WO2010001680A1 - 浸漬型中空糸膜モジュール - Google Patents

浸漬型中空糸膜モジュール Download PDF

Info

Publication number
WO2010001680A1
WO2010001680A1 PCT/JP2009/060213 JP2009060213W WO2010001680A1 WO 2010001680 A1 WO2010001680 A1 WO 2010001680A1 JP 2009060213 W JP2009060213 W JP 2009060213W WO 2010001680 A1 WO2010001680 A1 WO 2010001680A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane module
hollow
cylindrical container
Prior art date
Application number
PCT/JP2009/060213
Other languages
English (en)
French (fr)
Inventor
啓伸 鈴木
宏 松本
浩充 金森
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP09773258A priority Critical patent/EP2295131A4/en
Priority to CN200980116940.4A priority patent/CN102026711B/zh
Priority to AU2009264771A priority patent/AU2009264771A1/en
Priority to CA2729525A priority patent/CA2729525A1/en
Priority to US13/001,828 priority patent/US20110114551A1/en
Priority to JP2009525805A priority patent/JP5359872B2/ja
Publication of WO2010001680A1 publication Critical patent/WO2010001680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/203Open housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/205Specific housing characterised by the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases

Definitions

  • the present invention relates to a hollow fiber membrane module that is immersed in a treated water tank containing raw water and filtrates the raw water, that is, an immersion type hollow fiber membrane module. More specifically, the present invention relates to a submerged hollow fiber membrane module that can reduce the running cost by reducing the flow rate of air for washing the hollow fiber membrane without reducing the filtration performance of the hollow fiber membrane over a long period of time.
  • Membrane separation technology using hollow fiber membranes includes drinking water production in waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, sewage treatment such as municipal sewage purification and industrial wastewater treatment, etc. It is used in a wide range of fields.
  • the hollow fiber membrane module is classified into a pressure type and an immersion type.
  • the immersion type hollow fiber membrane module is immersed in the immersion tank, and performs filtration through the hollow fiber membrane using the suction pressure or the pressure due to the water head difference as a driving force. From the treated water in the immersion tank, membrane filtration water is used. Is used as a submerged membrane separation means. In many cases, the submerged hollow fiber membrane module does not cover the outside of the hollow fiber membrane with a case or the like that can be seen with a pressure type module. Or even when covering with a case, it is covered with the case which provided many holes which can distribute treated water.
  • Patent Document 2 when the entire hollow fiber membrane is covered with a cylindrical case capable of passing water, not only raw water can be supplied from the entire surface of the cylindrical peripheral surface of the cylindrical case, but also physical cleaning. In some cases, impurities can flow out from the entire surface of the cylindrical case, which is advantageous in that the discharge of impurities is further improved.
  • the average aperture ratio of the peripheral wall in the upper portion of the cylindrical container is set to the average aperture ratio of the peripheral wall in the lower portion.
  • a hollow fiber membrane module characterized by being larger than the above has been proposed. By the hollow fiber membrane module, the compressed air for air washing supplied from the lower side of the module is effectively used not only for the lower side of the module but also for washing the hollow fiber membrane above the module.
  • JP 2002-346344 A Japanese Patent Laid-Open No. 2005-230813 JP 62-237908 A International Publication WO2007 / 083460
  • An object of the present invention is to provide a hollow fiber membrane module excellent in long-term durability in terms of strength.
  • the hollow fiber membrane module of the present invention for achieving the above object is as follows. (1) It has openings at the upper end and the lower end, and at least a part of the upper half of the outer exposed portion of the peripheral wall is made of a porous member, and the lower half of the outer exposed portion of the peripheral wall is non-open.
  • a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes positioned vertically in the tubular container, and an upper end portion of the hollow fiber membrane.
  • a hollow fiber membrane focusing member that fixes the hollow fiber membrane in an open state and is also bonded and fixed to the cylindrical container, a water collecting cap connected to the hollow fiber membrane focusing member, and a lower end of the hollow fiber membrane
  • a hollow fiber membrane sealing member for sealing the hollow portion of the hollow fiber membrane, and a collecting cylinder provided on the outside of the hollow fiber membrane sealing member and bonded and fixed to the cylindrical container;
  • An immersion type hollow fiber membrane module comprising: Immersion type hollow fiber membrane module bonding portion between the cylinder characterized by comprising the porous member.
  • the plurality of hollow fiber membranes are divided into a plurality of small bundles each composed of a plurality of hollow fiber membranes, and the hollow fiber membrane sealing member is provided for each hollow fiber membrane in the small bundle.
  • a hollow fiber membrane with improved long-term durability that improves the physical strength of the cylindrical container, the adhesive strength between the cylindrical container and the member for closing the upper open portion, the adhesive strength between the cylindrical container and the collecting cylinder, etc. Modules can be provided.
  • FIG. 1 is a schematic longitudinal sectional view of an embodiment of the hollow fiber membrane module of the present invention.
  • FIG. 2 is an enlarged side view showing the hollow fiber membrane focusing member used in the present invention.
  • FIG. 3 is a development view of the peripheral wall of the cylindrical container in FIG. 1.
  • FIG. 4 is a partially enlarged view of the peripheral wall of the cylindrical container in FIG.
  • FIG. 5 is a perspective view showing a use state of the hollow fiber membrane module of the present invention.
  • the hollow fiber membrane module of the present invention is not limited to a hollow fiber membrane module for clean water, and is also used as a hollow fiber membrane module for water purification processes such as for industrial water and sewage.
  • FIG. 1 is a schematic longitudinal sectional view of an embodiment of the hollow fiber membrane module of the present invention.
  • a hollow fiber membrane module 1 of the present invention has a cylindrical container 2 having openings at its upper and lower ends and at least a part of a peripheral wall made of a porous member, and a vertical direction within the cylindrical container 2.
  • a hollow fiber membrane bundle consisting of a number of hollow fiber membranes 3 positioned, and provided at the upper end of the hollow fiber membrane 3, the hollow fiber membrane 3 is fixed in a state where the hollow portion of the hollow fiber membrane 3 is open, and is tubular
  • a hollow fiber membrane focusing member 4 that is also bonded and fixed to the container 2, a water collecting cap 5 connected to the hollow fiber membrane focusing member 4, and a hollow portion of the hollow fiber membrane 3 provided at the lower end of the hollow fiber membrane 3.
  • the hollow fiber membrane sealing member 6 that seals the cylinder and the cylinder 7 that is provided outside the hollow fiber membrane sealing member 6 and is bonded and fixed to the cylindrical container 2.
  • a large number of hollow fiber membranes 3 are divided into a plurality of small bundles 3 a each consisting of a plurality of hollow fiber membranes 3.
  • Each of the small bundles 3a is loaded into a hollow fiber membrane sealing member 6 that bundles and fixes the hollow fiber membranes 3 together, and the hollow portion at the lower end of each hollow fiber membrane 3 is attached using an adhesive (not shown). It is sealed.
  • the hollow fiber membrane sealing members 6 are positioned independently of each other with a gap 6a therebetween. That is, each hollow fiber membrane sealing member 6 is provided in an independent state at the lower end of each small bundle 3a depending from the hollow fiber membrane focusing member 4, and each position is a fluid passing through the gap 6a. It can be changed by (stock solution or air for compressed washing).
  • each hollow fiber membrane 3 is loaded into the hollow fiber membrane sealing member 6 of the hollow fiber membrane module 1 of FIG. 1, and the hollow portion is bonded with an adhesive (not shown). May be used, and a buffer layer may be provided on the adhesive layer in order to prevent damage to the membrane due to breakage of the membrane at the time of air washing.
  • the form is not limited as long as the original purpose of sealing the hollow part at the lower end part and bundling and fixing the hollow fiber membranes together is achieved.
  • the hollow fiber membrane sealing member 6 is in the shape of a container for storing a small bundle of hollow fiber membranes 3.
  • Adhesive enters the hollow portion 3b of the hollow fiber membrane 3 by a desired amount and flows between the hollow fiber membranes 3, and then solidifies the adhesive, thereby fixing the hollow fiber membrane 3 and hollowing it.
  • a form in which the hollow portion 3b of the yarn membrane 3 is sealed is preferable from the viewpoint of ensuring workability, fixation of the hollow fiber membrane, and sealing of the hollow portion.
  • a resin is usually used, but an epoxy resin, a urethane resin, an epoxy acrylate resin, or the like is preferably used because it is a general-purpose product, is inexpensive, and has little influence on water quality.
  • the buffer agent (not shown) used for the above-mentioned buffer layer is used for the purpose of preventing damage to the hollow fiber membrane 3 in the hollow fiber membrane sealing member 6, and is usually a general-purpose product, inexpensive and flexible.
  • a silicon resin rich in properties and a low-hardness urethane resin are preferably used.
  • the hollow fiber membrane sealing member for sealing the hollow portion at the lower end of the hollow fiber membrane is like the hollow fiber membrane sealing member 6 of the hollow fiber membrane module 1 of FIG. It is preferable that it is formed from a plurality of hollow fiber membrane sealing members 6 which are independent at intervals.
  • the hollow fiber membrane sealing member may be formed of a single end plate.
  • the end plate is fixed to the cylindrical container 2 in a state of closing the opening 2b at the lower end of the cylindrical container 2, and the end plate
  • the plurality of fluid flow paths communicating with the inside and outside of the cylindrical container 2 are as uniform as possible on the end plate surface, avoiding the portion where the lower end of the hollow portion of the hollow fiber membrane 3 is sealed. It can take the form provided by arrangement.
  • the hollow fiber membrane focusing member is used together with an adhesive (not shown) like the hollow fiber membrane focusing member 4 of the hollow fiber membrane module 1 of FIG.
  • the form of the membrane is fixed as long as the hollow portion at the upper end of the membrane is opened, and is bonded and fixed to the peripheral portion at the upper end of the cylindrical container so that the original purpose of connecting the water collecting cap can be achieved. It is not limited.
  • the hollow fiber membrane focusing member 4 accommodates a hollow fiber membrane bundle made up of a number of hollow fiber membranes 3 and has an adhesive portion with the cylindrical container 2 inside and a water collecting cap 5 on the outside upper portion.
  • the tube has a connecting portion.
  • An example of manufacturing the peripheral portion of the hollow fiber membrane focusing member 4 in the hollow fiber membrane module in FIG. 1 is shown in the hollow fiber membrane focusing member at the upper peripheral portion of the cylindrical container 2 in which a large number of hollow fiber membranes 3 are loaded in advance. 4, the tip of the hollow fiber membrane bundle slightly protrudes from the upper end surface 4 c of the hollow fiber membrane focusing member 4, and a fluid adhesive (not shown) is allowed to flow between the hollow fiber membranes 3.
  • the hollow fiber membrane 3 is fixed in the hollow fiber membrane focusing member 4 by solidifying the adhesive, and then the end portion of the hollow fiber membrane focusing member 4 that is protruded from the upper end surface 4c is cut, so that each hollow fiber membrane 3 is fixed.
  • the form in which the hollow portion of the membrane 3 is opened is preferable from the viewpoint of ensuring workability and fixing of the hollow fiber membrane. This operation of fixing each hollow fiber membrane in an open state is generally called potting and is widely known.
  • the adhesive a resin is usually used, but an epoxy resin, a urethane resin, an epoxy acrylate resin, or the like is preferably used because it is a general-purpose product, is inexpensive, and has little influence on water quality.
  • a buffer layer may be provided under the adhesive layer in order to prevent damage to the film due to the film being broken at the time of washing with air under the adhesive layer.
  • the buffer used at that time is generally a general-purpose product and inexpensive, and a flexible silicon resin or a low-hardness urethane resin is preferably used.
  • FIG. 2 shows only the hollow fiber membrane focusing member 4 according to the present invention.
  • the same components as those of the hollow fiber membrane module 1 of FIG. 1 are identical to the hollow fiber membrane module 1 of FIG.
  • the lower inner portion 4b of the hollow fiber membrane focusing member 4 is a portion that is bonded and fixed to the upper peripheral portion of the cylindrical container.
  • the hollow fiber membrane focusing member 4 is loaded with a hollow fiber membrane bundle made up of a number of hollow fiber membranes. Normally, the hollow fiber membrane focusing member 4 is subjected to the above potting operation on the upper end surface 4c of the hollow fiber membrane focusing member 4. It becomes the state where the opening part of the hollow fiber membrane was arranged.
  • An opening portion 4 a is provided on the lower side surface of the hollow fiber membrane focusing member 4. Further, the outer upper portion 4d of the hollow fiber membrane focusing member 4 is preferably connected to the hollow fiber membrane focusing member 4 and the water collecting cap.
  • a ring or flat packing that can maintain airtightness is attached.
  • an adhesive may be applied to the outer upper portion 4d of the hollow fiber membrane focusing member 4 and adhered and fixed to the water collecting cap.
  • what can maintain airtightness such as a flat packing, may be attached to the edge of the upper end surface 4c of the hollow fiber membrane focusing member 4 and connected to the water collecting cap.
  • the cylindrical container 2 and the water collecting cap 5 are not directly connected by interposing the hollow fiber membrane focusing member 4 as in the hollow fiber membrane module 1 of FIG. Therefore, it is possible to provide a hollow fiber membrane module that reinforces the physical strength of the upper part of the cylindrical container 2, further improves the connectivity with the water collecting cap 5, and is excellent in long-term durability. Moreover, since the role sharing of each member in the hollow fiber membrane module can be clarified, the ease of manufacture can be improved.
  • the hollow fiber membrane focusing member 4 has an opening portion 4 a on the side surface portion. Although the details of this reason will be described later, by adopting this mode, there is no air accumulation and no remaining suspended material above the hollow fiber membrane focusing member during washing, and the suspended material can be efficiently removed.
  • the shape of the opening portion 4a of the hollow fiber membrane focusing member 4 shown in FIG. 2 is a combination of a semicircle and a rectangle, and the opening portion continues to the lower side. Any polygon, circle, ellipse, star, or the like can be used. Further, a mixture of these plural shapes may be used. Furthermore, it may be one in which the opening portion continues downward as in the opening portion 4 a of FIG. 2, or may be a shape closed inside the hollow fiber membrane focusing member 4.
  • the filtration region of the hollow fiber membrane has a membrane surface region in which the stock solution in contact with the outer surface of the hollow fiber membrane is filtered by the hollow fiber membrane and can flow into the hollow part of the hollow fiber membrane as filtered water.
  • the hollow fiber membrane bundle is preferably composed of hundreds to tens of thousands of hollow fiber membranes.
  • the number of hollow fiber membranes forming each small bundle is several tens to several thousand.
  • a book is preferred.
  • the number of small bundles to be divided and the number of hollow fiber membranes forming one small bundle can achieve the intended effect according to the diameter and length of the cylindrical container, the diameter of the hollow fiber membrane, and the like. You may choose as follows.
  • the small bundle 3a The number is preferably about 3 to 1000, and more preferably 3 to 50.
  • the dischargeability of the suspended solids is deteriorated.
  • the dischargeability of the suspended solids is improved, but the production of the hollow fiber membrane module 1 is complicated.
  • the number of the hollow fiber membranes 3 forming one small bundle 3a is preferably 50 to 2000. When the number of hollow fiber membranes 3 forming one small bundle 3a is reduced, the number of small bundles 3a is increased, and as described above, the manufacture of the hollow fiber membrane module 1 becomes complicated, and conversely, one small bundle 3a. If the number of hollow fiber membranes 3 forming 3a is too large, suspended substances are likely to be deposited between the hollow fiber membranes 3.
  • the combination of the number of small bundles 3a and the number of hollow fiber membranes 3 forming one small bundle 3a is important. 7 and the number of hollow fiber membranes 3 forming one small bundle 3a at that time is particularly preferably 800 to 1000. This is because the combination of the numerical values described above is not complicated to manufacture the hollow fiber membrane module 1 and the suspended substance discharge is particularly good.
  • each hollow fiber membrane sealing member is arbitrary, such as a cylindrical shape, a spherical shape, a conical shape, and a pyramid shape.
  • the hollow fiber membrane sealing member 6 in FIG. 1 is a cylindrical body.
  • the material of the hollow fiber membrane in the hollow fiber membrane module of the present invention is not particularly limited.
  • hollow fiber membrane materials include polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, polypropylene, ethylene-vinyl alcohol copolymer, cellulose, acetic acid
  • examples include cellulose, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, and composite materials thereof.
  • the outer diameter of the hollow fiber membrane in the hollow fiber membrane module of the present invention is preferably 0.3 to 3 mm. If the outer diameter of the hollow fiber membrane is too small, the hollow fiber membrane is broken and damaged when handling the hollow fiber membrane when manufacturing the hollow fiber membrane module, and during filtration and washing when using the hollow fiber membrane module. It is easy for problems to occur. On the other hand, if the outer diameter is too large, the number of hollow fiber membranes that can be inserted into a cylindrical container of the same size is reduced, resulting in a problem that the filtration area is reduced.
  • the film thickness of the hollow fiber membrane is preferably 0.1 to 1 mm. If the film thickness is too small, problems such as breakage of the film due to pressure occur, and conversely, if the film thickness is excessively large, problems such as pressure loss and an increase in raw material cost occur.
  • the hollow fiber membrane module of the present invention has a water collection cap 5 attached to the upper part of each hollow fiber membrane and is used for filtering raw water. That is, in the hollow fiber membrane module 1, the filtration that flows out from the opening of the hollow portion 3b of the hollow fiber membrane 3 with respect to the surface 3c of the hollow fiber membrane 3 on the hollow fiber membrane focusing member 4 where the hollow portion 3b is open.
  • a water collection cap 5 for collecting water is connected to the hollow fiber membrane focusing member 4.
  • the water collecting cap 5 has a filtered water outlet 9 for leading the collected filtered water to the outside.
  • the hollow fiber membrane module of the present invention is used in a state where a collecting cylinder is attached to the lower part of each hollow fiber membrane. That is, in the hollow fiber membrane module 1, a collecting cylinder 7 for introducing compressed air for air washing into the cylindrical container 2 is provided around the opening 2 b at the lower end of the cylindrical container 2.
  • the cylindrical container 2, the hollow fiber membrane focusing member 4, the water collection cap 5, the hollow fiber membrane sealing member 6, and the cylinder 7 are usually formed from resin.
  • the resin forming these include polyolefin resins such as polyethylene resin, polypropylene, and polybutene, polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), ethylene tetrafluoride / hexafluoropropylene (FEP) , Fluorinated resins such as ethylene tetrafluoroethylene (ETFE), ethylene trifluoride chloride (PCTFE), ethylene trifluoride ethylene chloride (ECTFE), vinylidene fluoride (PVDF), polyvinyl chloride, polyvinylidene chloride Chlorine resin such as polysulfone resin, polyethersulfone resin, polyallylsulfone resin, polyphenyl ether resin, acrylonitrile-butadiene-styrene copolymer resin (AB
  • the cylindrical container 2, the hollow fiber membrane focusing member 4, the water collection cap 5, the hollow fiber membrane sealing member 6, and the cylinder 7 may be formed of a material other than resin.
  • a material other than resin aluminum, stainless steel or the like is preferably used.
  • a composite material such as a resin-metal composite, a glass fiber reinforced resin, or a carbon fiber reinforced resin may be used.
  • the cylindrical container 2, the hollow fiber membrane focusing member 4, the water collection cap 5, the hollow fiber membrane sealing member 6, and the cylinder 7 may be made of the same material or different materials.
  • the cylindrical container is formed of a porous member in the upper half of the outer exposed portion of the peripheral wall, and the lower half of the outer exposed portion of the peripheral wall is not opened. Yes. An example of this will be described with reference to FIGS.
  • FIG. 3 is a development view of the peripheral wall of the cylindrical container 2 in FIG. 1 and 3, at least a part of the upper half of the outer exposed portion of the peripheral wall of the cylindrical container 2 of the hollow fiber membrane module 1 of the present invention is composed of a porous member 2c having a mesh-shaped opening.
  • the portion that adheres to the hollow fiber membrane focusing member 4 and the portion that adheres to the collecting cylinder 7 are not exposed to the outside during normal use.
  • a portion that is exposed from the outside during normal use is called an outer exposed portion.
  • the upper half of the outer exposed portion of the cylindrical container 2 refers to a portion that is bonded to the hollow fiber membrane focusing member 4 from the entire peripheral wall of the cylindrical container 2 and is not exposed to the outside (region A in FIG.
  • FIG. 4 is a partially enlarged view of the upper half of the outer exposed portion of the peripheral wall of the cylindrical container 2.
  • the peripheral wall is divided into an aperture portion 10 and a wire portion 11.
  • the upper half of the outer exposed portion of the peripheral wall of the cylindrical container 2 (region The average aperture ratio in B) is calculated by the formula Y / X ⁇ 100 (%).
  • the longitudinal direction of the cylindrical container (up and down) (Direction) may be non-uniform distribution.
  • a non-uniform distribution in the circumferential direction is undesirable because it causes a non-uniform flow of raw water and air.
  • the opening portion is provided only in the upper half (region B) and the opening portion is not provided in the lower half (region C). It is possible to achieve the object of the present invention in which the filtration performance of the yarn membrane is not lowered and the running cost is reduced by reducing the flow rate of air for washing the hollow fiber membrane.
  • a portion (region A) that is bonded to the hollow fiber membrane focusing member 4 and is not exposed to the outside can be made of any material or material if the original purpose of bonding to the hollow fiber membrane focusing member 4 is achieved. Although it does not restrict
  • the portion of the cylindrical container 2 that is bonded to the collecting cylinder 7 and is not exposed to the outside (region D) needs to be made of a porous member such as a mesh from the viewpoint of improving the adhesion to the collecting cylinder 7. It is.
  • the adhesive fixing portion between the cylindrical container 2 and the cylinder collection 7 has a large flow rate.
  • high pressure is applied and high adhesive strength is required, when the region D of the cylindrical container 2 and the collecting cylinder 7 are bonded to each other by using an appropriate adhesive, the opening portion is formed. It is presumed that the adhesive strength is increased by entering the adhesive.
  • the adhesive fixing portion between the cylindrical container 2 and the cylinder collection 7 has a high flow rate. Since high pressure is applied and high adhesive strength is required, it is preferable to take such an embodiment.
  • a resin is usually used, but an epoxy resin, a urethane resin, an epoxy acrylate resin, or the like, which is a general-purpose product, is inexpensive, and has little influence on water quality, is preferable.
  • the adhesive used is required to have high adhesive strength, but it is costly to be the same as that used for bonding the upper part of the hollow fiber membrane module, the cylindrical container 2 and the hollow fiber membrane focusing member 4. It is more preferable from the viewpoint of surface and ease of manufacture.
  • a cylindrical container having a porous member as described above on its peripheral wall can be prepared, for example, by disposing different porous members having a predetermined average open area ratio in each part.
  • a plate-like member having a porous shape such as a mesh shape, a net shape, or a punching metal shape
  • a plate-like member or a cylindrical member having a porosity formed by a resin, a metal net made of a metal wire, a punching metal plate, and the like there are a plate-like member or a cylindrical member having a porosity formed by a resin, a metal net made of a metal wire, a punching metal plate, and the like.
  • the hollow fiber membrane module 1 is immersed in a water tank (not shown) having a depth greater than its height with the water collection cap 5 side facing up.
  • Raw water containing suspended solids is placed in the aquarium.
  • a pump or the like from the filtered water outlet 9 side of the water collecting cap 5 of the hollow fiber membrane module 1
  • raw water containing suspended solids in the water tank is passed through the hole portion 2 a of the peripheral wall of the cylindrical container 2 and the collecting cylinder 7.
  • filtered water passes from the water collection cap 5 through the filtrate outlet 9 and is sent to a water collection pipe (not shown).
  • suspended substances in the raw water adhere to the outer surface of the hollow fiber membrane 3.
  • the water level of the water tank is lowered, so that the raw water is supplied into the water tank as necessary.
  • the permeated water flows from the inside of the hollow fiber membrane 3 toward the outside, so that the suspended substance adhering to the outer surface of the hollow fiber membrane 3 is peeled off from the outer surface of the hollow fiber membrane 3. Or it will be in the state which peels easily.
  • the fine suspended substances are discharged out of the hollow fiber membrane module 1 through the hole portion 2a of the peripheral wall of the cylindrical container 2 and the collecting cylinder 7, and then drained. Is discharged from the tank.
  • the hollow fiber membrane 3 swings together with the hollow fiber membrane sealing member 6 by washing. By this swinging, the suspended substance attached to the outer surface of the hollow fiber membrane 3 is efficiently separated. Further, when the suspended substance is discharged from below the hollow fiber membrane module 1, water containing the suspended substance is discharged through the gaps 6a of the plurality of hollow fiber membrane sealing members 6 that move freely. In the hollow fiber membrane module 1, almost no suspended substances remain, and a reduction in filtration performance is prevented. The raw water filtration is continued for a long time while repeating these steps.
  • compressed air supplied from an air pipe (not shown) installed below the hollow fiber membrane module 1 is taken into the hollow fiber membrane module 1 through the collecting cylinder 7, and the cylindrical container 2 is opened. It flows out from the part 2a.
  • the opening portion is provided only in the upper half of the outer exposed portion of the cylindrical container 2
  • the taken-in air flows out from the lower half of the outer exposed portion of the cylindrical container 2. Instead, it flows out from the upper half of the outer exposed portion. Therefore, since compressed air is supplied to most of the inside of the cylindrical container 2, not only the hollow fiber membrane 3 positioned below the hollow fiber membrane module 1 but also the hollow fiber membrane 3 positioned above the outer surface
  • the suspension can be shaken to the extent that it can be removed. For this reason, compressed air can be used effectively, the amount of air introduced into the hollow fiber membrane module 1 can be reduced, and the running cost of water treatment can be reduced.
  • the suspended substance peeled off from the outer surface of the hollow fiber membrane 3 at the time of air washing is compressed air. Along with the flow of water from the lower side to the upper side in the hollow fiber membrane module 1 generated by the above, it is discharged out of the hollow fiber membrane module 1 from the peripheral wall of the cylindrical container 2 above the hollow fiber membrane module 1.
  • the suspended substance does not flow out from the outer exposed portion of the peripheral wall of the cylindrical container 2 below the hollow fiber membrane module 1, but in this case, the suspended substance does not accumulate below the hollow fiber membrane module 1, There is no problem because it is discharged from the collecting cylinder 7 to the lower side of the hollow fiber membrane module 1 through the gaps 6a of the moving hollow fiber membrane sealing members 6.
  • the shape of the cylindrical container in the module is such that the projected area of the opening portion in the outer exposed portion of the peripheral wall of the cylindrical container is above the substantially central position of the cylindrical container.
  • the shape (not shown) may increase continuously or stepwise.
  • the shape of the aperture 10 shown in FIG. 4 is a quadrangle, but the aperture may be a polygon such as a triangle, pentagon, or hexagon, or a circle, ellipse, or star. I can do it. These plural shapes may be mixed.
  • the hollow fiber membrane focusing member has an opening portion on the side surface portion.
  • air can be discharged from the opening portion.
  • no air pool is generated above the hollow fiber membrane focusing member, and at the same time, suspended substances can be discharged to the outside.
  • most of the compressed air taken in from the collecting cylinder 7 flows out from the opening of the cylindrical container 2, but a part flows into the upper part of the hollow fiber membrane focusing member 4. To do.
  • the hollow fiber membrane focusing member has a structure that does not have a hole in the side surface portion, the air once flowing into the upper portion of the hollow fiber membrane focusing member 4 is not discharged, but becomes an air reservoir and discharges suspended matter. May cause trouble.
  • the hole portion 4a as shown in FIGS. 1 and 2 is provided in the portion, air and suspended substances are discharged from the hole portion 4a without generating an air pocket. It is possible to increase the discharge efficiency of suspended matter at the time.
  • Each hollow fiber membrane sealing member of the present invention may be partially connected to the adjacent hollow fiber membrane sealing member. This connection is performed by, for example, a rod-like body or a string-like body.
  • each hollow fiber membrane sealing member is in a state of holding hands, so that only the hollow fiber membrane sealing member at a specific location is not shaken, and vibration and swinging force can be transmitted to other hollow fibers. It can propagate to the membrane sealing member.
  • the position of each small bundle can be regulated gently. Thereby, the dispersibility of raw
  • the hollow fiber membrane sealing member of the present invention may have a flat bottom surface or a hemisphere. Moreover, you may have a turbulent flow generation member (not shown) formed by a blade
  • a hollow fiber membrane module having a hollow fiber membrane sealing member provided with a turbulent flow generating member is preferably used when filtering raw water containing a large amount of suspended matter. This is because the raw water or air can collide with the turbulent flow generating member and give minute vibrations and vibrations to each small bundle.
  • the length between the lower surface of the hollow fiber membrane focusing member 4 and the upper surface of the hollow fiber membrane sealing member 6 among the plurality of hollow fiber membranes 3 forming the small bundle 3a is, when a hollow fiber membrane having a shorter length in the filtration region than other hollow fiber membranes is present, the hollow fiber membrane having a shorter length is sealed with the hollow fiber membrane than the other hollow fiber membranes. A situation arises in which more or all of the weight of the member 6 is borne.
  • This situation may result in the cutting of a hollow fiber membrane having a short length, or subsequent to the cutting, the cutting may spread to other hollow fiber membranes.
  • the hollow fiber membrane When the hollow fiber membrane is cut, the raw water passes through the cut hollow fiber membrane to cause a problem of flowing into the filtered water side.
  • it is not easy to manufacture the hollow fiber membrane module so that the lengths in the filtration region of tens to thousands of hollow fiber membranes forming one small bundle are all the same.
  • At least one suspended linear body (not shown) is provided along the hollow fiber membrane 3 forming each small bundle 3a. It may be provided.
  • One end of the suspended linear body (not shown) is fixed to the hollow fiber membrane focusing member 4 fixed to the cylindrical container 2 together with one end of the hollow fiber membrane 3, and the other end is hollow in the small bundle 3a.
  • It is fixed to the hollow fiber membrane sealing member 6 together with the yarn membrane 3.
  • the length between the lower surface of the hollow fiber membrane focusing member 4 and the upper surface of the hollow fiber membrane sealing member 6 of the suspended linear body (not shown) fixed at both ends, that is, the length in the filtration region is determined by filtration. It is set shorter than the length of the shortest hollow fiber membrane in the region.
  • the length of the hollow fiber membrane 3 in the filtration region and the length of the suspended linear body (not shown) are both the lengths of the respective linear states.
  • the presence of the suspended linear body (not shown) reduces the load load of the hollow fiber membrane with a short length or eliminates it, and prevents the hollow fiber membrane from being cut by an excessive load load.
  • the suspended linear body (not shown) needs to be more resistant to load than the hollow fiber membrane.
  • the suspended linear body (not shown) is formed of, for example, a thread or a rod.
  • the thread include a metal wire, a natural or synthetic resin fiber, and a metal or resin tube.
  • the bar include a metal rod, a natural or synthetic resin rod, and a metal or resin tube.
  • the resin include polyethylene resin, polypropylene resin, vinyl chloride resin, and acrylic resin.
  • the metal include stainless steel and aluminum.
  • the hollow fiber membrane module of the present invention is used for membrane filtration treatment by immersing the raw water stored in the water tank in the water tank.
  • Hollow fiber membrane module 2 Cylindrical container 2a: Opening part of a cylindrical container 2b: Opening of the lower end of a cylindrical container 2c: Porous member 3: Hollow fiber membrane 3a: Small bundle of hollow fiber membranes 3b: Hollow fiber membrane Hollow part 3c: surface of the hollow fiber membrane where the hollow part is open 4: hollow fiber membrane focusing member 4a: opening portion on the lower side surface of the hollow fiber membrane focusing member 4b: lower inner side of the hollow fiber membrane focusing member (Adhesive part with cylindrical container) 4c: Upper end face of hollow fiber membrane focusing member 4d: Outside upper part of hollow fiber membrane focusing member (connection portion with water collecting cap) 5: Water collection cap 6: Hollow fiber membrane sealing member 6a: Gap between hollow fiber membrane sealing members 7: Cylinder 8: Inlet 9: Filtrated water outlet 10: Opening portion 11: Wire portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 上端と下端とに開口を有し、かつ周壁の外側露出部分の上側半分のうち少なくとも一部が多孔部材からなり、かつ周壁の外側露出部分の下側半分が非開口状となっている筒状容器と、前記筒状容器内において上下方向に位置する多数本の中空糸膜からなる中空糸膜束と、前記中空糸膜の上端部に設けられ、前記中空糸膜の中空部が開口した状態で前記中空糸膜を固定し、前記筒状容器とも接着固定されている中空糸膜集束部材と、前記中空糸膜集束部材に接続された集水キャップと、前記中空糸膜の下端部に設けられ、前記中空糸膜の中空部を封止する中空糸膜封止部材と、前記中空糸膜封止部材の外側に設けられ、前記筒状容器と接着固定されている集気筒とからなる浸漬型中空糸膜モジュールであって、前記筒状容器における前記集気筒との接着部分が多孔部材からなることを特徴とする浸漬型中空糸膜モジュールにより、膜洗浄時の効率性及びモジュールの長期耐久性を向上させる。

Description

浸漬型中空糸膜モジュール
 本発明は、原水の入った処理水槽内に浸漬させ、原水を濾過処理する中空糸膜モジュール、すなわち、浸漬型中空糸膜モジュールに関する。更に詳しくは、長期間に亘り、中空糸膜の濾過性能が低下せず、かつ、中空糸膜洗浄用の空気の流量を減らしてランニングコストを低減させることができる浸漬型中空糸膜モジュールに関する。
 中空糸膜を用いた膜分離技術は、上水道における飲料用水製造分野、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下廃水処理分野などの幅広い分野に利用されている。また、中空糸膜モジュールは、加圧型と浸漬型とに分類される。
 浸漬型中空糸膜モジュールは、浸漬槽内に浸漬設置され、吸引圧あるいは水頭差による圧力を駆動力として、中空糸膜による濾過を行うものであり、浸漬槽内の被処理水から膜濾過水を得る浸漬型膜分離手段として用いられる。この浸漬型中空糸膜モジュールは、中空糸膜の外側を加圧型モジュールで見られるようなケース等で覆わないことが多い。あるいはケースで覆う場合でも、被処理水が流通できる孔を多く設けたケースで覆われている。
 このような中空糸膜を用いた分離手段においては、被処理水を濾過するにあたって、被処理水中の水分は中空糸膜を介して透過水として取り出され、不純物は中空糸膜の表面上や多孔質部内にとどまるため、中空糸膜の目詰まりや中空糸膜間の流路閉塞が進行して、元来の透過水量が得られなくなる場合がある。
 そこで、濾過運転中に定期的に、中空糸膜の2次側(ろ過水側)から1次側(被処理水側)へ透過水を圧入させることによって中空糸膜表面に付着、蓄積した不純物層(ケーキ層)を剥離、除去する逆圧洗浄(逆洗)や、中空糸膜モジュール下部から連続的あるいは間欠的に空気を吹き込むことによって中空糸膜を揺動させたり、気泡によるせん断力によって中空糸膜表面や中空糸膜間に蓄積した不純物を剥離、除去したりする空気洗浄(空洗)で代表される物理洗浄を行う。その際に中空糸膜表面から剥離した不純物は、速やかに中空糸膜モジュール外に排出されることが好ましく、特許文献1に開示されているように、不純物が堆積しやすい中空糸膜上下端部において中空糸膜が露出していると好都合である。
 さらには、特許文献2に開示されているように、中空糸膜全体を通水可能な筒状のケースで覆うと、筒状ケースの筒周面の全面から原水が供給できるだけではなく、物理洗浄時において、不純物が筒状ケースの筒周面の全面から流出可能になり、不純物の排出性がさらに向上して好都合である。
 しかしながら、特許文献1に記載のモジュール構造では、物理洗浄時に、モジュール下方から供給された空気が、中空糸膜下端部の中空糸膜が露出している箇所からモジュール外へ流出しやすいため上端部の中空糸膜を十分に揺らすことができず、その結果、中空糸膜表面の不純物も十分に洗浄できないという問題があった。
 また、特許文献2に記載のモジュール構造についても同様に、モジュール下方から供給された空気が通水可能な筒状ケースの下方部分からモジュール外へ流出しやすく、上方の中空糸膜を十分に揺らすことができないという問題があった。その結果、上方の中空糸膜まで揺らすには空気の供給量を増やす必要があり、ランニングコストの増加につながっていた。
 そこで、これらの問題を解決するために、特許文献3や特許文献4に開示されているように、筒状容器の上側部分における周壁の平均開孔率を下側部分における周壁の平均開孔率よりも大きくすることを特徴とした中空糸膜モジュールが提案された。該中空糸膜モジュールにより、モジュール下方から供給される空洗用の圧縮空気がモジュール下方のみではなく、モジュール上方の中空糸膜の洗浄にも有効に使用されることになる。
 しかしながら、特許文献3に記載のモジュール構造では、モジュール下部で接着剤が筒状容器に直接固定されているためモジュール下部からの懸濁物質の排出性が悪く、洗浄時に中空糸膜表面から除去された懸濁物質がモジュール下部に残存しやすくなり、濾過能力を長期に亘って持続させることが困難になる。
 一方、特許文献4に記載された中空糸膜モジュールでは、モジュール下部が開放状態にあるため、懸濁物質の排出性の向上と中空糸膜の洗浄性の向上とを両立させることができ、高性能の濾過能力を長期に亘って持続させることが可能となった。しかし、筒状容器の上部開放部分を塞ぐための部材を直接筒状容器に接続させていたり、筒状容器と集気筒との接着が強固でなかったりするなどの理由から、筒状容器の物理的強度が低下したり各部材同士の接着強度が低下したりするなどの問題点が残されており、中空糸膜モジュールの長期耐久性が懸念されていた。
特開2002-346344号公報 特開2005-230813号公報 特開昭62-237908号公報 国際公開WO2007/083460号
 本発明は、中空糸膜の洗浄時に懸濁物質が中空糸膜外表面より剥離し易く、かつ、剥離した懸濁物質が中空糸膜モジュール外に排出され易い特性に加えて、モジュールの物理的強度面における長期耐久性に優れた中空糸膜モジュールを提供することを目的とする。
 前記目的を達成するための本発明の中空糸膜モジュールは、次の通りである。
(1)上端と下端とに開口を有し、かつ周壁の外側露出部分の上側半分のうち少なくとも一部が多孔部材からなり、かつ周壁の外側露出部分の下側半分が非開口状となっている筒状容器と、前記筒状容器内において上下方向に位置する多数本の中空糸膜からなる中空糸膜束と、前記中空糸膜の上端部に設けられ、前記中空糸膜の中空部が開口した状態で前記中空糸膜を固定し、前記筒状容器とも接着固定されている中空糸膜集束部材と、前記中空糸膜集束部材に接続された集水キャップと、前記中空糸膜の下端部に設けられ、前記中空糸膜の中空部を封止する中空糸膜封止部材と、前記中空糸膜封止部材の外側に設けられ、前記筒状容器と接着固定されている集気筒とからなる浸漬型中空糸膜モジュールであって、前記筒状容器における前記集気筒との接着部分が多孔部材からなることを特徴とする浸漬型中空糸膜モジュール。
(2)前記中空糸膜集束部材の側面部分に開孔部分を有することを特徴とする(1)に記載の浸漬型中空糸膜モジュール。
(3)前記多数本の中空糸膜が、それぞれ複数本の中空糸膜から構成された複数個の小束に分割され、前記中空糸膜封止部材が、前記小束における各中空糸膜の中空部を封止するとともに、各中空糸膜を束ね、一体として固定されていることを特徴とする(1)または(2)に記載の浸漬型中空糸膜モジュール。
(4)前記小束の数が7であり、前記各小束を形成する中空糸膜の本数が800乃至1000であることを特徴とする(3)に記載の浸漬型中空糸膜モジュール。
 本発明によれば、従来からの中空糸膜の洗浄時に懸濁物質が中空糸膜外表面より剥離し易く、かつ、剥離した懸濁物質が中空糸膜モジュール外に排出され易い特性に加え、筒状容器の物理的強度や筒状容器と上部開放部分を塞ぐための部材との接着強度、筒状容器と集気筒との接着強度などを改善し、長期耐久性にも優れた中空糸膜モジュールを提供することができる。
図1は、本発明の中空糸膜モジュールの一実施例の概略縦断面図である。 図2は、本発明において用いる中空糸膜集束部材を示す拡大側面図である。 図3は、図1における筒状容器の周壁の展開図である。 図4は、図1における筒状容器の周壁の部分拡大図である。 図5は、本発明の中空糸膜モジュールの使用状態を示す斜視図である。
 本発明の中空糸膜モジュールを、上水を製造するために用いた場合を例にとって、図を参照しながら以下に説明する。なお、本発明の中空糸膜モジュールは、上水用の中空糸膜モジュールに限定されるものではなく、その他には産業水用、下水用などの浄水プロセス用の中空糸膜モジュールとしても使用される。
 図1は、本発明の中空糸膜モジュールの一実施例の概略縦断面図である。
 図1において、本発明の中空糸膜モジュール1は、上端と下端とに開口を有し、かつ周壁の少なくとも一部が多孔部材からなる筒状容器2と、筒状容器2内において上下方向に位置する多数本の中空糸膜3からなる中空糸膜束と、中空糸膜3の上端部に設けられ、中空糸膜3の中空部が開口した状態で中空糸膜3を固定し、筒状容器2とも接着固定されている中空糸膜集束部材4と、中空糸膜集束部材4に接続された集水キャップ5と、中空糸膜3の下端部に設けられ、中空糸膜3の中空部を封止する中空糸膜封止部材6と、中空糸膜封止部材6の外側に設けられ、筒状容器2と接着固定されている集気筒7とからなる。
 図1に示す本発明の中空糸膜モジュール1においては、多数本の中空糸膜3は、それぞれが複数本の中空糸膜3からなる複数個の小束3aに分割されている。小束3aはそれぞれが各中空糸膜3を束ね一体として固定する中空糸膜封止部材6に装填され、各中空糸膜3の下端部の中空部を、接着剤(図示しない)を用いて封止している。各中空糸膜封止部材6は、それぞれの間に間隙6aを有して、互いに独立して位置している。すなわち、各中空糸膜封止部材6は、中空糸膜集束部材4から垂下する各小束3aの下端部に、それぞれが独立した状態で設けられ、それぞれの位置が、間隙6aを通過する流体(原液あるいは空洗用の圧縮空気)により、変動可能とされている。
 なお、本発明の中空糸膜モジュールにおいて、各中空糸膜3の下端部は、図1の中空糸膜モジュール1の中空糸膜封止部材6に装填され、接着剤(図示しない)で中空部を封止して用いられても良いし、空洗時において膜が折れることによる膜の損傷を防止するために接着剤層の上に緩衝剤層を設けてもよいが、各中空糸膜の下端部の中空部を封止し、かつ各中空糸膜を束ね一体として固定する本来の目的を達成するものであればその形態は限定されない。中でも、図1のように中空糸膜封止部材6が中空糸膜3の小束を収納する容器の形状であり、その中に中空糸膜3の小束を収納した上で、流動性の接着剤(図示しない)を中空糸膜3の中空部3bに所望の量だけ進入させるとともに中空糸膜3間に流入せしめ、その後接着剤を固化させることにより、中空糸膜3を固定するとともに中空糸膜3の中空部3bを封止する形態であることが、作業性および中空糸膜の固定化および中空部の封止を確実にする観点から好ましい。前記接着剤としては、通常樹脂が用いられるが、汎用品で安価であり、水質への影響も小さいエポキシ樹脂、ウレタン樹脂、エポキシアクリレート樹脂などが好ましく用いられる。また、前述の緩衝剤層に用いられる緩衝剤(図示しない)は中空糸膜封止部材6内の中空糸膜3の損傷を防止する目的で使用され、通常は汎用品で安価であり、柔軟性に富むシリコン樹脂や低硬度のウレタン樹脂が好ましく用いられる。
 本発明の中空糸膜モジュールにおいて、中空糸膜の下端部の中空部を封止する中空糸膜封止部材は、図1の中空糸膜モジュール1の中空糸膜封止部材6のように、間隔を有して独立した複数個の中空糸膜封止部材6から形成されていることが好ましい。
 中空糸膜封止部材は、一枚の端板で形成されていても良い。中空糸膜封止部材が一枚の端板で形成される場合は、端板は、筒状容器2の下端の開口2bを塞ぐ状態で、筒状容器2に固定され、かつ、端板には、中空糸膜3の中空部の下端部が封止されている部分を避けて、筒状容器2の内外に連通する複数本の流体流路が、端板の面において可能な限り均一な配置をもって、設けられる形態をとることができる。
 本発明の中空糸膜モジュールにおいて、中空糸膜集束部材は、図1の中空糸膜モジュール1の中空糸膜集束部材4のように、接着剤(図示しない)とともに一体として用いられ、各中空糸膜の上端部の中空部を開口した状態で固定し、かつ筒状容器の上端周辺部と接着固定され、集水キャップを接続できるものである本来の目的を達成できるものであればその形態は限定されない。中でも、図1のように中空糸膜集束部材4が多数本の中空糸膜3からなる中空糸膜束を収納し、内部に筒状容器2との接着部および外部上部に集水キャップ5との接続部を有する筒状の形状であることが中空糸膜モジュールの製作容易性の観点から好ましい。図1の中空糸膜モジュールにおける中空糸膜集束部材4の周辺部を製作する一例を示すと、あらかじめ多数本の中空糸膜3を装填した筒状容器2の上端周辺部に中空糸膜集束部材4をはめ込み、中空糸膜束の先端部が少し中空糸膜集束部材4の上端面4cから出るようにし、流動性の接着剤(図示しない)を多数本の中空糸膜3間に流入せしめ、その後接着剤を固化させることにより、中空糸膜3を中空糸膜集束部材4内に固定し、次いで中空糸膜集束部材4の上端面4cから出た端部を切断することにより、各中空糸膜3の中空部が開口させる形態であることが、作業性および中空糸膜の固定化を確実にする観点から好ましい。各中空糸膜を開口状態で固定するこの作業は、一般にポッティングと呼称され、広く知られている。前記接着剤としては、通常樹脂が用いられるが、汎用品で安価であり、水質への影響も小さいエポキシ樹脂、ウレタン樹脂、エポキシアクリレート樹脂などが好ましく用いられる。また、接着剤層の下部に空洗時において膜が折れることによる膜の損傷を防止するために接着剤層の下に緩衝剤層を設けてもよい。その際に用いられる緩衝剤は、通常は汎用品で安価であり、柔軟性に富むシリコン樹脂や低硬度のウレタン樹脂が好ましく用いられる。
 図2は、本発明に係る中空糸膜集束部材4のみ取り上げた図である。図2において、図1の中空糸膜モジュール1と同じ部品については同じ符号が付けられている。
 図2において、中空糸膜集束部材4の下側内部4bは、筒状容器の上端周辺部と接着固定される箇所である。中空糸膜集束部材4の内部には多数本の中空糸膜からなる中空糸膜束が装填された状態にあり、通常は上述のポッティング作業を経て、中空糸膜集束部材4の上端面4cに中空糸膜の開孔部が揃えられた状態となる。中空糸膜集束部材4の下側側面には開孔部分4aが設けられている。また、中空糸膜集束部材4と集水キャップの接続がなされる箇所は中空糸膜集束部材4の外側上部4dが好ましく、接続の際には、中空糸膜集束部材4の外側上部4dにoリングや平パッキン等の気密性を保てるものが取り付けられる。あるいは、中空糸膜集束部材4の外側上部4dに接着剤を塗布し、集水キャップと接着固定しても構わない。さらには、中空糸膜集束部材4の上端面4cの縁に平パッキン等の気密性が保てるものを取り付けて、集水キャップと接続しても構わない。
 本発明の中空糸膜モジュールの構造によれば、図1の中空糸膜モジュール1のように中空糸膜集束部材4を介在させることによって、筒状容器2と集水キャップ5とが直接接続されないため、筒状容器2上部の物理的強度を補強し、さらには、集水キャップ5との接続性が改善され、長期耐久性にも優れた中空糸膜モジュールを提供することができる。また、中空糸膜モジュールにおける各部材の役割分担を明確化できるため、製作容易性を向上させることができる。
 本発明において、図1、図2の中空糸膜集束部材4のように、中空糸膜集束部材4の側面部分に開孔部分4aを有することが好ましい。この理由の詳細は後述するが、この態様をとることで空洗時に中空糸膜集束部材の上方で空気溜まりおよび懸濁物質の残存がなくなり、効率よく懸濁物質の除去が行えるようになる。
 図2に示した中空糸膜集束部材4の開孔部分4aの形状は、半円と長方形の組み合わさったもので下方まで開孔部が続いたものであるが、形状は三角形、四角形などの多角形や、円形、楕円形、星形などあらゆるものを用いることができる。またこれら複数の形状が混在したものでも良い。さらに、図2の開孔部分4aのように下方まで開孔部が続いたものでも良いし、中空糸膜集束部材4の内部で閉じた形状であっても良い。
 本発明の中空糸膜モジュールにおいて、中空糸膜の濾過領域は、中空糸膜の外表面に接する原液が中空糸膜により濾過され中空糸膜の中空部に濾過水として流入可能な膜面領域をいう。
 本発明の中空糸膜モジュールにおいて、中空糸膜束は、数百本乃至数万本の中空糸膜からなることが好ましい。
 本発明の中空糸膜モジュールにおいて、中空糸膜束が複数個の小束に分割される小束方式が用いられる場合、各小束を形成する中空糸膜の本数は、数十本乃至数千本であることが好ましい。ここで、小束の分割数や一つの小束を形成する中空糸膜の本数は筒状容器の直径や長さ、更には、中空糸膜の直径などに応じて、意図する効果が得られるように選択すればよい。
 例えば、筒状容器2の直径が、50乃至400mm、長さが、500乃至3000mm、中空糸膜3の直径が、0.5乃至2mm程度の中空糸膜モジュール1であれば、小束3aの数は、3乃至1000個程度が好ましく、3乃至50個が更に好ましい。小束3aの数が少ないと、懸濁物質の排出性が悪くなり、逆に多くなるほど懸濁物質の排出性は良くなるが、中空糸膜モジュール1の製作が煩雑になる。
 一つの小束3aを形成する中空糸膜3の本数は、50乃至2000本が好ましい。一つの小束3aを形成する中空糸膜3の本数が少なくなると、小束3aの数が増えて、前述のように、中空糸膜モジュール1の製造が煩雑になり、逆に一つの小束3aを形成する中空糸膜3の本数が多くなりすぎると、中空糸膜3間に懸濁物質が堆積し易くなる。
 なお、上述の通り、小束方式が用いられる場合は、小束3aの数と一つの小束3aを形成する中空糸膜3の本数との組み合わせが重要となるが、小束3aの数が7であり、その際の一つの小束3aを形成する中空糸膜3の本数が800乃至1000本であることが特に好ましい。前記した数値の組み合わせであれば、中空糸膜モジュール1の製造が煩雑でなく、懸濁物質の排出性が特に良好であるためである。
 各中空糸膜封止部材の形状は、円柱形、球形、円錐形や角錐形など任意である。図1の中空糸膜封止部材6は、円柱体からなる。
 本発明の中空糸膜モジュールにおける中空糸膜の素材は、特に限定されない。中空糸膜の素材として、例えば、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリイミド、ポリエーテルイミド、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン、エチレン-ビニルアルコール共重合体、セルロース、酢酸セルロース、ポリフッ化ビニリデン、エチレン-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレンなどや、これらの複合素材がある。
 本発明の中空糸膜モジュールにおける中空糸膜の外径は、0.3乃至3mmであることが好ましい。中空糸膜の外径が小さすぎると、中空糸膜モジュールを製作する際の中空糸膜取り扱い時や、中空糸膜モジュールを使用する際の濾過、洗浄時などに、中空糸膜が折れて損傷するなどの問題が生じ易い。逆に外径が大きすぎると、同じサイズの筒状容器内に挿入できる中空糸膜の本数が減って、濾過面積が減少するなどの問題が生じる。また、中空糸膜の膜厚は、0.1乃至1mmあることが好ましい。膜厚が小さすぎると、圧力で膜が折れるなどの問題が生じ、逆に膜厚が大きすぎると、圧力損失や原料代の増加につながるなどの問題が生じる。
 本発明の中空糸膜モジュールは、各中空糸膜の上部に集水キャップ5が取り付けられて、原水の濾過に用いられる。すなわち、中空糸膜モジュール1において、中空糸膜集束部材4上部の中空糸膜3の中空部3bが開口している面3cに対し、中空糸膜3の中空部3bの開口部から流出する濾過水を集水する集水キャップ5が中空糸膜集束部材4に接続される。集水キャップ5は、集水された濾過水を外部に導出するための濾過水出口9を有する。
 本発明の中空糸膜モジュールは、各中空糸膜の下部に集気筒が取り付けられた状態で使用される。すなわち、中空糸膜モジュール1において、筒状容器2の下端の開口2bの周囲には、空洗用の圧縮空気を筒状容器2内に導入するための集気筒7が設けられる。
 筒状容器2、中空糸膜集束部材4、集水キャップ5、中空糸膜封止部材6、および、集気筒7は、通常、樹脂から形成される。これらを形成する樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン、ポリブテン等のポリオレフィン系樹脂や、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシ(PFA)、四フッ化エチレン・六フッ化プロピレン(FEP)、エチレン・四フッ化エチレン(ETFE)、三フッ化塩化エチレン(PCTFE)、エチレン・三フッ化塩化エチレン(ECTFE)、フッ化ビニリデン(PVDF)等のフッ素系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等の塩素系樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホン樹脂、ポリフェニルエーテル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS)、アクリロニトリル-スチレン共重合体樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂などが単独または混合して用いられる。
 筒状容器2、中空糸膜集束部材4、集水キャップ5、中空糸膜封止部材6、および、集気筒7は、樹脂以外の材料で形成されても良い。その場合の材料としては、アルミニウム、ステンレス鋼などが好ましく用いられる。更に、樹脂と金属の複合体や、ガラス繊維強化樹脂、炭素繊維強化樹脂などの複合材料を使用することもできる。なお、筒状容器2、中空糸膜集束部材4、集水キャップ5、中空糸膜封止部材6、および、集気筒7は、同一の材料でもそれぞれ異なる材料で形成されていても構わない。
 本発明の中空糸膜モジュールにおいて、筒状容器はその周壁の外側露出部分の上側半分のうち少なくとも一部が多孔部材からなり、かつ周壁の外側露出部分の下側半分が非開口状となっている。この一例を図1および図3を用いて説明する。
 図3は、図1における筒状容器2の周壁の展開図である。図1および図3において、本発明の中空糸膜モジュール1の筒状容器2の周壁の外側露出部分の上側半分のうち少なくとも一部は、メッシュ状の開孔を有する多孔部材2cからなる。
 筒状容器2の周壁のうち、中空糸膜集束部材4と接着する部分と集気筒7と接着する部分とは、通常使用される際には外側に露出していないため、それらの部分を除いた、通常使用する際に外側から露出して見える部分を外側露出部分と言う。本発明では、筒状容器2の周壁の外側露出部分において、その上側半分のうち少なくとも一部が多孔部材2cからなり、下側半分は非開口状となっていることが必要である。ここで、筒状容器2の外側露出部分の上側半分とは、筒状容器2の周壁全体から中空糸膜集束部材4と接着され外側に露出しない部分(図3の領域A)と、集気筒7と接着され外側に露出しない部分(図3の領域D)とを除いた領域のうち、筒状容器2の長手方向(図3の矢印E方向)における略中央位置(図3の矢印Fで示す位置)よりも、中空糸膜集束部材4側の部分(図3の領域B)の周壁を言う。同様に、筒状容器2の外側露出部分の下側半分とは、筒状容器2の長手方向(図3の矢印E方向)における略中央位置(図3の矢印Fで示す位置)よりも、集気筒7側の部分(図3の領域C)の周壁を言う。
 図4は、筒状容器2の周壁の外側露出部分の上側半分における部分拡大図である。図4において、周壁は、開孔部分10と線材部分11とに区分される。図3の周壁の展開図において、領域Bの投影面積をX、図4の各開孔部分10の投影面積の総和をYとすると、筒状容器2の周壁の外側露出部分の上側半分(領域B)における平均開孔率は、式Y/X×100(%)により算出される。
 筒状容器2の周壁の外側露出部分の上側半分における開孔部分10の分布(各開孔部分10の位置と開孔面積の分布)は、均一な分布でも、筒状容器の長手方向(上下方向)において不均一な分布であっても良い。周方向に不均一な分布は、原水や空気の不均一な流動をもたらすので、好ましくない。
 筒状容器2の外側露出部分の周壁において、上側半分(領域B)のみに開口部分を設け、下側半分(領域C)に開口部分を設けないことで、理由の詳細は後述するが、中空糸膜の濾過性能が低下せず、かつ、中空糸膜洗浄用の空気の流量を減らしてランニングコストを低減させるという、本発明の目的を達成することができる。
 筒状容器2のうち、中空糸膜集束部材4と接着され外側に露出しない部分(領域A)については、中空糸膜集束部材4と接着するという本来の目的が達成されれば、その材質や形状等については制限されないが、通常は、筒状容器2の他の部分と同じ材質により形成され、図3のように全く開孔を有しない板状形態であることが好ましい。
 筒状容器2のうち、集気筒7と接着され外側に露出しない部分(領域D)については、集気筒7との接着性を向上させるという観点から、メッシュ状などの多孔部材からなることが必要である。発明の中空糸膜モジュールを使用する際、特に通常外側露出部分の周壁の下側半分が開孔部分を有しない場合は、筒状容器2と集気筒7との接着固定部分は、流速が大きく高い圧力がかかり、高い接着強度が求められるが、本発明の態様をとることで、適当な接着剤を用いて筒状容器2の領域Dと集気筒7とを接着させる際、開孔部に接着剤が入り込むことで接着強度が高まるのだと推測される。本発明の中空糸膜モジュールを使用する際、特に通常外側露出部分の周壁下側半分が開孔部分を有しない場合は、筒状容器2と集気筒7との接着固定部は、流速が大きく高い圧力がかかり、高い接着強度が求められるため、このような態様をとることが好ましい。なお、この際に用いられる接着剤としては、通常樹脂が用いられるが、汎用品で安価であり、水質への影響も小さいエポキシ樹脂、ウレタン樹脂、エポキシアクリレート樹脂などが好ましい。また、用いられる接着剤は高い接着強度を求められるものであるが、中空糸膜モジュール上部、筒状容器2と中空糸膜集束部材4の接着で用いられたものと同一にすることが、コスト面、製作容易性などの観点からより好ましい。
 上記したような多孔部材を周壁に有する筒状容器は、例えば、所定の平均開孔率を有する異なる多孔部材を各部分にそれぞれ配置することにより用意することが出来る。
 筒状容器の周壁に設置する多孔部材としては、メッシュ状、ネット状、パンチングメタル状のような多孔を有する板状部材を用いることが出来る。例えば、樹脂により成型された多孔を有する板状部材や筒状部材、金属線から構成される金属網、パンチングメタル板等がある。中でも、安価であり、水質への影響も小さい、多孔を有する樹脂成型部材を用いることが好ましい。
 次に、図1の本発明の中空糸膜モジュール1による原水の処理について説明する。
 まず、中空糸膜モジュール1を、その高さよりも大きな水深がある水槽(図示しない)内に、その集水キャップ5側を上にして浸漬させる。水槽内には懸濁物質を含む原水が入れられている。中空糸膜モジュール1の集水キャップ5の濾過水出口9側からポンプなどで吸引すると、水槽内の懸濁物質を含む原水が、筒状容器2の周壁の開孔部分2aや集気筒7を通じて中空糸膜モジュール1内に取り込まれ、中空糸膜3の束を通過して濾過された後、濾過水が集水キャップ5から濾過水出口9を通り、集水管(図示しない)に送られる。この濾過に伴い、原水中の懸濁物質が、中空糸膜3の外表面に付着する。また、濾過水側を吸引することにより、原水を濾過して水槽外に取り出すと、水槽の水位が低下するため、必要に応じて水槽内に原水を供給する。
 一定時間の濾過工程が終了すると、今度は、透過水または圧縮空気を集水キャップ5側から原水側へ流す逆洗や、中空糸膜モジュール1下方に設置した空気配管(図示しない)から、中空糸膜モジュール1の下部の集気筒7を通じて、圧縮空気を中空糸膜モジュール1内に供給し、中空糸膜モジュール1内に蓄積した懸濁物質を系外に排出する空洗を行う。
 逆洗では、透過水が中空糸膜3の内部から外部に向かって流れるため、中空糸膜3の外表面に付着していた懸濁物質が中空糸膜3の外表面から剥離する。或いは剥離し易い状態となる。そして、次の空洗で、微小な懸濁物質は、筒状容器2の周壁の開孔部分2aや集気筒7を通って中空糸膜モジュール1の系外に排出され、その後におこなわれる排水にて水槽内から排出される。
 このとき、中空糸膜モジュール1では、中空糸膜封止部材6が筒状容器2に固定されていないため、空洗によって中空糸膜3が中空糸膜封止部材6と共に揺動する。この揺動により、中空糸膜3の外表面に付着した懸濁物質の剥離が効率的に行われる。更に、懸濁物質を中空糸膜モジュール1の下方から排出する際も、懸濁物質を含む水が、自由に動く複数の中空糸膜封止部材6の間隙6aを通って排出されるため、中空糸膜モジュール1内には懸濁物質がほとんど残留せず、濾過性能低下が阻止される。これらの工程を繰り返しながら長時間に亘り原水の濾過処理が継続される。
 次に、本発明の中空糸膜モジュール内における空洗時の空気の流れについて説明する。
 図1において、中空糸膜モジュール1の下方に設置された空気配管(図示しない)から供給された圧縮空気が、集気筒7を通じて中空糸膜モジュール1内に取り込まれ、筒状容器2の開孔部2aから流出する。本発明においては筒状容器2の外側露出部分のうち、上側半分にしか開口部分を有さないため、この取り込まれた空気は、筒状容器2の外側露出部分の下側半分からは流出せず、外側露出部分の上側半分から流出する。したがって、筒状容器2内の大部分に圧縮空気が供給されるため、中空糸膜モジュール1の下方に位置する中空糸膜3のみでなく、上方に位置する中空糸膜3へも外表面の懸濁物質を剥離できる程度に揺らすことができる。このため、圧縮空気が有効に利用でき、かつ中空糸膜モジュール1に導入する空気量が低減でき、水処理のランニングコストが低減できる。
 また、上述のように筒状容器2の外側露出部分のうち、上側半分のみ開口を有する態様をとることにより、空洗時に中空糸膜3の外表面から剥離された懸濁物質が、圧縮空気によって生じる中空糸膜モジュール1内の下方から上方への水の流れとともに、中空糸膜モジュール1上方における筒状容器2の周壁から中空糸膜モジュール1外へと排出される。一方、中空糸膜モジュール1下方における筒状容器2の周壁の外側露出部分からは懸濁物質が流出しないが、この場合、懸濁物質は中空糸膜モジュール1の下方に堆積せず、自由に動く複数の中空糸膜封止部材6の間隙6aを通って集気筒7から中空糸膜モジュール1の下方へと排出されるため問題はない。
 本発明の中空糸膜モジュールの他の実施形態として、モジュールにおける筒状容器の形態が、筒状容器の周壁の外側露出部分における開孔部分の投影面積が、筒状容器の略中央位置から上方に向かって、連続的または段階的に大きくなっていくような形態(図示しない)でも良い。
 図4に示した開孔部分10の形状は、四角形であるが、開孔部分の形状としては、三角形、五角形、六角形などの多角形や、円形、楕円形、星形などを用いることも出来る。これら複数の形状が混在していても良い。
 本発明の中空糸膜モジュールにおいて、中空糸膜集束部材の側面部分に開孔部分を有することが好ましいが、このような態様をとることにより、該開孔部分から空気を排出することができるため、中空糸膜集束部材の上方にて空気溜まりが発生せず、また同時に懸濁物質を外部に排出することができる。図1の中空糸膜モジュールにおいて、集気筒7から取り込まれた圧縮空気は、その大部分が筒状容器2の開孔部から流出するが、一部分は中空糸膜集束部材4の上方部に流入する。この際、中空糸膜集束部材の側面部分に開孔部分を有しない構造であれば、一度中空糸膜集束部材4の上方部に流入した空気は排出されず、空気溜まりとなり懸濁物質の排出に支障を来す場合がある。しかし、該部分に図1、図2に示すような開孔部分4aが設けられていると、空気溜まりを発生させることなく開孔部分4aから空気および懸濁物質が排出されるため、空洗時の懸濁物質の排出効率を高めることができる。
 本発明の各中空糸膜封止部材は、その一部が隣り合った中空糸膜封止部材と接続されていても良い。この接続は、例えば、棒状体、ヒモ状体で行われる。この接続により、各中空糸膜封止部材同士が手をつないだ状態となるので、特定の場所の中空糸膜封止部材のみが揺れることが無く、振動や揺動の力を他の中空糸膜封止部材に伝播することが出来る。同時に、各小束の位置を緩やかに規制することができる。これにより、原水や空気の分散性が向上する。分散性の向上は、中空糸膜の汚れ斑の発生を防止する効果や各小束同士の絡み合いの発生を防止する効果の更なる向上をもたらす。
 本発明の中空糸膜封止部材は、その下面が平面であっても良く、半球体などであっても良い。また、その周面の一部に翼や螺旋溝などにより形成される乱流発生部材(図示しない)を有しても良い。乱流発生部材が設けられた中空糸膜封止部材を有する中空糸膜モジュールは、懸濁物質が多い原水を濾過する場合、好ましく用いられる。原水や空気が乱流発生部材に衝突して、各小束に微細な振動や揺れを付与することができるからである。
 図1の中空糸膜モジュール1の場合、小束3aを形成する複数の中空糸膜3の中に、中空糸膜集束部材4の下面と中空糸膜封止部材6の上面との間の長さ、すなわち、濾過領域における長さが、他の中空糸膜に比べて、短い中空糸膜が存在すると、この長さが短い中空糸膜が、他の中空糸膜より、中空糸膜封止部材6の重量のより多くを、あるいは、その全てを、負担する状況が生じる。
 この状況は、この長さが短い中空糸膜の切断をもたらす、あるいは、その切断に続き、切断が他の中空糸膜に波及する恐れがある。中空糸膜の切断が生じると、切断した中空糸膜を通り、原水が濾過水側に流れ込む問題を引き起こす。一方において、一つの小束を形成する数十本乃至数千本の中空糸膜の濾過領域における長さが、全て同一になるように、中空糸膜モジュールを製作することは、容易ではない。
 この問題を解決するために、本発明の中空糸膜モジュール1においては、各小束3aを形成している中空糸膜3に沿って、少なくとも1本の吊り下げ線状体(図示しない)が設けられても良い。吊り下げ線状体(図示しない)の一端は、中空糸膜3の一方の端部とともに筒状容器2に固定される中空糸膜集束部材4に固定され、他端は、小束3aにおける中空糸膜3とともに中空糸膜封止部材6に固定されている。この両端が固定された吊り下げ線状体(図示しない)の中空糸膜集束部材4の下面と中空糸膜封止部材6上面との間の長さ、すなわち、濾過領域における長さは、濾過領域における最も短い長さの中空糸膜の長さより、短く設定されている。なお、濾過領域における中空糸膜3の長さ、および、吊り下げ線状体(図示しない)の長さはいずれも、それぞれの直線状態の長さである。
 この吊り下げ線状体(図示しない)の存在により、長さの短い中空糸膜の荷重負担が軽減され、あるいは、皆無となり、過大な加重負担による中空糸膜の切断が防止される。当然のことながら、そのためには、吊り下げ線状体(図示しない)は、荷重に対する耐性が、中空糸膜より大きい必要がある。
 吊り下げ線状体(図示しない)は、例えば、糸あるいは棒で形成される。糸としては、例えば、金属線、天然あるいは合成樹脂繊維、金属あるいは樹脂のチューブがあり、棒としては、例えば、金属棒、天然あるいは合成樹脂棒、金属あるいは樹脂のチューブがある。樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、アクリル樹脂などがある。金属としては、ステンレススチール、アルミニウムなどがある。吊り下げ線状体(図示しない)がチューブの場合は、万が一破損し、原水が濾過水側に流れ込むのを防止するため、端面は封止しておくのが良い。また、吊り下げ線状体(図示しない)は、各小束3aについて、2本以上備えられていることが好ましい。万が一、1本の線状体が、中空糸膜集束部材4あるいは中空糸膜封止部材6から脱落した場合でも、他の吊り下げ線状体により、中空糸膜の切断が有効に防止出来るからである。
 本発明の中空糸膜モジュールは、水槽内に貯められた原水を濾過処理する際、水槽内に浸漬させて膜濾過処理に用いられる。
 1 :中空糸膜モジュール
 2 :筒状容器
 2a:筒状容器の開口部
 2b:筒状容器の下端の開口
 2c:多孔部材
 3 :中空糸膜
 3a:中空糸膜の小束
 3b:中空糸膜の中空部
 3c:中空糸膜の中空部が開口している面
 4 :中空糸膜集束部材
 4a:中空糸膜集束部材の下側側面の開孔部分
 4b:中空糸膜集束部材の下側内部(筒状容器との接着部分)
 4c:中空糸膜集束部材の上端面
 4d:中空糸膜集束部材の外側上部(集水キャップとの接続部分)
 5 :集水キャップ
 6 :中空糸膜封止部材
 6a:中空糸膜封止部材間の間隙
 7 :集気筒
 8 :流入口
 9 :濾過水出口
10 :開孔部分
11 :線材部分

Claims (4)

  1.  上端と下端とに開口を有し、かつ周壁の外側露出部分の上側半分のうち少なくとも一部が多孔部材からなり、かつ周壁の外側露出部分の下側半分が非開口状となっている筒状容器と、前記筒状容器内において上下方向に位置する多数本の中空糸膜からなる中空糸膜束と、前記中空糸膜の上端部に設けられ、前記中空糸膜の中空部が開口した状態で前記中空糸膜を固定し、前記筒状容器とも接着固定されている中空糸膜集束部材と、前記中空糸膜集束部材に接続された集水キャップと、前記中空糸膜の下端部に設けられ、前記中空糸膜の中空部を封止する中空糸膜封止部材と、前記中空糸膜封止部材の外側に設けられ、前記筒状容器と接着固定されている集気筒とからなる浸漬型中空糸膜モジュールであって、前記筒状容器における前記集気筒との接着部分が多孔部材からなることを特徴とする浸漬型中空糸膜モジュール。
  2.  前記中空糸膜集束部材の側面部分に開孔部分を有することを特徴とする請求項1に記載の浸漬型中空糸膜モジュール。
  3.  前記多数本の中空糸膜が、それぞれ複数本の中空糸膜から構成された複数個の小束に分割され、前記中空糸膜封止部材が、前記小束における各中空糸膜の中空部を封止するとともに、各中空糸膜を束ね、一体として固定されていることを特徴とする請求項1または2に記載の浸漬型中空糸膜モジュール。
  4.  前記小束の数が7であり、前記各小束を形成する中空糸膜の本数が800乃至1000であることを特徴とする請求項3に記載の浸漬型中空糸膜モジュール。
PCT/JP2009/060213 2008-07-01 2009-06-04 浸漬型中空糸膜モジュール WO2010001680A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09773258A EP2295131A4 (en) 2008-07-01 2009-06-04 UNDERWATER hollow fiber membrane module
CN200980116940.4A CN102026711B (zh) 2008-07-01 2009-06-04 浸渍型中空丝膜组件
AU2009264771A AU2009264771A1 (en) 2008-07-01 2009-06-04 Submerged hollow fiber membrane module
CA2729525A CA2729525A1 (en) 2008-07-01 2009-06-04 Submerged hollow fiber membrane module
US13/001,828 US20110114551A1 (en) 2008-07-01 2009-06-04 Submerged hollow fiber membrane module
JP2009525805A JP5359872B2 (ja) 2008-07-01 2009-06-04 浸漬型中空糸膜モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008172128 2008-07-01
JP2008-172128 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001680A1 true WO2010001680A1 (ja) 2010-01-07

Family

ID=41465783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060213 WO2010001680A1 (ja) 2008-07-01 2009-06-04 浸漬型中空糸膜モジュール

Country Status (9)

Country Link
US (1) US20110114551A1 (ja)
EP (1) EP2295131A4 (ja)
JP (1) JP5359872B2 (ja)
KR (1) KR20110028442A (ja)
CN (1) CN102026711B (ja)
AU (1) AU2009264771A1 (ja)
CA (1) CA2729525A1 (ja)
TW (1) TW201012539A (ja)
WO (1) WO2010001680A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231295B1 (ko) 2010-08-23 2013-02-07 주식회사 효성 침지형 중공사막 모듈
JP2019130493A (ja) * 2018-02-01 2019-08-08 東レ株式会社 中空糸膜モジュール

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308478B2 (en) * 2011-09-28 2016-04-12 Toray Industries, Inc. Method for hydrophilizing hollow-fiber membrane module
CN103889558B (zh) * 2012-01-11 2016-01-20 Lg电子株式会社 中空纤维膜组件
US9962865B2 (en) * 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
EP2883596A1 (en) * 2013-12-11 2015-06-17 Siemens Aktiengesellschaft Filter system and vessel for the filter system
JP6751818B2 (ja) * 2017-06-20 2020-09-09 旭化成株式会社 中空糸膜モジュールおよびろ過方法
JP7391887B2 (ja) 2018-06-12 2023-12-05 デュポン セイフティー アンド コンストラクション インコーポレイテッド 濾過システム及び水を濾過する方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237908A (ja) 1986-04-07 1987-10-17 Kurita Water Ind Ltd 中空糸型膜分離装置用の濾過モジユ−ル
JPH02227125A (ja) * 1989-03-01 1990-09-10 Kanegafuchi Chem Ind Co Ltd 中空糸状フィルターカートリッジ
JPH0342017A (ja) * 1989-07-07 1991-02-22 Mitsubishi Rayon Co Ltd 中空糸膜濾過モジユール
JPH09122453A (ja) * 1995-11-02 1997-05-13 Kanegafuchi Chem Ind Co Ltd 中空糸膜型カートリッジフィルター
JPH09220444A (ja) * 1996-02-15 1997-08-26 Kanegafuchi Chem Ind Co Ltd 中空糸ろ過モジュール
JPH11188243A (ja) * 1997-12-26 1999-07-13 Tennex Corp 交換式の中空糸膜型分離エレメント
JP2002346344A (ja) 2001-05-23 2002-12-03 Asahi Kasei Corp 浸漬用濾過装置
JP2005230813A (ja) 2004-01-20 2005-09-02 Toray Ind Inc 中空糸膜モジュール
WO2007083460A1 (ja) 2006-01-19 2007-07-26 Toray Industries, Inc. 中空糸膜モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250908A (ja) * 1986-04-24 1987-10-31 Asahi Chem Ind Co Ltd 中空糸型濾過器
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
JP2000051669A (ja) * 1998-08-05 2000-02-22 Hitachi Ltd 下部キャップ付中空糸膜モジュール
CA2544626C (en) * 2003-11-14 2016-01-26 U.S. Filter Wastewater Group, Inc. Closed aeration and backwash device for use with membrane filtration module
JP4993901B2 (ja) * 2005-11-29 2012-08-08 水ing株式会社 中空糸膜モジュール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237908A (ja) 1986-04-07 1987-10-17 Kurita Water Ind Ltd 中空糸型膜分離装置用の濾過モジユ−ル
JPH02227125A (ja) * 1989-03-01 1990-09-10 Kanegafuchi Chem Ind Co Ltd 中空糸状フィルターカートリッジ
JPH0342017A (ja) * 1989-07-07 1991-02-22 Mitsubishi Rayon Co Ltd 中空糸膜濾過モジユール
JPH09122453A (ja) * 1995-11-02 1997-05-13 Kanegafuchi Chem Ind Co Ltd 中空糸膜型カートリッジフィルター
JPH09220444A (ja) * 1996-02-15 1997-08-26 Kanegafuchi Chem Ind Co Ltd 中空糸ろ過モジュール
JPH11188243A (ja) * 1997-12-26 1999-07-13 Tennex Corp 交換式の中空糸膜型分離エレメント
JP2002346344A (ja) 2001-05-23 2002-12-03 Asahi Kasei Corp 浸漬用濾過装置
JP2005230813A (ja) 2004-01-20 2005-09-02 Toray Ind Inc 中空糸膜モジュール
WO2007083460A1 (ja) 2006-01-19 2007-07-26 Toray Industries, Inc. 中空糸膜モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2295131A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231295B1 (ko) 2010-08-23 2013-02-07 주식회사 효성 침지형 중공사막 모듈
JP2019130493A (ja) * 2018-02-01 2019-08-08 東レ株式会社 中空糸膜モジュール
JP7139611B2 (ja) 2018-02-01 2022-09-21 東レ株式会社 中空糸膜モジュール

Also Published As

Publication number Publication date
CN102026711A (zh) 2011-04-20
CA2729525A1 (en) 2010-01-07
JPWO2010001680A1 (ja) 2011-12-15
AU2009264771A1 (en) 2010-01-07
JP5359872B2 (ja) 2013-12-04
KR20110028442A (ko) 2011-03-18
EP2295131A1 (en) 2011-03-16
CN102026711B (zh) 2013-09-04
TW201012539A (en) 2010-04-01
US20110114551A1 (en) 2011-05-19
EP2295131A4 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5359872B2 (ja) 浸漬型中空糸膜モジュール
WO2007083460A1 (ja) 中空糸膜モジュール
JP4445862B2 (ja) 中空糸膜モジュール、中空糸膜モジュールユニット及びこれを用いた膜濾過装置と、その運転方法
JP4932492B2 (ja) 中空糸膜カートリッジ
JP2006116495A (ja) 濾過装置
JP2000157846A (ja) 中空糸膜カートリッジ
JP5353693B2 (ja) 濾過膜装置
JP2009247965A (ja) 中空糸膜エレメントとそれを用いた中空糸膜モジュール
JP2005230813A (ja) 中空糸膜モジュール
KR100733529B1 (ko) 막 카트리지, 막 분리 장치 및 막 분리 방법
JP4498373B2 (ja) 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置
JP2010227837A (ja) 中空糸膜モジュール
WO2012133068A1 (ja) 中空糸膜モジュール
JP6241656B2 (ja) 濾過装置
JP2010012372A (ja) 浸漬型中空糸膜モジュール
JP2006239642A (ja) 中空糸膜モジュールおよびそれを用いた浸漬型濾過装置の運転方法
JP2010188250A (ja) 水処理方法
JP2007090339A (ja) 中空糸膜モジュール
JP2006281198A (ja) 浸漬型濾過装置
KR101974612B1 (ko) In-out 방식에서 세정 효율이 높은 중공사막 모듈
JP2002273179A (ja) 中空糸膜モジュール
JP2006082035A (ja) 中空糸膜モジュールの製造方法
JP2006281197A (ja) 浸漬型濾過装置
JP2006159135A (ja) 中空糸膜モジュール
KR20120078204A (ko) 침지형 중공사막 모듈 및 그를 포함하는 침지 여과 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116940.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009525805

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009264771

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009773258

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107026979

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009264771

Country of ref document: AU

Date of ref document: 20090604

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2729525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13001828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE