WO2009157465A1 - リアルタイムpcr検査に用いる標準分子及びその標準分子の検出法 - Google Patents

リアルタイムpcr検査に用いる標準分子及びその標準分子の検出法 Download PDF

Info

Publication number
WO2009157465A1
WO2009157465A1 PCT/JP2009/061459 JP2009061459W WO2009157465A1 WO 2009157465 A1 WO2009157465 A1 WO 2009157465A1 JP 2009061459 W JP2009061459 W JP 2009061459W WO 2009157465 A1 WO2009157465 A1 WO 2009157465A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
time pcr
dna
meat
standard molecule
Prior art date
Application number
PCT/JP2009/061459
Other languages
English (en)
French (fr)
Inventor
竹男 矢野
裕美子 酒井
隆 栗原
Original Assignee
オリエンタル酵母工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタル酵母工業株式会社 filed Critical オリエンタル酵母工業株式会社
Publication of WO2009157465A1 publication Critical patent/WO2009157465A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification

Definitions

  • the present invention relates to a sample using a real-time PCR method, particularly processed food using meat (pork, chicken, beef, lamb, horse meat) or at least one kind of meat as a raw material, or a processed food not including a raw material indication of meat,
  • the present invention relates to a standard molecule, a primer, a probe, and an inspection method using these, which are used for high-sensitivity quantitative PCR inspection of target DNA contained in
  • the PCR method is a method for selectively amplifying specific DNA (Non-patent Document 1), and is a technique widely used from the medical examination area to the food examination area (Non-patent Documents 2-5).
  • DNA to be examined by a real-time PCR method in which PCR is performed in the presence of a probe in which a quencher fluorescent dye and a reporter fluorescent dye are bound to the same oligonucleotide probe.
  • a method for quantifying and detecting target DNA in a sample such as a meat detection method in foods using the same (Non-patent Document 7).
  • the PCR cycle number (Ct value) when the measured fluorescence intensity rapidly increases is Since it changes depending on the number (copy number) of DNA to be examined contained in the sample, a standard curve is created from the results of PCR using standard molecules (standard nucleic acids) with various copy numbers, and the sample is verified. Thus, the number of DNAs to be examined in the sample can be measured.
  • the real-time PCR device has a feature that if a primer / probe set that can be carried out under the same PCR conditions can be designed, a plurality of DNA molecules can be detected simultaneously by using different fluorescent dyes for detection.
  • a standard molecule with a known nucleic acid copy number is required. Further, it is desired that this standard molecule can be supplied stably in order to keep the accuracy of the inspection stable.
  • PCR reaction may be inhibited due to the PCR reaction inhibitory factor being mixed in the sample due to insufficient purification of the sample DNA. Therefore, the discrimination of the false negative result can be confirmed by performing PCR targeting DNA regions (common DNA regions) held in many organisms. That is, when amplification of DNA of a target size is recognized in PCR targeting the common DNA region, it is determined that the PCR reaction has been performed without any problem, and a positive or negative determination is made from the result of the target test.
  • PCR targeting DNA regions common DNA regions held in many organisms. That is, when amplification of DNA of a target size is recognized in PCR targeting the common DNA region, it is determined that the PCR reaction has been performed without any problem, and a positive or negative determination is made from the result of the target test.
  • Non-patent Document 8 when amplification of DNA of the target size is not recognized in PCR targeting the common DNA region, it can be determined that this sample is not suitable for PCR test, and the test result cannot be detected.
  • the cause in this case is often a lack of purity of the specimen, and it is necessary to take measures such as performing DNA extraction by another method (Non-patent Document 8).
  • the cause of the false positive result of the real-time PCR test is mostly due to contamination, and discrimination of the false positive result by this is a serious problem.
  • contamination There are two main causes of contamination: mixing standard molecules into reagents, samples, etc., and mixing previously amplified PCR products (amplicons) into reagents, samples, etc. .
  • Patent Document 1 a tag sequence non-complementary to the target region is added to primers used for PCR, and an annealing step as an amplicon detection phase is added during the PCR cycle. As a result, it is possible to determine a false positive result due to amplicon contamination simultaneously with the PCR test.
  • reagents used for PCR are already mixed, and DNA amplification is confirmed by detecting fluorescence amplification in real time.
  • amplicon confirmation by electrophoresis is not required. That is, after mixing the reagent, primer, probe, and specimen and setting the test tube on the machine, the test tube is not opened. Therefore, if the test tube after amplification is securely discarded, amplicon contamination can be prevented.
  • Patent Document 1 does not show anything about the determination of a false positive result due to the mixing of standard molecules, and also for the documents already disclosed for the real-time PCR test method, standard molecules, etc.
  • Patent Document 1 does not show anything about the determination of a false positive result due to the mixing of standard molecules, and also for the documents already disclosed for the real-time PCR test method, standard molecules, etc.
  • Biosci. Biotechnol. Biochem. 71, 3131-3135 (2007) the above-mentioned food inspection method, non-patent document 7
  • nothing is shown regarding the discrimination of false positive results due to mixing of standard molecules during the inspection operation. Therefore, rapid discrimination of false positive results due to contamination with standard molecules in real-time PCR testing is not an easy task even with basic knowledge about this test, and is a very difficult task. Yes.
  • the present invention designs a non-naturally-occurring artificial DNA sequence that can be used to confirm false positive results when unintentional contamination of standard molecule reagents, specimens, etc. in real-time PCR testing is performed at the same time as testing results.
  • the present invention has been made for the purpose of providing an introduced standard molecule, a primer and a probe for specifically amplifying and detecting the standard molecule, and a test method using them.
  • the present inventors have annealed the primer and probe at the same temperature as the target region (species specific region) of the DNA to be examined in the real-time PCR test.
  • a non-naturally occurring artificial DNA sequence that can be amplified in the same PCR conditions and in the same reaction vessel, and an F-primer, an R-primer for amplifying and detecting only this DNA sequence by real-time PCR, and
  • By designing a probe and using the standard molecule for real-time PCR test that contains both the DNA sequence and the target region of the test DNA on the same molecule, and the primer and probe for the test, it is not intended during the test operation.
  • We found that false positives due to standard molecule contamination can be discriminated simultaneously with the test. It came to light.
  • an artificial DNA sequence that can be amplified and detected in the same PCR conditions and the same reaction container as the target region of the DNA to be tested, and the target region of the DNA to be tested A standard molecule for real-time PCR testing (standard nucleic acid) characterized in that both are contained on the same molecule, and a primer characterized in that only the DNA sequence can be amplified and detected by real-time PCR testing (F-primer and R-primer) and probe.
  • the sample DNA of the real-time PCR test is meat (pork, chicken, beef, lamb, horse meat), processed food using at least one kind of meat as a raw material, or processed food not including the raw material indication of meat Any one of (1) to (3), comprising a target region of meat DNA, which is obtained from any of the above and used for quantitative examination of meat DNA in these sample DNAs Standard molecules for real-time PCR testing described in 1. (5) By using the standard molecule, primer, and probe for real-time PCR testing described in any one of (1) to (4), the standard DNA is mixed into the sample DNA or reagent during the real-time PCR testing operation. A real-time PCR test method characterized in that a false positive result can be determined simultaneously with the test.
  • the sample DNA of the real-time PCR test is meat (pork, chicken, beef, lamb, horse meat), processed food using at least one kind of meat as a raw material, or processed food not including the raw material indication of meat
  • the method according to (5), wherein the meat DNA in the sample DNA is quantitatively tested using the standard molecule for real-time PCR testing described in (4).
  • Real-time PCR testing method is
  • an artificial DNA sequence that does not exist in nature characterized by having the base sequence shown in SEQ ID NO: 1 and FIGS. 4 and 5, and the base sequence shown in SEQ ID NO: 2 and FIG.
  • the F-primer characterized in that only the DNA sequence can be amplified by real-time PCR, the nucleotide sequence shown in SEQ ID NO: 3 and FIG. 6, and only the DNA sequence can be amplified by real-time PCR
  • an R-primer characterized by the above, a probe having the base sequence shown in SEQ ID NO: 4 and FIG. 6 and capable of detecting only the DNA sequence by real-time PCR.
  • the DNA sequence is included in a standard molecule for real-time PCR testing together with a target region of DNA to be tested, and the primer / probe set is annealed at the same temperature as the target region of DNA to be tested in real-time PCR testing. By doing so, it can be amplified and detected in the same PCR conditions and in the same reaction vessel as the DNA to be examined.
  • the present invention is characterized in that the base sequence shown in SEQ ID NOs: 1 to 4 comprises a base sequence in which one or several bases in the sequence are deleted, substituted or added, and is the same as the above DNA sequence DNA sequences, primers, and probes that can be amplified in the same PCR conditions and the same reaction vessel as the DNA to be examined.
  • these standard molecules, primers, and probes may be provided as reagents in a state where all are mixed.
  • the standard molecule is not limited to this, but the common DNA region (for example, 18S ribosome) used for determining that the real-time PCR test has been correctly performed together with the DNA sequence and the target region of the DNA to be tested. It preferably contains a partial base sequence of RNA genomic DNA.
  • the present invention is not limited to this, but the sample DNA of the real-time PCR test is meat (pork, chicken, beef, lamb, horse meat), or a processed food using at least one kind of meat as a raw material. And is particularly effective for a quantitative detection test of meat DNA contained in the sample DNA. Furthermore, it is particularly effective for high-sensitivity quantitative detection tests, such as meat allergen detection, that test for the presence or absence of trace amounts of meat DNA in processed DNA obtained from processed foods that do not include the display of raw meat ingredients.
  • the real-time PCR test in particular, the sample DNA does not include meat (pork, chicken, beef, lamb, horse meat), processed food using at least one kind of meat as raw material, or display of raw material of meat.
  • a construction diagram of a CONCHE standard molecule is shown.
  • the case where only one kind of meat CytB partial base sequence is introduced as the target region of the DNA to be examined is shown.
  • the construction diagram of CONCHE V standard molecule is shown.
  • As the target region of the DNA to be examined the case where all five kinds of meat CytB partial base sequences are introduced is shown.
  • FIG. 3 shows detailed positions of the chimera nucleic acid, the target region of the DNA to be tested, the amplification of the common DNA region, and the detection primer / probe of the standard molecule shown in FIGS.
  • the base sequence of MCS of the CONCHE standard molecule shown in FIG. 1 is shown.
  • the upper part shows the base sequence in the case of the standard molecule for pig detection, and the lower part shows the chicken, cow, sheep, and horse meat CytB partial base sequences.
  • the base sequence of MCS of the CONCHE V standard molecule shown in FIG. 2 is shown. Here, all five kinds of meat CytB partial base sequences are introduced.
  • the base sequences of primers and probes used in the present invention are shown.
  • the upper part shows five kinds of meat CytB partial base sequences
  • the lower part shows the base sequence amplification and detection primers / probes for the chimeric nucleic acid.
  • the PCR reaction solution composition and PCR reaction temperature conditions using the primer and probe shown in FIG. 6 are shown.
  • movement confirmation test result of the primer / probe for CONCHE standard molecule and CONCHE standard molecule detection is shown.
  • the operation confirmation test results of each primer / probe in Duplex of chimera nucleic acid detection and CytB detection for five kinds of meat standard molecules are shown.
  • the horizontal axis of each graph represents the number of PCR cycles, and the horizontal axis represents fluorescence intensity (the same applies to the following figures).
  • movement confirmation test result of the primer / probe for CONCHE standard molecule and CONCHE standard molecule detection is shown.
  • the operation confirmation test results in Duplex for CytB detection and common DNA region detection, PCR reaction solution composition, and PCR reaction temperature conditions are shown.
  • movement confirmation test result of the primer / probe for CONCHE standard molecule and CONCHE standard molecule detection is shown.
  • the specificity confirmation test result of the primer / probe for CONCHE standard molecule detection is shown.
  • the practical test result in the purified porcine genome and the purified bovine genome of the CONCHE standard molecule containing the porcine target region is shown.
  • the practical test result in the purified porcine genome and the purified shoulder bacon genome of the CONCHE standard molecule containing the porcine target region is shown.
  • the operation check test results with each primer / probe of CONCHE V standard molecule including all five kinds of meat target regions are shown.
  • the artificial DNA sequence of the present invention is a partial base sequence of 18S ribosomal RNA genomic DNA that is commonly held by many organisms, and includes a region that is used to determine that a real-time PCR test has been correctly performed.
  • the base sequence containing the target region of the 18S ribosomal RNA genomic DNA amplification primer / probe set (Applied Biosystems Japan (ABI)) and the partial base sequence of the E. coli insertion sequence iso-IS1 genome were cloned into the cloning vector pCR2.1-TOPO. It was designed in a region that spans these two genomes when introduced into (Invitrogen).
  • the F-primer for amplifying and detecting this DNA sequence is designed on the horse 18S ribosomal RNA genomic DNA, and the R-primer and probe are designed on the Escherichia coli insertion sequence iso-IS1 genome.
  • the designed DNA sequence is usually a base sequence that does not exist in nature, and only this DNA sequence is detected by the amplification / detection primer / probe set.
  • a plasmid in which the target region of the DNA subject to real-time PCR inspection is bound to the DNA sequence in the cloning vector is used as a standard molecule for real-time PCR inspection, and a fluorescent dye having an excitation wavelength different from that of the fluorescent dye used for real-time PCR inspection is used.
  • the 18S ribosomal RNA genomic DNA of horse is used as a common DNA region, and its detection probe is labeled with a fluorescent dye having an excitation wavelength different from the fluorescent dyes labeled with the above two types of probes, thereby enabling a real-time PCR test. It is also possible to determine at the same time whether or not is correctly implemented.
  • the target region of the DNA subject to real-time PCR inspection to be bound to the DNA sequence is not particularly limited as long as it is a base sequence capable of performing real-time PCR inspection.
  • a base sequence capable of performing real-time PCR inspection for example, Biosci. Biotechnol. Biochem. 71, 3131-3135 (2007) (Non-patent Document 7), a cytochrome B (CytB) partial base sequence used for real-time PCR inspection of meat can be exemplified (FIG. 4).
  • a standard molecule to which these are bound is particularly effective in determining a false positive result in a meat detection test in food.
  • PCR reaction temperature conditions are as follows: enzyme activation and initial denaturation at 50 ° C. for 2 minutes and 95 ° C. for 10 minutes, followed by DNA denaturation reaction at 95 ° C. for 15 seconds—60 ° C. for 1 minute. Conditions such as 45 cycles of annealing / extension reaction can be used. Depending on the conditions of the sample and the like, another annealing step may be used in which the annealing temperature is changed from the extension reaction temperature, and the number of reaction cycles may be appropriately increased or decreased. Adjustment of the PCR reaction temperature condition is not particularly limited, as long as it has basic knowledge about real-time PCR, it can be easily performed according to the sample DNA and the like.
  • the PCR reaction temperature conditions when the detection conditions for the DNA sequence designed above and the detection conditions for the target region of the DNA to be examined are different, either the DNA sequence, the primer, the probe, or some base sequences One or several bases are deleted, substituted, or added, and the primer and probe annealing temperature conditions are adjusted to match the detection conditions of the DNA sequence with the detection conditions of the target region of the test DNA. It can also be a standard molecule used in
  • a top strand DNA (base) in which a restriction enzyme NotI cleavage site is introduced at the 3 ′ end of the 4628th to 4684th (57 bp fragment) base sequence of the E. coli insertion sequence iso-IS1 genome GenBank Accession # D63569).
  • TTAAGTGGACGTAAAATCGGTGTGAGGGCCAACGCCCCATAATGCGGGCTGTTGCCCGGGCGC and its complementary bottom strand DNA (base sequence: GGCCCGCCGGGCCAATCCCGCCATCAGGATGCGGTCGTACGGTCTCCAACGG) Equal amounts of these were mixed, reacted at 95 ° C for 5 minutes, reacted for 1 minute each time the temperature was lowered from 94 ° C to 25 ° C by 1 ° C, and finally converted into double-stranded DNA under the reaction conditions held at 15 ° C.
  • the chimeric nucleic acid was constructed by inserting into the restriction enzyme cleavage site EcoRV-NotI portion in the previous vector.
  • a target region (CytB partial base sequence) of a primer / probe set for meat inspection was introduced downstream of the chimeric nucleic acid to construct a CONCHE standard molecule (plasmid) and a CONCHE V standard molecule (plasmid).
  • the construction diagrams (structure diagrams) of the respective plasmids are shown in FIGS. 1 and 2, and the respective base sequences of the multiple cloning sites (MCS) are shown in FIGS.
  • a reaction solution composition and a reaction temperature condition for detecting reaction (hereinafter referred to as Duplex) in the same container were designed. Since ABI 7500, which is a product of ABI, is used as the PCR device to be used, the fluorescent dyes that can be detected simultaneously are up to two types of wavelengths. Therefore, based on the relationship between the fluorescent dyes labeled on the probe, the Duct reaction solution composition of the CytB partial base sequence and the chimeric nucleic acid Duplex, and the CytB partial base sequence and the 18S ribosomal RNA genomic DNA, respectively, are as shown in FIG. Designed.
  • FIG. 11 shows the results of real-time PCR inspection using detection primers / probes for each ribosomal RNA genomic DNA.
  • the standard used was a CONCHE standard molecule containing a pig target region, 1,000, 10,000, 100,000, 1,000,000, 10,000,000 copies.
  • FIG. 13 displays the inspection results with three types of primers / probes for each meat type on the same graph. As can be seen from the results of FIG.

Abstract

【課題】リアルタイムPCR検査において、標準分子の試薬、検体等への意図しない混入による偽陽性結果の判別を、検査結果の判定時に同時に確認することができる標準分子、プライマー、プローブ及びこれらを用いた検査方法を提供する。 【解決手段】リアルタイムPCR検査の検査対象となるDNAの標的領域と同一PCR条件及び同一反応容器内で増幅することができる人為的DNA配列と、検査対象DNAの標的領域の両方を含むリアルタイムPCR検査用標準分子、及び上記DNA配列のみを増幅、検出するためのプライマー/プローブを用いて検査することで、検査中の標準分子混入による偽陽性結果を検査と同時に判別する。

Description

リアルタイムPCR検査に用いる標準分子及びその標準分子の検出法
 本発明は、リアルタイムPCR法を利用した検体、特に食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)又は少なくとも1種以上の食肉を原材料として使用した加工食品又は食肉の原材料表示を含まない加工食品、に含まれる標的DNAの高感度定量PCR検査に使用する標準分子、プライマー、プローブ及びこれらを用いた検査方法に関するものである。
 PCR法は、選択的に特定のDNAを増幅する方法であり(非特許文献1)、医学検査領域から食品検査領域にわたり広く使用されている技術である(非特許文献2-5)。さらに、検体中の検査対象となるDNAの定量測定を行う場合、クエンチャー蛍光色素とレポーター蛍光色素が同一のオリゴヌクレオチドプローブに結合されたプローブの存在下でPCRを行うリアルタイムPCR法により検査対象DNAの数を測定できることは、この分野においてはよく知られており(非特許文献6)、これを用いた食品中の食肉検出法(非特許文献7)など、検体中の標的DNA定量、検出法も開発されている。
 リアルタイムPCR検出においては、横軸にPCRサイクル数、縦軸に測定される蛍光強度を設定して曲線作成する場合、測定される蛍光強度が急激に増加する時のPCRサイクル数(Ct値)が検体中に含まれる検査対象DNAの個数(コピー数)に依存して変化するため、種々のコピー数既知の標準分子(標準核酸)でのPCRの結果から標準曲線を作成し、検体を照合することで検体中の検査対象DNAの数を測定することができる。
 なお、リアルタイムPCR機器は、同一PCR条件で実施できるプライマー/プローブセットが設計できれば、検出に使用する蛍光色素を違えることで同時に、複数のDNA分子を検出できるという特徴を有する。
 このように、リアルタイムPCR検査法により検体中の検査対象DNAの数を測定するためには、核酸コピー数既知の標準分子が必要となる。またこの標準分子は、検査の精度を安定的に保つために、安定的に供給可能であることが望まれている。
 また、リアルタイムPCR検査については、コンベンショナルタイプのPCR検査を含む他の検査方法と同様に、偽陰性、偽陽性の結果を生じる場合があるという問題点がある。
 リアルタイムPCR検査の偽陰性結果の原因の多くは、PCR反応の失敗による。DNAを対象とするPCRの場合、検体DNAの精製度の不足などにより検体中にPCR反応阻害因子が混入していることで、PCR反応が阻害される場合がある。従って、偽陰性結果の判別は、多くの生物に保持されているDNA領域(共通DNA領域)を標的としたPCRを実施することで確認できる。すなわち、共通DNA領域を標的としたPCRにおいて目的サイズのDNAの増幅が認められた場合、PCR反応が問題なく実施されたと判断し、目的検査の結果から陽性又は陰性の判断を行う。一方、共通DNA領域を標的としたPCRにおいて目的サイズのDNAの増幅が認められなかった場合、この検体はPCR検査に適さないと判断でき、検査結果としては検知不能となる。この場合の原因は検体の精製度不足であることが多く、別の手法によるDNA抽出を行うなどの対応が必要となる(非特許文献8)。
 リアルタイムPCR検査の偽陽性結果の原因はコンタミネーションによることがほとんどであり、これによる偽陽性結果の判別が重大な問題となる。コンタミネーションの主な原因としては、標準分子を試薬、検体等に混入させてしまうこと、以前に増幅させたPCR産物(アンプリコン)を試薬、検体等に混入させてしまうこと、の2つがある。
 なお、PCR検査時の偽陽性結果判定方法については、既に開示されている文献がある(特許文献1)。この文献の方法においては、PCRに使用するプライマーに標的領域と非相補的なタグ配列を付加し、PCRサイクル中にアンプリコン検出フェーズとしてのアニーリング段階を加えている。これにより、PCR検査と同時にアンプリコン混入による偽陽性結果の判定が可能である。
 但し、リアルタイムPCRでは、PCRに用いる試薬が既に混合されている形態で試薬が販売されており、またDNAの増幅確認は蛍光光度の増幅をリアルタイムに検出することで実施されるため、コンベンショナルタイプのPCRと異なりアンプリコンの電気泳動による確認を必要としない。つまり、試薬、プライマー、プローブ、検体を混合し、試験チューブを機械にセットした後は、試験チューブを開封することはない。よって、増幅後の試験チューブの廃棄を確実に行えば、アンプリコンのコンタミネーションは防ぐことが可能である。
 従って、リアルタイムPCRにおいては、検査操作中の標準分子の試薬、検体等への意図しない混入が最も頻繁でかつ有力な偽陽性原因であり、これを防ぐことが最も重要である。しかし、この検査操作中の標準分子混入は検査作業者の注意力や操作能力に大きく依存する部分であるため、これを確実に防ぐことは非常に困難である。
 さらに、操作中の標準分子混入を確実に防ぐことが困難なだけでなく、得られた結果が標準分子の混入による偽陽性か否かをすぐに判断できないため、正確で迅速な偽陽性判別が困難となっている。なお、上記文献(特許文献1)には標準分子混入による偽陽性結果の判定に関しては何ら示されておらず、また、リアルタイムPCR検査法や、標準分子等について既に開示されている文献についても、例えばBiosci.Biotechnol.Biochem.,71,3131-3135(2007)(上述の食品検査法、非特許文献7)など、検査操作中の標準分子混入による偽陽性結果判別に関して示されているものは全くない。従って、リアルタイムPCR検査における、標準分子混入が原因による偽陽性結果の迅速な判別については、この検査に関する基本的な知識を有していても容易なことではなく、非常に困難な課題となっている。
特表2007-537746号公報
Science,239,487-491(1988) BioTechniques,32,366-372(2002) Cancer,82,1419-1442(1998) Clinical Microbiology and Infection,9,263-273(2003) International Journal of Food Microbiology,83,39-48(2003) Proc.Natl.Acad.Sci.USA,88,7276-7280(1991) Biosci.Biotechnol.Biochem.,71,3131-3135(2007) Journal of Food Biochemistry,30,215-233(2006)
 本発明は、リアルタイムPCR検査において、標準分子の試薬、検体等への意図しない混入による偽陽性結果の判別を検査結果の判定時に同時に確認することができる、天然に存在しない人為的DNA配列を設計、導入した標準分子、ならびにこれを特異的に増幅、検出するプライマー、プローブの提供、及びこれらを用いた検査方法を提供することを目的としてなされたものである。
 上記目的を達成するため、本発明者らは鋭意研究の結果、リアルタイムPCR検査の検査対象となるDNAの標的領域(種特異的領域)と同じ温度でプライマー及びプローブがアニーリングすることで検査対象DNAと同一のPCR条件及び同一の反応容器内で増幅することができる、天然に存在しない人為的DNA配列、及びこのDNA配列のみをリアルタイムPCRにより増幅、検出するためのF-プライマー、R-プライマー及びプローブを設計し、このDNA配列と上記検査対象DNAの標的領域の両方を同一分子上に含むリアルタイムPCR検査用標準分子、及び上記プライマー及びプローブを検査に使用することで、検査操作中の意図しない標準分子混入による偽陽性を検査と同時に判別することができることを見いだし、本発明に至った。
 すなわち、本発明の実施形態を例示すれば次のとおりである。
(1)リアルタイムPCR検査において、検査対象となるDNAの標的領域と同一のPCR条件及び同一の反応容器内で増幅、検出することができる人為的DNA配列、及び検査対象となるDNAの標的領域の両方を同一分子上に含むことを特徴とするリアルタイムPCR検査用標準分子(標準核酸)、及び当該DNA配列のみをリアルタイムPCR検査で増幅、検出することができることを特徴とするプライマー(F-プライマー及びR-プライマー)及びプローブ。
(2)配列番号1で示される塩基配列を有することを特徴とする(1)に記載の人為的DNA配列を含む(1)に記載のリアルタイムPCR検査用標準分子、配列番号2で示される塩基配列を有することを特徴とする(1)に記載のF-プライマー、配列番号3で示される塩基配列を有することを特徴とする(1)に記載のR-プライマー及び配列番号4で示される塩基配列を有することを特徴とする(1)に記載のプローブ。
(3)配列番号1~4で示される塩基配列において、配列中の塩基が1個若しくは数個欠失、置換若しくは付加された塩基配列からなることを特徴とする(2)に記載のリアルタイムPCR検査用標準分子、F-プライマー、R-プライマー及びプローブ。
(4)リアルタイムPCR検査の検体DNAが、食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)、又は少なくとも1種以上の食肉を原材料として使用した加工食品、又は食肉の原材料表示を含まない加工食品のいずれかから得られたものであり、これらの検体DNA中の食肉DNAの定量検査に使用する、食肉DNAの標的領域を含むことを特徴とする、(1)~(3)のいずれか1項に記載のリアルタイムPCR検査用標準分子。
(5)(1)~(4)のいずれか1項に記載のリアルタイムPCR検査用標準分子、プライマー及びプローブを使用することで、リアルタイムPCR検査操作中の、検体DNA又は試薬への標準分子混入による偽陽性結果を検査と同時に判定することができることを特徴とするリアルタイムPCR検査方法。
(6)リアルタイムPCR検査の検体DNAが、食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)、又は少なくとも1種以上の食肉を原材料として使用した加工食品、又は食肉の原材料表示を含まない加工食品のいずれかから得られたものであり、(4)に記載のリアルタイムPCR検査用標準分子を用いてこれらの検体DNA中の食肉DNAの定量検査を行うことを特徴とする、(5)に記載のリアルタイムPCR検査方法。
 本発明においては、配列番号1及び図4、図5で示される塩基配列を有することを特徴とする天然には存在しない人為的DNA配列、配列番号2及び図6で示される塩基配列を有し、当該DNA配列のみをリアルタイムPCRで増幅することができることを特徴とするF-プライマー、配列番号3及び図6で示される塩基配列を有し、当該DNA配列のみをリアルタイムPCRで増幅することができることを特徴とするR-プライマー、配列番号4及び図6で示される塩基配列を有し、当該DNA配列のみをリアルタイムPCRで検出することができることを特徴とするプローブを提供している。
 さらに本発明は、上記DNA配列がリアルタイムPCR検査用標準分子中に検査対象となるDNAの標的領域と共に含まれ、リアルタイムPCR検査において検査対象DNAの標的領域と同じ温度で上記プライマー/プローブセットがアニーリングすることにより、検査対象DNAと同一PCR条件及び同一反応容器内で増幅、検出することができることを特徴とする。なお本発明には、配列番号1~4で示される塩基配列において、配列中の塩基が1個若しくは数個欠失、置換若しくは付加された塩基配列からなることを特徴し、上記DNA配列と同様に検査対象DNAと同一のPCR条件及び同一の反応容器内で増幅することができるDNA配列、プライマー、プローブを含む。なお、これらの標準分子、プライマー、プローブは、全てが混合された状態の試薬として提供されてもよい。
 また上記標準分子は、これに限定されるものではないが、上記DNA配列、検査対象DNAの標的領域と共に、リアルタイムPCR検査が正しく実施されたことの判定に使用される共通DNA領域(例えば18SリボゾームRNAゲノムDNAの部分塩基配列など)を含有することが好ましい。
 また本発明は、これに限定されるものではないが、リアルタイムPCR検査の検体DNAが、食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)、又は少なくとも1種以上の食肉を原材料として使用した加工食品から得られたものであり、この検体DNA中に含まれる食肉DNAの定量検出検査に対して特に有効であることを特徴とする。さらに、肉類アレルゲン検出など、食肉の原材料表示を含まない加工食品から得られた検体DNA中の、微量食肉DNAの存在の有無を検査する高感度定量検出検査に対しても特に有効であることを特徴とする。
 本発明によれば、リアルタイムPCR検査、特に検体DNAが食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)、又は少なくとも1種以上の食肉を原材料として使用した加工食品、又は食肉の原材料表示を含まない加工食品のいずれかから得られたものの検出検査において、標準分子の試薬、検体等への意図しない混入による偽陽性結果の判別を、同一反応容器内で、検査結果の判定時に同時に確認することができ、検査の信頼性を保障することができる。また、標準分子の混入が認められた場合には、検査に使用した試薬、検体等を、標準分子を増幅、検出するためのプライマー/プローブを用いて検査することで、その混入源の確認も容易となり、検査環境の適正化を図ることができる。
CONCHE標準分子(プラスミド)の構築図を示す。検査対象DNAの標的領域としては、肉類CytB部分塩基配列を1種類のみ導入した場合を示している。 CONCHE V 標準分子(プラスミド)の構築図を示す。検査対象DNAの標的領域としては、5種類の肉類CytB部分塩基配列をすべて導入した場合を示している。 図1及び図2で示す標準分子の、キメラ核酸、検査対象DNAの標的領域、共通DNA領域の増幅、検出用プライマー/プローブの位置詳細を示す。 図1に示したCONCHE標準分子のMCSの塩基配列を示す。上はブタ検知用標準分子の場合の塩基配列、下はニワトリ、ウシ、ヒツジ、ウマの肉類CytB部分塩基配列を示す。 図2に示したCONCHE V 標準分子のMCSの塩基配列を示す。ここでは5種の肉類CytB部分塩基配列をすべて導入している。 本発明に用いるプライマー及びプローブの塩基配列を示す。上は5種の肉類CytB部分塩基配列、下はキメラ核酸の塩基配列増幅、検出用プライマー/プローブを示す。 図6に示すプライマー及びプローブを用いたPCR反応溶液組成、PCR反応温度条件を示す。 CONCHE標準分子及びCONCHE標準分子検出用プライマー/プローブの動作確認試験結果を示す。ここでは、5種の各肉種標準分子に対する、キメラ核酸検出とCytB検出のDuplexでの各プライマー/プローブの動作確認試験結果を示す。各グラフの横軸はPCRサイクル数、横軸は蛍光強度を表す(以下の図も同様)。 CONCHE標準分子及びCONCHE標準分子検出用プライマー/プローブの動作確認試験結果を示す。ここでは、CytB検出と共通DNA領域検出のDuplexでの動作確認試験結果及びPCR反応溶液組成、PCR反応温度条件を示す。 CONCHE標準分子及びCONCHE標準分子検出用プライマー/プローブの動作確認試験結果を示す。ここでは、CONCHE標準分子検出用プライマー/プローブの特異性確認試験結果を示す。 ブタ標的領域を含むCONCHE標準分子の、精製ブタゲノム、精製ウシゲノムでの実用試験結果を示す。 ブタ標的領域を含むCONCHE標準分子の、精製ブタゲノム、精製ショルダーベーコンゲノムでの実用試験結果を示す。 5種食肉標的領域をすべて含むCONCHE V 標準分子の各プライマー/プローブでの動作確認試験結果を示す。
 本発明の人為的DNA配列は、多くの生物が共通に保持している18SリボゾームRNAゲノムDNAの部分塩基配列で、リアルタイムPCR検査が正しく実施されたことの判定に使用される領域を含む馬の18SリボゾームRNAゲノムDNA増幅プライマー/プローブセット(Applied Biosystems Japan(ABI)社製品)の標的領域を含む塩基配列と、大腸菌インサーション配列iso-IS1ゲノムの部分塩基配列を、クローニングベクターpCR2.1-TOPO(インビトロジェン)に導入した際の、この2つのゲノムをまたぐ領域に設計した。
 さらに、このDNA配列を増幅、検出するためのF-プライマーを馬の18SリボゾームRNAゲノムDNA上、R-プライマー及びプローブを大腸菌インサーション配列iso-IS1ゲノム上に設計することで、当該DNA配列のみを増幅、検出できることを見いだした。すなわち、ここで設計したDNA配列は通常、自然界には存在しない塩基配列となり、上記増幅、検出用プライマー/プローブセットで検出されるのはこのDNA配列のみである。
 また、上記クローニングベクター中の当該DNA配列にリアルタイムPCR検査対象DNAの標的領域を結合したプラスミドをリアルタイムPCR検査の標準分子とし、リアルタイムPCR検査に使用する蛍光色素と異なった励起波長を有する蛍光色素を当該DNA配列検出プローブに標識し、リアルタイムPCR検査と同時に当該DNA配列の検出を行うことで、同一容器内で同時に当該標準分子の検出反応が可能となり、試薬調製時の標準分子のコンタミネーションを迅速にチェックできる。なお、ここで当該DNA配列に結合するリアルタイムPCR検査対象DNAの標的領域に関しては、単一でも複数種であっても構わない。さらに、共通DNA領域として馬の18SリボゾームRNAゲノムDNAを使用し、その検出プローブを上記2種類のプローブに標識された蛍光色素と異なった励起波長を有する蛍光色素で標識することで、リアルタイムPCR検査が正しく実施されたかどうかも同時に判定することが可能である。
 リアルタイムPCR検査においては、複数施設で同じ検査を実施する場合、同一の品質を有する安定な物質での精度管理が必要となるが、当該標準分子はプラスミド化をしていることから安定供給が可能となる。よって、リアルタイムPCR検査のための精度管理試料としても有効である。
 当該DNA配列に結合させるリアルタイムPCR検査対象DNAの標的領域としては、リアルタイムPCR検査が実施できる塩基配列であれば特に限定はされないが、例えば、上述のBiosci.Biotechnol.Biochem.,71,3131-3135(2007)(非特許文献7)に示された食肉のリアルタイムPCR検査に使用するチトクロームB(CytB)部分塩基配列を挙げることができる(図4)。これらが結合された標準分子は、食品中の食肉検出検査においての偽陽性結果の判定に特に有効である。
 この検査には、反応中にPCR産物の蛍光検出が可能な、リアルタイムPCR検査に適した任意のPCR装置(サーマルサイクラー)を使用できる。また、PCR反応温度条件は、例えば上記食肉検査では、酵素活性化及び初期変性として50℃2分、95℃10分反応を行った後、95℃15秒のDNA変性反応-60℃1分のアニーリング/伸長反応を45サイクル行う条件などを用いることができる。検体等の条件により、アニーリング温度を伸長反応温度と変えた別の温度ステップとしてもよく、反応サイクル数も適宜増減させてよい。このPCR反応温度条件の調整は、リアルタイムPCRに関する基本的な知識を有していれば、検体DNA等に応じてすることは容易に行えるため、特に限定されるものではない。
 また、PCR反応温度条件に関して、上記で設計したDNA配列の検出条件と検査対象DNAの標的領域の検出条件が異なっていた場合、当該DNA配列、プライマー、プローブのいずれか、又はいくつかの塩基配列中の塩基を1個若しくは数個欠失、置換若しくは付加し、プライマー、プローブのアニーリング温度条件を調整して当該DNA配列の検出条件を検査対象DNAの標的領域の検出条件と合わせることで、検査に用いる標準分子とすることもできる。
 以下、本発明の実施例について述べるが、本発明はこれらのみに限定されるものではない。
(人為的DNA配列(以下、キメラ核酸と呼ぶ)を含むリアルタイムPCR検査用標準分子(以下、CONCHE(コンチェ)標準分子、及びCONCHE V (コンチェ ファイブ)標準分子と呼ぶ)の構築)
 リアルタイムPCR検査が正しく実施されたことの判定に使用される18SリボゾームRNAゲノムDNAとして、GenBankに登録されている馬の18SリボゾームRNAゲノムDNA配列(GenBank Accession#AJ311673)の409番目-659番目(251bp断片)の塩基配列をPCRにより増幅させた後、その増幅産物をTAクローニング技術によりクローニングベクターpCR2.1-TOPO(インビトロジェン)にクローン化した。これをシークエンシングにより、目的塩基配列が挿入されたことを確認した。
 次に、大腸菌インサーション配列iso-IS1ゲノム(GenBank Accession#D63569)の4628番目-4684番目(57bp断片)の塩基配列の3´末端側に制限酵素NotIの切断部位を導入したトップストランドDNA(塩基配列:TTAAGTGACGTAAAATCGTGTTGAGGCCAACGCCCATAATGCGGGCTGTTGCCCGGCGC)と、これと相補するボトムストランドDNA(塩基配列:GGCCGCGCCGGGCAACAGCCCGCATTATGGGCGTTGGCCTCAACACGATTTTACGTCACTTAA)を合成した。これらを等量混合し、95℃5分反応後、94℃から25℃まで1℃下げる毎に各1分ずつ反応し、最後に15℃でホールドする反応条件により二本鎖DNAにした後、先のベクター中の制限酵素切断サイトEcoRV-NotI部分に挿入し、キメラ核酸を構築した。さらに、キメラ核酸の下流に、食肉検査用のプライマー/プローブセットの標的領域(CytB部分塩基配列)を導入し、CONCHE標準分子(プラスミド)、CONCHE V 標準分子(プラスミド)を構築した。それぞれのプラスミドの構築図(構造図)を図1、2に、それぞれのマルチクローニングサイト(MCS)塩基配列を図4、5に示す。
(CONCHE標準分子の増幅、検出プライマー/プローブの設計)
 18SリボゾームRNAゲノムDNA増幅プライマー/プローブセット(18SrRNA内在性コントロールMix(VIC):ABI社製品)及び各種肉類検出用プライマー/プローブセット(非特許文献7に記載:ABI社製品)と同一のPCR条件で使用できるCONCHE標準分子の増幅、検出プライマー/プローブとして、F-プライマーを馬の18SリボゾームRNAゲノムDNA上、R-プライマー及びプローブを大腸菌インサーション配列iso-IS1ゲノム上に設計した。各種プライマー/プローブセットの位置を示す構造図を図3に、塩基配列を図6に示した。
(リアルタイムPCR検査条件の設計)
 リアルタイムPCR検査条件として、同一容器内で検出反応(以下、Duplexと呼ぶ)するための反応溶液組成及び反応温度条件を設計した。使用するPCR装置として、ABI社製品であるABI7500を用いるため、同時に検出できる蛍光色素は最大2種類の波長までとなる。したがって、プローブにラベルする蛍光色素の関係から、CytB部分塩基配列とキメラ核酸のDuplex、及びCytB部分塩基配列と18SリボゾームRNAゲノムDNAのDuplex反応溶液組成、それぞれに用いる反応温度条件を図7の通り設計した。
(各種プライマー/プローブの動作確認)
 CONCHE標準分子及びその検出用プライマー/プローブの基本性能を確認するため、5種類のCONCHE標準分子(それぞれの食肉CytB部分塩基配列を含む)を検体(DNA sample)としたリアルタイムPCR検査を実施した(図8)。反応溶液組成としては、図7のうちCytB部分塩基配列とキメラ核酸のDuplexを用い、18SリボゾームRNAゲノムDNAは単独での検出反応(以下、Singleと呼ぶ)を行った。反応温度条件としては、図7の条件を用いた。
 また、CytB部分塩基配列と18SリボゾームRNAゲノムDNAのDuplexについても別にリアルタイムPCR検査を実施した(図9)。
 すべてのPCR反応は問題なく実施されており、いずれの結果からも、CONCHE標準分子のキメラ核酸及びその検出用プライマー/プローブは、Duplexでの検出が可能であり、かつ他の標的領域、共通DNA領域の検出に影響を与えないことが確認できた。
(CONCHE標準分子検出用プライマー/プローブの特異性確認)
 ウシ、ブタ、ニワトリ、ヒツジ、ウマ、大腸菌、サケのゲノムDNAならびにColE1プラスミドを検体(DNA sample)とした、CONCHE標準分子検出用プライマー/プローブを用いたリアルタイムPCR検査を実施した(図10)。結果から明らかなように、CONCHE標準分子検出用プライマー/プローブは、CONCHE標準分子は検出するが他の検体とは反応しないことが示された。すなわち、このプライマー/プローブ領域は通常自然界には存在しない塩基配列となっているため、CONCHE標準分子検出用プライマー/プローブで検出されるのはこのCONCHE標準分子のみであることが実証できた。
(ブタ標的領域を含むCONCHE標準分子の、精製ブタゲノム、精製ウシゲノム、精製ショルダーベーコンゲノムでの実用試験)
 生豚肉より精製したブタゲノムDNA、生牛肉より精製したウシゲノムDNA、及びこれらに意図的にブタ標的領域を含むCONCHE標準分子を5,000コピー添加した検体を、CONCHE標準分子、CytB部分塩基配列、18SリボゾームRNAゲノムDNAそれぞれの検出用プライマー/プローブでリアルタイムPCR検査した結果を図11に示した。スタンダードは、ブタ標的領域を含むCONCHE標準分子1,000、10,000、100,000、1,000,000、10,000,000コピーを用いた。リアルタイムPCRは、CytB部分塩基配列検出とキメラ核酸検出のDuplex、18SリボゾームRNAゲノムDNAのSingleで同一プレートにて実施した。同様の条件で、精製ブタゲノムDNA及び市販ショルダーベーコンより精製したショルダーベーコンDNAでも検査を実施した(図12)。結果としては、意図的にCONCHE標準分子を添加したすべての検体において、CONCHE標準分子検出用プライマー/プローブにてCONCHE標準分子を検出できること、及び他の反応には影響を与えていないことを実証できた。
 以上のことから、CONCHE標準分子及びその検出用プライマー/プローブは、検査中の検体DNA等への標準分子コンタミネーション確認に充分使用できるものであることが確認できた。
(5種食肉CytB部分塩基配列を含むCONCHE V 標準分子の動作確認)
 図2に示した、ブタ、ヒツジ、ニワトリ、ウシ、ウマの5種類のCytB部分塩基配列を同一プラスミド上に挿入したCONCHE V 標準分子の基本性能を確認した(図13)。リアルタイムPCR検査は、CONCHE V 標準分子を検体とし、CytB部分塩基配列検出とキメラ核酸検出のDuplex、18SリボゾームRNAゲノムDNAのSingleで同一プレートにて実施した。図13は、それぞれの肉種毎に3種類のプライマー/プローブでの検査結果を同一グラフ上に重ねて表示している。図13の結果からわかるように、すべてのPCR反応は問題なく実施されており、いずれの結果からも、5種類のCytB部分塩基配列を同一プラスミド上に挿入したCONCHE V 標準分子についても、各領域の検出反応に影響を与えないことが確認できた。
 以上のことから、CONCHE V 標準分子についても、検体DNA等への標準分子コンタミネーションチェックに充分使用できるものであることが確認できた。

Claims (6)

  1.  リアルタイムPCR検査において、検査対象となるDNAの標的領域と同一のPCR条件及び同一の反応容器内で増幅、検出することができる人為的DNA配列、及び検査対象となるDNAの標的領域の両方を同一分子上に含むことを特徴とするリアルタイムPCR検査用標準分子、及び当該DNA配列のみをリアルタイムPCR検査で増幅、検出することができることを特徴とするプライマー及びプローブ。
  2.  配列番号1で示される塩基配列を有することを特徴とする請求項1に記載の人為的DNA配列を含む請求項1に記載のリアルタイムPCR検査用標準分子、配列番号2及び3で示される塩基配列を有することを特徴とする請求項1に記載のプライマー、及び配列番号4で示される塩基配列を有することを特徴とする請求項1に記載のプローブ。
  3.  配列番号1~4で示される塩基配列において、配列中の塩基が1個若しくは数個欠失、置換若しくは付加された塩基配列からなることを特徴とする請求項2に記載のリアルタイムPCR検査用標準分子、プライマー及びプローブ。
  4.  リアルタイムPCR検査の検体DNAが、食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)、又は少なくとも1種以上の食肉を原材料として使用した加工食品、又は食肉の原材料表示を含まない加工食品のいずれかから得られたものであり、これらの検体DNA中の食肉DNAの定量検査に使用する、食肉DNAの標的領域を含むことを特徴とする請求項1~3のいずれか1項に記載のリアルタイムPCR検査用標準分子。
  5.  請求項1~4のいずれか1項に記載のリアルタイムPCR検査用標準分子、プライマー及びプローブを使用することで、リアルタイムPCR検査操作中の、検体DNA又は試薬への標準分子混入による偽陽性結果を検査と同時に判定することができることを特徴とするリアルタイムPCR検査方法。
  6.   リアルタイムPCR検査の検体DNAが、食肉(豚肉、鶏肉、牛肉、羊肉、馬肉)、又は少なくとも1種以上の食肉を原材料として使用した加工食品、又は食肉の原材料表示を含まない加工食品のいずれかから得られたものであり、請求項4に記載のリアルタイムPCR検査用標準分子を用いてこれらの検体DNA中の食肉DNAの定量検査を行うことを特徴とする、請求項5に記載のリアルタイムPCR検査方法。
PCT/JP2009/061459 2008-06-25 2009-06-24 リアルタイムpcr検査に用いる標準分子及びその標準分子の検出法 WO2009157465A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008165775A JP2010004773A (ja) 2008-06-25 2008-06-25 リアルタイムpcr検査に用いる標準分子及びその標準分子の検出法
JP2008-165775 2008-06-25

Publications (1)

Publication Number Publication Date
WO2009157465A1 true WO2009157465A1 (ja) 2009-12-30

Family

ID=41444529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061459 WO2009157465A1 (ja) 2008-06-25 2009-06-24 リアルタイムpcr検査に用いる標準分子及びその標準分子の検出法

Country Status (2)

Country Link
JP (1) JP2010004773A (ja)
WO (1) WO2009157465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528136A (ja) * 2015-01-28 2017-09-28 中国医科大学附属第一医院 異なる種属の微生物間の種類と存在比を比較するための人工外来性参照分子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277798B1 (ko) * 2012-06-01 2013-07-09 대한민국 식품원료 내 식육원료의 혼입여부를 판별하는 방법
KR101277799B1 (ko) * 2012-06-01 2013-06-27 대한민국 식품원료 내 가금류 원료의 혼입여부를 판별하는 방법
KR101510451B1 (ko) 2013-05-08 2015-04-07 대한민국 식육(염소, 양, 말, 칠면조)의 감별방법 및 이를 위한 키트
CN106636384A (zh) * 2016-12-13 2017-05-10 苏州百源基因技术有限公司 一组用于鸡源性实时荧光pcr检测的特异性引物和探针
JP7100790B2 (ja) * 2018-03-16 2022-07-14 静岡県公立大学法人 生物種の判別方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DOOLEY,J.J. ET AL.: "Detection of meat species using TaqMan real-time PCR assays.", MEAT SCI., vol. 68, 2004, pages 431 - 438 *
LIU,C.-Q. ET AL.: "Rapid Specific Detection and Quantification of Bacteria and Archaea Involved in Mineral Sulfide Bioleaching Using Real-Time PCR.", BIOTECHNOL.BIOENG., vol. 94, no. 2, 2006, pages 330 - 336 *
RODRIGUEZ,M.A. ET AL.: "TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures.", MEAT SCI., vol. 70, 2005, pages 113 - 120 *
SAWYER,J. ET AL.: "Real-time PCR for quantitative meat species testing.", FOOD CONTROL, vol. 14, 2003, pages 579 - 583 *
TAKEO YANO ET AL.: "Shokuniku Hyoji o Hosho suru Real-Time PCR Kenchiho no Kaihatsu", THE 55TH PROCEEDINGS OF JAPANESE SOCIETY OF FOOD SCIENCE AND TECHNOLOGY, 5 September 2008 (2008-09-05), pages 43 *
TANABE,S. ET AL.: "A Real-Time Quantitative PCR Detection Method for Pork, Chicken, Beef, Mutton, and Horseflesh in Foods.", BIOSCI. BIOTECHNOL.BIOCHEM., vol. 71, no. 12, 2007, pages 3131 - 3135 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528136A (ja) * 2015-01-28 2017-09-28 中国医科大学附属第一医院 異なる種属の微生物間の種類と存在比を比較するための人工外来性参照分子

Also Published As

Publication number Publication date
JP2010004773A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
López-Andreo et al. Identification and quantitation of species in complex DNA mixtures by real-time polymerase chain reaction
JP3589638B2 (ja) 核酸の効率補正したリアルタイム定量方法
WO2009157465A1 (ja) リアルタイムpcr検査に用いる標準分子及びその標準分子の検出法
JP2002536024A (ja) 蛍光結合型pcrを用いて食品中の遺伝子改変dnaを定量的に検出するための試験キットおよび方法
JP5940874B2 (ja) NPM1遺伝子のexon12変異の検出用プローブおよびその用途
US20210238653A1 (en) Kit for together detecting multiple target nucleic acids differing from each other and detection method using the same
JP2018528780A (ja) 短いホモポリマー反復の改良された検出
JP2007274934A (ja) プライマーセット及び食中毒細菌の検出方法
EP3234191B1 (en) A method for the colorimetric detection of the amplification of a target nucleic acid sequence
JP2008271887A (ja) オーストラリア産麺用小麦銘柄の判別方法
JP4336877B2 (ja) β3アドレナリン受容体変異遺伝子の検出法ならびにそのための核酸プローブおよびキット
JP4454366B2 (ja) Mdr1遺伝子の変異の検出法ならびにそのための核酸プローブおよびキット
KR102261713B1 (ko) 해양 병원성 박테리아 검출 방법, 및 이를 위한 프라이머-프로브 세트, 조성물 및 키트
CN114085926A (zh) Abcb1基因c3435t的snp位点多态性的引物和探针、试剂盒及检测方法
CN113957176A (zh) 鉴别新冠病毒变异株和野生株的检测试剂、反应体系及试剂盒和用途
KR101603150B1 (ko) JAK2 유전자의 exon 12에 있어서의 변이의 검출법, 및 그를 위한 핵산 프로브 및 키트
US20180037959A1 (en) Process using ZEN hydrolysis probe for detection of porcine contamination and a kit thereof
WO2006070667A1 (ja) Egfr遺伝子変異の検出法ならびに検出キット
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途
US20070009910A1 (en) Primers, probes and reference plasmid for detection of meat adulteration
Wang et al. Optimization of 6-carboxy-X-rhodamine concentration for real-time polymerase chain reaction using molecular beacon chemistry
Bhattacharya Application of genomics tools in meat quality evaluation
WO2004092415A1 (ja) ミトコンドリアdna3243変異の検出法および定量法ならびにそのためのキット
JP2004313119A (ja) 膵ラ氏島アミロイドタンパク質変異遺伝子の検出法ならびにそのための核酸プローブおよびキット
JP5047450B2 (ja) Cyp2c19*3アレルの検出法およびそのための核酸プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770175

Country of ref document: EP

Kind code of ref document: A1