti 10 nm) (40) was formed on part of the surface of a ⁇ 100 ⁇ plane diamond single crystal substrate by photolithography and lift-off.
  • the masks were arranged so that the side surfaces of the step shape described below were ⁇ 110 ⁇ planes and the bottom surface was ⁇ 100 ⁇ planes.
  • the ⁇ 100 ⁇ plane diamond single crystal substrate patterned on the Au / Ti thin film mask shown in FIG. 8 was etched by an inductively coupled plasma etching apparatus.
  • the etching gas conditions are O 2 : 95 sccm, CF 4 : 2 sccm, RF power: 300 W, bias: 50 W, pressure: 2 Pa, and the etching depth is 1 ⁇ m.
  • the etching selectivity between the ⁇ 100 ⁇ plane diamond single crystal substrate and Au is about 1: 8.
  • a diamond semiconductor element having a lateral pn junction can be formed by a selectively formed phosphorus-doped diamond semiconductor layer (30).
  • the phosphorus concentration of the selectively grown phosphorus-doped diamond semiconductor region (30) was about 5 ⁇ 10 19 cm ⁇ 3 from SIMS (Secondary Ion Mass Spectroscopy) measurement.
  • a diamond single crystal substrate (10) having a ⁇ 100 ⁇ surface as shown in FIG. 6 is prepared.
  • H 2 397 sccm, CH 4 : 1.2 sccm
  • B 2 H 6 / H 2 gas 100 ppm: 0.6 sccm
  • pressure 3.25 ⁇ 10 3 Pa
  • microwave power Boron-doped diamond was synthesized under conditions of 750 W
  • substrate heater temperature 800 ° C.
  • growth time of 2 hours As shown in FIG.
  • a boron-doped p-type diamond semiconductor (20) having a thickness of about 700 nm was formed. From the Hall effect measurement, stable p-type determination was obtained from room temperature to around 700 ° C, and the activation energy of 370 meV of boron acceptor was estimated from the gradient of temperature dependence, on a ⁇ 100 ⁇ plane diamond single crystal substrate It was confirmed that a boron-doped p-type diamond semiconductor was formed.
  • an Au / Ti thin film mask (Au 300 nm / Ti 10 nm) (40) was formed on part of the surface of a ⁇ 100 ⁇ plane diamond single crystal substrate by photolithography and lift-off.
  • the masks were arranged so that the side surfaces of the step shape described below were ⁇ 100 ⁇ planes and the bottom surface was ⁇ 100 ⁇ planes.
  • the ⁇ 100 ⁇ plane diamond single crystal substrate patterned on the Au / Ti thin film mask shown in FIG. 12 was etched by an inductively coupled plasma etching apparatus.
  • the etching gas conditions are O 2 : 95 sccm, CF 4 : 2 sccm, RF power: 300 W, bias: 50 W, pressure: 2 Pa, and the etching depth is 1 ⁇ m.
  • the etching selectivity between the ⁇ 100 ⁇ plane diamond single crystal substrate and Au is about 1: 8.
  • a lateral pn junction can be formed by the selectively formed phosphorus-doped diamond semiconductor layer (31).
  • the phosphorus concentration of the selectively grown phosphorus-doped diamond semiconductor region (31) was about 1 ⁇ 10 17 cm ⁇ 3 from SIMS (Secondary Ion Mass Spectroscopy) measurement. Since the growth direction is the ⁇ 110> direction, the phosphorus incorporation efficiency is poor.
  • the lateral pn junction diamond semiconductor device shown in FIG. 5 can be manufactured.
  • the diamond semiconductor substrate according to the present invention includes a substrate made of ceramic or the like, or a substrate in which a diamond film is formed on the diamond substrate.
  • the plane orientation such as the ⁇ 100 ⁇ plane may be an off-plane due to a manufacturing accuracy problem, but this off-plane is also included.
  • the diamond semiconductor device of the present invention is used not only in semiconductor devices such as power semiconductor elements and high-frequency semiconductor elements, but also in various electronic devices such as ultraviolet light emitting devices, electron emission sources, X-ray / particle beam sensors, and X-ray / particle position sensors. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 {100}面を有するダイヤモンド基板と該基板上に形成したp型ダイヤモンド層と該基板に形成した側面{110}、底面が{100}面を有する段差形状の底角を起点に成長したn型ダイヤモンド層とを備えるダイヤモンド半導体素子と該ダイヤモンド素子間を分離するため、前記基板に形成した側面{100}、底面{100}面を有する段差形状の底角を起点に成長した分離領域とを備えるダイヤモンド半導体装置及びその製造方法。

Description

ダイヤモンド半導体装置及びその製造方法
 本発明は、横型pn接合を有するダイヤモンド半導体装置及びその製造方法に関するものである。
 ダイヤモンドは、ワイドバンドギャップであり、熱伝導度が物質の中で最高、化学的安定性も高く、半導体装置への応用研究が遂行されている。ダイヤモンドを用いた半導体デバイスは、高温環境下、宇宙環境下でも安定に動作し、高速、高出力な動作にも耐え得るため、その必要性は高い。また、ダイヤモンドの特異な特徴を生かした深紫外線発光素子、電子放出源など、他の材料で成し得ない高性能な電子デバイスの作製が可能となる。
 ダイヤモンドは室温で5.47eVという大きなバンドギャップを持ち、室温以上の高温下でも自由励起子による波長235nmの深紫外線を発光することが可能である。また、AlGaNといった化合物半導体で困難とされているp型ドーピングはもちろんのこと、ダイヤモンドで困難とされてきたn型ドーピングについても、近年キャリア移動度の高いものが実現している。これより、pn接合型、pin接合型などの半導体素子に関する研究開発が進展し、整流比が6桁以上の良好な電気特性を兼ね備えたものが既に報告されている(非特許文献1、2参照)。
 ダイヤモンド半導体は単元素から構成されていることより、AlGaN系化合物半導体に特有な構造欠陥などの問題がない。さらに、ダイヤモンドは、その機械的、化学的、及び熱的特性(物質中で最高の熱伝導率)に加え、優れた半導体特性や光学特性を兼ね備えている。さらに、室温でも安手に存在できる励起子を発光に用いることで、間接遷移半導体でありながら、直接遷移半導体と同程度の高い内部量子効率を持つ、紫外線発光素子の作製ができることが知られている(特許文献1、非特許文献3参照)。
 一方で、ダイヤモンド半導体を用いた深紫外線発光素子において、外部量子効率、すなわち光の取り出し効率に関して課題が残されている。これまでの報告によれば、ダイヤモンドを用いた発光素子構造として、図1に示すような積層型(縦型)pn接合が実施構造として用いられている。(10)はダイヤモンド基板、(20)はp型半導体領域、(30)はn型半導体領域、(40)は電極金属をそれぞれ表す。このような縦型pn接合構造では、電流注入による光は横方向にのみ強く放射されることになり、上方への発光は金属電極により妨げられ、絶対的照度を得ることが極めて困難とされている。一方で、図2に示すように、基板面内方向にpn接合(横型pn接合)を作製することにより、金属電極に妨げられることなく、上方へ光を取り出すことが容易となる。しかしながら、現状のダイヤモンド半導体合成技術及びドーピング技術では、良好なpn接合界面を有する横型pn接合素子を製造することは不可能である。
 一般の半導体合成技術において、特定の場所に半導体を形成する技術や選択成長技術は極めて重要となる。シリコンを代表とする他の半導体材料は、熱拡散法、イオン注入法によるp型、n型半導体の合成が可能であり、成長後に選択的に埋め込み半導体領域の形成が可能となっている。このため、縦型pn接合、横型pn接合、又は埋め込みドーピング層など、種々のデバイス構造の作製が容易となる。一方で、ダイヤモンド半導体においては、イオン注入した際に発生する欠陥を熱処理により回復させることが困難なこと、注入した不純物が置換位置に取り込まれないことなどから、選択的に半導体領域の作製は、不可能とされている。イオン注入で不純物を注入できたとしても電気的に不純部が活性化しn型半導体として振る舞うといった報告例はない。また、製造工程が複雑になることやpn接合界面が粗悪になるといった問題点がある。
特開2008-78611号公報
S. Koizumi, et. al.: Science 292, 1899 (2001). T. Makino, et. al.: Jpn. J. Appl. Phys. 44, L1190 (2005). T. Makino, et. al.: Jpn. J. Appl. Phys. 45, L1045 (2006).
 本発明は、上記の問題点を解決し、ダイヤモンド半導体装置の製造工程を簡素化するとともに良好なpn接合界面を得ることを課題とする。
 上記課題は次のような手段により解決される。
(1)ダイヤモンド基板に形成した段差形状の底角を起点に、選択成長した不純物ドープダイヤモンド領域を有するダイヤモンド半導体装置。
(2)前記ダイヤモンド基板は、不純物ドープダイヤモンド基板であることを特徴とする(1)に記載のダイヤモンド半導体装置。
(3)前記ダイヤモンド基板は、基板上にダイヤモンド膜が形成されていることを特徴とする(1)に記載のダイヤモンド半導体装置。
(4)前記ダイヤモンド基板の主表面は、{100}面であり、前記、段差形状の側面は、{110}面であり、底面は{100}面であることを特徴とする(1)、(2)又は(3)に記載のダイヤモンド半導体装置。
(5){100}面を有するダイヤモンド基板と該基板上に形成したp型ダイヤモンド層と該基板に形成した側面{110}、底面が{100}面を有する段差形状の底角を起点に成長したn型ダイヤモンド層とを備えるダイヤモンド半導体素子と該ダイヤモンド素子間を分離するため、前記基板に形成した側面{100}、底面{100}面を有する段差形状の底角を起点に成長した分離領域とを備えるダイヤモンド半導体装置。
(6)n型ダイヤモンド層を形成するマスク方向と絶縁分離領域を形成するマスク方向とを異にして、ダイヤモンド半導体領域と絶縁分離領域とを同一基板に形成してなる(5)に記載のダイヤモンド半導体装置。
(7){100}面ダイヤモンド半導体基板に、底面が{100}面、側面が{110}面の段差形状を選択的に形成する工程と、不純物をドープしながらダイヤモンドを<111>方向へエピタキシャル成長させ、該段差形状の底角を起点として不純物ドープダイヤモンド領域を成長させる工程とを含むダイヤモンド半導体装置の製造方法。
(8)前記不純物は、リンであることを特徴とする(7)に記載のダイヤモンド半導体装置の製造方法。
 半導体領域の選択成長技術は、半導体装置を作製する際に必須であり、その有無によって、半導体装置応用の幅が大きく異なってくる。
 本発明のダイヤモンド半導体装置及びその製造方法によれば、ダイヤモンド基板に形成した段差形状の底角を起点に、選択された領域に不純物ドープダイヤモンド半導体を成長させることができる。
 このため製造工程を簡素化できるだけでなく、pn接合界面がエピタキシャル成長により形成されるため、良好な界面が得られる。また、例えば、横型pn接合素子を作製することで、光の取り出し方向を上方に変えることができ、光取り出し効率の改善が期待できる。逆に、紫外線受光素子の場合においても、受光面となるpn接合界面が金属電極などで妨害されないため、その受光効率改善が望める。
 この他、横型接合を用いたJFETなどパワーデバイスにおいても、電流経路に基板(厚さ500μm前後)を含まない構造が作製できることから、オン抵抗の低減が望める。
縦型pn接合半導体装置の構造 横型pn接合半導体装置の構造 横型pn接合ダイヤモンド半導体装置の構造 横型pn接合ダイヤモンド半導体装置の光学顕微鏡像 横型pn接合ダイヤモンド半導体装置の概略図(a)平面図、(b)A-A’間の断面図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 本発明に係る実施例の工程説明図 横型pn接合ダイヤモンド半導体装置の電流電圧特性 横型pn接合ダイヤモンド半導体装置の電流注入発光特性
 本発明の説明図を図3に示す。
 本発明は、ダイヤモンド基板(10)及び(20)上に、選択的に形成した段差形状の底角を起点に成長した不純物ドープダイヤモンド領域(30)を有するダイヤモンド半導体装置及びその製造方法に係るものである。
 本発明の好ましい実施例では、ダイヤモンド{100}面単結晶基板(10)にまずボロンドープp型ダイヤモンド半導体領域(20)を形成する。その後に、p型半導体層(20)を含むダイヤモンド{100}面単結晶基板(10)を加工し、段差形状を形成する。この形成した段差形状の底角(50)からダイヤモンド半導体を<111>方向へ成長させ、かつ不純物ドーピングを同時に行うことで、断面が三角形状のリンドープダイヤモンド領域(30)を形成する。
 ダイヤモンド基板(10)は、ノンドープ、ボロンドープ、リンドープ、窒素ドープ、p型、n型のいずれかの{100}面基板、又は{100}面成長膜である。選択成長する不純物ドープダイヤモンド領域(30)は、リンを代表とするV族元素、及びその他n型ダイヤモンド半導体ができる不純物元素を有する。
 本発明のダイヤモンド半導体基板製造方法は、{100}面ダイヤモンド半導体上の特定の領域に、側面が{110}面、底面が{100}面で挟まれる段差形状を形成する工程と、不純物をドープしながらダイヤモンドを<111>方向へエピタキシャル成長させることにより、横型pn接合を形成する工程を有する。ここで、{100}面基板上で<111>方向へ成長させる際に、{100}面と{110}面で交わる底角(50)が成長の起点となる。
 ドープ不純物として、ここではリン元素を例に挙げるが、この取り込み効率は、基板の面方位に強く依存する。{111}面基板を用いた{111}面成長の際(<111>方向への成長)、リンの取り込み効率は0.02%程度であるのに対して、{110}面基板を用いた{110}面成長の際は(<110>方向への成長)、0.0002%、{100}面基板を用いた{100}面成長の際は(<100>方向への成長)、0.00001%未満となる。この成長方向に対する取り込み効率の圧倒的な差を利用することで、選択的に{100}面上の特定領域にn型半導体領域を形成可能にした。
 なおリンの取り込み効率は、次の数式により算出される。
 リンの取り込み効率=ダイヤモンド中の炭素原子に対するリン原子濃度([P]/[C])/気相中のメタンに対するホスフィン濃度([PH]/[CH])
 本発明の不純物ドープダイヤモンド半導体は、{100}面ダイヤモンド単結晶基板上に形成された段差形状の底角を起点に、選択的に成長することを特徴とする。段差形状側面の面方位を{110}面にすることで、<111>方向へエピタキシャル成長させているため、リンの取り込み効率が比較的高く、リン濃度を1016cm-3~1020cm-3レベルの広い範囲で制御可能となる。一方、段差形状側面の面方位を{100}にすることで、<110>方向へのエピタキシャル成長が生じ、リン濃度を抑えた領域(絶縁層)の形成が可能となる。つまり、段差形状の側面方向を制御することで、選択的にリンドープn型ダイヤモンド半導体領域を形成することも、リン濃度が低い絶縁層を形成することも可能となる。
 これら全て、ダイヤモンド半導体を用いたデバイス開発で必須とされている{100}面方位基板上での不純物ドープダイヤモンド半導体合成技術であるため、実用性が極めて高い。
 加工する{100}面ダイヤモンド単結晶基板は、高温高圧法により形成された{100}面基板、化学気相成長(CVD)法で形成された基板及び成長膜のいずれでもよく、また不純物がドープされた導電性基板上の成長膜でもよい。
 なお、上記の選択成長した不純物ドープダイヤモンド領域の識別は、適当な領域を劈開し、SIMS測定又はカソードルミネセンス測定などを用いた面内分布測定により容易に確認することができる。また、横型pn接合の段差形状又はリンドープn型ダイヤモンド半導体領域の断面構造が三角形であることが特徴的となるため、その識別は容易である。
<実施例>
 以下図4乃至図17を引用して、本発明の実施例を詳細に説明する。
 図6乃至図15において、それぞれ左図はダイヤモンド半導体装置の平面図、右図はその断面図である。
 実際に作製した横型pn接合を有するダイヤモンド半導体装置の光学顕微鏡写真を図4に、概略図を図5に示す。本装置は、ダイヤモンド基板上(10)に形成したp型ダイヤモンド領域(20)と段差形状の底角(50)を起点に成長したn型ダイヤモンド領域(30)と横型pnダイヤモンド半導体素子間を絶縁分離するための成長した分離領域(31)と金属電極(40)とコンタクトアシスト領域(60)から構成されている。コンタクトアシスト領域とは、n型ダイヤモンド半導体領域を拡張するために形成されるp型ダイヤモンド半導体領域であり、成長の起点を供給する役割を果たす。電極形成プロセスの精度が上がれば、コンタクトアシスト領域は無くてもよい。
 段差形状の底角(50)を起点に成長したn型ダイヤモンド領域(30)の形成法、及び横型pnダイヤモンド半導体素子間を絶縁分離するための成長した分離領域(31)の形成法をそれぞれ以下に記す。
 段差形状の底角を起点に成長したn型ダイヤモンド領域(30)の形成法である。図6に示すような表面が{100}面を有するダイヤモンド単結晶基板(10)を用意する。マイクロ波プラズマCVD装置を使用して、H:397sccm、CH:1.2sccm、B/Hガス=100ppm:0.6sccm、圧力:3.25×10Pa、マイクロ波パワー:750W、基板ヒータ温度:800℃、成長時間2時間の条件で、ボロンドープダイヤモンドの合成を行った。
 図7のように、約700nm程度の膜厚のボロンドープp型ダイヤモンド半導体(20)を形成した。ホール効果測定から、室温から700℃付近まで安定してp型判定が得られ、温度依存性の傾きからボロンアクセプターの370meVの活性化エネルギーが見積もられ、{100}面ダイヤモンド単結晶基板上にボロンドープp型ダイヤモンド半導体が形成されたことを確認した。
 図8に示すように、フォトリソグラフィ法及びリフトオフ法により、{100}面ダイヤモンド単結晶基板の表面の一部にAu/Ti薄膜マスク(Au300nm/Ti10nm)(40)を形成した。マスクの方向は以下に述べる段差形状の側面が{110}面、底面が{100}面となるように配置した。
 図8に示すAu/Ti薄膜マスクをパターニングした{100}面ダイヤモンド単結晶基板を誘導結合プラズマエッチング装置によりエッチングした。エッチングガスの条件は、O:95sccm、CF:2sccm、RFパワー:300W、バイアス:50W、圧力:2Paであり、エッチング深さは1μmである。この時の{100}面ダイヤモンド単結晶基板とAuのエッチングの選択比は1:8程度である。その後、熱王水処理(HNO:HCl=1:3、80℃)、硫酸加水(HSO:H:H0=3:1:1、120℃)、熱混酸(HNO:HSO=1:3、240℃)処理を施し、Au/Tiマスクを除去した。これにより図9の断面図に示すように、{100}面ダイヤモンド単結晶基板の表層に段差形状が形成された。この側面は{110}面、底面は{100}である。
 マイクロ波プラズマCVD装置を使用して、H:398sccm、CH:0.2sccm、PH:0.1sccm、圧力:9.75×10Pa、マイクロ波パワー:750W、基板ヒータ温度:800℃、成長時間2時間の条件で、リンドープダイヤモンドの合成を行った。図10に示すように、段差形状の周囲に、選択的にリンドープダイヤモンド領域(30)が形成された。この時、リンドープダイヤモンドは段差形状の底角(50)({110}面と{100}面の交わる角)を起点に<111>方向へ成長している。
 図10に示すように、選択的に形成されたリンドープダイヤモンド半導体層(30)により、横型pn接合を有するダイヤモンド半導体素子が形成できる。選択成長されたリンドープダイヤモンド半導体領域(30)のリン濃度は、SIMS(Secondary Ion Mass Spectroscopy)測定から、5×1019cm-3程度となった。
 この横型pn接合の電気伝導性を測るために、Ti(30nm)/Pt(30nm)/(Au100nm)の電極を図11のように蒸着した。その2電極間の電流―電圧特性から明瞭なpn接合に起因する明瞭な整流特性が得られ、その整流比は8桁程度であった。
 次に横型pnダイヤモンド半導体素子間を絶縁分離するための成長した分離領域(31)の形成法を記す。上述の図6に示すような表面が{100}面を有するダイヤモンド単結晶基板(10)を用意する。マイクロ波プラズマCVD装置を使用して、H:397sccm、CH:1.2sccm、B/Hガス=100ppm:0.6sccm、圧力:3.25×10Pa、マイクロ波パワー:750W、基板ヒータ温度:800℃、成長時間2時間の条件で、ボロンドープダイヤモンドの合成を行った。図7のように、約700nm程度の膜厚のボロンドープp型ダイヤモンド半導体(20)を形成した。ホール効果測定から、室温から700℃付近まで安定してp型判定が得られ、温度依存性の傾きからボロンアクセプターの370meVの活性化エネルギーが見積もられ、{100}面ダイヤモンド単結晶基板上にボロンドープp型ダイヤモンド半導体が形成されたことを確認した。
 図12に示すように、フォトリソグラフィ法及びリフトオフ法により、{100}面ダイヤモンド単結晶基板の表面の一部にAu/Ti薄膜マスク(Au300nm/Ti10nm)(40)を形成した。マスクの方向は以下に述べる段差形状の側面が{100}面、底面が{100}面となるように配置した。
 図12に示すAu/Ti薄膜マスクをパターニングした{100}面ダイヤモンド単結晶基板を誘導結合プラズマエッチング装置によりエッチングした。エッチングガスの条件は、O:95sccm、CF:2sccm、RFパワー:300W、バイアス:50W、圧力:2Paであり、エッチング深さは1μmである。この時の{100}面ダイヤモンド単結晶基板とAuのエッチングの選択比は1:8程度である。その後、熱王水処理(HNO:HCl=1:3、80℃)、硫酸加水(HSO:H:H0=3:1:1、120℃)、熱混酸(HNO:HSO=1:3、240℃)処理を施し、Au/Tiマスクを除去した。これにより図13の断面図に示すように、{100}面ダイヤモンド単結晶基板の表層に段差形状が形成された。この側面は{100}面、底面も{100}面である。
 マイクロ波プラズマCVD装置を使用して、H:398sccm、CH:0.2sccm、PH:0.1sccm、圧力:9.75×10Pa、マイクロ波パワー:750W、基板ヒータ温度:800℃、成長時間2時間の条件で、リンドープダイヤモンドの合成を行った。
 図14に示すように、段差形状の周囲に、選択的にリンドープダイヤモンド領域(31)が形成された。この時、リンドープダイヤモンドは段差形状の底角(50)(側面{100}面と底面{100}面の交わる角)を起点に<110>方向へ成長している。
 図14に示すように、選択的に形成されたリンドープダイヤモンド半導体層(31)により、横型pn接合が形成できる。選択成長されたリンドープダイヤモンド半導体領域(31)のリン濃度は、SIMS(Secondary Ion Mass Spectroscopy)測定から、1×1017cm-3程度となった。成長方向が<110>方向であるため、リンの取り込み効率が悪い。
 この横型pn接合の電気伝導性を測るために、Ti(30nm)/Pt(30nm)/(Au100nm)の電極を図15のように蒸着した。その2電極間からは、明瞭な電流―電圧特性が得られず、選択成長した低濃度リンドープ領域が絶縁体であることを確認した。
 このように、段差形状の側面面方位を制御することで、導電性のあるリンドープn型ダイヤモンド半導体領域と絶縁分離領域とを作り分けることが可能となる。これらの組み合わせにより図5に記す横型pn接合ダイヤモンド半導体装置が製造できる。
 実際にこの横型pn接合ダイヤモンド半導体装置の動作確認を行ったところ、図16に記すような綺麗なダイオード特性が得られた。整流比8桁程度、最大電流密度1A/cm、逆方向リーク電流もかなり抑えられており、良好な横型pn接合が形成されていることがわかる。
 さらに、図17に示すように、順方向電圧を30V以上に印加し、電流を数μA以上にあげると微弱ながら発光を検出することができた。発光が検出されることは、この横型pn接合素子において両極性のキャリアが電極より注入されていることを示唆している。現状の系において、発光領域が5×0.7μm程度と非常に小さな領域であるため、絶対的な発光強度は弱い。横型pn接合素子の特徴として集積化が容易なことであり、集積化により発光強度の改善は可能となる。
 以上好ましい実施例を説明したが、本発明はこれに限定されないことはいうまでもない。
 例えば本発明に係るダイヤモンド半導体基板には、セラミック等の基板上、あるいはダイヤモンド基板上にダイヤモンド膜が形成された基板も含まれる。
 また、{100}面等の面方位には、製造上の精度の問題により、オフ面となることもあるが、このオフ面も含まれる。
 本発明のダイヤモンド半導体装置は、パワー半導体素子、高周波半導体素子などの半導体装置のみならず、紫外発光デバイス、電子放出源、X線・粒子線センサー、X線・粒子位置センサーなど、各種電子デバイスに応用することができる。

Claims (8)

  1.  ダイヤモンド基板に形成した段差形状の底角を起点に成長した不純物ドープダイヤモンド領域を有するダイヤモンド半導体装置。
  2.  前記ダイヤモンド基板は、不純物ドープダイヤモンド基板であることを特徴とする請求項1に記載のダイヤモンド半導体装置。
  3.  前記ダイヤモンド基板は、基板上にダイヤモンド膜が形成されていることを特徴とする請求項1に記載のダイヤモンド半導体装置。
  4.  前記ダイヤモンド基板の主表面は、{100}面であり、前記、段差形状の側面は、{110}面であり、底面は{100}面であることを特徴とする請求項1、2又は3に記載のダイヤモンド半導体装置。
  5.  {100}面を有するダイヤモンド基板と該基板上に形成したp型ダイヤモンド層と該基板に形成した側面{110}、底面が{100}面を有する段差形状の底角を起点に成長したn型ダイヤモンド層とを備えるダイヤモンド半導体素子と該ダイヤモンド素子間を分離するため、前記基板に形成した側面{100}、底面{100}面を有する段差形状の底角を起点に成長した絶縁分離領域とを同一基板上に備えるダイヤモンド半導体装置。
  6.  n型ダイヤモンド層を形成するマスク方向と絶縁分離領域を形成するマスク方向とを異にして、ダイヤモンド半導体領域と絶縁分離領域とを同一基板に形成してなる請求項5に記載のダイヤモンド半導体装置。
  7.  {100}面ダイヤモンド半導体基板に、底面が{100}面、側面が{110}面の段差形状を選択的に形成する工程と、該段差形状の底角を起点に不純物をドープしながらダイヤモンドを<111>方向へエピタキシャル成長させ不純物ドープダイヤモンド領域を形成させる工程とを含むダイヤモンド半導体装置の製造方法。
  8.  前記不純物は、リンであることを特徴とする請求項7に記載のダイヤモンド半導体装置の製造方法。
PCT/JP2009/060736 2008-07-01 2009-06-12 ダイヤモンド半導体装置及びその製造方法 WO2010001705A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518975A JP5419101B2 (ja) 2008-07-01 2009-06-12 ダイヤモンド半導体装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-172202 2008-07-01
JP2008172202 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001705A1 true WO2010001705A1 (ja) 2010-01-07

Family

ID=41465808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060736 WO2010001705A1 (ja) 2008-07-01 2009-06-12 ダイヤモンド半導体装置及びその製造方法

Country Status (2)

Country Link
JP (3) JP5419101B2 (ja)
WO (1) WO2010001705A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027600A1 (ja) 2012-08-17 2014-02-20 独立行政法人産業技術総合研究所 ダイヤモンド半導体装置及びその製造方法
US9142618B2 (en) 2012-11-28 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor device
JP2016103651A (ja) * 2015-12-25 2016-06-02 国立研究開発法人産業技術総合研究所 ダイヤモンド半導体装置及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327920B2 (ja) 2018-09-28 2023-08-16 株式会社ディスコ ダイヤモンド基板生成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687691A (ja) * 1992-09-04 1994-03-29 Sumitomo Electric Ind Ltd ダイヤモンドの製造方法およびダイヤモンドの製造方法に使用するダイヤモンド単結晶基材
JP2005075681A (ja) * 2003-08-29 2005-03-24 Sumitomo Electric Ind Ltd ダイヤモンド素子及びダイヤモンド素子製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152604A (ja) * 1991-11-29 1993-06-18 Canon Inc ダイヤモンド半導体装置及びその製造方法
JP3411989B2 (ja) * 2000-03-28 2003-06-03 独立行政法人産業技術総合研究所 ダイヤモンド半導体発光素子
WO2003106743A1 (ja) * 2002-06-01 2003-12-24 住友電気工業株式会社 n型半導体ダイヤモンド製造方法及び半導体ダイヤモンド
JP4140487B2 (ja) * 2003-08-28 2008-08-27 住友電気工業株式会社 n型半導体ダイヤモンド及びその製造方法
EP1670018A4 (en) * 2003-09-30 2010-01-06 Sumitomo Electric Industries PROCESS FOR PRODUCING A DIAMOND ELECTRODE EMISSION ELECTRODE AND ELECTRON EMISSION ELEMENT
JP4784915B2 (ja) * 2005-02-03 2011-10-05 独立行政法人産業技術総合研究所 リン原子がドープされたn型(100)面方位ダイヤモンド半導体単結晶膜及びその製造方法
JP4742736B2 (ja) * 2005-08-10 2011-08-10 住友電気工業株式会社 ダイヤモンドへのドーパント原子決定方法
JP5273635B2 (ja) * 2006-08-25 2013-08-28 独立行政法人産業技術総合研究所 高効率間接遷移型半導体紫外線発光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687691A (ja) * 1992-09-04 1994-03-29 Sumitomo Electric Ind Ltd ダイヤモンドの製造方法およびダイヤモンドの製造方法に使用するダイヤモンド単結晶基材
JP2005075681A (ja) * 2003-08-29 2005-03-24 Sumitomo Electric Ind Ltd ダイヤモンド素子及びダイヤモンド素子製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027600A1 (ja) 2012-08-17 2014-02-20 独立行政法人産業技術総合研究所 ダイヤモンド半導体装置及びその製造方法
CN104541364A (zh) * 2012-08-17 2015-04-22 独立行政法人产业技术综合研究所 金刚石半导体装置及其制造方法
EP2884525A4 (en) * 2012-08-17 2016-04-13 Nat Inst Of Advanced Ind Scien DIAMOND SEMICONDUCTOR ELEMENT AND METHOD FOR PRODUCING THEREOF
US9478619B2 (en) 2012-08-17 2016-10-25 National Institute Of Advanced Industrial Science And Technology Diamond semiconductor device and method for manufacturing same
US9142618B2 (en) 2012-11-28 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor device
US9349800B2 (en) 2012-11-28 2016-05-24 Kabushiki Kaisha Toshiba Semiconductor device
JP2016103651A (ja) * 2015-12-25 2016-06-02 国立研究開発法人産業技術総合研究所 ダイヤモンド半導体装置及びその製造方法

Also Published As

Publication number Publication date
JPWO2010001705A1 (ja) 2011-12-15
JP5846458B2 (ja) 2016-01-20
JP2015057824A (ja) 2015-03-26
JP2013258407A (ja) 2013-12-26
JP5717150B2 (ja) 2015-05-13
JP5419101B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
JP4218639B2 (ja) n型半導体ダイヤモンド製造方法及び半導体ダイヤモンド
US8592824B2 (en) High efficiency indirect transition semiconductor ultraviolet light emitting device
Park et al. Electroluminescence in n‐ZnO nanorod arrays vertically grown on p‐GaN
Shi et al. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires
JP5846458B2 (ja) ダイヤモンド半導体装置及びその製造方法
JP5967572B2 (ja) ダイヤモンド半導体装置及びその製造方法
US20100212728A1 (en) Diode and Photovoltaic Device Using Carbon Nanostructure
ZA200806479B (en) Buried contact devices for nitride-based films and manufacture thereof
US8624263B2 (en) Diamond semiconductor device and method of manufacturing the same
JPWO2009011394A1 (ja) 電子デバイスを作製する方法、エピタキシャル基板を作製する方法、iii族窒化物半導体素子及び窒化ガリウムエピタキシャル基板
Wu et al. Tuning the field emission properties of AlN nanocones by doping
TW200414643A (en) Semiconductor light-emitting element and method of manufacturing the same
JP2015050393A (ja) 半導体装置およびその製造方法
Zhao et al. Al (Ga) N nanowire deep ultraviolet optoelectronics
JP5263893B2 (ja) 同位体ダイヤモンド積層体
JPWO2005053029A1 (ja) ダイヤモンドn型半導体、その製造方法、半導体素子、及び電子放出素子
JP4019136B2 (ja) ダイヤモンド紫外光発光素子
US20190115446A1 (en) Semiconductor device and method for forming n-type conductive channel in diamond using heterojunction
US10804104B2 (en) Semiconductor device and method for forming p-type conductive channel in diamond using abrupt heterojunction
JP2007043016A (ja) 結晶シリコン素子、およびその製造方法
JP2009158702A (ja) 発光デバイス
Park et al. Electrical transport properties of a nanorod GaN pn homojunction grown by molecular-beam epitaxy
Tavares et al. {111}-oriented diamond films and p/n junctions grown on B-doped type Ib substrates
Lv et al. An ultrahigh performance InGaN/GaN visible-light phototransducer based on polarization induced heterointerface barrier and minority carrier localization
US10312133B2 (en) Method of manufacturing silicon on insulator substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010518975

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09773283

Country of ref document: EP

Kind code of ref document: A1