WO2009157546A1 - 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池 - Google Patents

複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2009157546A1
WO2009157546A1 PCT/JP2009/061744 JP2009061744W WO2009157546A1 WO 2009157546 A1 WO2009157546 A1 WO 2009157546A1 JP 2009061744 W JP2009061744 W JP 2009061744W WO 2009157546 A1 WO2009157546 A1 WO 2009157546A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
composite ceramic
ceramic powder
yttria
group
Prior art date
Application number
PCT/JP2009/061744
Other languages
English (en)
French (fr)
Inventor
木下 暢
和好 佐藤
阿部 浩也
内藤 牧男
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008168633A external-priority patent/JP5401847B2/ja
Priority claimed from JP2008314958A external-priority patent/JP5375063B2/ja
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US13/000,957 priority Critical patent/US20110111230A1/en
Priority to CN2009801235656A priority patent/CN102066263A/zh
Publication of WO2009157546A1 publication Critical patent/WO2009157546A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/56Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO3]2-, e.g. Li2[NixMn1-xO3], Li2[MyNixMn1-x-yO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a composite ceramic powder, a method for producing the same, and a solid oxide fuel cell (SOFC), and more specifically includes zirconia particles and perovskite oxide particles or nickel oxide particles,
  • SOFC solid oxide fuel cell
  • the present invention relates to a composite ceramic powder excellent in particle distribution and composition controllability, a manufacturing method thereof, and a solid oxide fuel cell using the composite ceramic powder as an electrode material.
  • a method for producing a composite ceramic powder containing a plurality of types of oxides usually, a plurality of types of oxide powders are pulverized and pulverized using a ball mill, an automatic mortar, or the like.
  • a mechanical mixing method is generally used in which a composite ceramic powder is obtained by stirring and mixing while crushing and crushing.
  • a mechanochemical mechanical mixing method having a mechanochemical method for promoting bonding between powders by a thermal action is also used.
  • the composite ceramic powder obtained by the conventional method is a composite powder in which a plurality of types of primary oxide particles are aggregated and mixed nonuniformly, or a plurality of types of primary oxide particles.
  • the particles aggregated into a coarse composite powder Therefore, when such a composite powder is used as a catalyst or an electrode for a fuel cell, there is a problem that the characteristics cannot be sufficiently exhibited. Therefore, as a method for producing a composite ceramic powder that solves these problems, a plurality of types of metal ions constituting the composite ceramic powder, such as La ion, can be used as the air electrode raw material powder of a solid oxide fuel cell.
  • Patent Document 3 In addition, in the air electrode of a solid oxide fuel cell, it has been studied to prevent temporal deterioration of the air electrode by pre-calcining a part of the raw material powder of composite ceramic particles and controlling the particle diameter.
  • oxide powder having oxygen ion conductivity made of yttria-stabilized zirconia (YSZ) or samaria doped ceria is used as nickel ion or It is immersed in a solution containing cobalt ions, dried, and then heat-treated to retain nickel oxide or cobalt oxide on the surface of the oxide powder having oxygen ion conductivity.
  • YSZ yttria-stabilized zirconia
  • samaria doped ceria is used as nickel ion or It is immersed in a solution containing cobalt ions, dried, and then heat-treated to retain nickel oxide or cobalt oxide on the surface of the oxide powder having oxygen ion conductivity.
  • a method has been proposed in which nickel or cobalt oxide powder is mixed to obtain a raw material powder (Patent Document 4).
  • a mist pyrolysis method is known as a method excellent in oxide uniformity and composition control.
  • JP 2000-44245 A JP-A-9-86932 JP 2006-40822 A Japanese Patent No. 3565696 Japanese Patent No. 3193294
  • the composite state of metal ions in the precipitate varies depending on the coprecipitation conditions, so the state of formation of each ceramic when the precipitate is heat-treated also varies, and the resulting composite There is a problem that the characteristics of the ceramic particles are difficult to be uniform. Further, when controlling the particle diameter of the raw material powder of the composite ceramic particle, the control range was a micrometer level.
  • the conventional mist pyrolysis method certainly improves the uniformity of the distribution of multiple types of oxides and the controllability of the composition, but the primary particle size of the oxides in the obtained composite particles is small. Therefore, when this coarse composite particle is used as a catalyst or an electrode for a fuel cell, there is a problem that sufficient characteristics cannot be obtained.
  • each electrode has a role as a reaction catalyst, and it is said that a reaction field is a three-phase interface.
  • the three phases in the air electrode of the solid oxide fuel cell are ceramic particles exhibiting oxygen ion conductivity, ceramic particles constituting the electrode, gas such as air, and the like.
  • a 1-x B x C 1-y D y O 3 (wherein A is one or two elements selected from the group of La and Sm, B is one or more elements selected from the group of Sr, Ca and Ba, and C is One or two elements selected from the group of Co and Mn, D is one or two elements selected from the group of Fe and Ni, and 0.1 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.3) -yttria stabilized zirconia (A 1-x B x C 1-y D y O 3 —YSZ) (air electrode) / yttria stabilized zirconia (electrolyte) system, A 1-x B x C 1-y D y O 3 , yttria stabilized zirconia and such as air Scan contacts all portions is a three-phase interface.
  • the present invention has been made in order to solve the above-described problems, and is excellent in distribution of nanometer level of a plurality of kinds of oxide particles and composition controllability, and has many three-phase interfaces, and generates oxygen ions. It is a first object of the present invention to provide a composite ceramic powder having excellent properties, a method for producing the same, and a solid oxide fuel cell.
  • the three phases in the fuel electrode of the solid oxide fuel cell are ceramic particles exhibiting oxygen ion conductivity, ceramic particles constituting the electrode, and fuel gas such as hydrogen, which are nickel-yttria stabilized zirconia (Ni In the -YSZ) (fuel electrode) / yttria-stabilized zirconia (electrolyte) system, the portion where nickel (Ni), yttria-stabilized zirconia and fuel gas all come into contact is the three-phase interface. Therefore, in order to improve the output characteristics of the solid oxide fuel cell, it is necessary to increase the amount of electrons generated by increasing the three-phase interface of the fuel electrode and to efficiently supply the generated electrons to the external circuit. .
  • the present invention has been made to solve the above-described problems, and is excellent in the distribution and composition controllability of a plurality of types of oxide particles, and has many three-phase interfaces, and the electron generation and electron conductivity. It is a second object of the present invention to provide a composite ceramic powder excellent in the above, a method for producing the same, and a solid oxide fuel cell.
  • a 1-x B x C 1-y D y O 3 (where A is One or two elements selected from the group of La and Sm, B is one or more elements selected from the group of Sr, Ca and Ba, and C is selected from the group of Co and Mn One or two elements, D is one or two elements selected from the group of Fe and Ni, and is represented by 0.1 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.3)
  • a 1-x B x C 1-y D y O 3 1 or 2 elements selected from the group of A, B, C and D among the elements contained in A zirconia acidic dispersion containing the above ions is added to an alkaline solution to form a neutralized precipitate, and the neutralized precipitate is heat-treated at
  • An embodiment of the present invention has been found that a composite ceramic powder having excellent particle size distribution and composition controllability, a large number of three-phase interfaces and excellent oxygen ion generation can be easily obtained. I came to complete one.
  • the composite ceramic powder of Embodiment 1 of the present invention has A 1-x B x C 1-y D y O 3 (wherein A is one or two selected from the group of La and Sm).
  • B is one or more elements selected from the group of Sr, Ca and Ba
  • C is one or two elements selected from the group of Co and Mn
  • D is a group of Fe and Ni 1 or 2 elements selected from the group consisting of oxides represented by 0.1 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.3) and zirconia Powder, Zirconia particles comprising yttria-stabilized zirconia and one or more selected from the group consisting of A, B, C and D among the elements contained in A 1-x B x C 1-y D y O 3
  • a neutralized precipitate obtained by adding a zirconia acidic dispersion containing the above ions to an alkaline solution is heat-treated.
  • the dispersion average particle diameter of the zirconia particles in the zirconia acidic dispersion is preferably 20 nm or less.
  • the method for producing a composite ceramic powder according to Embodiment 1 of the present invention includes A 1-x B x C 1-y D y O 3 (wherein A is one or two selected from the group consisting of La and Sm). B is one or more elements selected from the group of Sr, Ca and Ba, C is one or two elements selected from the group of Co and Mn, D is Fe and Ni 1 or 2 elements selected from the group, and a composite containing an oxide represented by 0.1 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.3) and zirconia
  • a method for producing ceramic powder, Zirconia particles comprising yttria-stabilized zirconia and one or more selected from the group consisting of A, B, C and D among the elements contained in A 1-x B x C 1-y D y O 3 Is added to an alkaline solution to form a neutralized precipitate, and then the neutralized precipitate is heat-treated at a temperature of 200 ° C. or higher, and the A 1-x and
  • the dispersion average particle diameter of zirconia particles in the zirconia acidic dispersion is preferably 20 nm or less.
  • the solid oxide fuel cell according to Embodiment 1 of the present invention is characterized by using the composite ceramic powder according to Embodiment 1 of the present invention as an electrode material.
  • the present inventors have made zirconia containing zirconia particles made of yttria-stabilized zirconia and nickel ions as means for achieving the second object. If an acid dispersion is added to an alkaline solution to form a neutralized precipitate, and this neutralized precipitate is heat-treated, the particle distribution and composition controllability are excellent, and there are many three-phase interfaces, and electron generation is possible. The present inventors have found that composite ceramic powders excellent in electronic conductivity can be easily obtained, and have completed Embodiment 2 of the present invention.
  • the composite ceramic powder according to the second embodiment of the present invention is a composite ceramic powder containing nickel oxide and zirconia, and contains zirconia particles made of yttria-stabilized zirconia and nickel ions.
  • a neutralized precipitate obtained by adding a zirconia acidic dispersion to an alkaline solution is heat-treated.
  • the dispersion average particle diameter of the zirconia particles in the zirconia acidic dispersion is preferably 20 nm or less.
  • a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions is added to an alkaline solution to form a neutralized precipitate.
  • the neutralized precipitate is heat-treated at a temperature of 200 ° C. or higher to produce a powder containing nickel oxide and zirconia.
  • the dispersion average particle diameter of zirconia particles in the zirconia acidic dispersion is preferably 20 nm or less.
  • the solid oxide fuel cell according to Embodiment 2 of the present invention is characterized in that the composite ceramic powder according to Embodiment 2 of the present invention is used as an electrode material.
  • the composite ceramic powder of Embodiment 1 of the present invention may be used as an air electrode material, and the composite ceramic powder of Embodiment 2 of the present invention may be used as a fuel electrode material. Is possible.
  • yttria-stabilized zirconia particles composed of zirconia, A 1-x B x C 1-y D y O 3 within the elements contained A, B, C And a neutralized precipitate obtained by adding a zirconia acidic dispersion containing one or more ions selected from the group of D and an alkali solution to the alkali solution, so that a plurality of types of oxide particles It is possible to improve the distribution at the nanometer level in the powder composed of the above, and to improve the composition controllability of the particles. Therefore, it is possible to provide a composite ceramic powder that is excellent in nanometer level distribution and composition controllability among a plurality of types of oxide particles, has many three-phase interfaces, and is excellent in oxygen ion generation.
  • the composite ceramic powder of the present invention is used as an electrode material, an ionization reaction between electrons supplied from an external circuit and oxygen gas can be efficiently performed. Can do. Therefore, the amount of oxygen ionization can be increased, and the generated oxygen ions can be efficiently supplied to the electrolyte. As a result, the output and characteristics of the battery can be improved.
  • a neutralized precipitate obtained by adding a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions to an alkaline solution. Is heat-treated, the particle distribution in the powder composed of a plurality of types of oxide particles can be improved, and the composition controllability of the particles can be improved. Therefore, it is possible to provide a composite ceramic powder that is excellent in distribution and composition controllability of a plurality of types of oxide particles, has many three-phase interfaces, and is excellent in electron generation and electron conductivity.
  • a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions is added to an alkaline solution to neutralize and precipitate. Then, the neutralized precipitate is heat-treated at a temperature of 200 ° C. or higher, so that a composite ceramic powder containing nickel oxide and zirconia can be easily and inexpensively produced.
  • the composite ceramic powder of the present invention is used as an electrode material, the amount of generated electrons can be increased. As a result, electrons can be efficiently supplied to an external circuit, and output characteristics can be improved.
  • the composite ceramic powder according to Embodiment 1 of the present invention includes A 1-x B x C 1-y D y O 3 (wherein A is one or two elements selected from the group of La and Sm, B is one or more elements selected from the group of Sr, Ca and Ba, C is one or two elements selected from the group of Co and Mn, D is selected from the group of Fe and Ni Composite ceramic powder containing one or two kinds of elements, 0.1 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.3) and zirconia Zirconia particles comprising yttria-stabilized zirconia, and one or more elements selected from the group consisting of A, B, C and D among the elements contained in the A 1-x B x C 1-y D y O 3 or The zirconia acidic dispersion of embodiment 1 containing two or more ions and an alkali solution It is the powder formed by heat-processing the neutralized precipitate of Embodiment 1 obtained by adding to a liquid.
  • the composite ceramic powder according to the first embodiment includes zirconia particles made of yttria-stabilized zirconia and elements A, B, C and D among the elements contained in the A 1-x B x C 1-y D y O 3 .
  • a zirconia acidic dispersion containing one or more ions selected from the group is added to the alkaline solution to form a neutralized precipitate, and then the neutralized precipitate is heated to 200 ° C or higher. It is produced by heat treatment at a temperature.
  • the method for producing the composite ceramic powder of Embodiment 1 of the present invention will be described in detail below.
  • "Preparation of zirconia acidic dispersion" One or more ions selected from the group of A, B, C and D among the elements contained in the A 1-x B x C 1-y D y O 3 are added to the zirconia dispersion.
  • the zirconia acidic dispersion of embodiment 1 is prepared.
  • the zirconia particles contained in the zirconia dispersion of Embodiment 1 are yttria-stabilized zirconia particles.
  • the yttria-stabilized zirconia particles can be produced by a hydrothermal synthesis method or a firing method. For example, the following method is suitable (see JP-A-2006-16236).
  • This method is a method of producing a metal oxide precursor by neutralizing a metal salt solution with a basic solution, and producing metal oxide nanoparticles from the metal oxide precursor.
  • m is the valence of the metal ions or metal oxide ions
  • n is the molar ratio of the hydroxyl groups in the basic solution
  • the m and n are represented by the following formula 0.5 ⁇ n ⁇ m (1)
  • a basic solution is added to the metal salt solution to partially neutralize the metal salt solution, then an inorganic salt is added to the partially neutralized solution to form a mixed solution, and the mixed solution is heated by a method of heating. is there.
  • an aqueous solution containing an yttrium (Y) salt and a zirconium (Zr) salt is used as this metal salt solution.
  • the dispersion average particle diameter of the zirconia particles made of yttria-stabilized zirconia is preferably 20 nm or less. The reason is that when the dispersion average particle diameter exceeds 20 nm, when an alkaline solution is added in the subsequent step, among the elements contained in the zirconia particles and the A 1-x B x C 1-y D y O 3 It becomes easy to generate a non-uniform precipitate with one or more elements selected from the group of A, B, C and D, and as a result, the composite ceramic powder having a poor distribution and a non-uniform composition This is because there is a possibility that a body may be formed.
  • the dispersion average particle diameter means that the particle size distribution in this dispersion is measured by optically measuring the speed at which particles in the dispersion are diffused by Brownian motion by the dynamic light scattering method. The particle diameter corresponding to the maximum value of.
  • an acid such as hydrochloric acid, nitric acid, and acetic acid is added to the zirconia dispersion, and the pH (hydrogen ion concentration) of the dispersion is adjusted to 4 or less to obtain a zirconia acidic dispersion.
  • the pH is set to 4 or less in the subsequent step, such as chloride, nitrate, sulfate, acetate, etc. of one or more elements selected from the group of A, B, C and D. This is to prevent precipitation of the hydroxide of A, B, C, or D when the aqueous solution containing is mixed.
  • one or more selected from the group of A, B, C and D among the elements contained in the A 1-x B x C 1-y D y O 3 is added to the zirconia acidic dispersion.
  • An aqueous solution containing a salt of elemental chloride, nitrate, sulfate, acetate or the like is added, and the zirconia particles made of yttria-stabilized zirconia and contained in the A 1-x B x C 1-y D y O 3
  • the zirconia acidic dispersion of Embodiment 1 in which one or more ions selected from the group of A, B, C, and D among the elements coexist is prepared.
  • the zirconia particles made of yttria-stabilized zirconia contain one or more elements selected from the group of A, B, C, and D.
  • the composite ceramic particle in which perovskite oxide particles are combined, or in the perovskite oxide particles containing one or more elements selected from the group of A, B, C and D yttria Composite ceramic particles in which zirconia particles made of stabilized zirconia are combined can be freely controlled and produced.
  • the total concentration of the zirconia particles made of yttria-stabilized zirconia and one or more ions selected from the group of A, B, C, and D in the zirconia acidic dispersion of this embodiment 1 Although there is no particular limitation, from the viewpoint of productivity and handling properties, the total of zirconia particles and one or more ions selected from the group of A, B, C, and D is 0.5% by mass to 10%. About% by weight is preferred.
  • the zirconia acidic dispersion of Embodiment 1 above is added to the alkaline solution to produce the neutralized precipitate of Embodiment 1.
  • the alkaline solution include sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO). 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), aqueous ammonia (NH 4 OH), an aqueous solution of water-soluble organic amines, and the like.
  • the concentration in the alkaline solution is not particularly limited, but is preferably in the range of 0.1 mol% to 5 mol% from the viewpoint of productivity and handling.
  • the alkali amount in the alkaline solution to which the zirconia acidic dispersion of Embodiment 1 is added is such that the pH of the solution after the neutralized precipitate is generated by adding the zirconia acidic dispersion is 6 or more. Adjust the amount of alkaline solution. The reason is that when the pH of the solution after generation is less than 6, that is, on the acidic side, neutralization of one or more ions selected from the group of A, B, C and D is insufficient. This is because the uniformity of the composition of the resulting composite ceramic powder is reduced.
  • the temperature of each solution may be ordinary temperature, and more preferably in the range of 1 ° C. to 50 ° C.
  • a composite ceramic powder according to the first embodiment which is composed of perovskite-type oxide particles containing one or more elements selected from the group C and D and zirconia particles made of yttria-stabilized zirconia, is prepared.
  • the reason why the maximum holding temperature of the heat treatment is limited to 200 ° C. or higher is that when the maximum holding temperature is lower than 200 ° C., one or more elements selected from the group of A, B, C, and D are used. Oxidation that includes one or more elements selected from the group of A, B, C, and D in the zirconia particles made of yttria-stabilized zirconia becomes insufficient. Zirconia particles composed of yttria-stabilized zirconia in composite ceramic particles in which product particles are combined, or oxide particles containing one or more elements selected from the group of A, B, C and D This is because it is impossible to freely control and fabricate composite ceramic particles in which is composited.
  • the dried product before heat treatment contains zirconia particles made of fine yttria-stabilized zirconia having a nanometer size and one or more elements selected from the group of A, B, C, and D.
  • the oxide precursor particles are in a uniformly mixed state, and the uniformly distributed zirconia particles prevent the perovskite oxide particles from fusing and prevent grain growth during the heat treatment. Therefore, there is no risk of forming coarse perovskite oxide particles in the composite ceramic powder by heat treatment, and both the zirconia particles made of yttria-stabilized zirconia and the perovskite oxide particles have a fine particle diameter.
  • This composite ceramic powder can be produced.
  • Solid oxide fuel cell The solid oxide fuel cell according to Embodiment 1 of the present invention uses the composite ceramic powder of Embodiment 1 as an electrode material for an air electrode.
  • This electrode material can efficiently perform an ionization reaction between electrons and oxygen gas supplied from an external circuit. Therefore, the amount of oxygen ionization at the air electrode can be increased, and the generated oxygen ions can be efficiently supplied to the electrolyte. As a result, the output and characteristics of the battery can be improved.
  • a generally used method may be used.
  • the composite ceramic powder and polyethylene glycol are used.
  • a paste obtained by mixing a binder such as polyvinyl butyral is applied to the surface of a solid electrolyte substrate made of yttria-stabilized zirconia by a printing method or the like to form a film, and then in an oxidizing atmosphere, For example, a method of baking in air at a temperature in the range of 700 ° C. to 1400 ° C.
  • the composite ceramic powder of the first embodiment includes yttria-stabilized zirconia (YSZ) particles and perovskite-type oxide particles containing one or more elements selected from the group of A, B, C, and D. Since the composite particles are dispersed in a nanometer size, fusion and grain growth of the perovskite oxide can be suppressed even at the use temperature during power generation of the solid oxide fuel cell. Therefore, it is possible to provide a solid oxide fuel cell having an air electrode with a large amount of three-phase interface and excellent oxygen ion generation.
  • YSZ yttria-stabilized zirconia
  • FIG. 1 is a schematic diagram showing an electrochemical characteristic evaluation apparatus, which is an apparatus for measuring the electric characteristics of an electrode of a solid oxide fuel cell.
  • 1 is an electrolyte such as yttria-stabilized zirconia
  • 2 is a reference electrode made of platinum (Pt)
  • 3 is formed on the upper surface of the electrolyte 1, and is produced using the composite ceramic powder of Embodiment 1 above.
  • 4 is a fuel electrode made of NiO—YSZ, CoO—YSZ or the like formed on the lower surface of the reference electrode 2
  • 5 is an air electrode 3 or a fuel electrode.
  • 4 is a platinum net disposed on each of them, 6 is a glass seal, 7 and 8 are coaxially arranged alumina pipes having different diameters, 9 is a platinum wire, 10 is dry air, and 11 is 3% H 2 O.
  • the air electrode 3 and the platinum net 5 are sequentially attached to the upper surface of the electrolyte 1, and the fuel electrode 4 is attached to the lower surface of the reference electrode 2.
  • the platinum net 5 are sequentially attached, and the dry air 10 is supplied to the air electrode 3, the humidified hydrogen gas 11 is supplied to the fuel electrode 4, and the fuel electrode 4 and the reference electrode 2 in the temperature range of 600 ° C to 800 ° C are supplied.
  • the AC impedance is measured using the air electrode 3 as a counter electrode.
  • the composite ceramic powder of Embodiment 1 of the present invention one or more selected from the group of zirconia particles composed of yttria-stabilized zirconia particles, A, B, C, and D.
  • Both of the perovskite oxide particles containing these elements can be made into particles having a fine particle size, and therefore the distribution of these particles can be improved, and the composition controllability of the particles can be improved. .
  • nano particles of a plurality of types of oxide particles such as zirconia particles composed of yttria-stabilized zirconia, and perovskite-type oxide particles containing one or more elements selected from the group of A, B, C and D It is possible to provide a composite ceramic powder excellent in meter level distribution and composition controllability, having many three-phase interfaces, and excellent in oxygen ion generation.
  • A, B among the elements contained in zirconia particles composed of yttria-stabilized zirconia and A 1-x B x C 1-y DyO 3 .
  • a zirconia acidic dispersion containing one or more ions selected from the group of C and D is added to an alkaline solution to form a neutralized precipitate, and then the neutralized precipitate is Since the heat treatment is performed at a temperature of 200 ° C. or higher, a composite ceramic powder having a fine particle size containing an oxide represented by A 1-x B x C 1-y DyO 3 and zirconia made of yttria-stabilized zirconia Can be easily and inexpensively manufactured.
  • the composite ceramic powder of this embodiment is used as an electrode material for an air electrode, an ionization reaction between electrons and oxygen gas supplied from an external circuit is performed. It can be done efficiently. Therefore, the amount of oxygen ions generated in the air electrode, that is, the amount of oxygen ionization can be increased, and the generated oxygen ions can be efficiently supplied to the electrolyte. As a result, the output and characteristics of the battery can be improved.
  • the composite ceramic powder of Embodiment 2 of the present invention is a composite ceramic powder containing nickel oxide and zirconia, and contains zirconia particles made of yttria-stabilized zirconia and nickel ions. It is the powder formed by heat-processing the neutralized precipitate of Embodiment 2 obtained by adding the zirconia acidic dispersion liquid of this to an alkaline solution. It is preferable that the dispersion average particle diameter of the zirconia particles in the zirconia acidic dispersion of Embodiment 2 is 20 nm or less.
  • the composite ceramic powder of the second embodiment is obtained by adding the zirconia acidic dispersion of the second embodiment containing zirconia particles made of yttria-stabilized zirconia and nickel ions to the alkali solution to neutralize the second embodiment.
  • the precipitate is produced, and then the neutralized precipitate of Embodiment 2 is produced by heat treatment at a temperature of 200 ° C. or higher.
  • the reason for limiting the maximum holding temperature of the heat treatment to 200 ° C. or higher is that if the maximum holding temperature is lower than 200 ° C., the generation of nickel oxide particles becomes insufficient, and as a result, zirconia particles made of yttria stabilized zirconia. This is because composite ceramic particles in which nickel oxide particles are composited or composite ceramic particles in which zirconia particles composed of yttria-stabilized zirconia are combined in nickel oxide particles cannot be freely controlled and produced. .
  • the dried product before the heat treatment is a state in which zirconia particles made of fine yttria-stabilized zirconia having a nanometer size and precursor particles of nickel oxide are uniformly mixed, and distributed uniformly.
  • the zirconia particles prevent nickel oxide from fusing and prevent grain growth during heat treatment. Therefore, there is no possibility of generating coarse nickel oxide particles in the composite ceramic powder by heat treatment, and it is possible to produce a composite ceramic powder having a fine particle size with both zirconia particles made of yttria-stabilized zirconia and nickel oxide particles. .
  • a solid oxide fuel cell according to Embodiment 2 of the present invention uses the composite ceramic powder of Embodiment 2 as an electrode material for a fuel electrode. Since this electrode material can increase the amount of generated electrons, electrons can be efficiently supplied to an external circuit, and output characteristics can be improved.
  • a commonly used method may be used.
  • the composite ceramic powder and polyethylene glycol are used.
  • a paste obtained by mixing a binder such as polyvinyl butyral is applied to the surface of a solid electrolyte substrate made of yttria-stabilized zirconia by a printing method or the like to form a film, and then 1200 ° C. in an air atmosphere.
  • the composite ceramic powder of the second embodiment suppresses nickel fusion and grain growth even when the reduction metallization treatment of nickel oxide is performed in a reducing atmosphere during power generation of the solid oxide fuel cell. can do. Therefore, it is possible to provide a solid oxide fuel cell having a fuel electrode with a large amount of three-phase interface and excellent electronic conductivity.
  • FIG. 1 is a schematic diagram showing an electrochemical characteristic evaluation apparatus, which is an apparatus for measuring the electric characteristics of an electrode of a solid oxide fuel cell.
  • 1 is an electrolyte such as yttria-stabilized zirconia
  • 2 is a reference electrode made of platinum (Pt)
  • 3 is made of La 0.8 Sr 0.2 MnO 3 (LSM) formed on the upper surface of the electrolyte 1.
  • An air electrode 4 is formed on the lower surface of the reference electrode 2 and is a fuel electrode made of nickel oxide-yttria stabilized zirconia or the like manufactured using the composite ceramic powder of the second embodiment.
  • Reference numeral 5 is an air electrode 3 and a fuel electrode.
  • 4 is a platinum net disposed on each of them, 6 is a glass seal, 7 and 8 are coaxially arranged alumina pipes having different diameters, 9 is a platinum wire, 10 is dry air, and 11 is 3% H 2 O.
  • the air electrode 3 and the platinum net 5 are sequentially attached to the upper surface of the electrolyte 1, and the fuel electrode 4 is mounted on the lower surface of the reference electrode 2.
  • the platinum net 5 are sequentially attached, and the dry air 10 is supplied to the air electrode 3, the humidified hydrogen gas 11 is supplied to the fuel electrode 4, and the fuel electrode 4 and the reference electrode 2 in the temperature range of 600 ° C to 800 ° C are supplied.
  • the AC impedance is measured using the air electrode 3 as a counter electrode.
  • both zirconia particles made of yttria-stabilized zirconia and nickel oxide particles can be made into particles having a fine particle size.
  • the particle distribution can be improved, and the composition controllability of the particles can be improved. Therefore, a composite ceramic powder excellent in the distribution and composition controllability of a plurality of types of oxide particles such as zirconia particles made of yttria-stabilized zirconia and nickel oxide particles, and having many three-phase interfaces and excellent electronic conductivity. Can be provided.
  • a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions is added to an alkaline solution to neutralize and precipitate. Then, the neutralized precipitate is heat-treated at a temperature of 200 ° C. or higher. Therefore, a fine ceramic particle composite powder containing nickel oxide particles and zirconia particles made of yttria-stabilized zirconia.
  • the body can be produced easily and inexpensively.
  • the composite ceramic powder of this embodiment is used as the electrode material of the fuel electrode, the amount of electrons generated in the fuel electrode can be increased. As a result, electrons can be efficiently supplied to an external circuit, and output characteristics can be improved.
  • Example 1 La 0.8 Sr 0.2 was added to 500 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion (solid content concentration of 10YSZ: 8.4% by mass, pH: 3.95) having a dispersion average particle size of 7.5 nm.
  • 10YSZ yttria-stabilized zirconia
  • MnO lanthanum nitrate as a composition of 3 [La (NO 3) 3 ⁇ 6H 2 O ] 62.81G, strontium nitrate [Sr (NO 3) 2] 7.68 g, manganese nitrate [Mn (NO 3) 2 ⁇ 6H 2 O] 52,004 g of an aqueous solution of La, Sr and Mn metal salts dissolved in 1000 g of dilute nitric acid having a pH of 2.0 was added and stirred, and 10 mol% yttria stabilized zirconia (LSM- 10YSZ) An acidic dispersion (pH: 2.0) was prepared (dispersion A-1).
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-1).
  • this dispersion A-1 was dropped into the aqueous solution B-1, and a neutralized precipitate was obtained.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-1 simultaneously with the dispersion A-1, and the pH of the aqueous solution B-1 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours. .
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-1 of La 0.8 Sr 0.2 MnO 3 -yttria stabilized zirconia (LSM-10YSZ). .
  • FIG. 2 is a scanning transmission electron microscope (STEM) image of the composite powder A-1
  • FIG. 3 is a transmission electron microscope (TEM) image of the composite powder A-1.
  • STEM scanning transmission electron microscope
  • TEM transmission electron microscope
  • NiO nickel oxide
  • the NiO paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then baked at 1200 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • 8YSZ 8 mol% yttria-stabilized zirconia
  • the above-mentioned LSM-10YSZ paste A-1 was applied to the surface of the 8YSZ substrate on which the fuel electrode was formed on the side opposite to the fuel electrode by screen printing, and then baked at 1100 ° C. for 2 hours to obtain the 8YSZ substrate.
  • An air electrode was formed on the top.
  • a platinum wire was wound around the side surface of the 8YSZ substrate to form a reference electrode.
  • the electrode reaction resistance of this air electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the air electrode was evaluated by measuring the AC impedance between the reference electrode and the air electrode. Note that the measurement temperature was 700 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz. The measurement results are shown in Table 1.
  • La 0.8 Sr 0.2 was added to 500 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion (solid content concentration of 10YSZ: 8.4% by mass, pH: 3.95) having a dispersion average particle size of 7.5 nm.
  • 10YSZ yttria-stabilized zirconia
  • MnO lanthanum nitrate as a composition of 3 [La (NO 3) 3 ⁇ 6H 2 O ] 146.56G, strontium nitrate [Sr (NO 3) 2] 17.91 g, manganese nitrate [Mn (NO 3) 2 ⁇ 6H 2 O] 121.43 g dissolved in 1000 g of dilute nitric acid having a pH of 2.0 was added with an aqueous metal salt solution of La, Sr and Mn and stirred, and 10 mol% yttria-stabilized zirconia (LSM ⁇ ) containing La, Sr and Mn ions was added. 10YSZ) An acidic dispersion (pH: 2.0) was prepared (dispersion A-2).
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-2).
  • the dispersion A-2 was dropped into the aqueous solution B-2 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-2 simultaneously with the dispersion A-2, and the pH of the aqueous solution B-2 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours. .
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-2 of La 0.8 Sr 0.2 MnO 3 -yttria stabilized zirconia (LSM-10YSZ). .
  • the masses of La, Sr, Mn, Y and Zr in this composite powder A-2 were measured by fluorescent X-ray analysis. Based on the measurement results, La 0.8 Sr 0.2 MnO 3 (LSM) and yttria stable The mass ratio with zirconia bromide (YSZ) was calculated. As a result, the mass ratio (LSM: YSZ) was 70:30. Further, in order to evaluate the uniformity of the composite powder A-2, the heat treatment conditions were set to two types: 600 ° C. for 6 hours and 800 ° C. for 6 hours. The crystallite size of YSZ was measured. The results are shown in Table 1.
  • NiO nickel oxide
  • the NiO paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then baked at 1200 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • 8YSZ 8 mol% yttria-stabilized zirconia
  • the above-mentioned LSM-10YSZ paste A-2 was applied to the surface of the 8YSZ substrate on which the fuel electrode was formed on the side opposite to the fuel electrode by screen printing, and then fired at 1100 ° C. for 2 hours to obtain the 8YSZ substrate.
  • An air electrode was formed on the top.
  • a platinum wire was wound around the side surface of the 8YSZ substrate to form a reference electrode.
  • the electrode reaction resistance of this air electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the air electrode was evaluated by measuring the AC impedance between the reference electrode and the air electrode. Note that the measurement temperature was 700 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz. The measurement results are shown in Table 1.
  • La 0.8 Sr 0.2 was added to 500 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion (solid content concentration of 10YSZ: 8.4% by mass, pH: 3.95) having a dispersion average particle size of 7.5 nm.
  • 10YSZ yttria-stabilized zirconia
  • MnO lanthanum nitrate as a composition of 3 [La (NO 3) 3 ⁇ 6H 2 O ] 26.92G, strontium nitrate [Sr (NO 3) 2] 3.29 g, manganese nitrate [Mn (NO 3) 2 ⁇ 6H 2 O], an aqueous metal salt solution of La, Sr and Mn dissolved in 1000 g of dilute nitric acid having a pH of 2.0, was added and stirred, and 10 mol% yttria stabilized zirconia (LSM-) containing ions of La, Sr and Mn was added. 10YSZ) An acidic dispersion (pH: 2.0) was prepared (dispersion A-3).
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-3).
  • this dispersion A-3 was dropped into the aqueous solution B-3 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-3 simultaneously with the dispersion A-3, and the pH of the aqueous solution B-3 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours. .
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-3 of La 0.8 Sr 0.2 MnO 3 -yttria stabilized zirconia (LSM-10YSZ). .
  • the masses of La, Sr, Mn, Y and Zr in this composite powder A-3 were measured by fluorescent X-ray analysis. Based on the measurement results, La 0.8 Sr 0.2 MnO 3 (LSM) and yttria stable The mass ratio with zirconia bromide (YSZ) was calculated. As a result, the mass ratio (LSM: YSZ) was 30:70.
  • the heat treatment conditions were set to two types: 600 ° C. for 6 hours and 800 ° C. for 6 hours. The crystallite size of YSZ was measured. The results are shown in Table 1.
  • NiO nickel oxide
  • the NiO paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then baked at 1200 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • the above-mentioned LSM-10YSZ paste A-3 was applied by screen printing to the surface of the 8YSZ substrate on which the fuel electrode was formed, on the side opposite to the fuel electrode, and then baked at 1100 ° C. for 2 hours to obtain the 8YSZ substrate.
  • An air electrode was formed on the top.
  • a platinum wire was wound around the side surface of the 8YSZ substrate to form a reference electrode.
  • the electrode reaction resistance of this air electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the air electrode was evaluated by measuring the AC impedance between the reference electrode and the air electrode. Note that the measurement temperature was 700 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz. The measurement results are shown in Table 1.
  • La 0.8 Sr 0.2 MnO 3 was added to 500 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion having a dispersion average particle size of 20 nm (solid content concentration of 10YSZ: 8.4% by mass, pH: 3.95).
  • 10YSZ yttria-stabilized zirconia
  • An aqueous metal salt solution of La, Sr, and Mn dissolved in 1000 g of dilute nitric acid having a pH of 2.0 was added and stirred, and 10 mol% yttria-stabilized zirconia (LSM-10YSZ) containing La, Sr, and Mn ions was added.
  • An acidic dispersion (pH: 2.0) was prepared (Dispersion A-4).
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-4).
  • this dispersion A-4 was added dropwise to the aqueous solution B-4 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-4 simultaneously with the dispersion A-4, and the pH of the aqueous solution B-4 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours. .
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-4 of La 0.8 Sr 0.2 MnO 3 -yttria stabilized zirconia (LSM-10YSZ). .
  • the mass of La, Sr, Mn, Y and Zr in this composite powder A-4 was measured by X-ray fluorescence analysis, and based on the measurement results, La 0.8 Sr 0.2 MnO 3 (LSM) and yttria stable
  • LSM La 0.8 Sr 0.2 MnO 3
  • YSZ zirconia bromide
  • the mass ratio (LSM: YSZ) was 50:50.
  • the heat treatment was performed at 600 ° C. for 6 hours and at 800 ° C. for 6 hours.
  • the crystallite size of YSZ was measured. The results are shown in Table 1.
  • NiO nickel oxide
  • the NiO paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then baked at 1200 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • the above-mentioned LSM-10YSZ paste A-4 was applied by screen printing to the surface of the 8YSZ substrate on which the fuel electrode was formed, on the side opposite to the fuel electrode, and then baked at 1100 ° C. for 2 hours to obtain the 8YSZ substrate.
  • An air electrode was formed on the top.
  • a platinum wire was wound around the side surface of the 8YSZ substrate to form a reference electrode.
  • the electrode reaction resistance of this air electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the air electrode was evaluated by measuring the AC impedance between the reference electrode and the air electrode. Note that the measurement temperature was 700 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz. The measurement results are shown in Table 1.
  • the aqueous metal salt solution of La, Sr, and Mn was dropped into the aqueous ammonium hydrogen carbonate solution to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous ammonium hydrogen carbonate solution simultaneously with the aqueous metal salt solution of La, Sr and Mn, and the pH of the aqueous ammonium hydrogen carbonate solution was kept at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours.
  • the obtained dried product was pulverized in a mortar and heat-treated at 800 ° C. for 6 hours in an electric furnace to obtain La 0.8 Sr 0.2 MnO 3 (LSM) powder R-1.
  • Comparative Example 1 the uniformity of LSM powder R-1 and 10YSZ powder was not evaluated. This is because, in the raw material powder, the LSM powder R-1 and the 10YSZ powder do not individually form a composite powder, and the uniformity of the composite cannot be evaluated even if the crystallite diameter of the LSM is measured. In addition, in a dispersion liquid containing LSM powder and 10YSZ powder, the dispersion average particle size for each component cannot be obtained.
  • NiO nickel oxide
  • the NiO paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then baked at 1200 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • 8YSZ 8 mol% yttria-stabilized zirconia
  • the above-mentioned LSM-10YSZ paste R-1 is applied to the surface of the 8YSZ substrate on which the fuel electrode is formed on the side opposite to the fuel electrode by screen printing, and then fired at 1100 ° C. for 2 hours to obtain the 8YSZ substrate.
  • An air electrode was formed on the top.
  • a platinum wire was wound around the side surface of the 8YSZ substrate to form a reference electrode.
  • the electrode reaction resistance of this air electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the air electrode was evaluated by measuring the AC impedance between the reference electrode and the air electrode. Note that the measurement temperature was 700 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz. The measurement results are shown in Table 1.
  • the composition ratio of each metal ion is La: Sr: Mn so that the oxide produced using this raw material is La 0.8 Sr 0.2 MnO 3 and 10 mol% yttria-stabilized zirconia.
  • Zr: Y was 0.9: 0.1.
  • 75.72 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 3000 g of distilled water to prepare an aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution).
  • the aqueous metal salt solution of La, Sr, Mn, Zr, and Y was dropped into the aqueous ammonium hydrogen carbonate solution to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous ammonium hydrogen carbonate solution simultaneously with the aqueous metal salt solution of La, Sr and Mn, and the pH of the aqueous ammonium hydrogen carbonate solution was kept at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours. .
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder R-2 of La 0.8 Sr 0.2 MnO 3 -yttria stabilized zirconia (LSM-10YSZ). .
  • NiO nickel oxide
  • the NiO paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then baked at 1200 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • the above-mentioned LSM-10YSZ paste R-2 is applied to the surface of the 8YSZ substrate on which the fuel electrode is formed on the side opposite to the fuel electrode by screen printing, and then fired at 1100 ° C. for 2 hours to obtain the 8YSZ substrate.
  • An air electrode was formed on the top.
  • a platinum wire was wound around the side surface of the 8YSZ substrate to form a reference electrode.
  • the electrode reaction resistance of this air electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the air electrode was evaluated by measuring the AC impedance between the reference electrode and the air electrode. Note that the measurement temperature was 700 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz. The measurement results are shown in Table 1.
  • Examples 1 to 4 zirconia (10YSZ) particles composed of 10 mol% yttria-stabilized zirconia, La, Sr, and Mn ions for forming La 0.8 Sr 0.2 MnO 3 (LSM) particles, Solid oxide formed using these composite particles because it is a composite ceramic powder obtained by heat-treating a neutralized precipitate obtained by adding a zirconia acidic dispersion containing
  • the electrode reaction resistance value in the fuel cell is lower than that of the prior art (comparative example) and shows good characteristics.
  • the dispersion average particle size of 10YSZ particles used as a raw material is as small as 20 nm or less
  • the crystallite size of the generated LSM particles is about 15 nm
  • the crystallite size of 10YSZ particles is about 5 nm, both at the nanometer level.
  • the electrode reaction resistance value is extremely low, indicating good characteristics.
  • Comparative Example 1 the electrode reaction resistance value was high, and good characteristics were not obtained. This is because a mixture of 10YSZ particles and LSM particles was used as a raw material, and each primary particle was agglomerated, and the 10YSZ particles and LSM particles in the obtained composite ceramic powder were in a non-uniformly mixed state. It is thought to be because.
  • Comparative Example 2 Although the size of each particle produced in the composite ceramic powder was very small, the electrode reaction resistance value was high and good characteristics could not be obtained. This is because neutralized precipitates are obtained in the presence of La, Sr, Mn, Zr and Y metal ions, so that products other than 10YSZ particles and LSM particles such as LaZrO This is probably because impurities such as 2 that increase the electrode reaction resistance value are generated, leading to deterioration of characteristics.
  • Example 5 To 50 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion (10YSZ solid content concentration: 8.4% by mass, pH: 4.6) having a dispersion average particle size of 7.5 nm, nickel nitrate hexahydrate (Ni An aqueous nickel nitrate solution prepared by dissolving 30.82 g of (NO 3 ) 2 ⁇ 6H 2 O) in 650 g of dilute nitric acid having a pH of 3.3 is added and stirred, and a nickel ion-containing 10 mol% yttria-stabilized zirconia (Ni-10YSZ) acidic dispersion (PH: 3.95) was prepared (dispersion A-5).
  • Ni-10YSZ nickel ion-containing 10 mol% yttria-stabilized zirconia
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-5). Then, this dispersion A-5 was dropped into the aqueous solution B-5 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-5 simultaneously with the dispersion A-5, and the pH of the aqueous solution B-5 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours.
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-5 of nickel oxide-yttria stabilized zirconia (NiO-YSZ).
  • the masses of Ni, Y and Zr in this composite powder A-5 were measured by fluorescent X-ray analysis, and the mass ratio of nickel oxide (NiO) and yttria stabilized zirconia (YSZ) was calculated based on the measurement results. .
  • the mass ratio (NiO: YSZ) was 65:35.
  • FIG. 4 is a transmission electron microscope (TEM) image showing this composite powder A-5. According to this figure, it can be seen that yttria-stabilized zirconia particles are combined and integrated in the nickel oxide particles. In addition, in order to evaluate the uniformity of the composite powder A-5, the heat treatment conditions were set at two temperatures of 600 ° C. for 6 hours and 800 ° C. for 6 hours. The crystallite size of yttria stabilized zirconia was measured. The results are shown in Table 2.
  • LSM La 0.8 Sr 0.2 MnO 3
  • the electrode reaction resistance of the fuel electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the fuel electrode was evaluated by measuring the AC impedance between the reference electrode and the fuel electrode.
  • the measurement temperature was 600 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz.
  • the measurement results are shown in Table 2. Further, when the surface of the fuel electrode was analyzed by TEM-EDX, it was confirmed that Ni, Y, and Zr were composite particles in which Ni, Y, and Zr were uniformly distributed at a high density.
  • Example 6 To 50 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion having a dispersion average particle diameter of 7.5 nm (solid content concentration of 10YSZ: 8.4 mass%, pH: 4.6), nickel nitrate hexahydrate (Ni A nickel nitrate aqueous solution in which 13.50 g of (NO 3 ) 2 ⁇ 6H 2 O) is dissolved in 650 g of dilute nitric acid having a pH of 3.3 is added and stirred, and the nickel ion-containing 10 mol% yttria stabilized zirconia (Ni-10YSZ) acidic dispersion (PH: 3.95) was prepared (dispersion A-6).
  • Ni-10YSZ nickel ion-containing 10 mol% yttria stabilized zirconia
  • aqueous ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 133 g of distilled water to prepare an aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-5).
  • this dispersion A-6 was dropped into the aqueous solution B-5 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-5 simultaneously with the dispersion A-6, and the pH of the aqueous solution B-5 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours.
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a nickel oxide-yttria stabilized zirconia composite powder A-6.
  • the masses of Ni, Y and Zr in this composite powder A-6 were measured by fluorescent X-ray analysis, and the mass ratio of nickel oxide (NiO) to yttria stabilized zirconia (YSZ) was calculated based on the measurement results. . As a result, the mass ratio (NiO: YSZ) was 45:55.
  • the heat treatment conditions were 600 ° C for 6 hours and 800 ° C for 6 hours, and nickel oxide of each composite powder.
  • the crystallite size of yttria stabilized zirconia was measured. The results are shown in Table 2.
  • 1.5 g of the mixed powder obtained by heat treating the composite powder A-6 for 6 hours at 1000 ° C. was mixed with 0.5 g of polyethylene glycol (molecular weight: 400) and 10 g of ethanol in a ball mill.
  • the mixed solution was heated to 80 ° C. to evaporate and remove ethanol to prepare a nickel oxide-yttria stabilized zirconia paste.
  • this paste was applied by screen printing onto an 8 mol% yttria-stabilized zirconia (8YSZ) substrate having a thickness of 300 ⁇ m, and then fired at 1300 ° C. for 2 hours to form a fuel electrode on the 8YSZ substrate.
  • LSM La 0.8 Sr 0.2 MnO 3
  • the electrode reaction resistance of the fuel electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the fuel electrode was evaluated by measuring the AC impedance between the reference electrode and the fuel electrode.
  • the measurement temperature was 600 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz.
  • the measurement results are shown in Table 2. Further, when the surface of the fuel electrode was analyzed by TEM-EDX, it was confirmed that Ni, Y, and Zr were composite particles in which Ni, Y, and Zr were uniformly distributed at a high density.
  • Example 7 To 50 g of a 10 mol% yttria-stabilized zirconia (10YSZ) dispersion having a dispersion average particle diameter of 7.5 nm (solid content concentration of 10YSZ: 8.4 mass%, pH: 4.6), nickel nitrate hexahydrate (Ni A nickel nitrate aqueous solution in which 75.00 g of (NO 3 ) 2 ⁇ 6H 2 O) is dissolved in 650 g of dilute nitric acid having a pH of 3.3 is added and stirred, and the nickel ion-containing 10 mol% yttria stabilized zirconia (Ni-10YSZ) acidic dispersion (PH: 3.95) was prepared (dispersion A-7).
  • Ni-10YSZ nickel ion-containing 10 mol% yttria stabilized zirconia
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-5).
  • this dispersion A-7 was dropped into the aqueous solution B-5 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-5 simultaneously with the dispersion A-7, and the pH of the aqueous solution B-5 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours.
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-7 of nickel oxide-yttria stabilized zirconia (NiO-YSZ).
  • the masses of Ni, Y and Zr in this composite powder A-7 were measured by fluorescent X-ray analysis, and the mass ratio of nickel oxide (NiO) and yttria stabilized zirconia (YSZ) was calculated based on the measurement results. .
  • the mass ratio (NiO: YSZ) was 82:18.
  • the heat treatment conditions were set at two temperatures of 600 ° C. for 6 hours and 800 ° C. for 6 hours.
  • the crystallite size of yttria stabilized zirconia was measured. The results are shown in Table 2.
  • LSM La 0.8 Sr 0.2 MnO 3
  • the electrode reaction resistance of the fuel electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the fuel electrode was evaluated by measuring the AC impedance between the reference electrode and the fuel electrode.
  • the measurement temperature was 600 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz.
  • the measurement results are shown in Table 2. Further, when the surface of the fuel electrode was analyzed by TEM-EDX, it was confirmed that Ni, Y, and Zr were composite particles in which Ni, Y, and Zr were uniformly distributed at a high density.
  • “Comparative Example 3” 8.4 g of 10 mol% yttria-stabilized zirconia powder TZ-10Y (manufactured by Tosoh Corporation) was added to 41.6 g of dilute nitric acid having a pH of 3.3 and dispersed using an ultrasonic homogenizer to prepare a dispersion.
  • the dispersion average particle diameter of the yttria-stabilized zirconia powder in this dispersion was 120 nm.
  • an aqueous nickel nitrate solution prepared by dissolving 30.82 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 .6H 2 O) in 650 g of dilute nitric acid having a pH of 3.3 was added to this dispersion, followed by stirring.
  • aqueous ammonium hydrogen carbonate solution (basic aqueous carbonate solution) (aqueous solution B-5).
  • this dispersion A-8 was dropped into the aqueous solution B-5 to obtain a neutralized precipitate.
  • a 25 mass% aqueous ammonia solution was dropped into the aqueous solution B-5 simultaneously with the dispersion A-8, and the pH of the aqueous solution B-5 was maintained at 8.
  • the neutralized precipitate thus obtained was washed with water four times by a suction filtration washing device to remove impurity ions, followed by solvent substitution with ethanol, and then dried in a dryer at 80 ° C. for 24 hours.
  • the obtained dried product was pulverized in a mortar and heat-treated in an electric furnace to obtain a composite powder A-8 of nickel oxide-yttria stabilized zirconia (NiO-YSZ).
  • the masses of Ni, Y and Zr in this composite powder A-8 were measured by fluorescent X-ray analysis, and the mass ratio of nickel oxide (NiO) to yttria stabilized zirconia (YSZ) was calculated based on the measurement results. .
  • the mass ratio (NiO: YSZ) was 65:35.
  • the heat treatment was performed at 600 ° C. for 6 hours and at 800 ° C. for 6 hours.
  • the crystallite size of yttria stabilized zirconia was measured. The results are shown in Table 2.
  • LSM La 0.8 Sr 0.2 MnO 3
  • the electrode reaction resistance of the fuel electrode was measured using the electrochemical property evaluation apparatus shown in FIG.
  • dry air is supplied to the air electrode and the reference electrode, and humidified hydrogen gas having a composition of 3% H 2 O-97% H 2 is supplied to the fuel electrode at a flow rate of 50 mL / min.
  • the electrode reaction resistance of the fuel electrode was evaluated by measuring the AC impedance between the reference electrode and the fuel electrode.
  • the measurement temperature was 600 ° C. and 800 ° C., and the measurement frequency was 10 kHz to 0.1 Hz.
  • the measurement results are shown in Table 2.
  • the composite ceramic powder according to Embodiment 1 of the present invention includes zirconia particles made of yttria-stabilized zirconia and A 1-x B x C 1-y D y O 3 (where A is selected from the group of La and Sm).
  • B is one or more elements selected from the group of Sr, Ca and Ba
  • C is one or two elements selected from the group of Co and Mn
  • D is one or two elements selected from the group of Fe and Ni, and among elements included in 0.1 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.3)
  • A, B Adding a zirconia acidic dispersion containing one or more ions selected from the group of C and D to an alkaline solution to form a neutralized precipitate, and heat treating the neutralized precipitate
  • the distribution and composition control of multiple types of oxide particles at the nanometer level Solid oxide fuel cell because it is a composite ceramic powder containing a perovskite type oxide and zirconia that has excellent control properties, a large number of three-phase interfaces, and excellent oxygen ion generation.
  • the composite ceramic powder according to the second embodiment of the present invention generates a neutralized precipitate by adding a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions to an alkaline solution.
  • a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions to an alkaline solution.
  • the composite ceramic powder according to the second embodiment of the present invention generates a neutralized precipitate by adding a zirconia acidic dispersion containing zirconia particles made of yttria-stabilized zirconia and nickel ions to an alkaline solution.
  • nickel oxide and zirconia with excellent distribution and composition controllability of multiple types of oxide particles, many three-phase interfaces, and excellent electronic conductivity. Since it is a composite ceramic powder, its applicability is great in solid oxide fuel cells and various industrial fields related to them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 ナノメートルレベルでの分布性、組成制御性、酸素イオン発生性又は電子伝導性に優れた複合セラミックス粉体及び製造方法並びに固体酸化物形燃料電池を提供する。本発明の複合セラミックス粉体は、A1-x1-y(AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素、0.1≦x≦0.5、0≦y≦0.3)の酸化物若しくは酸化ニッケル とジルコニアとを含有し、イットリア安定化ジルコニアからなる粒子と、上記のA、B、C及びDの群から選択される1種または2種以上のイオン若しくはニッケルイオンとを含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成し、この中和沈殿物を200℃以上にて熱処理した。

Description

複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
 本発明は、複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)に関し、さらに詳しくは、ジルコニア粒子と、ペロブスカイト型酸化物粒子若しくは酸化ニッケル粒子とを含み、粒子の分布性及び組成制御性に優れた複合セラミックス粉体及びその製造方法、この複合セラミックス粉体を電極用材料として用いた固体酸化物形燃料電池に関するものである。
 本願は、2008年6月27日に、日本に出願された特願2008-168633号および2008年12月10日に、日本に出願された特願2008-314958号に基づき優先権を主張し、その内容をここに援用する。
 従来、複数種の酸化物を含む複合セラミックス粉体を製造する方法としては、通常、複数種の酸化物粉体をボールミル、自動乳鉢等の解砕・粉砕機を用いて、それぞれの粉体を解砕・粉砕しながら攪拌混合して複合セラミックス粉体とする機械的混合方法が一般的である。また、熱作用により粉末間の結合を促進させるメカノケミカル的手法を併せ持ったメカノケミカル的機械混合法も用いられている。
 ところで、従来の方法で得られた複合セラミックス粉体は、複数種の酸化物1次粒子同士が凝集して不均一に混合された複合粉体であったり、あるいは、複数種の酸化物1次粒子それぞれが凝集して粗大な複合粉体になってしまう等の問題があった。したがって、このような複合粉体を触媒や燃料電池用電極として用いた場合には、特性を充分に発揮することができないという不具合があった。
 そこで、これらの問題点を解決する複合セラミックス粉体の製造方法として、複合セラミックス粉体を構成する複数種の金属イオン、例えば固体酸化物形燃料電池の空気極原料粉体であれば、Laイオン、Srイオン、Mnイオン、Zrイオン及びYイオンを含む溶液にアルカリ溶液を加えて中和沈殿物を生成させ、その後、この中和沈殿物を熱処理等することにより酸化物を生成させ、複合セラミックス粉体を得る、いわゆる共沈焼成法も知られている(特許文献1、2)。
 また、固体酸化物形燃料電池の空気極においては、複合セラミックス粒子の原料粉体の一部を仮焼するとともに粒子径を制御することにより、空気極の経時的劣化を防ぐことも検討されている(特許文献3)。
 一方、固体酸化物形燃料電池の燃料極用複合セラミック粉体の製造方法としては、イットリア安定化ジルコニア(YSZ)またはサマリアドープセリアからなる酸素イオン導電性を有する酸化物粉体を、ニッケルイオンまたはコバルトイオンを含む溶液中に浸漬した後、乾燥し、次いで、加熱処理して酸素イオン導電性を有する酸化物粉体の表面にニッケル酸化物またはコバルト酸化物を保持し、この酸化物粉体にさらにニッケルまたはコバルトの酸化物粉体を混合して原料粉体とする方法が提案されている(特許文献4)。
 また、酸化物の均一性や組成の制御性に優れた方法としてミスト熱分解法が知られており、例えば、イットリア安定化ジルコニア粒子と酢酸ニッケルとを含む溶液をミスト化し、このミストを乾燥した後に酢酸ニッケルの熱分解温度以上に加熱し、イットリア安定化ジルコニア粒子群が酸化ニッケル粒子群の表面側に偏在した複合体粒子を得る方法が提案されている(特許文献5)。
特開2000-44245号公報 特開平9-86932号公報 特開2006-40822号公報 特許第3565696号公報 特許第3193294号公報
 しかしながら、共沈焼成法の場合、共沈の条件により沈殿物中の金属イオンの複合状態が変動するため、この沈殿物を熱処理した際の各セラミックスの生成状態にも変動が生じ、得られる複合セラミックス粒子の特性が均一になり難いという問題点があった。
 また、複合セラミックス粒子の原料粉体の粒子径を制御する場合においても、その制御範囲はマイクロメートルレベルであった。
 また、従来のミスト熱分解法では、確かに、複数種の酸化物の分布の均一性や組成の制御性は改善されるものの、得られた複合体粒子中の酸化物の1次粒子径が大きく、したがって、この粗粒の複合体粒子を触媒や燃料電池用電極として用いた場合、充分な特性が得られないという問題点があった。
 ここで、固体酸化物形燃料電池の分野では、各電極は反応触媒としての役割を有しており、反応場となるのは三相界面であるといわれている。
 固体酸化物形燃料電池の空気極における三相とは、酸素イオン導電性を示すセラミックス粒子、電極を構成するセラミックス粒子及び空気等のガスであって、A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)-イットリア安定化ジルコニア(A1-x1-y-YSZ)(空気極)/イットリア安定化ジルコニア(電解質)系では、A1-x1-y、イットリア安定化ジルコニア及び空気等のガスが全て接する部分が三相界面である。したがって、固体酸化物形燃料電池の出力特性を向上させるには、空気極の三相界面の増大による酸素イオンの発生量の増加が必要になる。この三相界面の大きさが性能を左右するために、これらのセラミックス粒子を充分に微細化する必要があり、そこで、さらなる微細化が可能な、ナノメートルレベルで均一に複合化された複合セラミック粒子が望まれている。
 本発明は、上記の課題を解決するためになされたものであって、複数種の酸化物粒子のナノメートルレベルでの分布性、組成制御性に優れ、しかも三相界面が多く、酸素イオン発生性にも優れた複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池を提供することを第1目的とする。
 また、固体酸化物形燃料電池の燃料極における三相とは、酸素イオン導電性を示すセラミックス粒子、電極を構成するセラミックス粒子及び水素等の燃料ガスであって、ニッケル-イットリア安定化ジルコニア(Ni-YSZ)(燃料極)/イットリア安定化ジルコニア(電解質)系では、ニッケル(Ni)、イットリア安定化ジルコニア及び燃料ガスが全て接する部分が三相界面である。したがって、固体酸化物形燃料電池の出力特性を向上させるには、燃料極の三相界面の増大による電子の発生量の増加、及び発生した電子の外部回路への効率的な供給が必要になる。
 そこで、複数種の酸化物粒子それぞれの粒子径がより均一で、分布性や組成制御性に優れ、三相界面のより多い複合セラミックス粉体、すなわち1次粒子径のより小さい複合セラミックス粉体が求められているが、なかなか難しいのが現状である。
 本発明は、上記の課題を解決するためになされたものであって、複数種の酸化物粒子の分布性、組成制御性に優れ、しかも三相界面が多く、電子の発生性と電子伝導性に優れた複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池を提供することを第2目的とする。
 本発明者等は、上記の課題を解決するために鋭意検討を重ねた結果、第1目的を達成する手段として、A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)にて表される酸化物と、ジルコニアとを含有してなる複合セラミックス粉体を製造するに際して、イットリア安定化ジルコニア(YSZ)からなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、この中和沈殿物を200℃以上の温度にて熱処理すれば、複数種の酸化物粒子のナノメートルレベルでの分布性、組成制御性に優れ、しかも三相界面が多く、酸素イオン発生性にも優れた複合セラミックス粉体を容易に得ることができることを見出し、本発明の実施形態1を完成するに至った。
 すなわち、本発明の実施形態1の複合セラミックス粉体は、A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)にて表される酸化物と、ジルコニアとを含有してなる複合セラミックス粉体であって、
 イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して得られた中和沈殿物を熱処理してなることを特徴とする。
 前記ジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は20nm以下であることが好ましい。
 本発明の実施形態1の複合セラミックス粉体の製造方法は、A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)にて表される酸化物と、ジルコニアとを含有してなる複合セラミックス粉体の製造方法であって、
 イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理し、前記A1-x1-yで表される酸化物とジルコニアとを含有する複合粉体を生成することを特徴とする。
 前記ジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は20nm以下であることが好ましい。
 前記ジルコニア酸性分散液における前記A、B、C及びDの群から選択される1種または2種以上のイオンの酸化物換算の質量百分率(M)と前記ジルコニア粒子の質量百分率(Z)との比(M:Z)は、
    M:Z=90:10~10:90
の範囲にあることが好ましい。
 本発明の実施形態1の固体酸化物形燃料電池は、本発明の実施形態1の複合セラミックス粉体を電極材料とすることを特徴とする。
 また、本発明者等は、上記の課題を解決するために鋭意検討を重ねた結果、第2目的を達成する手段として、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して中和沈殿物を生成させ、この中和沈殿物を熱処理すれば、粒子の分布性、組成制御性に優れ、しかも三相界面が多く、電子の発生性と電子伝導性にも優れた複合セラミックス粉体を容易に得ることができることを見出し、本発明の実施形態2を完成するに至った。
 すなわち、本発明の実施形態2の複合セラミックス粉体は、酸化ニッケルとジルコニアとを含有してなる複合セラミックス粉体であって、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して得られた中和沈殿物を熱処理してなることを特徴とする。
 前記ジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は20nm以下であることが好ましい。
 本発明の実施形態2の複合セラミックス粉体の製造方法は、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理し、酸化ニッケルとジルコニアとを含有する粉体を生成することを特徴とする。
 前記ジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は20nm以下であることが好ましい。
 前記ジルコニア酸性分散液における前記ニッケルイオンのモル百分率(M)と前記ジルコニア粒子のモル百分率(Z)との比(M:Z)は、
    M:Z=90:10~10:90
の範囲にあることが好ましい。
 本発明の実施形態2の固体酸化物形燃料電池は、本発明の実施形態2の複合セラミックス粉体を電極材料とすることを特徴とする。
 また、本発明の固体酸化物形燃料電池は、本発明の実施形態1の複合セラミックス粉体を空気極材料とし、かつ本発明の実施形態2の複合セラミックス粉体を燃料極材料とすることも可能である。
 本発明の実施形態1の複合セラミックス粉体によれば、イットリア安定化ジルコニアからなるジルコニア粒子と、A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して得られた中和沈殿物を熱処理したので、複数種の酸化物粒子からなる粉体におけるナノメートルレベルでの分布性を向上させることができ、粒子の組成制御性を向上させることができる。したがって、複数種の酸化物粒子におけるナノメートルレベルでの分布性、組成制御性に優れ、しかも三相界面が多く、酸素イオン発生性に優れた複合セラミックス粉体を提供することができる。
 本発明の実施形態1の複合セラミックス粉体の製造方法によれば、イットリア安定化ジルコニアからなるジルコニア粒子と、A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理するので、A1-x1-yで表される酸化物とジルコニアとを含有する複合粉体を、容易かつ安価に作製することができる。
 本発明の実施形態1の固体酸化物形燃料電池によれば、本発明の複合セラミックス粉体を電極材料としたので、外部回路から供給される電子と酸素ガスとのイオン化反応を効率良く行うことができる。したがって、酸素イオン化量を増大させることができ、発生した酸素イオンを電解質へ効率的に供給することができる。その結果、電池の出力及び特性を向上させることができる。
 本発明の実施形態2の複合セラミックス粉体によれば、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して得られた中和沈殿物を熱処理したので、複数種の酸化物粒子からなる粉体における粒子の分布性を向上させることができ、粒子の組成制御性を向上させることができる。したがって、複数種の酸化物粒子の分布性、組成制御性に優れ、しかも三相界面が多く、電子の発生性と電子伝導性に優れた複合セラミックス粉体を提供することができる。
 本発明の実施形態2の複合セラミックス粉体の製造方法によれば、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理するので、酸化ニッケルとジルコニアとを含有する複合セラミックス粉体を、容易かつ安価に作製することができる。
 本発明の実施形態2の固体酸化物形燃料電池によれば、本発明の複合セラミックス粉体を電極材料としたので、電子の発生量を増大させることができる。その結果、電子を外部回路へ効率的に供給することができ、出力特性を向上させることができる。
本発明の一実施形態の固体酸化物形燃料電池の電極を評価するための電気化学特性評価装置を示す模式図である。 本発明の実施例1の複合粉体A-1の走査透過型電子顕微鏡像である。 本発明の実施例1の複合粉体A-1の透過型電子顕微鏡像である。 本発明の実施例5の酸化ニッケル-イットリア安定化ジルコニア複合粒子を示す透過型電子顕微鏡像である。
 本発明の複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池を実施するための最良の形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
<本発明の実施形態1>
[複合セラミックス粉体]
 本発明の実施形態1の複合セラミックス粉体は、A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)にて表される酸化物と、ジルコニアとを含有してなる複合セラミックス粉体であり、イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有する実施形態1のジルコニア酸性分散液をアルカリ溶液に添加して得られた実施形態1の中和沈殿物を熱処理してなる粉体である。
 上記実施形態1のジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は、20nm以下であることが好ましい。
 この実施形態1の複合セラミックス粉体は、イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理することにより作製される。
[複合セラミックス粉体の製造方法]
 本発明の実施形態1の複合セラミックス粉体の製造方法について、以下、詳細に説明する。
「ジルコニア酸性分散液の作製」
 ジルコニア分散液に、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンを添加し、実施形態1のジルコニア酸性分散液を作製する。
 この実施形態1のジルコニア分散液に含まれるジルコニア粒子は、イットリア安定化ジルコニア粒子である。
 このイットリア安定化ジルコニア粒子は、水熱合成法や焼成法により作製することができ、例えば、次に挙げる方法が好適である(特開2006-16236号公報参照)。
 この方法は、金属塩溶液を塩基性溶液にて中和させて金属酸化物前駆体を生成させ、この金属酸化物前駆体から金属酸化物ナノ粒子を製造する方法であり、この金属塩溶液中の金属イオンまたは金属酸化物イオンの価数をm、この塩基性溶液中の水酸基のモル比をnとするとき、これらm及びnが次式
   0.5<n<m  ……(1)
を満たすように、金属塩溶液に塩基性溶液を加えて金属塩溶液部分中和させ、次いで、この部分中和された溶液に無機塩を加えて混合溶液とし、この混合溶液を加熱する方法である。
 この金属塩溶液としては、イットリウム(Y)塩及びジルコニウム(Zr)塩を含む水溶液が用いられる。
 このイットリア安定化ジルコニアからなるジルコニア粒子の分散平均粒子径は、20nm以下であることが好ましい。
 その理由は、分散平均粒子径が20nmを超えると、後工程でアルカリ溶液を加えたときに、ジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上の元素との不均一な沈殿物が生成し易くなり、その結果、分布性が悪く、組成の不均一な複合セラミックス粉体が生じる虞があるからである。
 ここで、分散平均粒子径とは、分散液中の粒子がブラウン運動により拡散する速度を動的光散乱法により光学的に測定することで、この分散液における粒度分布を測定し、この粒度分布の最大値に対応する粒子径のことである。
 次いで、このジルコニア分散液に、塩酸、硝酸、酢酸等の酸を添加し、この分散液のpH(水素イオン濃度)を4以下に調製し、ジルコニア酸性分散液とする。
 ここで、pHを4以下としたのは、後工程で、前記A、B、C及びDの群から選択される1種または2種以上の元素の塩化物、硝酸塩、硫酸塩、酢酸塩等を含む水溶液を混合させた際に、前記A、B、CまたはDの水酸化物等の沈殿物が生じないようにするためである。
 次いで、このジルコニア酸性分散液に、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上の元素の塩化物、硝酸塩、硫酸塩、酢酸塩等の塩を含む水溶液を添加し、イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンとが共存する実施形態1のジルコニア酸性分散液を作製する。
 この実施形態1のジルコニア酸性分散液におけるA、B、C及びDの群から選択される1種または2種以上のイオンの酸化物換算の質量百分率(M)とジルコニア粒子の質量百分率(Z)との比(M:Z)は、
    M:Z=90:10~10:90
の範囲にあることが好ましく、より好ましくは、
    M:Z=80:20~20:80
の範囲である。
 比(M:Z)を上記の範囲内とすることにより、イットリア安定化ジルコニアからなるジルコニア粒子中に、A、B、C及びDの群から選択される1種または2種以上の元素を含むペロブスカイト型の酸化物粒子が複合化された複合セラミックス粒子、あるいは、A、B、C及びDの群から選択される1種または2種以上の元素を含むペロブスカイト型の酸化物粒子中に、イットリア安定化ジルコニアからなるジルコニア粒子が複合化された複合セラミックス粒子、を自由に制御作製することができる。
 この比(M:Z)が上記の範囲を外れた場合、複合セラミックス粒子の表面における少量成分の粒子の露出割合が著しく低下し、したがって、三相界面量が大幅に低下し、その結果、固体酸化物形燃料電池(SOFC)用電極としての電気的特性も大幅に低下するので好ましくない。
 この実施形態1のジルコニア酸性分散液における、イットリア安定化ジルコニアからなるジルコニア粒子と、A、B、C及びDの群から選択される1種または2種以上のイオンとの合計の濃度については、特に制限はないが、生産性及びハンドリング性の観点から、ジルコニア粒子とA、B、C及びDの群から選択される1種または2種以上のイオンとの合計が0.5質量%~10重量%程度が好ましい。
「中和沈殿物の生成」
 上記実施形態1のジルコニア酸性分散液を、アルカリ溶液に添加し、実施形態1の中和沈殿物を生成する。
 アルカリ溶液としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、炭酸アンモニウム((NHCO)、炭酸水素アンモニウム(NHHCO)、アンモニア水(NHOH)、水溶性有機アミン類の水溶液等を用いることができる。
 このアルカリ溶液における濃度としては、特に制限を設けるものではないが、生産性やハンドリングの観点から0.1mol%~5mol%の範囲が好ましい。
 また、上記実施形態1のジルコニア酸性分散液を添加するアルカリ溶液中のアルカリ量としては、ジルコニア酸性分散液を添加して中和沈殿物が生成した後の溶液のpHが6以上となるように、アルカリ溶液の量を調整する。その理由は、生成後の溶液のpHが6未満、すなわち酸性側になった場合、A、B、C及びDの群から選択される1種または2種以上のイオンの中和が不十分になり、得られる複合セラミックス粉体の組成の均一性が低下するからである。
 上記実施形態1のジルコニア酸性分散液をアルカリ溶液に添加する際の、それぞれの溶液の温度については、常温で良く、より好ましくは1℃~50℃の範囲である。
「中和沈殿物の熱処理」
 上記実施形態1の中和沈殿物から、通常の濾過洗浄装置等を用いて、アルカリイオンやハロゲンイオン等の不純物イオンを除去し、その後、乾燥機を用いて乾燥する。
 次いで、得られた乾燥物を、例えば、電気炉等を用いて、大気雰囲気中、200℃以上、好ましくは500℃以上かつ1000℃以下の最高保持温度にて熱処理することにより、A、B、C及びDの群から選択される1種または2種以上の元素を含むペロブスカイト型の酸化物粒子と、イットリア安定化ジルコニアからなるジルコニア粒子とからなる実施形態1の複合セラミックス粉体を作製する。
 ここで、熱処理の最高保持温度を200℃以上と限定した理由は、最高保持温度が200℃より低いと、A、B、C及びDの群から選択される1種または2種以上の元素を含む酸化物粒子の生成が不十分になり、その結果、イットリア安定化ジルコニアからなるジルコニア粒子中に、A、B、C及びDの群から選択される1種または2種以上の元素を含む酸化物粒子が複合化された複合セラミックス粒子、あるいは、A、B、C及びDの群から選択される1種または2種以上の元素を含む酸化物粒子中に、イットリア安定化ジルコニアからなるジルコニア粒子が複合化された複合セラミックス粒子、を自由に制御作製することができないからである。
 この方法では、熱処理前の乾燥物は、ナノメートルサイズの微細なイットリア安定化ジルコニアからなるジルコニア粒子と、A、B、C及びDの群から選択される1種または2種以上の元素を含む酸化物前駆体粒子が均一に混合された状態であり、しかも、その均一に分布するジルコニア粒子が熱処理時のペロブスカイト型の酸化物粒子の融着の防止及び粒成長の防止を行う。よって、熱処理により複合セラミックス粉体中に粗大なペロブスカイト型の酸化物粒子を生成する虞がなく、イットリア安定化ジルコニアからなるジルコニア粒子、ペロブスカイト型の酸化物粒子、共に微細な粒径の実施形態1の複合セラミックス粉体を作製することができる。
[固体酸化物形燃料電池]
 本発明の実施形態1の固体酸化物形燃料電池は、上記実施形態1の複合セラミックス粉体を空気極の電極材料としたものである。この電極材料は、外部回路から供給される電子と酸素ガスとのイオン化反応を効率良く行うことができる。したがって、空気極における酸素イオン化量を増大させることができ、発生した酸素イオンを電解質へ効率的に供給することができる。その結果、電池の出力及び特性を向上させることができる。
 上記実施形態1の複合セラミックス粉体を用いて、固体酸化物形燃料電池の空気極を作製する方法としては、一般的に用いられる方法で良く、例えば、上記の複合セラミックス粉体と、ポリエチレングリコール、ポリビニルブチラール等のバインダーとを混合して得られたペーストを、イットリア安定化ジルコニア等からなる固体電解質基板の表面に、印刷法等にて塗布して膜を形成した後、酸化性雰囲気下、例えば、空気中にて、700℃~1400℃の範囲内の温度で焼成する方法等である。
 上記実施形態1の複合セラミックス粉体は、イットリア安定化ジルコニア(YSZ)粒子とA、B、C及びDの群から選択される1種または2種以上の元素を含むペロブスカイト型の酸化物粒子がナノメートルサイズで分散された複合粒子であるから、この固体酸化物形燃料電池の発電時の使用温度においても、このペロブスカイト型の酸化物の融着や粒成長を抑制することができる。したがって、三相界面量が多く、酸素イオン発生性にも優れた空気極を備えた固体酸化物形燃料電池を提供することができる。
 図1は電気化学特性評価装置を示す模式図であり、固体酸化物形燃料電池の電極の電気特性を測定するための装置である。
 図において、1はイットリア安定化ジルコニア等の電解質、2は白金(Pt)からなる参照極、3は電解質1の上面に形成され、上記実施形態1の複合セラミックス粉体を用いて作製されたLa0.8Sr0.2MnO(LSM)等からなる空気極、4は参照極2の下面に形成されたNiO-YSZ、CoO-YSZ等からなる燃料極、5は空気極3及び燃料極4それぞれの上に配置された白金網、6はガラスシール、7、8は同軸的に配設され互いに径の異なるアルミナ管、9は白金線、10は乾燥空気、11は3%HO-97%Hの組成の加湿水素ガスである。
 ここで、上記の固体酸化物形燃料電池の空気極3の電極反応抵抗を測定するには、電解質1の上面に空気極3及び白金網5を順次取り付け、参照極2の下面に燃料極4及び白金網5を順次取り付け、空気極3に乾燥空気10を、燃料極4に加湿水素ガス11を、それぞれ供給しつつ、600℃~800℃の温度範囲における燃料極4と参照極2との間の交流インピーダンスを空気極3を対極として測定する。
 以上説明したように、本発明の実施形態1の複合セラミックス粉体によれば、イットリア安定化ジルコニア粒子からなるジルコニア粒子、A、B、C及びDの群から選択される1種または2種以上の元素を含むペロブスカイト型の酸化物粒子、共に微細な粒径の粒子とすることができ、したがって、これらの粒子の分布性を向上させることができ、粒子の組成制御性を向上させることができる。したがって、イットリア安定化ジルコニアからなるジルコニア粒子、A、B、C及びDの群から選択される1種または2種以上の元素を含むペロブスカイト型の酸化物粒子等の複数種の酸化物粒子のナノメートルレベルの分布性、組成制御性に優れ、しかも三相界面が多く、酸素イオン発生性に優れた複合セラミックス粉体を提供することができる。
 本発明の実施形態1の複合セラミックス粉体の製造方法によれば、イットリア安定化ジルコニアからなるジルコニア粒子と、A1-x1-yDyOに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理するので、A1-x1-yDyOで表される酸化物とイットリア安定化ジルコニアからなるジルコニアとを含有する微細な粒径の複合セラミックス粉体を、容易かつ安価に作製することができる。
 本発明の実施形態1の固体酸化物形燃料電池によれば、本実施形態の複合セラミックス粉体を空気極の電極材料としたので、外部回路から供給される電子と酸素ガスとのイオン化反応を効率良く行うことができる。したがって、空気極における酸素イオンの発生量すなわち酸素イオン化量を増大させ、発生した酸素イオンを電解質へ効率的に供給することができる。その結果、電池の出力及び特性を向上させることができる。
<本発明の実施形態2> 
[複合セラミックス粉体]
 本発明の実施形態2の複合セラミックス粉体は、酸化ニッケルとジルコニアとを含有してなる複合セラミックス粉体であり、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有する実施形態2のジルコニア酸性分散液をアルカリ溶液に添加して得られた実施形態2の中和沈殿物を熱処理してなる粉体である。
 上記実施形態2のジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は、20nm以下であることが好ましい。
 この実施形態2の複合セラミックス粉体は、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有する実施形態2のジルコニア酸性分散液を、アルカリ溶液に添加して実施形態2の中和沈殿物を生成させ、次いで、この実施形態2の中和沈殿物を200℃以上の温度にて熱処理することにより作製される。
[複合セラミックス粉体の製造方法]
 本発明の実施形態2の複合セラミックス粉体の製造方法について、以下、詳細に説明する。
「ジルコニア酸性分散液の作製」
 本発明の実施形態1のA1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンの代わりに、ニッケルイオンを添加する以外は本発明の実施形態1と同様にして、ジルコニア分散液にニッケルイオンを添加した、実施形態2のジルコニア酸性分散液を作製する。
「中和沈殿物の生成」
 本発明の実施形態1と同様に、上記実施形態2のジルコニア酸性分散液をアルカリ溶液に添加し、実施形態2の中和沈殿物を生成する。
「中和沈殿物の熱処理」
 上記実施形態2の中和沈殿物から、通常の濾過洗浄装置等を用いて、アルカリイオンやハロゲンイオン等の不純物イオンを除去し、その後、乾燥機を用いて乾燥する。
 次いで、得られた乾燥物を、例えば、電気炉等を用いて、大気雰囲気中、200℃以上、好ましくは500℃以上かつ1000℃以下の最高保持温度にて熱処理することにより、酸化ニッケル粒子と、イットリア安定化ジルコニアからなるジルコニア粒子とからなる実施形態2の複合セラミックス粉体を作製する。
 ここで、熱処理の最高保持温度を200℃以上と限定した理由は、最高保持温度が200℃より低いと、酸化ニッケル粒子の生成が不十分になり、その結果、イットリア安定化ジルコニアからなるジルコニア粒子中に酸化ニッケル粒子が複合化された複合セラミックス粒子、あるいは、酸化ニッケル粒子中にイットリア安定化ジルコニアからなるジルコニア粒子が複合化された複合セラミックス粒子、を自由に制御作製することができないからである。
 この方法では、熱処理前の乾燥物は、ナノメートルサイズの微細なイットリア安定化ジルコニアからなるジルコニア粒子と酸化ニッケルの前駆体粒子とが均一に混合された状態であり、しかも、その均一に分布するジルコニア粒子が熱処理時の酸化ニッケルの融着の防止及び粒成長の防止を行う。よって、熱処理により複合セラミックス粉体中に粗大な酸化ニッケル粒子を生成する虞がなく、イットリア安定化ジルコニアからなるジルコニア粒子及び酸化ニッケル粒子共に微細な粒径の複合セラミックス粉体を作製することができる。
[固体酸化物形燃料電池]
 本発明の実施形態2の固体酸化物形燃料電池は、上記実施形態2の複合セラミックス粉体を燃料極の電極材料としたものである。この電極材料は、電子の発生量を増大させることができるので、電子を外部回路へ効率的に供給することができ、出力特性を向上させることができる。
 上記実施形態2の複合セラミックス粉体を用いて、固体酸化物形燃料電池の燃料極を作製する方法としては、一般的に用いられる方法で良く、例えば、上記の複合セラミックス粉体と、ポリエチレングリコール、ポリビニルブチラール等のバインダーとを混合して得られたペーストを、イットリア安定化ジルコニアからなる固体電解質基板の表面に、印刷法等にて塗布して膜を形成した後、大気雰囲気下、1200℃~1500℃の範囲内の温度で焼成する方法等である。
 上記実施形態2の複合セラミックス粉体は、この固体酸化物形燃料電池の発電時の還元雰囲気下にて酸化ニッケルの還元金属化処理を行った場合においても、ニッケルの融着や粒成長を抑制することができる。したがって、三相界面量が多く、電子伝導性にも優れた燃料極を備えた固体酸化物形燃料電池を提供することができる。
 図1は電気化学特性評価装置を示す模式図であり、固体酸化物形燃料電池の電極の電気特性を測定するための装置である。
 図において、1はイットリア安定化ジルコニア等の電解質、2は白金(Pt)からなる参照極、3は電解質1の上面に形成されたLa0.8Sr0.2MnO(LSM)等からなる空気極、4は参照極2の下面に形成され、上記実施形態2の複合セラミックス粉体を用いて作製された酸化ニッケル-イットリア安定化ジルコニア等からなる燃料極、5は空気極3及び燃料極4それぞれの上に配置された白金網、6はガラスシール、7、8は同軸的に配設され互いに径の異なるアルミナ管、9は白金線、10は乾燥空気、11は3%HO-97%Hの組成の加湿水素ガスである。
 ここで、上記の固体酸化物形燃料電池の燃料極4の電極反応抵抗を測定するには、電解質1の上面に空気極3及び白金網5を順次取り付け、参照極2の下面に燃料極4及び白金網5を順次取り付け、空気極3に乾燥空気10を、燃料極4に加湿水素ガス11を、それぞれ供給しつつ、600℃~800℃の温度範囲における燃料極4と参照極2との間の交流インピーダンスを空気極3を対極として測定する。
 以上説明したように、本発明の実施形態2の複合セラミックス粉体によれば、イットリア安定化ジルコニアからなるジルコニア粒子、酸化ニッケル粒子、共に微細な粒径の粒子とすることができ、したがって、これらの粒子の分布性を向上させることができ、粒子の組成制御性を向上させることができる。したがって、イットリア安定化ジルコニアからなるジルコニア粒子、酸化ニッケル粒子等の複数種の酸化物粒子の分布性、組成制御性に優れ、しかも三相界面が多く、電子伝導性に優れた複合セラミックス粉体を提供することができる。
 本発明の実施形態2の複合セラミックス粉体の製造方法によれば、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理するので、酸化ニッケル粒子と、イットリア安定化ジルコニアからなるジルコニア粒子と、を含有する微細な粒径の複合セラミックス粉体を、容易かつ安価に作製することができる。
 本発明の実施形態2の固体酸化物形燃料電池によれば、本実施形態の複合セラミックス粉体を燃料極の電極材料としたので、燃料極における電子の発生量を増大させることができる。その結果、電子を外部回路へ効率的に供給することができ、出力特性を向上させることができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
「実施例1」
 分散平均粒子径が7.5nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:3.95)500gに、La0.8Sr0.2MnOの組成となるように硝酸ランタン〔La(NO・6HO〕62.81g、硝酸ストロンチウム〔Sr(NO〕7.68g、硝酸マンガン〔Mn(NO・6HO〕52.04gをpH2.0の希硝酸1000gに溶解したLa、Sr及びMnの金属塩水溶液を加えて攪拌し、La、Sr及びMnのイオン含有10mol%イットリア安定化ジルコニア(LSM-10YSZ)酸性分散液(pH:2.0)を作製した(分散液A-1)。
 次いで、炭酸水素アンモニウム(NHHCO)75.72gを蒸留水3000gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-1)。
 次いで、この分散液A-1を水溶液B-1に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-1と同時に水溶液B-1に滴下し、水溶液B-1のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)の複合粉体A-1を得た。
 この複合粉体A-1中のLa、Sr、Mn、Y及びZrの質量を蛍光X線分析により測定し,この測定結果に基づきLa0.8Sr0.2MnO(LSM)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(LSM:YSZ)は50:50であった。
 図2は、この複合粉体A-1の走査透過型電子顕微鏡(STEM)像、図3は、この複合粉体A-1の透過型電子顕微鏡(TEM)像である。
 この図によれば、LSM粒子中にYSZ粒子が複合化されて一体化していることがわかる。
 また、この複合粉体A-1の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体のLSM及びYSZの結晶子径を測定した。その結果を表1に示す。
 次いで、上記の複合粉体A-1を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)ペーストA-1を作製した。
 次に、酸化ニッケル(NiO)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、NiOペーストを作製した。
 次いで、上記のNiOペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1200℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、上記のLSM-10YSZペーストA-1を、燃料極を形成した8YSZ基板の燃料極とは反対側の面にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この空気極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、燃料極を対極とし、参照極-空気極間の交流インピーダンスを測定することにより、空気極の電極反応抵抗を評価した。なお、測定温度は700℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表1に示す。
[実施例2]
 分散平均粒子径が7.5nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:3.95)500gに、La0.8Sr0.2MnOの組成となるように硝酸ランタン〔La(NO・6HO〕146.56g、硝酸ストロンチウム〔Sr(NO〕17.91g、硝酸マンガン〔Mn(NO・6HO〕121.43gをpH2.0の希硝酸1000gに溶解したLa、Sr及びMnの金属塩水溶液を加えて攪拌し、La、Sr及びMnのイオン含有10mol%イットリア安定化ジルコニア(LSM-10YSZ)酸性分散液(pH:2.0)を作製した(分散液A-2)。
 次いで、実施例1に準じて、炭酸水素アンモニウム(NHHCO)167.7gを蒸留水3000gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-2)。
 次いで、この分散液A-2を水溶液B-2に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-2と同時に水溶液B-2に滴下し、水溶液B-2のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)の複合粉体A-2を得た。
 この複合粉体A-2中のLa、Sr、Mn、Y及びZrの質量を蛍光X線分析により測定し,この測定結果に基づきLa0.8Sr0.2MnO(LSM)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(LSM:YSZ)は70:30であった。
 また、この複合粉体A-2の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体のLSM及びYSZの結晶子径を測定した。その結果を表1に示す。
 次いで、上記の複合粉体A-2を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)ペーストA-2を作製した。
 次に、酸化ニッケル(NiO)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、NiOペーストを作製した。
 次いで、上記のNiOペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1200℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、上記のLSM-10YSZペーストA-2を、燃料極を形成した8YSZ基板の燃料極とは反対側の面にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この空気極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、燃料極を対極とし、参照極-空気極間の交流インピーダンスを測定することにより、空気極の電極反応抵抗を評価した。なお、測定温度は700℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表1に示す。
[実施例3]
 分散平均粒子径が7.5nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:3.95)500gに、La0.8Sr0.2MnOの組成となるように硝酸ランタン〔La(NO・6HO〕26.92g、硝酸ストロンチウム〔Sr(NO〕3.29g、硝酸マンガン〔Mn(NO・6HO〕22.30gをpH2.0の希硝酸1000gに溶解したLa、Sr及びMnの金属塩水溶液を加えて攪拌し、La、Sr及びMnのイオン含有10mol%イットリア安定化ジルコニア(LSM-10YSZ)酸性分散液(pH:2.0)を作製した(分散液A-3)。
 次いで、実施例1に準じて、炭酸水素アンモニウム(NHHCO)32.45gを蒸留水3000gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-3)。
 次いで、この分散液A-3を水溶液B-3に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-3と同時に水溶液B-3に滴下し、水溶液B-3のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)の複合粉体A-3を得た。
 この複合粉体A-3中のLa、Sr、Mn、Y及びZrの質量を蛍光X線分析により測定し,この測定結果に基づきLa0.8Sr0.2MnO(LSM)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(LSM:YSZ)は30:70であった。
 また、この複合粉体A-3の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体のLSM及びYSZの結晶子径を測定した。その結果を表1に示す。
 次いで、上記の複合粉体A-3を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)ペーストA-3を作製した。
 次に、酸化ニッケル(NiO)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、NiOペーストを作製した。
 次いで、上記のNiOペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1200℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、上記のLSM-10YSZペーストA-3を、燃料極を形成した8YSZ基板の燃料極とは反対側の面にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この空気極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、燃料極を対極とし、参照極-空気極間の交流インピーダンスを測定することにより、空気極の電極反応抵抗を評価した。なお、測定温度は700℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表1に示す。
[実施例4]
 分散平均粒子径が20nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:3.95)500gに、La0.8Sr0.2MnOの組成となるように硝酸ランタン〔La(NO・6HO〕62.81g、硝酸ストロンチウム〔Sr(NO〕7.68g、硝酸マンガン〔Mn(NO・6HO〕52.04gをpH2.0の希硝酸1000gに溶解したLa、Sr及びMnの金属塩水溶液を加えて攪拌し、La、Sr及びMnのイオン含有10mol%イットリア安定化ジルコニア(LSM-10YSZ)酸性分散液(pH:2.0)を作製した(分散液A-4)。
 次いで、炭酸水素アンモニウム(NHHCO)75.72gを蒸留水3000gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-4)。
 次いで、この分散液A-4を水溶液B-4に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-4と同時に水溶液B-4に滴下し、水溶液B-4のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)の複合粉体A-4を得た。
 この複合粉体A-4中のLa、Sr、Mn、Y及びZrの質量を蛍光X線分析により測定し,この測定結果に基づきLa0.8Sr0.2MnO(LSM)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(LSM:YSZ)は50:50であった。
 また、この複合粉体A-4の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体のLSM及びYSZの結晶子径を測定した。その結果を表1に示す。
 次いで、上記の複合粉体A-4を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)ペーストA-4を作製した。
 次に、酸化ニッケル(NiO)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、NiOペーストを作製した。
 次いで、上記のNiOペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1200℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、上記のLSM-10YSZペーストA-4を、燃料極を形成した8YSZ基板の燃料極とは反対側の面にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この空気極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、燃料極を対極とし、参照極-空気極間の交流インピーダンスを測定することにより、空気極の電極反応抵抗を評価した。なお、測定温度は700℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表1に示す。
「比較例1」
 硝酸ランタン〔La(NO・6HO〕62.81g、硝酸ストロンチウム〔Sr(NO〕7.68g、硝酸マンガン〔Mn(NO・6HO〕52.04gをpH2.0の希硝酸1000gに溶解し、La、Sr及びMnの金属塩水溶液を作製した。この金属塩水溶液における酸化物の組成は、La0.8Sr0.2MnOとなる。
 次いで、炭酸水素アンモニウム(NHHCO)75.72gを蒸留水3000gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した。
 次いで、上記のLa、Sr及びMnの金属塩水溶液を、上記の炭酸水素アンモニウム水溶液に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液をLa、Sr及びMnの金属塩水溶液と同時に炭酸水素アンモニウム水溶液に滴下し、炭酸水素アンモニウム水溶液のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて800℃にて6時間熱処理し、La0.8Sr0.2MnO(LSM)粉体R-1を得た。
 得られたLSM粉体R-1を0.75g、及び10mol%イットリア安定化ジルコニア(10YSZ)(東ソー社製)粉末0.75gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、分散液を得た。
 次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)ペーストR-1を作製した。
 なお、比較例1では、LSM粉体R-1と10YSZ粉末との複合化の均一性は評価していない。これは、原料粉体においては、LSM粉体R-1と10YSZ粉末が個別で複合粉体を形成しておらず、LSMの結晶子径を測定しても複合化の均一性を評価できないこと、またLSM粉体と10YSZ粉末を含む分散液においては、成分ごとの分散平均粒子径は求めることができないためである。
 次いで、酸化ニッケル(NiO)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、NiOペーストを作製した。
 次いで、上記のNiOペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1200℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、上記のLSM-10YSZペーストR-1を、燃料極を形成した8YSZ基板の燃料極とは反対側の面にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この空気極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、燃料極を対極とし、参照極-空気極間の交流インピーダンスを測定することにより、空気極の電極反応抵抗を評価した。なお、測定温度は700℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表1に示す。
「比較例2」
 硝酸ランタン〔La(NO・6HO〕62.81g、硝酸ストロンチウム〔Sr(NO〕7.68g、硝酸マンガン〔Mn(NO・6HO〕52.04g、硝酸ジルコニウム〔Zr(NO・5HO〕130.25g、硝酸イットリウム〔Y(NO・6HO〕12.91gをpH2.0の希硝酸1000gに溶解し、La、Sr、Mn、Zr及びYの金属塩水溶液を作製した。
 ここでは、この原料を用いて作製される酸化物が、La0.8Sr0.2MnO及び10mol%イットリア安定化ジルコニアとなるように、各金属イオンの組成比が、La:Sr:Mnは0.8:0.2:1、Zr:Yは0.9:0.1となるようにした。
 次いで、炭酸水素アンモニウム(NHHCO)75.72gを蒸留水3000gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した。
 次いで、上記のLa、Sr、Mn、Zr及びYの金属塩水溶液を、上記の炭酸水素アンモニウム水溶液に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液をLa、Sr及びMnの金属塩水溶液と同時に炭酸水素アンモニウム水溶液に滴下し、炭酸水素アンモニウム水溶液のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)の複合粉体R-2を得た。
 この複合粉体R-2中のLa、Sr、Mn、Y及びZrの質量を蛍光X線分析により測定し,この測定結果に基づきLa0.8Sr0.2MnO(LSM)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(LSM:YSZ)は50:50であった。
 また、この複合粉体R-2の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体のLSM及びYSZの結晶子径を測定した。その結果を表1に示す。
 次いで、上記の複合粉体R-2を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、La0.8Sr0.2MnO-イットリア安定化ジルコニア(LSM-10YSZ)ペーストR-2を作製した。
 次に、酸化ニッケル(NiO)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発させて除去し、NiOペーストを作製した。
 次いで、上記のNiOペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1200℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、上記のLSM-10YSZペーストR-2を、燃料極を形成した8YSZ基板の燃料極とは反対側の面にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この空気極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、燃料極を対極とし、参照極-空気極間の交流インピーダンスを測定することにより、空気極の電極反応抵抗を評価した。なお、測定温度は700℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1から4においては、10mol%イットリア安定化ジルコニアからなるジルコニア(10YSZ)粒子と、La0.8Sr0.2MnO(LSM)粒子を形成するためのLa、Sr、Mnイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して得られた中和沈殿物を熱処理することにより得られた複合セラミックス粉体であることから、これらの複合粒子を用いて形成した固体酸化物形燃料電池における電極反応抵抗値は従来技術(比較例)に比べて低く、良好な特性を示している。
 特に、原料とした10YSZ粒子の分散平均粒子径が20nm以下と小さいことから、生成したLSM粒子の結晶子径が15nm程度、10YSZ粒子の結晶子径は5nm程度と、共にナノメートルレベルであり、これらの複合粒子を用いて形成した固体酸化物形燃料電池における電極反応抵抗値は極めて低く、良好な特性を示している。
 一方、比較例1においては、電極反応抵抗値が高く、良好な特性は得られなかった。これは、原料として10YSZ粒子とLSM粒子の混合物を用いたため、それぞれの1次粒子同士が凝集しており、得られた複合セラミックス粉体における10YSZ粒子、LSM粒子は不均一に混合された状態となっているためと考えられる。
 また、比較例2においては、複合セラミックス粉体において生成した各粒子の寸法が微小であるにもかかわらず、電極反応抵抗値が高く、良好な特性は得られなかった。これは、La、Sr、Mn、Zr及びY各金属イオンの共存下で中和沈殿物を得ているため、1000℃熱処理後の生成物に、10YSZ粒子、LSM粒子以外の生成物、例えばLaZrOのような電極反応抵抗値を上昇させるような不純物が発生し、特性の劣化を招いているためと考えられる。
「実施例5」
 分散平均粒子径が7.5nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:4.6)50gに、硝酸ニッケル6水和物(Ni(NO・6HO)30.82gをpH3.3の希硝酸650gに溶解した硝酸ニッケル水溶液を加えて攪拌し、ニッケルイオン含有10mol%イットリア安定化ジルコニア(Ni-10YSZ)酸性分散液(pH:3.95)を作製した(分散液A-5)。
 次いで、炭酸水素アンモニウム(NHHCO)4.19gを蒸留水133gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-5)。
 次いで、この分散液A-5を水溶液B-5に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-5と同時に水溶液B-5に滴下し、水溶液B-5のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、酸化ニッケル-イットリア安定化ジルコニア(NiO-YSZ)の複合粉体A-5を得た。
 この複合粉体A-5中のNi、Y及びZrの質量を蛍光X線分析により測定し、この測定結果に基づき酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(NiO:YSZ)は65:35であった。
 図4は、この複合粉体A-5を示す透過型電子顕微鏡(TEM)像である。
 この図によれば、酸化ニッケル粒子中にイットリア安定化ジルコニア粒子が複合化されて一体化されていることが分かる。
 また、この複合粉体A-5の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体の酸化ニッケル及びイットリア安定化ジルコニアの結晶子径を測定した。その結果を表2に示す。
 次いで、上記の複合粉体A-5を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、酸化ニッケル-イットリア安定化ジルコニアペーストを作製した。次いで、このペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1300℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、La0.8Sr0.2MnO(LSM)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、LSMペーストを作製した。次いで、このLSMペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この燃料極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、空気極を対極とし、参照極-燃料極間の交流インピーダンスを測定することにより、燃料極の電極反応抵抗を評価した。なお、測定温度は600℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表2に示す。
 また、この燃料極の表面をTEM-EDXにより分析したところ、NiとY及びZrとが高密度に均一に分布する複合粒子であることが確認された。
「実施例6」
 分散平均粒子径が7.5nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:4.6)50gに、硝酸ニッケル6水和物(Ni(NO・6HO)13.50gをpH3.3の希硝酸650gに溶解した硝酸ニッケル水溶液を加えて攪拌し、ニッケルイオン含有10mol%イットリア安定化ジルコニア(Ni-10YSZ)酸性分散液(pH:3.95)を作製した(分散液A-6)。
 次いで、実施例5に準じて、炭酸水素アンモニウム(NHHCO)4.19gを蒸留水133gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-5)。
 次いで、この分散液A-6を水溶液B-5に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-6と同時に水溶液B-5に滴下し、水溶液B-5のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、酸化ニッケル-イットリア安定化ジルコニアの複合粉体A-6を得た。
 この複合粉体A-6中のNi、Y及びZrの質量を蛍光X線分析により測定し、この測定結果に基づき酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(NiO:YSZ)は45:55であった。
 また、この複合粉体A-6の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体の酸化ニッケル及びイットリア安定化ジルコニアの結晶子径を測定した。その結果を表2に示す。
 次いで、上記の複合粉体A-6を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、酸化ニッケル-イットリア安定化ジルコニアペーストを作製した。次いで、このペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1300℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、La0.8Sr0.2MnO(LSM)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、LSMペーストを作製した。次いで、このLSMペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この燃料極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、空気極を対極とし、参照極-燃料極間の交流インピーダンスを測定することにより、燃料極の電極反応抵抗を評価した。なお、測定温度は600℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表2に示す。
 また、この燃料極の表面をTEM-EDXにより分析したところ、NiとY及びZrとが高密度に均一に分布する複合粒子であることが確認された。
「実施例7」
 分散平均粒子径が7.5nmの10mol%イットリア安定化ジルコニア(10YSZ)分散液(10YSZの固形分濃度:8.4質量%、pH:4.6)50gに、硝酸ニッケル6水和物(Ni(NO・6HO)75.00gをpH3.3の希硝酸650gに溶解した硝酸ニッケル水溶液を加えて攪拌し、ニッケルイオン含有10mol%イットリア安定化ジルコニア(Ni-10YSZ)酸性分散液(pH:3.95)を作製した(分散液A-7)。
 次いで、実施例5に準じて、炭酸水素アンモニウム(NHHCO)4.19gを蒸留水133gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-5)。
 次いで、この分散液A-7を水溶液B-5に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-7と同時に水溶液B-5に滴下し、水溶液B-5のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、酸化ニッケル-イットリア安定化ジルコニア(NiO-YSZ)の複合粉体A-7を得た。
 この複合粉体A-7中のNi、Y及びZrの質量を蛍光X線分析により測定し、この測定結果に基づき酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(NiO:YSZ)は82:18であった。
 また、この複合粉体A-7の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体の酸化ニッケル及びイットリア安定化ジルコニアの結晶子径を測定した。その結果を表2に示す。
 次いで、上記の複合粉体A-7を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、酸化ニッケル-イットリア安定化ジルコニアペーストを作製した。次いで、このペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1300℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、La0.8Sr0.2MnO(LSM)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、LSMペーストを作製した。次いで、このLSMペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この燃料極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、空気極を対極とし、参照極-燃料極間の交流インピーダンスを測定することにより、燃料極の電極反応抵抗を評価した。なお、測定温度は600℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表2に示す。
 また、この燃料極の表面をTEM-EDXにより分析したところ、NiとY及びZrとが高密度に均一に分布する複合粒子であることが確認された。
「比較例3」
 10mol%イットリア安定化ジルコニア粉末 TZ-10Y(東ソー(株)社製)8.4gをpH3.3の希硝酸41.6gに加え、超音波ホモジナイザを用いて分散させ、分散液を作製した。この分散液中のイットリア安定化ジルコニア粉末の分散平均粒子径は、120nmであった。
 次いで、この分散液に、硝酸ニッケル6水和物(Ni(NO・6HO)30.82gをpH3.3の希硝酸650gに溶解した硝酸ニッケル水溶液を加えて攪拌し、ニッケルイオン含有10mol%イットリア安定化ジルコニア(Ni-10YSZ)酸性分散液(pH:3.95)を作製した(分散液A-8)。
 次いで、実施例5に準じて、炭酸水素アンモニウム(NHHCO)4.19gを蒸留水133gに溶解し、炭酸水素アンモニウム水溶液(塩基性の炭酸水溶液)を作製した(水溶液B-5)。
 次いで、この分散液A-8を水溶液B-5に滴下し、中和沈殿物を得た。ここでは、25質量%のアンモニア水溶液を分散液A-8と同時に水溶液B-5に滴下し、水溶液B-5のpHを8に保持した。
 次いで、得られた中和沈殿物を吸引濾過洗浄装置にて4回水洗して不純物イオンを除去し、次いでエタノールにて溶媒置換を行い、その後、乾燥機中、80℃にて24時間乾燥した。次いで、得られた乾燥物を乳鉢で粉砕し、電気炉にて熱処理し、酸化ニッケル-イットリア安定化ジルコニア(NiO-YSZ)の複合粉体A-8を得た。
 この複合粉体A-8中のNi、Y及びZrの質量を蛍光X線分析により測定し、この測定結果に基づき酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)との質量比を算出した。その結果、質量比(NiO:YSZ)は65:35であった。
 また、この複合粉体A-8の複合化の均一性を評価するために、熱処理条件を600℃にて6時間、800℃にて6時間の2通りとし、それぞれの複合粉体の酸化ニッケル及びイットリア安定化ジルコニアの結晶子径を測定した。その結果を表2に示す。
 次いで、上記の複合粉体A-8を1000℃にて6時間熱処理した混合粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、酸化ニッケル-イットリア安定化ジルコニアペーストを作製した。次いで、このペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1300℃にて2時間焼成し、8YSZ基板上に燃料極を形成した。
 次いで、La0.8Sr0.2MnO(LSM)粉体1.5gを、ポリエチレングリコール(分子量:400)0.5g及びエタノール10gと共にボールミルにて混合し、次いで、この混合溶液を80℃に加温してエタノールを蒸発除去し、LSMペーストを作製した。次いで、このLSMペーストを、厚み300μmの8mol%イットリア安定化ジルコニア(8YSZ)基板上にスクリーン印刷にて塗布し、その後、1100℃にて2時間焼成し、8YSZ基板上に空気極を形成した。さらに、この8YSZ基板の側面に白金線を巻き付け、参照極とした。
 次いで、この燃料極の電極反応抵抗を、図1に示す電気化学特性評価装置を用いて測定した。ここでは、空気極と参照極に乾燥空気を、また燃料極に3%HO-97%Hの組成の加湿水素ガスを、それぞれ50mL/分の流量にて供給し、空気極を対極とし、参照極-燃料極間の交流インピーダンスを測定することにより、燃料極の電極反応抵抗を評価した。なお、測定温度は600℃、800℃の2通りとし、測定周波数は10kHz~0.1Hzとした。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の実施形態1の複合セラミックス粉体は、イットリア安定化ジルコニアからなるジルコニア粒子と、A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)に含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して中和沈殿物を生成し、この中和沈殿物を熱処理することにより、複数種の酸化物粒子のナノメートルレベルでの分布性、組成制御性に優れ、しかも三相界面が多く、酸素イオン発生性に優れた、ペロブスカイト型の酸化物とジルコニアとを含有してなる複合セラミックス粉体としたものであるから、固体酸化物形燃料電池及びそれに関するさまざまな工業分野においてもその利用可能性は大である。
 本発明の実施形態2の複合セラミックス粉体は、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して中和沈殿物を生成し、この中和沈殿物を熱処理することにより、複数種の酸化物粒子の分布性、組成制御性に優れ、しかも三相界面が多く、電子伝導性に優れた、酸化ニッケルとジルコニアとを含有してなる複合セラミックス粉体としたものであるから、固体酸化物形燃料電池及びそれに関するさまざまな工業分野においてもその利用可能性は大である。
 1 電解質
 2 参照極
 3 空気極
 4 燃料極
 5 白金網
 6 ガラスシール
 7、8 アルミナ管
 9 白金線
 10 乾燥空気
 11 加湿水素ガス

Claims (7)

  1.  A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)にて表される酸化物または酸化ニッケルと、ジルコニアとを含有してなる複合セラミックス粉体であって、
     イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンまたはニッケルイオンと、を含有するジルコニア酸性分散液をアルカリ溶液に添加して得られた中和沈殿物を熱処理してなることを特徴とする複合セラミックス粉体。
  2. 前記ジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は20nm以下であることを特徴とする請求項1記載の複合セラミックス粉体。
  3.  A1-x1-y(式中、AはLa及びSmの群から選択される1種または2種の元素、BはSr、Ca及びBaの群から選択される1種または2種以上の元素、CはCo及びMnの群から選択される1種または2種の元素、DはFe及びNiの群から選択される1種または2種の元素であり、0.1≦x≦0.5、0≦y≦0.3)にて表される酸化物または酸化ニッケルと、ジルコニアとを含有してなる複合セラミックス粉体の製造方法であって、
     イットリア安定化ジルコニアからなるジルコニア粒子と、前記A1-x1-yに含まれる元素のうちA、B、C及びDの群から選択される1種または2種以上のイオンまたはニッケルイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成させ、次いで、この中和沈殿物を200℃以上の温度にて熱処理し、前記A1-x1-yで表される酸化物とジルコニアとを含有する複合粉体を生成することを特徴とする複合セラミックス粉体の製造方法。
  4.  前記ジルコニア酸性分散液におけるジルコニア粒子の分散平均粒子径は20nm以下であることを特徴とする請求項3記載の複合セラミックス粉体の製造方法。
  5.  前記ジルコニア酸性分散液における前記A、B、C及びDの群から選択される1種または2種以上のイオンまたはニッケルイオンの酸化物換算の質量百分率(M)と前記ジルコニア粒子の質量百分率(Z)との比(M:Z)は、
        M:Z=90:10~10:90
    の範囲にあることを特徴とする請求項3または4記載の複合セラミックス粉体の製造方法。
  6.  請求項1または2記載の複合セラミックス粉体を電極材料としたことを特徴とする固体酸化物形燃料電池。
  7.  請求項1または2記載の、A1-x1-yにて表される酸化物とジルコニアとを含有してなる複合セラミックス粉体を空気極材料とし、かつ
     請求項1または2記載の、酸化ニッケルとジルコニアとを含有してなる複合セラミックス粉体を燃料極材料としたことを特徴とする固体酸化物形燃料電池。
PCT/JP2009/061744 2008-06-27 2009-06-26 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池 WO2009157546A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/000,957 US20110111230A1 (en) 2008-06-27 2009-06-26 Composite ceramic powder, process of producing the same, and solid-oxide fuel cell
CN2009801235656A CN102066263A (zh) 2008-06-27 2009-06-26 复合陶瓷粉体及其制造方法以及固体氧化物型燃料电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008168633A JP5401847B2 (ja) 2008-06-27 2008-06-27 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
JP2008-168633 2008-06-27
JP2008314958A JP5375063B2 (ja) 2008-12-10 2008-12-10 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
JP2008-314958 2008-12-10

Publications (1)

Publication Number Publication Date
WO2009157546A1 true WO2009157546A1 (ja) 2009-12-30

Family

ID=41444606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061744 WO2009157546A1 (ja) 2008-06-27 2009-06-26 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池

Country Status (3)

Country Link
US (1) US20110111230A1 (ja)
CN (1) CN102066263A (ja)
WO (1) WO2009157546A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190149A (ja) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd 複合セラミックス粉体およびその製造方法並びに固体酸化物形燃料電池
JP2011190148A (ja) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
JP2012221946A (ja) * 2011-04-04 2012-11-12 Korea Institute Of Science And Technology ナノ構造複合体空気極を含む固体酸化物燃料電池及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204334B2 (ja) 2011-07-06 2013-06-05 本田技研工業株式会社 金属酸素電池
CN105565806B (zh) * 2014-12-08 2017-04-05 比亚迪股份有限公司 一种陶瓷及其制备方法
US20220173410A1 (en) * 2019-03-25 2022-06-02 Sakai Chemical Industry Co., Ltd. Metal composite oxide and production method thereof, and electrode for solid oxide fuel cell
WO2024117418A1 (en) * 2022-11-30 2024-06-06 Samsung Electro-Mechanics Co., Ltd. Manufacturing method of solid oxide cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226209A (ja) * 1994-02-10 1995-08-22 Nippon Telegr & Teleph Corp <Ntt> 固体燃料電池用空気極材料および固体燃料電池
JP2001118590A (ja) * 1999-10-21 2001-04-27 Toto Ltd 高導電性固体電解質膜及びその製造方法
JP2008098156A (ja) * 2006-09-12 2008-04-24 Toto Ltd 固体酸化物形燃料電池セル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193294B2 (ja) * 1996-05-24 2001-07-30 財団法人ファインセラミックスセンター 複合セラミックス粉末とその製造方法、固体電解質型燃料電池用の電極及びその製造方法
JP2008019144A (ja) * 2006-07-14 2008-01-31 Sumitomo Osaka Cement Co Ltd ジルコニア含有セラミックス複合材料の製造方法
CN101362205B (zh) * 2008-05-19 2010-12-15 清华大学 固体氧化物电解池NiO-YSZ氢电极粉体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226209A (ja) * 1994-02-10 1995-08-22 Nippon Telegr & Teleph Corp <Ntt> 固体燃料電池用空気極材料および固体燃料電池
JP2001118590A (ja) * 1999-10-21 2001-04-27 Toto Ltd 高導電性固体電解質膜及びその製造方法
JP2008098156A (ja) * 2006-09-12 2008-04-24 Toto Ltd 固体酸化物形燃料電池セル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUYOSHI SATO ET AL.: "Ekiso Goseiho o Mochiita NiO/YSZ Nano Fukugo Ryushi no Gosei to SOFC Anode Denkyoku eno Oyo", SOCIETY OF POWDER TECHNOLOGY, JAPAN KENKYU HAPPYOKAI KOEN RONBUNSHU, vol. 2007, 16 October 2007 (2007-10-16), pages 95 - 96 *
KAZUYOSHI SATO ET AL.: "LSM-YSZ Fukugo Ryushi no Funtai Kozo ga SOFC Cathode no Kozo to Tokusei ni Oyobosu Eikyo", PROCEEDINGS OF FALL MEETING OF THE CERAMIC SOCIETY OF JAPAN, vol. 18TH, 27 September 2005 (2005-09-27), pages 344 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190149A (ja) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd 複合セラミックス粉体およびその製造方法並びに固体酸化物形燃料電池
JP2011190148A (ja) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
JP2012221946A (ja) * 2011-04-04 2012-11-12 Korea Institute Of Science And Technology ナノ構造複合体空気極を含む固体酸化物燃料電池及びその製造方法

Also Published As

Publication number Publication date
US20110111230A1 (en) 2011-05-12
CN102066263A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
Medvedev et al. BaCeO3: Materials development, properties and application
WO2009157546A1 (ja) 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
Anjaneya et al. Investigation on the Sr-doped ceria Ce1− xSrxO2− δ (x= 0.05–0.2) as an electrolyte for intermediate temperature SOFC
JP5260209B2 (ja) 固体酸化物形燃料電池用セルの製造方法および固体酸化物形燃料電池用セル
Priya et al. Facile wet-chemical synthesis and evaluation of physico-chemical characteristics of novel nanocrystalline NdCoO3-based perovskite oxide as cathode for LT-SOFC applications
JP5617717B2 (ja) 複合セラミックス材料及びその製造方法並びに固体酸化物形燃料電池
JP5439959B2 (ja) 固体酸化物形燃料電池用電極及び固体酸化物形燃料電池用セル
JP3160147B2 (ja) 微細複合セラミックス粉末の製造方法、製造装置、該セラミックス粉末及び該セラミックス粉末を電極材料とする固体電解質型燃料電池
JP5401847B2 (ja) 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
JP2011190148A (ja) 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
JP5175154B2 (ja) ニッケル複合酸化物の製造方法、該方法により得られるニッケル複合酸化物、該ニッケル複合酸化物を用いてなる酸化ニッケル−安定化ジルコニア複合酸化物、該酸化ニッケル−安定化ジルコニア複合酸化物を含有する固体酸化物型燃料電池用燃料極
JP6673511B1 (ja) 固体酸化物形燃料電池空気極用の粉体およびその製造方法
JP5375063B2 (ja) 複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池
Aarthi et al. Strontium mediated modification of structure and ionic conductivity in samarium doped ceria/sodium carbonate nanocomposites as electrolytes for LTSOFC
WO2020196101A1 (ja) 金属複合酸化物およびその製造方法、ならびに固体酸化物形燃料電池用電極
KR20100104415A (ko) 나노 금속 산화물 분말의 제조 방법
Norman et al. Influence of transition or lanthanide metal doping on the properties of Sr0. 6Ba0. 4Ce0. 9M0. 1O3-δ (M= In, Pr or Ga) electrolytes for proton-conducting solid oxide fuel cells
JP2008071668A (ja) 複合粒子粉末及びその製造方法、固体酸化物形燃料電池の電極及びその製造方法、並びに固体酸化物形燃料電池用セル
KR100955514B1 (ko) 입방정 이터비아 안정화 지르코니아 및 이를 이용한 고체산화물연료전지
JP5516468B2 (ja) 複合セラミックス材料及びその製造方法並びに固体酸化物形燃料電池
JP2005139024A (ja) 混合導電性セラミックス材料およびこの材料を用いた固体酸化物形燃料電池
TWI841711B (zh) 金屬複合氧化物及其製造方法、以及固體氧化物型燃料電池用電極
JP2011190149A (ja) 複合セラミックス粉体およびその製造方法並びに固体酸化物形燃料電池
JPH05266892A (ja) 固体電解質型燃料電池用電極材料の作製方法
WO2021085366A1 (ja) 固体電解質、積層体及び燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123565.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13000957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770256

Country of ref document: EP

Kind code of ref document: A1